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Abstract

The quantum cascade laser (QCL) is a semiconductor heterostruc-
ture using inter sub-band transitions to generate stimulated emission.
The quantum cascade detector (QCD) is a similar to the QCL, but
the heterostructure is tailored to absorb radiation and give a read-out
current. In this work, three planned or realised QCL:s and two QCD:s
have been simulated and analysed using a program based on the non-
equilibrium Green’s function theory technique (NEGFT) and com-
paring to experimental measurements. The importance of electron-
electron scattering for thermalisation has been phenomenologically
studied by altering the barrier deformation potential and a planned
QCL has been optimised to give twice the gain from the original struc-
ture. The work has involved corporations with experimental groups at
the National Research Council in Ottawa and the University of Wa-
terloo, Canada, which resulted in an article published in the Journal
of Applied Physics[1].

A new way to display the global behaviour of a QCL in terms of
carrier concentration and density of states, by using the spectral func-
tion has been developed. For the first time, a QCD has been simulated
by NEGFT to give space- and energy-resolved carrier concentrations,
density of states and energies of the electronic states.

The agreement of NEGFT simulations to experiment is also anal-
ysed. The model applies very well to many structures, but the lack of
electron-electron interaction causes problems with thermalisation for
some structures.
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1 Introduction

Today, lasers are a natural part of our lives, and are vital in applications within
science, medicine and technology. The quantum cascade laser (QCL) is a laser
made from the conduction band of a semiconductor heterostructure, forming sub-
sequent quantum wells. It allows for precise lasing wavelengths and it partly covers
the difficult-to-reach THz range from 0.3-10 THz. The QCL has a wide range of
applications, from atmospheric and space spectroscopy to thermal imaging to se-
curity scanning[5]. In recent years, infrared (IR) QCL:s have been introduced on
the market, and recently Statoil bought a set of IR QCL:s in order to monitor
waste water from their oil rigs[6].

The quantum cascade detector (QCD) is a recently developed device, similar to
the quantum well infrared photodetector (QWIP), but has the advantage of being
operated without an external bias, heavily suppressing leakage currents under dark
conditions. The hope is for QCD:s to help in identifying molecular and atomic
signals in gases. Important future applications are diagnostics from exhaled air in
medicine, detection and limitation of leaking chemicals from industries in sensitive
environments, as well as infrared imaging[7].

Motivation

The motivation of this work is to help progress toward high-temperature QCL:s
and QCD:s by simulating and understanding current state-of-the-art lasers and
detectors, their benefits and limitations. The goal is to be able to help in improving
the performance of the devices.

The long-term goal of QCL research is developing applications in a variety
of fields, ranging from diagnostics through exhaled air in medicine, to precise
spectroscopic measurements in astrophysics. The potential benefit to society is
great, once QCL:s can be commercially available as a table top device, which
requires a much increased temperature performance.

QCD:s are important for detecting in the infrared, a region that is now domi-
nated by quantum well infrared detectors (QWIP:s). These detectors suffer from
several dis-benefits, however. QWIP:s are operated under an external bias and
have the problem of currents even in completely dark conditions. The QCD re-
quires no bias applied under operation, which reduces the dark current substan-
tially (even though a very small bias can reduce the dark current even further).
The purpose of these IR detectors is primarily thermal imaging. Contrary to
THz QCL:s, QCD:s can be operated at room temperature due to the large energy
separation between the ground state and the excitation states.

Quantum Cascade Lasers

The first quantum cascade laser (QCL) was realised in 1994[8], and it was a mid-
infrared QCL. Infrared (IR) QCL:s have been dominating the field since, but are
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limited by the optical phonon frequency (typically 7-12 THz in semiconductor
materials) and the resulting Reststrahlen band. The type of QCL focused on in
this work is the THz QCL first realised in 2002[9], operating below the optical
phonon frequency.
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Figure 1: Conduction band edge and the Wannier-Stark states of the struc-
ture investigated in Ref. [2]. The different colours represent the lower laser
state (LLS), upper laser state (ULS), the extraction (e) and injection (i)
levels. The injection and extraction levels are the same in this particularly
simple structure. The alignment between the injection level and the ULS
provides efficient tunnelling realised tunnelling filling the ULS of the next
period.

For many years it was thought impossible to construct a QCL that operated at
a temperature higher than the lasing frequency, kBT < h̄ω. The reason for this
assessment was that the carriers would have enough thermal energy to counter-act
the inversion process somehow. There is no physical foundation for such a rule,
however, and many lasers have been built that overcome it. Now the quest is on
for THz QCLs to reach ever higher operating temperatures. A THz QCL has yet
to be proven to work above 200 K, the closest record published just a few months
ago being 199.5 K[10]. The goal would be a working laser around T = 250 K,
since then it would be possible to cool the device electronically by Peltier cooling
e. g., which would allow for a table-top device rather than large tanks of liquid
nitrogen to be re-filled and handled with. The two largest problems to be overcome
is so-called thermal backfilling, where electrons might get thermally excited to e.
g. the LLS from the extraction level and reduce invention, and acoustic phonon
scattering, opening up additional current channels skipping the lasing transition.
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The heterostructures are made by molecular beam epitaxy (MBE), a very
lengthy process where one period of about 10 subsequent wells and barriers is
repeated about 200 times for the ordinary THz QCL, which requires the operator
to be present constantly for as long as 18 hours.

Quantum Cascade Detectors
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Figure 2: Conduction band profile and the quantum mechanical states of a
QCD made by Ref. [3].

The first quantum cascade detector (QCD) was realized in 2004[3] and is con-
structed in a way similar to the QCL, see figure 1. The wells are tailored such that
mainly a low-lying ground state |1⟩ is populated with electrons. A photon of an
energy matching a transition from the state |1⟩ to a high-energy state in the same
well (e. g. |6⟩) puts an electron into this excited state. In the neighboring well,
which is much more narrow, there is a state close in energy to the excited state in
the first well, and the electron tunnels through and de-excites to a state of lower
energy. It then tunnels and de-excites again and again in a cascade down to the
ground state of the next period. When many electrons are excited, this induces a
current to be detected at the leads of the heterostructure.

This design requires the ground state to overlap very little with the states
leaking into the first well from the neighbouring wells, in order to get only one
peak in the response spectrum. It is also necessary to have the state in the last well
separated from the ground state energy enough to have only a small population,
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for the same reason. The importance of having only one peak is that we want
to detect at one frequency. If we have several peaks we would detect at other
frequencies as well, thus being unable to know at what frequency we are actually
detecting.
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Part I

Theory

2 Heterostructure

The concept of a QCL uses the idea of a quantum well, the popular example of
illustrating quantum mechanics. One of the most common combination of mate-
rials used is GaAs in the well and AlxGa1−xAs in the barriers (x is the relative
amount of aluminum to gallium) which are schematically drawn in figure 3. When
put together, the conduction and valence band edges will bend at the interfaces,
with a conduction band offset of typically 250-300 meV. The quantum cascade
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Figure 3: Two pieces of bulk GaAs and AlGaAs have different band structure
and different band gaps at the Γ-point. Put together, the bands will bend at
the interface between the materials.

laser exploits inter sub-band transitions in the conduction band, where electrons
are injected by adding donor atoms. The valence band is completely full, and so
we fully turn our attention to what is happening in the conduction band from now
on. In the z-direction (the growth direction), the electrons incoming from the left
will see a barrier in the GaAs/AlGaAs conduction band offset. In the transverse
directions (x and y), however, the electrons are not quantized and thus the elec-
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Figure 4: The conduction band profile of a simpel GaAs/AlGaAs heterostruc-
ture.

trons can have any energy Ek associated with the (transverse) crystal momentum
k. This is depicted in figure 4

Quantum wells are made in the conduction band by alternating between thin
layers of materials with different band gaps as in figure 5. The electronic wave-
function is quantized according to the depth of the well and the widths of the wells
and barriers. This allows for tailoring the energies and extensions of the quantum
mechanical states and electronic wave-functions. When many quantum wells are
placed in sequence, electrons can tunnel across the AlGaAs barriers to neighboring
wells. When a bias is applied, see figure 6(a), the whole band structure bends in
energy and the tunneling electrons will constitute a tunneling current. For the
structure in figure 6(a), the current as a function of applied bias is shown in figure
6(b).

The idea of a quantum cascade laser is now to tailor the quantum wells and
barriers, so that an applied bias will drive the electronic current in such a way
that inversion is created between two sub-bands. When inversion is present, elec-
trons from the upper laser level (with higher electron density) can be de-excited
by stimulated emission into the lower laser state (with less electron density).By
manipulating the wells, we can get any suitable separation in energy between the
states. The energy difference between the lower laser state and some extraction
state, e. g., is preferably tuned to the optical phonon energy to get an efficient
scattering rate. Alternatively, the two states are tuned into resonance to get an
efficient tunnelling rate in order to maintain inversion.

One such tailored structure is shown in figure 1, where the short-hand notation
for the lower laser state (LLS), upper laser state (ULS), extraction level (e) and
injection level (i) has been introduced. This is actually the simplest structure
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Figure 5: Slicing a thin slab of GaAs inside a AlGaAs slab creates a quantum
well confinement potential for the electrons in the conduction band.

possible[11], with only three active states and two wells per period. This strucutre
is a working QCL that is examined later in this work.

This is how the laser scheme works: the electrons can be de-excited from a state
of higher energy (ULS) to a state of lower energy (LLS) by stimulated emission,
when a photon with the energy of the level separation interacts with the electrons.
For this to work, inversion is necessary, i. e. more carriers have to be in the
ULS than in the LLS. The inversion is driven by the bias voltage, transporting
the carriers from the LLS to the ULS in the next period. Efficient tunnelling and
phonon driven scattering mechanisms also aid the carriers to reach inversion.

3 Model

The properties of a quantum cascade laser are quantum mechanical in nature,
and since we are dealing with many (1010) particles we need some kind of theory
for treating many-body quantum systems. The simplest approach would be using
quantum rate equations, but this has proved not to be reliable in all cases. An-
other common approach is the density matrix theory, in which one characterises
a quantum state by its density matrix describing the overlap between the basis
states

ρij = ⟨Ψi|ρ̂|Ψj⟩ = Tr{ρ̂a†jai}, (1)

where ρ̂ is the density operator. This method, being relatively easy to understand
and giving fast calculations, is also not completely reliable.

For the above reasons, the method used for the calculations in this work is the
non-equilibrium Green’s function theory (NEGFT). It revolves around the rather
abstract definition of the Green’s function (related to a propagator) of the quan-
tum system, from which the observables of interest can be derived. The theory is
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Figure 6: (a): Superlattice structure with an applied bias of 40 mV per
period. (b): Current vs. applied bias per period. A peak occurs at around
100 mV/period, where the ground state of one well aligns with the first
excited state of the neighboring well down stream.

rather complicated and non-intuitive at first glance, but has proved to give very
accurate results in most cases. As will be seen in this work, the NEGFT allows
us to calculate currents quantitatively and gain spectra qualitatively. The gain
calculation has not been tested sufficiently for its quantitative value for predicting
laser outputs due to the complications of losses in the waveguides used in the real
case. Qualitatively, it seems to be able to reproduce experimental data well in
most cases.

The periodicity of the hetero-structure implies Bloch functions are good quan-
tum states. However, they are extending over the entire structure by definition
and we need to think of localised states extending over one period at most, to be
able to predict electron distributions and currents. We therefore use the Wannier
states, which are superpositions of Bloch states, with a phase chosen in a clever
way to maximally localise the states.

The basis states of the calculations will be discussed in the first section of the
theory part, mostly inspired by Ref. [12]. The Green’s function theory follows
next, mainly taken from Refs. [12], [13] and [14]. The structure of the Hamilto-
nian also needs some discussion. We end the theoretical part of this work with a
description of how the current and gain are calculated.

The program has been developed and tested by my supervisor, prof. Andreas
Wacker with colleagues, during the course of many years. In order to to get a feel-
ing of where the results come from and what is needed as inputs to the program,
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this part of the thesis will discuss the theory behind the program.
The following discussion is rather technical and describes the method used in

the implementation of the program. However, if the reader is primarily interested
in the results and analysis of the quantum cascade structures, they may skip
directly to part II since the theory in full detail is not vital to appreciate the
results and their implications.

4 Basis States

The quantum cascade laser and detector is built up from layers of alternating
material, to form quantum wells and barriers in the conduction band. Figure 1
shows the conduction band edge and the Wannier-Stark states at a certain bias.
The structure is periodic (in the figure, one period is 34.5 nm long), with on the
order of 10 layers of different thickness in each period. For THz lasers, the period
is repeated on the order of 200-300 times[2][1], and for IR lasers it is much less,
typically in the order of 10 times[15].

The periodicity of the structure implies that Bloch functions are a good choice
of basis states, however they are non-local and are thus not suited to describe the
dynamics within a single period. For this reason, the basis states used for the
calculations are the so-called Wannier states, defined by

ψν
R(r) =

1√
N

∑
k

e−ikRφν
k(r) (2)

from the crystal Bloch functions

φν
k(r) = eik·ruν

k(r), (3)

which are defined up to an arbitrary phase. uν
k(r) has the periodicity of the

heterostructure. The phase can be chosen so as to maximise the localisation of
the Wannier states. R is any lattice vector, N is the number of unit cells in the
crystal and ν is the subband index. The Wannier states constitutes an orthonormal
basis. Using that the crystal is symmetric and homogeneous in the (x, y)-plane
and periodic in the z-direction and replacing the sum with an integral, one can
write

ψν(z − nd) =
d

2π

∫ π/d

−π/d
dqe−inqdφν

q (z). (4)

4.1 Miniband Energy

For each layer of the superlattice, zj < z < zj+1, it is possible to construct an
envelope function

fj(z) = Aje
ikj(E)(z−zj) +Bje

−ikj(E)(z−zj) (5)

15



satisfying the Schrödinger equation for the effective Hamiltonain. At the boundary
between two layers j and j+ 1 (at z = 0), the envelope functions of the respective
layers must satisfy

f(r)|z→0− = f(r)|z→0+ (6)
1
mj

∂f(r)
∂z

|z→0− =
1

mj+1

∂f(r)
∂z

|z→0+ . (7)

This gives the set of equations for the coefficients Ai and Bi, on matrix form,(
Aj+1

Bj+1

)
= Mj(E)

(
Aj

Bj

)
, (8)

with

Mj =
1
2

(
(1 + kjmj+1

kj+1mj
)eikj(zj+1−zj) (1 − kjmj+1

kj+1mj
)e−ikj(zj+1−zj)

(1 − kjmj+1

kj+1mj
)eikj(zj+1−zj) (1 + kjmj+1

kj+1mj
)e−ikj(zj+1−zj)

)
. (9)

For a heterostructure with M layers, one can iterate (8) to yield(
AM+1

BM+1

)
=

M∏
j=1

Mj(E)
(
A1

B1

)
= eiqd

(
A1

B1

)
, (10)

using the fact that the Bloch function satisfies φq(z + d) = eiqdφq(z).
The heterostructure has a period d, and the allowed values for q are therefore

limited to the Brillouin zone −π/d < q < π/d, and Eν(q + π/d) = Eν(q − π/d).
This allows for Fourier expanding the dispersion Eν(q) as

Eν(q) =
aν

0

2
+

∞∑
h=1

[
aν

h cos
(
h

2π
d
q

)
+ bνh sin

(
h

2π
d
q

)]
(11)

aν
h =

d

π

∫ π/d

−π/d
dqEν(q) cos (hdq) (12)

bνh =
d

π

∫ π/d

−π/d
dqEν(q) sin (hdq) = 0 (13)

where (13) becomes zero since Eν(q) sin(hdq) is an odd function. From (12), for
h = 0 we get

a0

2
=

d

2π

∫ π/d

−π/d
dqEν(q) ≡ Eν , (14)

where Eν is defined as the center of the miniband. We can now write

Eν(q) = Eν +
∞∑

h=1

2T ν
h cos(hdq), (15)
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where

T ν
h ≡

aν
h

2
=

d

2π

∫ π/d

−π/d
Eν(q) cos(hdq)dq. (16)

T ν
1 >> T ν

h≥2 in most cases and so neglecting higher orders in h is often appropriate.
Eν(q) are obtained by solving equation (10).

4.2 Second Quantization

The Hamiltonian is written in second quantization as

Ĥ =
∑

ν

∫ π/d

−π/d
dqEν(q)aν†

q a
ν
q (17)

where aν
q is the annihilation and aν†

q the creation operator, annihilating and creat-
ing an electron in the Bloch state in band ν with momentum q. The annihilation
and creation operators in the Wannier basis are defined as

aν
q =

√
d

2π

∑
n

e−iqndaν
n (18)

aν†
q =

√
d

2π

∑
n

eiqndaν†
n , (19)

which gives the Hamiltonian in the Wannier basis

Ĥ =
∑

ν

∫ π/d

−π/d
dq
∑
m,n

[
Eν d

2π
eiqd(m−n)aν†

ma
ν
n

+
∞∑

h=1

2T ν
h

eidq(m−n+h) + eidq(m−n−h)

2
d

2π
aν†

ma
ν
n

]
=

∑
ν,n

Eνaν†
n a

ν
n +

∞∑
h=1

T ν
h

(
aν†

n a
ν
n+h + aν†

n a
ν
n−h

)
, (20)

where the cosine in (15) has been expanded using Euler’s formula. Heisenberg’s
equation of motion gives the time dependence of the Heisenberg operator aν

n(t),
neglecting terms with h ≥ 2,

ih̄
∂aν

n(t)
∂t

= [Ĥ, aν
n(t)] = Eνaν

n + T ν
1

(
aν

n−1 + aν
n+1

)
, (21)

using the commutator identities

[aν†
m+la

ν
m, a

ν
n] = aν†

m+l[a
ν
m, a

ν
n] + [aν†

m+l, a
ν
n]aν

m =

= aν†
m+l{a

ν
m, a

ν
n} − {aν†

m+l, a
ν
n}aν

m = δµ,ν
m+l,na

µ
m (22)
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and anti-commutation relations for the fermionic annihilation operator

{aµ
m, a

ν
n} = 0 (23)

{aµ†
m , a

ν
n} = δµ,ν

m,n. (24)

4.3 Wannier-Stark Basis

Let us now add a constant electric field F , uniform over the entire heterostructure,
giving rise to a potential energy

eϕ(z) = −eFz, (25)

where e < 0 is the electron charge. This will change the Hamiltonian (20) to

Ĥνν′
nn′ −→ Ĥνν′

nn′δνν′ − eFzνν′
nn′ (26)

which is non-diagonal in the Wannier basis, and solving the Shrödinger equation
for the Hamiltonian (26) gives the Wannier-Stark states |ϕν

j ⟩ as the eigenstates.
The Wannier-Stark states can be expanded in the Wannier basis, mixing the Wan-
nier states due to the presence of an electric field. The Wannier-Stark states form
a ladder in both space and energy with the same wavefunctions appearing each
heterostructure period.

The Wannier-Stark states are not used in the actual calculations, but are a helpful
tool for displaying, discussing and understanding a quantum cascade structure. In
practice, they are also calculated with a mean field potential (described in more
detail in section 6.1), and so they show more accurately what the eigenstates look
like, than if one were to show the Wannier states.

5 Green’s Functions

In the following, x⃗ and k⃗ stand for 3D quantities, x and k 2D quantities and 1D
quantities or absolute values are written in italic face (x, k). The Green’s functions
of the system are defined by the correlation functions[13]

G<
µν,mn(t, t′) = i⟨a†ν,n(t′)aµ,m(t)⟩ (27)

G>
µν,mn(t, t′) = i⟨aµ,m(t)a†ν,n(t′)⟩ (28)

GR
µν,mn(t, t′) = −iθ(t− t′)⟨{aµ,m(t), a†ν,n(t′)}⟩ (29)

GA
µν,mn(t, t′) = iθ(t′ − t)⟨{aµ,m(t), a†ν,n(t′)}⟩, (30)

where the expectation value of an operator Â is defined as ⟨Âρ̂⟩. The correlation
functions (27)-(30) are matrices in the band µ, ν and period m,n indices. When
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convenient, these are contracted to α = µm and β = νn, or suppressed com-
pletely when they are superfluous. From this definition of the Green’s functions,
all relevant observables of the system can be obtained.

If the system has a Hamiltonian with a periodic time-dependence with period
T = 2π/Ω, we can define the Fourier transform of G<(t1, t = t2 − t1) as[16]

G<
h (E) =

1
h̄

∫ ∞

−∞
dt

1
T

∫ T

0
dt1e

ihΩt1eiEt/h̄G<(t1, t1 − t). (31)

In the following the notation E = h̄ω is used for the Fourier transform of the
difference time. From the definitions of the Green’s function and the correlation
functions (27)-(30) all relevant observables can be obtained. For example, the
density matrix is

ρα,β(k, t) = ⟨ψ†
β(k, t)ψα(k, t)⟩ = −i

∑
h

∫
dE

2π
G<

αβ,h(k, E)e−ihΩt. (32)

The spectral function for stationary systems is defined as

A(k⃗, ω) = i[GR(k⃗, ω) −GA(k⃗, ω)] = i[G>(k⃗, ω) −G<(k⃗, ω)] (33)

and satisfies ∫
dω

2π
A(k⃗, ω) = 1 (34)∫

d3k

(2π)3
A(k⃗, ω) = ρ(ω), (35)

where ρ(ω) is the energy resolved density of states. It then follows that

G<(k⃗, ω) = if(ω)A(k⃗, ω) (36)

in equilibrium, where

f(ω) =
1

e(ω−µ)/kBT + 1
(37)

is the Fermi distribution function.

5.1 Self-Energies

The full Green’s function can be written as[14]

G(k⃗, E) = G0(k⃗, E) +G0(k⃗, E)Σ(k⃗, E)G(k⃗, E), (38)

where Σ(k⃗, E) is called the (proper) self-energy and is the sum of all irreducible
Feynman diagrams. Equation (38) is called the Dyson equation and gives an
iterative expression for the Green’s function.
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G0 is the zeroth order term in the perturbation expansion of G, and is the
free-particle Green’s function. In Fourier space, G0(k⃗, E) can be written

G0(k⃗, ω) =
1 − fk

ω − ϵk + iη
+

fk

ω − ϵk − iη
, (39)

where ϵk comes from the time-dependence of ak(t) = e−iϵktak(0). Σ can also be
written in terms of G0 and the matrix elements of the different interactions in the
respective Feynman diagrams.

In the self-consistent Born approximation, the phonon-electron self-energies are
approximated by[13]

Σ(k,E) =
i

h̄

∑
q

∫
dE′

2π
M2

qG(k − q, E − E′)D0(q, E′), (40)

where D0 is the phonon Green’s function and Mq the matrix element for the
interaction with momentum q.

5.2 Non-Equilibrium

With a time-dependent Hamiltonian there is no guarantee for equilibrium and all
observables have a complicated dependence on H ′(t). In order to simplify the
matters, a contour integration along the Keldysh contour is inferred [13]. By do-
ing this and replacing all time-ordering operators with contour-ordering operators
Tt → TC , the theory for the non-equilibrium case can be reused with some changes.
According to the Langreth theorem [13], the self-energies now get contour ordered
counter parts Σ>/< and ΣR/A. With U(t) containing all time-dependence of H,
the equations of motion becomes(

ih̄
∂

∂t1
− Ek − U(t1)

)
GR/A(k, t1, t2)

= h̄δ(t1 − t2) +
∫
dt

h̄
ΣR/A(k, t1, t)GR/A(k, t, t2) (41)(

ih̄
∂

∂t1
− Ek − U(t1)

)
G<(k, t1, t2)

=
∫
dt

h̄

[
ΣR(k, t1, t)G<(k, t, t2) + Σ<(k, t1, t)GA(k, t, t2)

]
. (42)

These are solved by the Keldysh relation [13]

G<(k, t1, t2) =
∫
dt

h̄

∫
dt′

h̄
GR(k, t1, t)Σ<(k, t, t′)GA(k, t′, t2). (43)

The Fourier transform gives the corresponding relations in frequency-space, taking
into account the harmonic time-variation of all quantities.
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6 Hamiltonian

The model takes into acount many different interactions and potentials, and for
clarity and convenience it is split up in smaller parts containing similar terms. The
full Hamiltonian reads

H = T + VSF + VMF, static + VMF(t) +HAC(t)
+HLO phon +HAcc phon +HInt

+HImp +HAlloy

=
∑
αβ,k

Uαβ(k, t)a†α(k)aβ(k) +Hscatt

where quantities explicitly depending on time are denoted by a bracketed t. T is
simply the kinetic part, VSF is the heterostructure potential and static external
bias, VMF contains the mean field from the carriers and is divided into one time-
dependent (with harmonic variation) and one static part. HLO phon, HAcc phon,
HInt, HImp and HAlloy are the scattering terms for longitudinal optical and acous-
tic phonons, interfaces, impurities (doping), and alloy scattering (effective treat-
ment of the non-crystalline AlGaAs) respectively, and are treated with self-energies
within the self-consistent Born approximation (40). Finally, HAC(t) contains the
interaction with the (classical) electro-magnetic field, giving rise to absorption/gain
effects. In the following sub-sections these parts will be described separately.

6.1 Single-particle Hamiltonian

The single particle Hamiltonian H0 contains all one-particle energies and poten-
tials, no scattering or interaction with electro-magnetic fields. It contains the ki-
netic energy operator, the static electric field and the mean field from the electron
density and the doping. It can be decomposed as

H0 = T + V SF + VMF =
∑
αβ,⃗k

(Tαβ + USF
αβ + UMF

αβ )a†β(k⃗)aα(k⃗). (44)

The kinetic part is

Tαβ = δαβ

(
h̄2k2

2m(z)
+ Eνaν†

n a
ν
n

)
+

∞∑
h=1

T ν
h

(
aν†

n a
ν
n+h + aν†

n a
ν
n−h

)
(45)

and the static potential

USF
αβ (z) = VCB(z)δαβ − eFzαβ , (46)

where VCB(z) is the heterostrucure potential. The mean field potential ϕMF (z) is
calculated from the electron density

ρel(z, t) =
∑
αβ

∑
k

2(spin)e
A

ραβ(k, t)φ∗
β(z)φα(z), (47)
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where A is the in-plane area and ραβ is given by equation (32). ϕMF (z) is obtained
by solving Poisson’s equation

∇2ϕMF (z) = −
ρel(z) + ρdope(z)

ϵ0
(48)

using the boundary condition ϕMF (z + d) = ϕMF (z), with the solutions

ϕMF (z, t) =
∑

h

eihΩtϕMF
h (z). (49)

ϕMF
h (z) = 1

T

∫
dtϕMF (z)eihΩt is taking into account the harmonic time variations

of the alternating light field and can be split into a time-dependent and a time-
independent part. The mean field potential is thus given by

UMF
αβ,h(z) = eφ∗

α(z)ϕMF
h (z)φβ(z). (50)

6.2 Electro-magnetic Field

The Hamilton operator from classical mechanics for a charged particle in an electro-
magnetic field reads

HEM =
(p − eA)2

2m
+ eϕ. (51)

Thus the Hamiltonian for the electro-magnetic field in second quantization is

HEM =
∫
d3rΨ†(r)

(
− h̄2∇ 1

2m(z)
∇ + ih̄

eA(z, t)
2m(z)

∇

+ ih̄∇eA(z, t)
2m(z)

+
e2A(z, t)
2m(z)

+ eϕ(z, t)
)
Ψ(r)

=
∫
dz
∑
αβ

∑
k

a†β(k)
(
Tαβ + UAC

αβ

)
aα(k). (52)

The kinetic term Tαβ we have already put into H0, and so we subtract it from the
electro-magnetic field Hamiltonian,

HAC = HEM − T =
∑
αβ,⃗k

a†β(k⃗)UAC
αβ aα(k⃗). (53)

In Coulomb gauge, with ∇ · A⃗ = 0 this gives

UAC
αβ =

∫
dz
ih̄A(z, t)
2m(z)

(
φ∗

β(z)
∂φα(z)
∂z

−
∂φ∗

β(z)
∂z

φα(z)

)
+
e2A(z, t)2

2m(z)
φ∗

β(z)φα(z).

(54)
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6.3 Phonon Scattering

The phonon termsHLO phon andHAcc phon are treated similarly with the self energy

Σ<
αα′(E) =

∑
ββ′

X−
αα′ββ′f(Ep)

∫ ∞

0
dEkG

<
ββ′(k,E − Ep)

+
∑
ββ′

X+
αα′ββ′ [f(Ep) + 1]

∫ ∞

0
dEkG

<
ββ′(k,E + Ep) (55)

and

ΣR
αα′(E) =

∑
ββ′

X−
αα′ββ′ [f(Ep) + 1]

∫ ∞

0
dEkG

R
ββ′(k,E − Ep) +

∑
ββ′

X+
αα′ββ′ [f(Ep)]

∫ ∞

0
dEkG

R
ββ′(k,E + Ep) +

1
2

∑
ββ′

X−
αα′ββ′

∫ ∞

0
dEkG

<
ββ′(k,E − Ep)

−1
2

∑
ββ′

X+
αα′ββ′

∫ ∞

0
dEkG

<
ββ′(k,E + Ep)

+i
∫
dE′′

2π
P

{
1
E′′

}[∑
ββ′

X−
αα′ββ′

∫ ∞

0
dEkG

<
ββ′(k,E − Ep − E′′)

−
∑
ββ′

X+
αα′ββ′

∫ ∞

0
dEkG

<
ββ′(k,E + Ep − E′′)

]
. (56)

The X matrices are just the collected terms for the coupling between the electron
and the phonon fields, which is approximated not to depend on k. Ep is the phonon
energy, either Eacc. = h̄ωacc. or Eopt. = h̄ωopt.. In the program we neglect the last
two lines of equation (56).

The LO phonons play a crusial role as extraction and injection mechanisms
in the QCL:s studied in this work. The LO phonon mode is the lattice vibration
mode where the atoms oscillate towards one another. The interaction with the
resulting electric potential and an electron is called the Frölich interaction, and
is particularly strong in III-V semiconductors since the basis atoms are partly
ionised[17].

6.4 Elastic Scattering

The terms HInt, HImp and HAlloy constitute the elastic scattering and are treated
with a common self-energy

Σ</R
αα′ (E) =

∑
ββ′

Xelast
αα′ββ′

∫ ∞

0
dEkG

</R
ββ′ (k,E), (57)
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where the Xelast matrices again collects all the terms for the transition coupling
for interface, impurity and alloy scattering.

7 Current

The quantum mechanical current is defined as

J(z, t) =
e

V

∂ẑ

∂t
=

e

V
[ẑ, H] =

= e
∑
αβ

[ h̄

i2m(z)

(
φ∗

β(z)
∂φα(z)
∂t

−
∂φ∗

β

∂t
φα(z)

)
−

− eA(z, t)
φ∗

βφα(z)
m(z)

] 2
A

∑
k

ραβ(k, t) (58)

where V is the volume of the sample and A is the cross-sectional area of the sample.
This is in principle independent of z, but since it is impossible to account for all
states in a numerical calculation it has proved to be more stable to take the mean
value of the current over one period [18]. Doing this and collecting the terms in
phase (Jcos) and out of phase (J sin), as well as the direct current part (Jdc),

⟨J(t)⟩ = Jdc + jac(t) = Jdc + Jcos
1 cos(Ωt) + Jsin

1 sin(Ωt). (59)

Here we used ραβ =
∑

h ραβρe
ihΩ with h ≤ 2 and A = Fac · (−ie−iΩt + ieiΩt)/2Ω.

We recall that in linear response, the alternating current can be written in complex
form as

Jac(t) = ℜ{J̃e−iΩt} = ℜ{σ̃Face
−iΩt} = ℜ{(σ′ + iσ′′)Fac(cosΩt− i sinΩt)}

= ℜ{σ}Fac cos(Ωt) + ℑ{σ}Fac sin(Ωt), (60)

so we can identify ℜ{σ} = Jcos
1 /Fac and ℑ{σ} = J sin

1 /Fac.

8 Gain

In a material where Ohm’s law J⃗ = σE⃗ is valid, the curl of the magnetic field
becomes [19]

∇×H = −iω(ϵrϵ0 + iσ/ω)E⃗, (61)

where ϵr is the static dielectric constant. On the other hand we may interpret the
a.c. currents as shifts in the polarization:

∇×H = −iωϵ(ω)E⃗. (62)

Thus we identify ϵ(ω) = ϵrϵ0 + iσ/ω, or

σ = −iω(ϵ(ω) − ϵrϵ0) (63)
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The complex wave vector of the a.c. field is written k = β + iα/2, where α is the
absorption coefficient giving rise to a decay of the intensity I ∝ e−αz as the wave
propagates through the material. The phase velocity relates the wavevector to the
dielectric function by

vphase =
ω

k
=

1√
µϵ(ω)

, (64)

giving the system of equations{
β2 − α2

4 = ω2

c2
ℜ
{

ϵ
ϵ0

}
β · α = ω2

c2
ℑ
{

ϵ
ϵ0

}
.

(65)

Solving (65) for α and taking ω large,

α ≈ ℜ{σ}
cϵ0

√
ϵr

=
Jcos

1

Faccϵ0
√
ϵr
. (66)

We see that the gain of the sample (the negative of the absorption α) can be
obtained by calculating the amplitude of the part of the current that is in phase
with the applied electric field, jcos.
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Part II

Results

9 Scalari Quantum Cascade Laser[2] 1

We start the discussion of the results with the simplest possible structure, as men-
tioned in the introduction to this thesis. It has only two wells per period and
it is basically a three-level system, the minimum number of levels possible for a
cascade lasing scheme[11]. The sample was produced by a research group at the
Institute of Quantum Electronics in Switzerland[2] in 2010. The first author is G.
Scalari, and we will simply call this structure the Scalari QCL. The group reported
a measured gain with laser frequencies from 2.8 to 4.1 THz, up to a temperature
of 125 K, although their simulations using a density matrix model indicated it
could operate at temperatures above 200 K. Owing to the simple conduction band
profile, the device is bi-polar and can be operated with both positive and negative
bias voltages. However, we show here only results of a positive bias voltage.
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Figure 7: Conduction band structure and Wannier-Stark states at a bias per
period of 48.25 mV, for the Scalari QCL.

This sample is well suited for studying in order to getting to know the program,
since it has a very simple structure. It is also examined in some detail to find out

1This structure was simulated in cooperation with David Winge, Division of Mathe-
matical Physics, Lund University.

26



25 30 35 40 45 50

100

200

300

400

Bias voltage per period [mV]

C
u
rr

en
t

d
en

si
ty

[A
/c

m
2
]

50 K

70 K

140 K

200 K

(a)

5 10 15 20

0

10

20

30

40

h̄ω [meV]

G
a
in

[1
/
cm

]

50 K
70 K
140 K
200 K

(b)

Figure 8: (a) IV characteristics and (b) gain for the QCL by [2] for different
temperatures of the Scalari QCL.

why the group’s gain simulations did not compare very well with the experiment
at higher temperatures.

The conduction band structure is shown in figure 7. The Wannier-Stark states
are calculated at a bias of 48.25 mV per period since this corresponds roughly to
the reported bias applied over the structure during operation (14 kV/cm = 48.3
mV/period). We see that the lasing would come from the transition from the blue
state (the upper laser state ULS) to the green state (the lower laser state LLS),
when a photon with energy h̄ω = EULS − ELLS ≈ 15 meV de-excites an electron
by stimulated emission. The carriers in the LLS then rapidly transfer by emitting
a longitudinal optical (LO) phonon of energy ELO = 36.7 meV, into the red state.
Through resonant tunnelling via the red and the green state, the carriers are in-
jected into the ULS of the next period downstream in potential.

Our simulated current is shown in figure 8(a). The current shows a peak at
around 49 mV/period, which corresponds to the reported operating bias. This is
where the gain is expected to be largest, since a high current indicates efficient
scattering and tunnelling channels are quickly emptying the LLS. The current is
too small here compared to the experiment, where the current densities are over
800 A/cm2.

Figure 8(b) shows our resulting gain spectra. The gain is peaked around h̄ω =
14-15 meV, corresponding to a frequency 3.4-3.6 THz. Assuming waveguide losses
of about 20 cm−1[20] (or possibly higher), the spectra indicates that lasing would
stop somewhere between 140 and 200 K, i. e. at too high a temperature compared
to the measurements.

There is a second current peak in figure 8(a) at a smaller bias of around 33 mV
per period, than the main peak. At this bias, the ULS aligns with the LLS. This
peak is not seen in the experiment, even though the alignment of the levels is real.
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The reason why it is not visible ought therefore to be that something is suppressing
the tunnelling current through the aligning states in reality, but is missing in our
model. Our model does not take into account electron-electron scattering which,
at low temperatures, helps in thermalising the carriers. Without this scattering,
the electrons can get stuck in states with Ek far above the sub-band edge since
they cannot exchange energy with the surroundings. To effectively compensate
for this, it is possible to make other scattering mechanisms stronger, e. g. the
acoustic phonon scattering by artificially increasing the deformation potential of
AlGaAs, which increases the acoustic phonon-electron coupling strength. The
acoustic phonons are not fully taken into account, however, but are simulated by
a single, fully populated, acoustic phonon mode with energy ∼ kBT .

The pre-peak in the current simulation is indeed suppressed by increasing the
deformation potential, as can be seen in figure 9(a). For higher temperatures, 10
times is too much of an increase, and the peak is still present for an increase of
5 times. The way we have thermalised the carriers is of course a very crude one
and it doesn’t have much of a quantitative value. However, it can still show the
importance of electron-electron scattering for some quantum cascade structures.
For negative biases, an even larger pre-peak was seen, and although suppressed,
it is still present at even 10 times the normal deformation potential. With the
deformation potential increased, we also approached the currents observed by [2].
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Figure 9: (a) IV characteristics and (b) gain for the Scalari QCL for different
temperatures and deformation potentials. Solid lines: 5 times the normal
deformation potential. Dashed lines: 10 times the normal deformation po-
tential.

In order to study the effect on carrier thermalisation when increasing the de-
formation potential, the carrier densities for different values of the deformation
potential are plotted in figures 10(a)-(f). The bias is chosen at the operation point
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since here we can directly see how thermalisation is affecting the performance of
the laser. The conduction band edge and the Wannier-Stark states are shown in
white. The colour signifies the space and energy resolved electron densities. At
T = 50 K, there are many carriers occupying higher k-states belonging to the
LLS; thus, the carriers are not thermalised. At T = 140 K, the carriers are not
so much accumulated at high k-values, thus the carriers are more thermalised. In-
creasing the deformation potential, we see that carriers are able to come down to
states lying closer to the mini-band edge, by scattering via acoustic phonons. For
low temperatures it is reasonable we have to increase the deformation potential
more than for higher temperatures, since then more scattering is taking place even
without this increase. For instance, the carriers in figure 10(e) are about as much
thermalised as the ones in figure 10(d).

To investigate why the pre-peak at a bias per period of about 33 mV is reduced
in figure 9(a), the current densities are plotted at this bias for two values of the
deformation potential in figure 11(a). In this figure, the colour represents the
space and energy resolved current density. Again we see that the carriers are not
thermalised at T = 50 K, and current is carried through k-states of energy high
above the sub-band edges. In contrast, when we increase the deformation potential
10 times as shown in figure 11(b), the electrons get much more thermalised, and
the current flow is closer to the bottom of the sub-bands. Thus, the lack of
electron-electron scattering could explain why we see the pre-peak in the current
simulation.

The increase of the deformation potential heavily affects the gain of the device;
the larger the thermalisation of the carriers, the lower the gain. In order to explain
this, consider the densities in figures 10(a) and 10(e). In the first case, electrons
occupy states of high Ek, thus there are more laser transitions possible than for
the latter case, where most of the electrons sit near the mini-band edge. Thus the
gain would be expected to get more spread out and overall lower, and this effect
can be seen in figures 8(a) and 9(a). The group did not measure the gain directly
as this is difficult to do, but the gain curves in figure 8(b) suggest lasing terminates
at a temperature between 70 K and 140 K, in accordance with the experiment.
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Figure 10: Carrier densities for the Scalari QCL for deformation potentials
of 1 (top), 5 (middle) and 10 (bottom) times the normal. The bias is 49.25
mV/period.
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Figure 11: Current densities and Wannier-Stark states for the Scalari QCL
at a bias voltage of 33.75 mV per period, for normal deformation potential
(a) and 10 times the normal deformation potential (b).

10 V843 Quantum Cascade Laser[1]

This device is a THz QCL made from GaAs wells and Al0.25Ga0.75As barriers. The
structure was developed by a group at the Institute for Microscopical Sciences,
NRC, Ottawa, Canada. They call the sample V843, which we will also adopt in
this text. The heterostructure was found through a genetic algorithm intended to
maximise gain at T = 150 K. The laser is designed to operate at a bias voltage of
21 kV/cm = 76 mV/period. The structure is, starting with the injection barrier,

44/62.5/10.9/66.5/22.8/84.8/9.1/61 Å.

Lasing occurs at h̄ω = 14.3 meV in the measurements at an applied bias volt-
age of 76 meV/period. The structure is shown schematically in figure 12. The
results of measurements and some of the simulation results shown in this section
have been published together with the experimental group in the Journal of Ap-
plied Physics[1]. In the published text, the structure is called a “phonon-photon-
phonon” design since it uses LO phonon emission for injection and extraction.
The extraction energy ∆Eex and injection energy ∆Ein match quite closely the
LO phonon energy ELO, as seen in figure 12. The carriers are entering the period
via resonant tunnelling through the injection barrier, in the so-called injection level
(i). They are then emitting a LO phonon and de-excites to the upper laser state
(ULS). Here they are de-excited into the lower laser state (LLS) by emitting a
photon. They are then again emitting a LO phonon to end up in the extraction
level (e), where they tunnel into the next period and the whole thing is repeated
again.

The aim would be to mach the injection and extraction energies with the
LO phonon energy in order to get optimal injection and extraction rates. The
genetic algorithm, however, optimised the structure for a number proportional
to inversion n, oscillator strength Ω for extraction tunnelling and the inverse of
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Figure 12: Conduction band profile of the V843 QCL, with an applied bias
voltage of 78 mV/period. The arrow indicates the lasing transition with
energy h̄ω = 14.9 meV. Given are the extraction and injection energies
∆Eex = ELLS − Ee and ∆Ein = Ei − EULS, which are designed to match the
optical phonon energy ELO = 36.7 meV. The states e and i are in resonance,
allowing for tunnelling with a tunnelling coupling strength of h̄Ω = 1.25
meV, transferring carriers into the next period.

the period length 1/d. The tunnelling coupling strength between the extraction
levels for tunnelling across the extraction barrier is characterised by the oscillator
strength h̄Ω = ∆Ee1/e2. The main scattering mechanism was assumed to be the
LO phonons, but in spite this the difference between the injection and upper laser
level energies are off the LO phonon energy by 9 meV, which was interpreted as
an activation energy for phonon emission. The group wanted the injection barrier
to be 44 Å thick in order to minimise the conduction by states higher in energy.
The oscillator strength was not very large (h̄Ω = 1.14 meV).

10.1 Current and Gain simulations

The results of the current simulation are shown in figure 13. The peaks correspond
very well with the measurements, in fact the agreement is quite remarkable. The
peaks are of the same height, and the simulations nicely follow the experimental
curve up the main peak. Even the two smaller bumps are reproduced by the NEGF
simulations. These occur when several states align to construct a far-reaching
tunnelling. The first peak is centred on 15.3 meV, when all states align in one
band, running across two periods as shown in figure 14(a). The band repeats in
energy and makes transport over two periods possible. At the second peak at 31.5
mV, the bands again align as in figure 14(b), but now the band runs over only one
period. The bands are divided into sub-bands of even width in energy, which is an
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Figure 13: Simulated current density for different temperatures and compar-
ison with rate equation model simulations and measurements by the exper-
imental group. The dash-dotted line shows the contribution to the current
from the wrong extraction channel from ULS (2) directly to the extraction
level (e), simulated with the rate equation model.

artifact of discrete scattering mechanisms. The reason why the peaks are not so
pronounced in the measurement is that a negative differential conductance (current
decreasing with bias) gives rise to instabilities in the sample. The main peak is
centered on 76-78 mV/period. The highest inversion between the lower and upper
laser states was found at about 78 mV/period, where there is the most current,
although it is only a marginal difference from the inversion at 76 mV/period. Here
the energy levels are such that the optical phonon transitions and the extraction
tunnelling rate are as most efficient.

Increasing the temperature would increase the effect of acoustic (and LO)
phonon scattering, increasing broadening and thus the current. The temperature
differences in figure 13 do not have a noticeable impact on the current, however.

The gain at different biases for T = 140 K is shown in figure 15(a). The gain
is largest at a bias of 74 mV/period, which is in reasonable accordance with the
experiment. We see a shift in energy, from around h̄ω = 11.5 to 14 meV (2.8 to
3.4 THz) as the bias goes from 72 to 78 mV/period. This shift was also observed
in the measurements, and seen as a shift in lasing frequency (where the lasing can
occur only at specific frequencies in resonance with the waveguide cavity) from
2.8 to 3.2 THz over a similar range of biases. This seems to agree well with our
simulations.

It is also interesting to see how gain is affected by temperature, and for this
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Figure 14: Current densities at (a) 15.3 mV/period and (b) 31.5 mV/period
at T = 50 K for the V843 QCL.
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Figure 15: Gain for the V843 QCL at (a) T = 140 K for different biases and
(b) different temperatures at a bias of 74 mV/period, except for T = 200 K,
where the bias per period is 78 mV.
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reason the gain was simulated at T = 50, 70, 140 and 200 K which is shown in
figure 15(b). We see that at very high temperatures (T = 200 K) the gain goes
down. This is to expect since carriers are more likely to get thermally excited
into the LLS from the extraction level, an effect called thermal backfilling. Other
scattering effects also become more prominent at high temperature that would
further reduce inversion. For low temperatures the gain goes down again, contrary
to what is expected since scattering and backfilling is reduced. To explain this
phenomenon, the carrier densities are plotted in figures 16(a) - 16(d). The energy
difference between the LLS and the extraction level is not exactly matching that of
the LO phonon, so it won’t assist very efficiently in emptying it. We therefore get
a build-up of charge carriers on the lower laser level side of the period, reducing
inversion and also gain. For higher temperatures this effect is somewhat reduced
due to increased scattering. For lower temperatures, the electrons get trapped
at low energies in the lower laser level. We recall that the model does not take
into account electron-electron scattering, which would counteract the trapping
of electrons by increasing scattering. It is clear from figures 16(a) - 16(d) that
inversion is highest at 140 K, which explains why the gain is highest for this
temperature.

Assuming waveguide losses of about 20/cm[20] the model implies that lasing
still takes place at 140 K and above. However, if we would include electron-electron
scattering, the overall thermalisation would be increased and so we could expect
the carrier density, and thereby gain, at 140 K to look more like the density and
gain at 200 K. This is probably why our model gives a higher operating temperature
than what is observed experimentally.

The gain curve at 50 K in figure 15(b) has two peaks, which suggests that
there are two channels producing gain, the one higher in energy increasing with
temperature until it overshadows the lower one. From the densities in figure 17(b)
and the spectral function (33) A(E, z) for k = 0 (which is basically the density
of states), one would expect a peak at ∼ 12.6 meV, since this is the difference
between the energy where the density of the upper laser state is maximal, and the
energy where the density of states is largest in the lower laser state. In stead, it
seems we get one peak at a lower and one at a higher energy.

The distance between the two peaks is too large to be explained solely by the
energy difference between the extraction levels responsible for the resonant tun-
nelling. I was unable to find a good explanation to why these peaks occur, but
the effect seems to still be present at 70 K, producing the broad gain peak seen in
figure 15(b).
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Figure 16: Carrier densities for the V843 QCL at (a) 50,(b) 70,(c) 140 and
(d) 200 K for a bias of 78 meV/period
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Figure 17: Electron densities for the V843 QCL at 50 K for (a) 72 mV, (b)
74 mV, (c) 76 mV and (d) 78 mV bias per period. (e) shows the spectral
function A(z, E) for k = 0 at 50 K and 74 mV/period.
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10.2 Comparison with measurements

The current curves match closely the experiment. The first small peak is located
at too small a bias in the simulations, and it appears that the current is more
phonon driven in reality than the model predicts. The experiment showed the
device lasing at 3.2 THz up to a temperature of 138 K, even though the NEGFT
simulations showed gain of ∼ 40 cm−1 at 140 K and thus implied gain at even higher
temperatures than what the experiment found. Our assumption that the losses are
about 20 cm−1 might be too optimistic, however. It is entirely possible that the
losses are much greater than that, in which case the model would correspond closer
to the measurements. When, at 140 K, the bias voltage was changed from 72 - 78
mV/period about the same shift from 2.8 at 72 mV/period to 3.5 at 78 mV/period,
in lasing frequency as experimentally verified at 10 K was found. We argue that
because of this similarity, due to the neglection of e-e scattering we simulate at
140 K the approximate thermalisation expected at 10 K experimentally.

10.3 Possible improvements of the structure

The carrier densities show that carriers get stuck in the LLS since the extraction by
a LO phonon followed by tunnelling is not efficient enough, since ∆ELLS,e < ELO

and the tunnelling coupling strength h̄Ω is not very large. Thus, to improve gain,
two features could be modified: the energy difference between the lower laser and
the extraction levels could be increased to closer match the LO phonon, perhaps
by making the second last well thinner, and the injection/extraction tunnelling
barrier could be narrowed in order to increase h̄Ω. It may be hard to do both
these things and still maintain good gain at the same frequency and bias, more
so since the injection barrier needs some width in order to avoid couplings to
high energy levels of the next periods. Decreasing the width of the barrier would
increase the separation of the extraction levels, lower the peak gain in favour of
two smaller gain peaks of separate frequency, so the thickness of the barrier can
only be modified within some limits.

11 Quantum Cascade Laser by Ghasem Raza-

vipour as of Jan 30th 2012

This design of a THz quantum cascade laser was sent to me from Ghasem Raza-
vipour, a PhD student at the University of Waterloo, Canada on January 30th
2012 with a request to study the current and gain characteristics with NEGFT
simulations. These simulations were to be compared to the student’s simpler calcu-
lations with a density matrix model. The results significantly differed, the resulting
gain being about half as much in NEGF simulations than what the density matrix
model indicated. The structure was then altered in an attempt to improve the
performance, and the attempt was indeed successful.
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11.1 Structure
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Figure 18: The structure with the squared Wannier-Stark states at 88 mV
bias per period.

The material is GaAs/Al0.25Ga0.75As and the conduction band structure is

43/65.3/7.8/65/23/72.3/41/68.5/8.55/57.6

in Ångström, starting with a barrier. This makes one period 45.205 nm long. The
band structure is shown in figure 18, together with the Wannier-Stark states. The
operating bias should be 19.5 kV/cm = 19.5 · 103/107 · 45.205 ≈ 88 mV/period.

This design uses the resonant-phonon extraction scheme where the electrons,
after lasing from the ULS (blue) to the LLS (green), are first extracted by resonant
tunnelling and then de-excited by an optical phonon. This design avoids problems
with a second phonon channel going directly to the extraction state, had it been
a simple phonon extraction as in the two samples studied previously. Now, this
transition is too diagonal in space to be possible.

The extraction and injection energies correspond very well to ELO = 36.7 meV,
∆Ein = 34.9 and ∆Eex = 34.1. The current channels should therefore be efficient
enough to expect a high inversion. The resonant extraction states (LLS and e) are
so close in energy that the contribution to the gain from each one largely overlap
and thus one large gain peak is expected. The gain should be peaked around
EULS −ELLS = 11.4 meV.

11.2 Results

The simulated current is shown in figure 19(a). There is a small pre-peak, in-
dicating our neglection of e-e scattering does not play a significant role for this
structure. The main peak is at the designed operating bias and has a nice height,
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Figure 19: Current (a) and gain (b) simulation results, where full lines are
for T = 150 K and dashed are for T = 20 K.

so we have an efficient current path at this bias.

The gain is shown in figure 19(b). Despite the indications, the gain is surpris-
ingly low. The gain is probably too low to have lasing at 150 K, and even at 20
K it is very low. It seems to be rather steady with temperature, however, and
optimising this structure could possibly give a gain spectrum that is not strongly
dependent on temperature.

This result differs significantly from the DM model, where a gain of 45 cm−1

was obtained for T = 150 K.
To see why the gain is so low we look at the carrier inversion, which at 20 K

and 88 mV/period is 6 · 109 cm−2, only 20 % of the doping, and at the same bias
at 150 K it is 4.4 · 109 cm−2. So, low inversion is what is causing the low gain, and
the electron density at T = 150 K (shown in figure 20) can tell us why.

At a bias voltage of 88 mV/period, the density of the injection level is much
smaller than that of the ULS, suggesting injection scattering is more efficient than
extraction scattering. Furthermore, carriers are accumulated in the LLS before
the extraction barrier, which implies that the extraction barrier is too thick for
efficient tunnelling into the next period. If the extraction barrier is narrowed down
from 41 Å, but the resonance between the extraction levels is still maintained, gain
should increase. To test this hypothesis and see whether an improvement can be
made, the extraction barrier was changed, as described in the following subsection.
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Figure 20: Carrier densities at 150 K for a bias of 88 mV per period.
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thicknesses. 4.1 nm is the original thickness.
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Figure 22: Gain for the altered structure with an extraction barrier of (a)
30 nm at T = 150 K and (b) 36 nm at the operation point for different
temperatures.

11.3 Optimisation

The tunnelling rate depends on the tuning of the two extraction levels lying close
in energy. When they are close enough, they form a binding (anti-symmetric) and
anti-binding (symmetric) pair, and are said to be in resonance. This configuration
gives a large transition matrix element for tunnelling, i. e. a large probability
for electrons in the well to the left of the barrier to tunnel through to the right
well. The same is true for electrons in the right well, which tunnel back into the
left well. In this way the carriers are oscillating back and forth across the barrier,
with a frequency of Ω = ∆EL/R/h̄[21]. ∆EL/R is the energy difference between
the resonant levels. Large Ω give a more efficient tunnelling rate from left to right
since the electrons are quickly removed from the left side well. If the scattering
is sufficiently high, the electrons will then emit a phonon and de-excite from the
right side well before tunnelling back into the left one. h̄Ω is called the tunnelling
coupling strength across the barrier. In this (coherent) picture, narrowing the
extraction barrier makes the states of the left and right wells overlap more and
thus separate more in energy, giving a higher oscillation frequency Ω.

In order to optimise the structure, the extraction barrier was first narrowed
down to 30 Å, to make the tunnelling through it more efficient. The effect on
current is shown in figure 21, and we see that the narrow barrier increases the
current by a fair amount. This means the scattering became more efficient, and
since the only thing changed was the extraction barrier width, it must have been
the extraction tunnelling rate that improved.

We see in figure 22(a) that gain increased slightly. There are now two distinct
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gain peaks, one for each of the extraction levels that are now separated by ≈ 5
meV . However, looking at the electron densities and the Wannier-Stark states in
figures 23(a) and 23(c), the extraction levels are not in resonance any more since
their energy difference is too large.

For this reason, the extraction barrier was set to 36 Å, a thickness also reported
by the experimental group to have given the largest oscillator frequency so far in
one of their QCL:s. Other groups have reported this is the best extraction barrier
thickness as well[22].
For an extraction barrier of 36 Å the current (figure 21) is not increased so much,

but the gain (figure 22(b)) is nearly twice the gain from the original structure. The
gain spectrum show much less of the two gain peaks from each of the de-tuned
extraction levels, which means the two levels overlap and their individual gain is
added up. The densities and Wannier-Stark levels for this choice of extraction
barrier is shown in figure 23(b). It is evident that the 36 Å barrier has much more
inversion than the 30 Å one, where carriers accumulate in the extraction levels
before the injection barrier. For this reason the tunneling rate does not seem to
be as good for 30 Å barrier, and the oscillator strength h̄Ω = 3.06 meV is smaller
than that for the 36 Å barrier h̄Ω = 3.19 meV. In figure 23(d) we see that once
again the extraction levels are in resonance for the 36 Å barrier, which explains
why the tunneling is more efficient than for the 30 Å barrier.

In figures 23(a) and 23(b) the densities for the structures with modified ex-
traction barriers are shown. The fact that the current density is larger for the
30 Å barrier when the extraction states are not in resonance, than for the 36 Å
barrier where they are, can be explained by carriers in the ULS also tunnel easier
through the extraction barrier when it is narrowed down. The increased current
then comes not only from the extraction tunneling, but from another channel that
is opened up, but that does not contribute to the gain.

With the level of inversion of the 36 Å injection barrier structure, it seems the
structure could not be optimised significantly more.

43



Length (nm)

E
n
er

gy
(m

eV
)

−10 0 10 20 30 40
−100

−50

0

50

100

n
(1

/
m

eV
n
m

3)

0

0.5

1

1.5

2

2.5

3
x 10

−7

(a)
Length (nm)

E
n
er

gy
(m

eV
)

−10 0 10 20 30 40

−50

0

50

100

n
(1

/
m

eV
n
m

3)

0

1

2

3

4

x 10
−7

(b)

Length (nm)

E
n
er

gy
(m

eV
)

10 20 30 40

−50

0

50

(c)

Length (nm)

E
n
er

gy
(m

eV
)

10 20 30 40

−50

0

50

(d)

Figure 23: Carrier densities for the modified band structure with an extrac-
tion barrier of (a) 30 Å and (b) 36 Å, as well as the states (not squared)
responsible for extraction tunneling through the extraction barrier for the
structures with (c) 30 Å and (d) 36 Å extraction barrier.
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12 Gendron Quantum Cascade Detector, Sam-

ple A[3]

We will now look at a quantum cascade photodetector (QCD), described in an
article by L. Gendron et al.[3]. We will call this structure the Gendron QCD.

12.1 Structure
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Figure 24: (a): The structure of the device with Wannier states. (b): Elec-
tron densities and the maxima of the spectral function A(E, z) taken at
k = 0 (white lines) at T = 100 K. The bands are plotted with the mean field
potential.

This photodetector is shown in figure 24(a) and, in contrast to the Quantum
Well Infrared Photodetector (QWIP), operates with no applied bias. It detects
when an electron in the ground state |1⟩ of the widest well absorbs a photon and
is transmitted into one of the top most energy levels in the same well, |6⟩ – |9⟩.
The electron then tunnels across the barrier to the right into the next well and
cascades down through one of several possible current paths via the states |5⟩ to
|2⟩, to end up in level |1⟩ of the next period. The cascaded electron thus induces
a potential difference between the periods. When enough carriers are excited, this
gives rise to a detectable current that is measured to detect the incoming light. In
experiment, beside the current response to the light field, the absorption spectrum
is also measured to control which excitation gives rise to the detection current.

The heterostructure consists of 7 GaAs wells of the widths

76/23/23/23/34/45 Å

and Al0.34Ga0.66As barriers with widths of 22 Å.
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12.2 Experimental Report

The experimental group reported a response spectrum at low temperature (T =
50 K) with several absorption peaks, two being much stronger than the others.
These peaks are attributed to the |1⟩–|5⟩ and |1⟩–|6⟩ transitions. The absorp-
tion measurement conducted at room temperature (T = 300 K) also showed the
same characteristics. This is not desirable since if one detects a current, it is not
clear from what peak the current stems, and thus it is impossible to know which
frequency one detects.

(a) (b)

Figure 25: (a): Experimentally measured response spectrum at T = 50 K.
(b): Measured absorption spectrum at T = 300K. Both pictures are taken
from Ref. [3]. For a description of the inset in (a), please refer to the source
article.

The absorption measurements gave the following absorption peaks (E = hc
eλ109[meV ]

where λ is measured in µm):

|1⟩ → |5⟩ : 97 meV
|1⟩ → |6⟩ : 120 meV
|1⟩ → |7⟩ : 149 meV

|2⟩ → |8⟩/|9⟩ : 161 meV
|1⟩ → |8⟩/|9⟩ : 185 meV.

The peaks are quite broad, about 20 meV, which is a negative side of the QCD; it
is not a very precise device.

12.3 Results

The Wannier states and the conduction band structure is shown in figure 24(a).
In figure 24(b), a new concept to show the state of the system is proposed. Here,
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colour represents the carrier density. The white wavy lines are the maximum of the
spectral function A(E, z) (33) taken at k = 0, plotted along the growth direction
where it has maxima in energy. The spectral function is basically the density of
states, and so it is a good representation of where electrons are likely to be and
what transitions are more probable than others. A(E, z) also takes into account
all scattering mechanisms and potentials in our model.

The spectral function in figure 24(b) shows 7 distinct energy levels, whereas
there are 9 Wannier states altogether. This is because the density of states is
very low for energies near the ionisation energy. The spectral function is plotted
since the Wannier states do not give the correct energies (they do not take the
self-energies or mean-field into account). The Wannier-Stark states are not plotted
since for 0 bias, they are not defined. Instead, the mini-bands (corresponding to
the electronic bands in atomic crystals) appear.

To explain and analyse the experimental findings, the group’s measurements have
been simulated with NEGFT, the results of the simulations are shown in figure
26.

0.05 0.1 0.15 0.2

−1000

−500

0

500

1000

G
ai

n
[1

/c
m

]

h̄ω [eV]
0.05 0.1 0.15 0.2

−500

0

500

C
u
rr

en
t

re
sp

on
se

[A
/c

m
2
]

(a)

50 100 150 200
0

100

200

300

400

500

600

700

( 114 ; 322.2 )

( 164 ; 478 )

( 138 ; 697 )

h̄ω [meV]

A
b
so

rp
ti
on

[1
/c

m
]

( 194 ; 355.2 )

( 42 ; 213.4 )

( 68 ; 88.64 )
( 96 ; 196.9 )

(b)

Figure 26: (a): Current response and gain spectrum for the QCD by [3] at
T = 50K, as well as (b): absorption spectrum at T = 300 K.

The peaks in the current response in figure 26(a) correspond well to the ab-
sorption peaks in the same figure, although some details seen in the experiment
cannot be seen here. The main peaks are centred on h̄ω = 110, 136 and 162 meV.
In the current spectrum there is also a small peak at 194 meV. These peaks are
confirmed by the simulated absorption at T = 300 K, seen in figure 26(b). Here
we can also see the features of the measurements missing in figure 26(a).

To explain the peaks, we look at the largest energy differences between the
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Wannier states in figure 24(a). These are

∆E19 ≈ 214 meV
∆E29 ≈ 196 meV
∆E18 ≈ 184 meV.

The spectral function gives the energy differences

∆E17 ≈ 159 meV
∆E16 ≈ 130 meV
∆E15 ≈ 105 meV.

Looking at the Wannier states alone, the largest peaks should correspond to the
transitions |1⟩ → |6⟩, |1⟩ → |7⟩ and |2⟩ → |9⟩. We therefore attribute the peaks in
the spectra 26(a) and 26(b) to the transitions

|2⟩ → |9⟩ : 194 meV
|1⟩ → |7⟩ : 162 meV
|1⟩ → |6⟩ : 136 meV
|1⟩ → |5⟩ : 110 meV.

We attribute the four largest peaks to the same transitions as those implied by
the experimental group, with an average energy difference of about 10 meV when
comparing with the experiment. Comparing the absorption spectrum at T = 50
K (figure 26(a)) and 300 K (figure 26(b)), we see that the transition |1⟩ → |5⟩ gets
relatively weaker with temperature, while the transition |2⟩ → |9⟩ get relatively
stronger.

The peak in figure 26(b) at 68 meV is not within the range for the measure-
ments by the experimental group. This could be attributed to several transitions
with energies close to 68 meV. So can the peak at 42 meV. (In the experiment,
there is also a strong peak present at 87.3 meV. This is explained by the exper-
imental group by multi-phonon absorption, and they do not take it into account
since it would not contribute to the detection current. This peak is not observed
in the simulations.)

12.4 Dependence of the response current on applied
ac. field strength

In theory, the response current should be proportional to the square of the applied
field strength, I ∝ |F |2. In order to test whether the program satisfies this relation,
the current responses for different strengths of the applied AC field are shown in
figure 27(a). In figure 27(b) we examine the maximum of the current response,
jmax(1), as a function of the applied light field strength, and compare it to the
relation y(x) = jmax(1) ·x2. The data fits very well with the quadratic relation, so
the program confirms the theoretical result.
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Figure 27: (a) Current response for different AC field strengths and (b) the
maximum value of the response in (a) as a function of applied field strength.
The green curve shows a simple quadratic function y(x) = jmax · x2, where
jmax is the maximum of the response current taken at eFd = 1 meV.

13 Gendron Quantum Cascade Detector, Sam-

ple B[4]

13.1 The structure

This sample, call it Sample B, is an improvement of Sample A previously described
in section 12, and so is very similar to that one. Sample A had all the barriers the
same width, which turned out not to be optimal since it detected at several different
frequencies. This sample has the barrier widths tailored in order to minimise the
overlap with other excited states than the one preferred for detection.

The heterostructure is shown in figure 28(a). The barriers here are made of
Al0.33Ga0.67As. The structure is (starting with the ground state well)

68/56.5/20/39.55/23/31/28/31/34/31/38/31/48 Å.

It is clear from figure 28(a) that there is only one significant overlap for the
excited states with the ground state |1⟩, namely states |8⟩. We would therefore
expect much more distinct absorption and response spectra with only one peak.

A remark should be made about the Wannier states calculated for this struc-
ture. As described in section 4, the Wannier states are the solutions to the Bloch
equation considering only the conduction band potential. The energy of the states
would change when considering the mean field and scattering effects, and thus the
energy of the states in figure 28(a) will not match the actual transition energies.
For the QCL:s we usually plot the Wannier-Stark states, since these do take the

49



−40 −30 −20 −10 0 10
0

50

100

150

200

250

300

350

Length (nm)

E
n
er

gy
(m

eV
)

|3〉

|5〉

|7〉

|9〉

|8〉

|4〉

|6〉

|1〉
|2〉

(a)

Length (nm)

E
n
er

gy
(m

eV
)

0 20 40 60

50

100

150

200

n
(1

/
m

eV
n
m

3)

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−5

(b)

Figure 28: (a) Band structure of the [3] Sample B with the resulting Wannier
states. The arrow indicates the detection transition. (b) The maxima of the
spectral function (proportional to the density of states) in the z-direction as
well as the electron density. Here, T = 50 K.

above mentioned effects into account, but they cannot be calculated at zero bias,
for the reasons discussed in section 4.3. We can plot the spectral function, which
is proportional to the density of states, along the z-direction at the energy where
it is has a maximum in order to see more accurately where the states are. This is
done in figure 28(b), together with the carrier density.

As an example of this issue, the state |9⟩ in figure 28(a) will be lowered enough
to come down under the barrier potential (not seen in figure 28(b)), and it will
contribute to the absorption spectrum. State |8⟩, active in the detection, is shifted
from ∼ 210 meV in figure 28(a) to ∼ 190 meV in figure 28(b).

13.2 Absorption and response

The gain and response at 50 K is shown in figure 29(a). At 25 K the gain and
response does not differ noticeably. Compared to the gain for Sample A (figure
26), there is now only one big peak centred at around 160 meV, as well as some
small bumps at around 70, 120 and 226 meV.

With the aid of figures 28(a) and 28(b) we can identify which transitions the
absorption and response peaks correspond to. The main peak clearly comes from
the transition |1⟩ → |8⟩, and the |1⟩ → |7⟩ transition is also inside this peak. The
transition |1⟩ → |6⟩ has an energy of about 119 meV, corresponding to the small
bump before the main peak. From the second state, the transition 2→6 has an
energy of ≈ 77 meV, probably giving the peak at 69 meV. The Wannier states in
figure 28(a) also show a continuum state, |9⟩, which make the transition |1⟩ → |9⟩
with energy 263 meV possible. This could then correspond to the peak found at
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Figure 29: Gain and response current for T = 50 K.

226 meV in figure 29(b).
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Figure 30: Current (upper curves) and gain (lower curves) for different tem-
peratures. The peak is around 160 meV.

Figure 30 shows the peaks of the spectra for different temperatures. The states
have a certain width in energy due to the scattering, and the carriers preferably
occupy states with as low energy as possible. The density of states is largest
somewhere close to the middle of the energy level, and the electrons will occupy
states below this energy for very low temperatures. At higher temperatures, the
electrons will start to fill the states with energies closer to the middle of the en-
ergy level. For this reason one expects a red-shift with increasing temperature for
absorption, contrary to what is shown in figure 30. But if we consider scattering
will also increase with temperature, thus broadening the levels even more, we can
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explain the observed phenomenon by that the electrons are able to occupy even
lower states thanks to the additional broadening.

The experimental group found one peak centred at 8µm = 155 meV and one
at 10.3µm = 120 meV, for the absorption spectrum in figure 31(b). One can see
a very small bump in the response measurements in figure 31(a) at 5 − 5.5µm
corresponding to 225-248 mV. The measurements started at 78 meV, so the peak
of lowest energy cannot be seen.

(a) (b)

Figure 31: (a): Experimentally measured response spectrum at T = 50 K.
(b): Measured absorption spectrum at T = 300K. Both pictures are taken
from Ref. [4]. Full lines are for sample B and dashed are for sample A.

In summary the response of Sample B has improved very much compared to
Sample A. The main reason is that the higher lying states do not overlap (compare
figures 24(a) and 28(a)) as much with the second state, allowing for fewer strong
transitions, and that the states are more localised so that they do not overlap
with the ground state in the first well. The simulations and experiment have a
nice qualitative agreement, but since the group only presented their findings in
arbitrary units a quantitative comparison is difficult. We found peaks at nearly
the same energies, and attributed them to the same transitions.

13.3 Current simulations

The largest benefit of using a QCD instead of a QWIP is that no applied bias
is required for operation, and therefore no dark currents arise that bring noise
to the spectrum. There are still some carriers being thermally excited between
states in the QCD, which gives some noise. This can be reduced by applying a
small backward bias, since the electrons that are excited are less likely to tunnel
forward, but instead waits in place until they fall back to the ground state. This
is demonstrated in measurements and simulations in Ref. [23], where leakage and
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noise currents were examined as functions of small applied biases. Simulations and
measurements for this structure have been done for small biases, see figure 32, to
estimate it’s effect on the noise current. We see that at 0 bias, the dark current
is larger than at a small backward bias, whereas it increases for forward biases.

Figure 32: Top (right): Measured and simulated dark current vs. applied
bias for the Gendron Sample B QCD. Bottom (left): Dark noise current vs.
applied bias. Full lines are theory and markers are experiment. The figure is
taken from Ref. [23]. For further details, please refer to this source.

In order to see whether our model can reproduce this result, which would be of
use when simulating and improving detectors, an attempt was made to simulate
currents for small applied biases, a task that turned out not to be so easy as first
expected. It was difficult to get the simulations to converge, apparently because
the current is so small. For the same reason the results eventually produced showed
features not present in the actual measurements.

The current in figure 33(a) is calculated by reducing the convergence tolerances
very far, increasing the number of periods used in the calculations (usually 3, but
in this case 5), as well as using data from previous calculations to get good starting
values for the iteration process. The size of the currents look reasonable compared
to experiment where it is lowest. However, we see regular peaks in the current
separated by ≈ 7 meV. The Wannier-Stark states are plotted at one such peak at
30 mV/period in figure 33(b). The peaks occur where states from one period aligns
with other states from a neighbouring period, giving tunnelling currents over an
entire period. The states overlap only to an extremely small extent over this range,
but nevertheless the current increases substantially. In the case of figure 33(b),
there are alignments of the states |2⟩ of the first period and |1′⟩ of the second
period, |4⟩ and |2′⟩, |5⟩ and |3′⟩ as well as |8⟩ and |6′⟩.
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Figure 33: (a) Current vs. backward bias for T = 80 K. (b) Wannier-Stark
states at a backward bias of 30 mV per period where the current is peaked.
Here T = 80 K.

Part III

Conclusions and Outlook

14 Conclusions

In this work THz quantum cascade lasers (QCL) and IR quantum cascade detectors
(QCD) have been simulated and analysed. Together with a research team in
Canada an article was published in the Journal of Applied Physics [1]. In the
article, we describe a “phonon-photon-phonon” design, which look promising, but
still has room for improvement.

During the course of this thesis, new QCL structures have continuously been
produced by the experimental team in Canada and examined by our team in Lund,
leading to new promising QCL structures. The sample by Ghasem Razavipour in
section 11 was optimised to give about twice the gain, by tuning the extraction
barrier to an appropriate width where the extraction states come into resonance.
Here, the effects of and conditions for resonant tunnelling were examined.

The effects of electron-electron scattering in operation has been studied in
section 9. The effects are also discussed to some extent in section 10. The lack of
scattering induces a lack of thermalisation of the electrons, making it possible for
them to tunnel through undesired channels. This has been seen to increase the
overall gain, as well as produce pronounced peaks in the current vs. bias curves
at biases where states in different wells align. For the V843 structure in section
10 these peaks were also seen in the experiment. The lack of electron-electron

54



scattering is probably the greatest draw-back of the model.
Reality checks of the program (section 12.4) compared to experimental data

(sections 10, 12 and 13) have tested the computer program for NEGFT simulations
of heterostructure reliable for most structures, in particular those where carrier
thermalisation is not so significant. For the QCD:s, the program proved to have
difficulties calculating low currents at low biases, but gave an overall accurate
result for the response and absorption spectra.

A new way to display the properties of quantum cascade structures in operation
has been presented in sections 12 and 13, namely showing the energy maxima of
the spectral function. The spectral function is related to the density of states, and
at the same time it gives the proper energies of the quantum mechanical states,
as well as the approximate shapes of the states. For QCL:s, this is convenient
since the basis states are not calculated exactly and might not represent well the
interesting features of the system. For QCD:s, the Wannier-Stark states are not
defined and the Wannier states are too in-exact. Simply solving the Schrödinger
equation would give the mini-band structure coming from the periodicity of the
system, which is not so interesting for an analysis of the operating conditions.

15 Outlook

Electron-electron scattering

For future, more accurate and reliable simulations of QCL:s, in particular for
structures highly dependent upon or limited by carrier thermalisation, inclusion
of electron-electron scattering would be highly beneficial. Adding an interaction
term for the electrons is rather difficult, however, and straight forward approaches
might consume large amounts of computation time. In order to have an accurate,
yet practical, implementation of this many approximations would still have to
be used. The scattering would have to be treated with self-energies, just as the
phonon scattering terms. One approach that is presently pursued is the GW
approximation. This could be a viable solution, although not enough progress
has been reach so far to be certain. Successfully implementing electron-electron
scattering would be the next main improvement of the program.

Code optimisation

Further improvements of the program that can be done are optimisation and par-
allellisation of the code, and an overview of whether it is beneficial to include a
full treatment of the acoustic phonon interaction.

Scientific research

The research into THz QCL:s to reach higher operating temperatures and a variety
of different laser frequencies, is still an active research area. Together with the
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groups collaborated with in this work, as well as other experimental groups, more
structures should be analysed to expose their potentials and how they can be
exploited, or their limitations and how they can be avoided. Some structures in
this work have been manufactured that do not perform as well as expected, and a
deeper analysis of why this is the case can imply what improvements can be done
to optimise the structures. I expect there to be many more such structures in the
literature. Analysing and optimising existing structures might also be a way to
reach the desired operating temperature. There are of course other aspects that
could be further improved as well, like the power output, reducing internal losses
etc.

Regarding quantum cascade detectors, this thesis was set out to simulate a
structure combining a laser and detector in the infra-red, designed to lase at a
certain bias, and then detect at zero bias at the same wavelength. This is a very
interesting device since it combines the two parts needed for almost any application
of infra-red quantum cascade lasers. It would be interesting to simulate these kind
of structures if there would be an interest from experimentalists to manufacture
such devices.

Several well-controlled QCD:s have been developed, but improvements can
still be done on the following points[7]. Quantum efficiency: this is the rate of
electrons contributing to the photo-current to the incoming photon flux; Reduction
of dark-currents: although the QCD is already much better on this point than the
conventional QWIP, it could be reduced further by reducing the transition matrix
elements of states other than those responsible to the desired transition; Reducing
the detection width: the QCD would be much more useful in practise if the width
of the detection spectrum was reduced to tighter match a specific wavelength.

In addition to this there is also a field of THz quantum cascade detectors that
would be interesting to explored, since most of the applications for THz QCL
depend on THz detection of some kind.
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Part IV

Appendix

A Tables with structure data

The tables that follow contain the material parameters used in the simulations of
the respective structures. x is the relation of Al to Ga in the AlxGa1−xAs alloy, and
CBO is the resulting conduction band offset to GaAs. VAS is the alloy scattering
potential of AlGaAs, a way to somewhat artificially take into account the fact that
we are using Bloch functions even though AlGaAs is not a perfect crystal. The
sheet doping density ndope is situated in the layer designated with an underline.
The interface roughness is characterised by two parameters; λ is the typical width
of an island, and ν is the typical distance it penetrates across the interface. These
values are not known, rather guesses are made based upon earlier simulations and
the atomic radii. Finally, the number of periods Nper is given. This depends on a
number of things; for QCD:s, for small biases the dark current density is inversely
proportional to Nper, whereas the responsitivity goes down for larger Nper[7]. For
QCL:s, larger Nper gives larger gain since more photons are emitted, but at the
same time the losses increase.

Table 1: Scalari QCL
Parameter Value Description

x 0.25 In AlxGa1−xAs
CBO 217.5 meV Conduction band offset

between GaAs/AlGaAs
mbarr 8.775 · 10−2 Barrier effective mass
VAS 0.1275 Alloy scattering potential of AlGaAs
ndope 3.25 · 1010 cm−2 Sheet doping density

λ 10 nm Average roughness distance
ν 0.2 nm Effective roughness height

Nper 276 Number of periods
(not used in simulations)
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Table 2: V843
Parameter Value Description

x 0.25 In AlxGa1−xAs
CBO 217.5 meV Conduction band offset

between GaAs/AlGaAs
mbarr 8.775 · 10−2 Barrier effective mass
VAS 0.1875 Alloy scattering potential of AlGaAs
ndope 3.25 · 1010 cm−2 Sheet doping density

λ 10 nm Average roughness distance
ν 0.2 nm Effective roughness height

Nper 276 Number of periods
(not used in simulations)

Table 3: QCL by G. Razavipour
Parameter Value Description

x 0.25 In AlxGa1−xAs
CBO 217.5 meV Conduction band offset

between GaAs/AlGaAs
mbarr 8.775 · 10−2 Barrier effective mass
VAS 0.1875 meV Alloy scattering potential of AlGaAs
ndope 3.25 · 1010 cm−2 Sheet doping density

λ 10 nm Average roughness distance
ν 0.2 nm Effective roughness height

Nper 221 Number of periods
(not used in simulations)

Table 4: Gendron QCD, Sample A
Parameter Value Description

x 0.34 In AlxGa1−xAs
CBO 275 meV Conduction band offset

between GaAs/AlGaAs
mbarr 9.52 · 10−2 Barrier effective mass
VAS 0.2244 Alloy scattering potential of AlGaAs
ndope 5 · 1011 cm−2 Sheet doping density

λ 10 nm Average roughness distance
ν 0.1 nm Effective roughness height

Nper 10 Number of periods
(not used in simulations)
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Table 5: Gendron QCD, Sample B
Parameter Value Description

x 0.33 In AlxGa1−xAs
CBO 217.5 meV Conduction band offset

between GaAs/AlGaAs
mbarr 8.775 · 10−2 Barrier effective mass
VAS 0.2211 Alloy scattering potential of AlGaAs
ndope 3.25 · 1010 cm−2 Sheet doping density

λ 10 nm Average roughness distance
ν 0.2 nm Effective roughness height

Nper 276 Number of periods
(not used in simulations)
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