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Abstract

On estimating portfolio Value at Risk, the application of traditional
univariate VaR models is limited. Under specific circumstance, the VaR
estimation could be inadequate. Facing the financial crises and increasing
uncertainty in financial markets, effective multivariate VaR models have
become crucial. This paper gives an overview of various multivariate VaR
models. The main aim is to compare the one day out-of-sample predictive
performances of different models, including basic multivariate VaR models,
volatility weighted multivariate VaR models and copula-based multivari-
ate VaR models. Performance is evaluated in terms of Christoffersen test,
quadratic probability score and root mean squared error. The findings show
that basic multivariate VaR models such as multivariate normal VaR model
and multivariate t VaR model behave poorly and fail to generate reliable
VaR estimations. By contrast, volatility weighted multivariate VaR models
and copula-based multivariate VaR models show notable improvements in
the predictive performance.

Keywords: Multivariate Value at Risk, portfolio risk measures, Copu-
la, Monte Carlo simulation, DCC-GARCH, multivariate EWMA, Christof-
fersen test, quadratic probability score, root mean squared error, R software.
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1 Introduction

Value at Risk (VaR) is a widely used measurement of financial risk and plays
a decisive role in risk management. In recent years, globalization of financial
markets, financial integration and more complex derivatives have caused a more
volatile environment. Firms and investors are exposed to more financial risks than
before. A better and more liable risk management is demanded as the enlarge-
ment of financial risks. Although VaR is a simple measurement and easy to be
interpreted, it is not easy to be estimated. The estimation of VaR is sensitive
to the model assumption. Any deviations from the assumption would lead to an
inadequate estimation. Facing the financial crises and increasing uncertainty in
financial markets, effective measures of market risks have become crucial.

Traditional studies of VaR focus their attention on the univariate approaches. Uni-
variate VaR models are easily constructed, but ignore the time varying covariance
or correlation between financial assets. Assuming constant time-varying volatility
may lead to an inadequate estimation of VaR in the long-run if changes in the de-
pendence structure are not taken into account. Moreover, in some circumstances,
univariate approaches are inapplicable as some of the portfolio returns are not ob-
servable. Furthermore, estimating portfolio VaR simply by aggregating the VaR
of each portfolio component can be problematic. On one hand, due to the diver-
sification effects, the portfolio VaR can be smaller than the sum of the portfolio
components’ VaR; on the other hand, the portfolio VaR can be larger than the
sum of the portfolio components’ VaR, as a result of non-subadditive property
of VaR (In specific cases, V aRA+B > V aRA + V aRB, the diversification effects
are ignored). Both of them can lead to an inadequate result from the regulatory
purposes or users’ perspective.

Compared with the univariate approaches of VaR, the multivariate approaches
of VaR are far from well-developed. Up to now, there are several multivariate
approaches for estimating VaR, such as the variance-covariance approach, histor-
ical simulation and the Monte Carlo method. But most of them are developed
directly from the univariate approaches and work with unrealistic and inadequate
assumptions. In addition, newly developed statistical tools such as the advanced
volatility model and the advanced kernel density estimation method are seldom
applied to the estimation of VaR. The theory of multivariate VaR models is still
not mature and faces many problem when they are applied. For example, the
variance-covariance approach or analytical approach assumes a multivariate nor-
mal distribution of portfolio returns and estimation is made based on the expected
return and sample standard deviation: It is widely used after the publishing of
RiskmetricsTM technology. However, the multivariate normality is rarely an ade-
quate assumption in finance. Sheikh and Qiao (2010) found evidence that in many
cases, financial returns were not independent and not normally distributed. If one
financial model incorporates non-normality, standard deviation would become an
ineffective measurement of risk. In this case, the portfolio could be riskier than
desired.

In this paper, we discuss various approaches of estimating multivariate VaR and
propose a copula-based Monte Carlo approach. In order to model VaR adequately,
some recent advanced techniques are employed. The performance of both multi-
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variate VaR models are evaluated by an application on the portfolio that consists
of S&P 500 stock index and Hang Seng stock index (HSI). This paper contributes
to the literature on multivariate approach VaR models, giving a detailed summary
of various multivariate models and offering several ways on computational realiza-
tions. In addition, it expands the application of statistical software R to the area
of multivariate VaR models.

In summary, our research on the multivariate VaR models is trying to answer four
research questions,

• What is the performance of basic multivariate VaR models?
(Including historical simulation, parametric VaR model based on multivari-
ate normal/t distribution, age-weighted historical simulation)

• How to construct multivariate volatility models? How is the accuracy?

• Do volatility adjusted multivariate VaR models have better predictive per-
formances than the basic multivariate VaR models?

• Do VaR models based on copula theory and Monte Carlo simulation method
have better predictive performances than the basic multivariate VaR models?

The conclusive evidence of this study indicates that the basic multivariate VaR
models do not perform well in estimating future losses. Most of them estimates
VaR inadequately, which leads to an unacceptable number of violations in the
test period and a failure in passing the christoffersen test. By contrast, both
volatility adjusted multivariate VaR models and copula-based multivariate VaR
models perform well in VaR estimation. Both of them show notable improvements
on the predictive performance than the basic multivariate VaR models.

The paper is organized as follow. The first section introduces the theoretical
background of various multivariate VaR models which will be followed by a copula-
based Monte Carlo VaR model. Section 3 gives a description of the data as well as
basic analysis of the data. The methodology is presented in section 4. The time-
varying volatilities are modelled in section 5. In section 6, the empirical results of
both models are presented. Finally, section 7 concludes our study.

The time frame is limited for this study, and quite understandably, it is difficult
to cover all aspects of multivariate VaR models. Detailed analysis on this topic
would require extensive research; therefore, several aspects of this paper have to
be delimited.

• The methodology discussed in the theory part can be applied to the multi-
variate case when the portfolio is consist of more than two financial assets.
But for simplicity, we only focus on the bivariate case and choose a portfolio
that consists of two assets as an illustration.

• There are a considerable number of VaR models or assumptions on distri-
bution that are available; however we are limited to the 22 models we are
using.
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• Multivariate DCC-GARCH with leverage effects and conditional copula meth-
ods are not employed. We believe they can significantly improve the esti-
mation results, but they are rather time-consuming and computationally
intensive. Due to the restriction on the time-horizon of this study, we have
to abandon them. However, they are available for future study and they can
be easily realized by extending the models discussed in this paper(original
DCC-GARCH model and unconditional copula theory).
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2 Theory

In this section, the theoretical background of multivariate VaR models is present-
ed. It starts with the definition of univariate and multivariate Value at Risk.
In addition, the advantages and the shortcomings of VaR models are discussed.
Next, four different types of multivariate VaR models are introduced, including
non-parametric VaR models, VaR model under multivariate normal distribution,
VaR model under multivariate t distribution and copula-based multivariate VaR
models. Furthermore, the multivariate volatility models are introduced as an im-
provement on the basic multivariate VaR models. In the end, the backtesting and
evaluation methodologies are presented.

2.1 Value at Risk

2.1.1 Definition

In 1994, J.P morgan published a risk control methodology known as RiskmetricsTM,
which was mainly based on a newly developed financial risk measurement named
Value at Risk. It was regarded as a masterpiece in financial risk management, and
soon became popular. Over the last few years, VaR has become a key component
in the management of market risk for many financial institutions. It is used as an
internal risk management tool, as well as chosen by the Basel Committee as the
international standard for regulatory purposes.

Given confidence level α ∈ (0, 1) and holding period (H), the Value at Risk of a
portfolio is defined as the smallest number l, such that the probability of a future
portfolio loss L exceeds l is no larger than 1−α. It measures the risk of future losses
from a specific financial assets for a certain holding period. In probabilistic terms,
VaR is simply a quantile of the loss distribution (McNeil et al, 2002). Formally,

V aRα(L) = inf{l ∈ R : Pr(L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}

In the equation, inf is short for infimum and inf(S) represents the greatest lower
bound of a subset S, i.e. the biggest number that is smaller than or equal to every
number in S.

2.1.2 Parameters

VaR involves two arbitrarily chosen parameters, confidence level (α) and holding
period (H). The confidence level indicates the probability that we will get a future
outcome no worse than estimated VaR. Holding period determines the length of
interval within which the loss is calculated.

Dowd (2005) shows VaR is contingent on the choice of confidence level and is
non-decreasing with the confidence level. VaR cannot fall when the confidence
level rises. In choosing confidence levels, investors or managers should consider
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”the worst-case loss amounts that are large enough to be material” (Laubsch 1999,
p.10). On the contrary, for a capital adequacy purpose, a relatively high confi-
dence level is recommended. Basel Committee recommends the 99% confidence
level (Basel Committee, 1996). Higher confidence level would benefit when faced
with a unexpected high market risk. However, choosing an unnecessary high level
of confidence, such as 99.9%, would lead to a false sense of risk management as
the losses will rarely exceed that level. Moreover, due to fat-tailed distribution of
market returns, it is difficult to select a proper theoretical probability distribution
and a high confidence level VaR is both time consuming and costly to be correctly
modelled (Laubsch, 1999). As a result, lower confidence levels are often used for
internal management purpose. For example, J.P Morgan uses a 95% confidence
level, Citibank uses a level of 95.4% (Dowd, 1998). Furthermore, confidence lev-
el also varies with the different risk attitudes of managers. A risk averse and
conservative manager would prefer a higher confidence level.

In practice, holding periods (H) are usually defined as one day or one month. But
VaR can also operate on other length of holding period, depend on investment
horizons of the investors or managers. For model validation or backtesting pur-
poses, a short holding period is preferable. Reliable validation requires a large
dataset and thus requires a short holding period.

2.1.3 Attractions and criticism of Value at Risk

The reasons behind the popularity of VaR can be concluded into three main at-
tractions. The primary reason is, it provides a common consistent measurement
of risk across different positions and risk factors. As a result, VaR can be applied
to all asset classes (stocks, bonds, derivatives etc.). In addition, VaR makes it
possible to measure the risk in both portfolio components level and overall level,
which enables managers to take a detailed measurement of portfolio risks. Finally,
VaR is conceptual simplicity and its results are easy to be interpreted.

From among the critics, Einhorn and Brown (2008) argue that VaR focus on the
manageable risks near the center of the distribution, but ignore the tails. Taleb
(1997) claims that VaR is impossible to estimate the risks of rare events. As a
result, VaR could be destabilizing during a crisis. Another criticism of VaR is its
non-coherence due to its non-subadditive property. In specific conditions, VaR
increases when financial assets are aggregated into portfolio. VaR does not always
encourage diversification. It is seen as the most serious drawback of VaR as a risk
measurement.

2.2 Multivariate Value at Risk

The portfolio Value at Risk can be seen as a combination of the multivariate
Value at Risk of portfolio components. In this part, we discuss the definition and
features of multivariate Value at Risk, as well as its implication on the portfolio
Value at Risk. From the definition in the univariate VaR model, we know the
VaR is provided by a quantile function QX(α) which accumulates a probability α
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to the left tail or 1 − α to the right tail. The definition of multivariate VaR is
similar. Embrechts and Puccetti (2006), Nappo and Spizichino (2009) propose to
define an intuitive and immediate generalization of the VaR models in the case of
a d -dimensional loss distribution. According to their researches, multivariate VaR
is denoted as the α quantile curves of the d -dimensional loss distribution.

V aRi
α(X) = E[Xi|F (X) = α]

Cousin and Bernardino (2011) point out some characters of multivariate VaR.
Before presenting their results, the definition of regularity condition has to be
introduced: A random vector satisfies regularity conditions, when the vector is
non-negative absolutely-continuous and with partially increasing multivariate dis-
tribution function F .

With the definition, considering a random vector X satisfying the regularity condi-
tions and assuming its multivariate distribution function F is a quasi concave (the
upper level sets of function F are convex sets), for all α ∈ (0, 1), the estimation of
multivariate VaR is always greater than or equal to the estimation of univariate
VaR,

V aRi
α(X) ≥ V aRα(Xi)

According to the results, multivariate V aRi
α(X) is a more conservative measure-

ment than the vector consists of the univariate VaR (V aRα(Xi)). As a result, the
portfolio VaR estimated with multivariate VaR model is more conservative than
the VaR estimations from univariate VaR models. From an empirical point of
view, multivariate VaR takes the correlation between asset returns into accoun-
t. Compared with univariate VaR, more information and more risk factors are
considered in the estimation.

2.3 Approaches of multivariate Value at Risk

Traditional univariate VaR models focus on a financial asset or portfolio individ-
ually. Portfolio losses are assumed to be observable. However, we can not always
observe portfolio return directly in the practice. In order to study a generalized
portfolio VaR, we have to use multivariate approaches of VaR which explicitly
model the correlation structure or covariance structure between portfolio compo-
nents. Similar with univariate VaR models, there exists a vast number of ways
of multivariate VaR calculation which differ in their assumptions and have their
own advantages and disadvantages. In this paper, we review major approaches
of multivariate VaR estimation and we believe that addressing the problem of
comparison of various VaR would offer useful information for VaR users.

2.3.1 Multivariate historical simulation

The most widely used non-parametric approach of multivariate VaR models is the
multivariate historical simulation (multivariate HS). Under this approach, the es-
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timation of VaR is based on the empirical loss distribution. All informations about
the distribution of future returns are assumed to be reflected by the empirical loss
distribution. This assumption enables forecasting future VaR directly from the
historical observation of portfolio returns, instead of estimating the loss distribu-
tion under some explicit statistical models. The multivariate version of historical
simulation is similar with the univariate basic historical simulation. But before
doing the procedures of historical simulation, the assets returns are transformed
into portfolio returns.

Rp = wRa

where Rp denotes the composed portfolio returns, w denotes the weights of finan-
cial assets in the portfolio, Ra denotes the vector of historical returns of portfolio
components.

Afterwards, the VaR of the next day (V aRt+1) is estimated by the 1− α quantile
(Q1−α) of historical distribution of portfolio returns Rp, multiplied by the current
value of the portfolio (P̄ ).

V aRt+1 = −Q1−α(Rp(t), Rp(t− 1), · · · , Rp(1))P̄ (1)

Taking a sliding windows of 1000 observations as the illustration, V aR0.99 at (t+1)
is simply the negative of the 10th (1000×0.01) lowest portfolio return in the sorted
observations multiply by current value of the portfolio P̄ .

The historical simulation method has obvious attractions: it is easy to implement
and does not depend on certain assumptions of loss distribution. It is an appealing
feature among the risk measurements on portfolio level. As in some circumstances,
it is not possible to model the dependence structure between portfolio components
and the joint probability distribution is hard to be constructed. In that case,
multivariate historical simulation method is the only choice of risk measurement.

However the success of this approach is highly dependent on the user’s ability
to collect sufficient quantities of relevant, synchronized data for all risk factors
(McNeil, 2005). An insufficient dataset would lead to the destabilizing of the
empirical loss distribution. Furthermore, historical simulation approaches of VaR
models suffer from the so-called ghost effect. Namely, when a large loss observation
falling out of the sample, there would be a jump in the estimated VaR. Hence,
multivariate historical simulation could perform well only if there are no gaps in
the volatility of portfolio returns overtime.

2.3.2 Age-weighted multivariate historical simulation

In order to reduce the ghost effects of basic historical simulation approach, Boudoukh
et al (1998) suggested weighting the observations according to their age, instead of
giving equal weights 1/N for all historical observations. Accordingly, observation-
s farther away from today are given lower weights, while latest observations are
given higher weights. In practice, the weights are often defined as exponentially
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decreasing, with the form:

w1 =
1− λ
1− λn

w2 = λw1

· · ·
wN = λN−1w1

N∑
i=1

wi = 1

where wi represents the adjusted weights according to the ’age’ of the observed
returns. Constant λ lies between 0 and 1, a λ close to zero will make older
observations irrelevant quickly and a λ close to one will transform the age weighted
simulation into the equally weighted basic historical simulation. In our research,
λ is set to 0.94, which is consistent with major previous researches on AWHS.

Dowd (2005) gives a summary of improvement of age weighted historical simulation
against basic historical simulation,

• It provides a generalisation of basic historical simulation models. Basic his-
torical simulation can be regarded as a special case with zero decay (λ = 1).

• A suitable choice of λ can make the VaR estimates more responsive to large
loss observations. It also makes this approach better at handling clusters of
large losses (Volatility clustering).

• Age-weighting reduces the so-called ghost effects.

2.3.3 VaR under multivariate normal distribution

VaR under multivariate normal distribution is the most widely used parametric
approach of multivariate VaR models. This approach assumes the returns of port-
folio components are multivariate normally distributed with mean vector µ and
covariance matrix Σ,

µ =


µ1

µ2
...
µn

 and Σ =


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n


The mean vector µ captures the average level of returns, while the covariance
matrix Σ captures the interactions between the returns to different assets. Addi-
tionally, the current value of the portfolio is defined as P̄ . Given the weights of
the portfolio components w = (w1, w2, · · · , wn), the portfolio expected return (µp)
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and the portfolio return variance σ2
p are given by,

µp = wµ

σ2
p = wΣw′

Then, VaR under the assumption of multivariate normal distribution returns can
be estimated by equation (2).

V aRα(L) = P̄ (−µp − σpz1−α) (2)

In the equation, the mean vector and the covariance matrix are usually unknown
and we have to explicitly model them based on the actual observations.

The simplest way to estimate the mean vector and the covariance matrix is using
the sample mean vector µ̂ and sample covariance matrix Σ̂ directly. Denotes N
vectors of portfolio component’s return as r1, · · · , rN ,

µ̂ =
1

N − 1

N∑
i=1

ri

Σ̂ =
1

N − 1
(ri − µ̂)(ri − µ̂)′

An alternative method for estimating parameters µ and Σ of multivariate nor-
mal distribution is the well-known maximum likelihood estimation (MLE). The
method of maximum likelihood is widely used in statistical inference to estimate
parameters. Maximum likelihood estimation begins with the mathematical ex-
pression known as a likelihood function of the sample data. Recall the probability
density function of a d-dimensional multivariate normal distribution N(µ,Σ),

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

(x−µ)′Σ(x−µ)
2

Given observed returns (r1, r2, · · · , rn), the log-likelihood function is defined as,

l(µ,Σ|(r1, r2, · · · , rn)) = −Nd
2
log(2π)− N

2
log(det Σ)− 1

2

N∑
i=1

(ri − µ)′Σ−1(ri − µ)

Parameters of the multivariate normal distribution can be estimated by maxi-
mizing the log-likelihood function l(µ,Σ|(r1, r2, · · · , rn)). The maximizing process
with multiple variables is a bit complex. One widely used numerical optimization
algorithm is L-BFGS-B algorithm. It is a class of hill-climbing numerical opti-
mization techniques that seeks a stationary point of a function. As the aim of
the L-BFGS-B is to minimize the objective function, the log-likelihood function
should be multiplied by (−1) to make the algorithm applicable, when applied
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to parameters estimation of multivariate normal distribution. Hence, the target
function can be defined as,

f(µ,Σ) = −l(µ,Σ|(r1, r2, · · · , rn))

=
Nd

2
log(2π) +

N

2
log(det Σ) +

1

2

N∑
i=1

(ri − µ)′Σ−1(ri − µ)

The L-BFGS-B algorithm proceeds roughly as follow. Before the approximation,
a starting point is chosen. At each iteration, the Cauchy point is first computed
by algorithm CP. Then a search direction is computed by either the direct primal
method, or the conjugate gradient method. Afterwards, a line search is performed
along the search direction, subject to the bounds on the problem. The optimum
point is find after several repeating of the process above. (For a detailed algorithm,
see Byrd et al, 1995, p.17)

2.3.4 VaR under multivariate t-distribution

Empirical studies show that financial returns do not follow the normal distribution.
An estimation under the multivariate normality can be inadequate. As a result,
multivariate student’s t-distribution is introduced into VaR modelling to dealing
with fat-tailed and leptokurtic features of portfolio returns.

Similar with the multivariate normal distribution approach, denote P̄ as the cur-
rent price of the portfolio. VaR under the multivariate t-distribution is given by
the equation (3).

V aRα(L) = P̄ [−µp −
√
v − 2

v
σpt1−α,v] (3)

where
µp = wµ

σp =
√
wΣw′

In the equation, portfolio return matrix (µ), portfolio covariance matrix (Σ) and
degree of freedom (v) is unknown and needed to be estimated. Exactly as the
approaches of multivariate normal distribution, we have to estimate parameters
of the multivariate t distribution.

Aeschliman et al (2010) developed a Batch approximation algorithm for estimating
parameters of multivariate t distribution. At the expense of a slightly decreased
accuracy, the proposed algorithm is significantly faster and easier to implement.
The algorithm starts with the estimation of sample mean vector µ, simply by
taking median of the portfolio returns.

µ̂ = median(ri)
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With the estimated µ̂, we can get the degree of freedom v̂ afterwards.

b =
1

n

n∑
i=1

(log‖xi − µ̂‖2 − 1

n

n∑
i=1

log‖xi − µ̂‖2)2 − ψ1(
p

2
)

v̂ =
1 +
√

1 + 4b

b

where ψ1(x) is the trigamma function (ψ1(x) = d2

dx2 lnΓ(x) = d
dx
ψ(x)) and p is the

number of portfolio components.

Afterwards, the covariance matrix Σ can be derived by

Σ =
exp{ 1

n

∑n
i=1 log‖xi − µ̂‖2 − logv̂ + ψ0( v̂

2
)− ψ0(p

2
)}

tr( 1
n

∑n
i=1

(xi−µ̂)(xi−µ̂)′

‖xi−µ̂‖2log2p/(v̂
2+2log2p)

)

n∑
i=1

(xi − µ̂)(xi − µ̂)′

‖xi − µ̂‖2log2p/(v̂2+2log2p)

where ψ0(x) is the digamma function (ψ0(x) = d
dx
lnΓ(x) = Γ′(x)

Γ(x)
)

An alternative for estimating the parameters of multivariate t-distribution is Max-
imum likelihood estimation (MLE). Recall the probability density function for a
multivariate t-distribution with mean vector µ, covariance matrix Σ and degrees
of freedom parameter v is,

f(x, µ,Σ, v) =
Γ[(v + n)/2]√

det Σ[(v − 2)π]n/2Γ(v/2)
[1 +

1

v − 2
(x− µ)′Σ−1(x− µ)]−(v+n)/2

The corresponding target log-likelihood function can be derived as,

l(µ,Σ, v|(x1, x2, · · · , xn)) =
n∑
i=1

log(f(xi, µ,Σ, v))

The vector µ, covariance matrix Σ and degrees of freedom v can be estimated by
maximizing the log-likelihood function. The procedure of MLE is similar with the
multivariate normal approach.

2.3.5 Monte Carlo simulation method

Monte Carlo simulation methods are by far the most flexible and powerful tools
for estimating Value at Risk. They are able to take into account all non-linearities
of the portfolio value with respect to its underlying risk factors. However, This
method still has one potential weakness. Specific stochastic processes need to be
selected before the simulation. As a result, this method is very sensitive to the
selection of stochastic processes.

The basic idea of this approach is to simulate repeatedly from a stochastic pro-
cesses which governing the returns of the financial assets. Dowd (2005) gives a
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general simulation process for Monte Carlo simulation.

1. Select a model for the stochastic variables of interest.

2. Construct fictitious or simulated paths for the stochastic variables

3. Repeat these simulations enough times to be confident that the simulation
distribution is sufficiently close to the ’true’ distribution of actual portfolio
values to be a reliable proxy for it.

4. Infer the VaR from this proxy distribution

Consider a simple case that we have two financial assets. The return vector µ,
covariance matrix Σ and portfolio weights w vector are assumed to be,

µ =

(
0.1
1

)
Σ =

(
1 0.4

0.4 1

)
w =

(
0.5 0.5

)
The simulation procedure starts with defining the path to generate possible scenar-
ios of portfolio return. For simplicity, the path is specified as the random number
generated from the multivariate distribution with mean (µ) and covariance matrix
(Σ). In each iteration, we get a simulated portfolio return. And after repeating the
iteration 100000 times, we get the probability distribution of simulated portfolio
returns (Figure 10, see Appendix A). V aR0.99 can be inferred from the figure as
the 99% quantile of the loss distribution.

2.4 Modelling Volatility

Both approaches discussed in section 2.3 are under the assumption of constant
volatility overtime. Hence, recent changes in the volatility of financial assets are
not taken into account. However, under constant volatility assumption, estimated
VaR would not incorporate the observed volatility clustering of financial returns.
And the model may fail in generating the adequate VaR estimations.

Hull and White (1998) suggest one possible solution to the historical simulation
approach. The basic idea is to adjust the return to take account of recent changes
in volatility. For example, in forecasting VaR for day T+1, we transform the his-
torical return (rt) into volatility weighted return (r∗t ) before performing historical
simulation approach.

r∗t =
σT+1

σt
rt t = 1, 2, 3, · · · , T

where σt denotes the volatility associated with the observed losses and σT+1 de-
notes the forecast volatility (conditional volatility) based on the historical changes
in volatility.

For parametric approaches (multivariate Normal/t VaR models), forecast volatility
σT+1 enters the VaR formula directly and replace the portfolio volatility σp asso-

12



ciated with the observed losses. The task is thus to forecast conditional volatility
σT+1 for each day.

In the univariate volatility weighted VaR models, volatility σT+1 is estimated by
univariate GARCH model or univariate exponentially weighted moving average
(EWMA) model. Similar with the univariate case, we use multivariate GARCH
models or multivariate EWMA model to take the historical changes in volatility
into account. In practice, there are numerous multivariate GARCH models can be
chosen from, such as VEC model (Bollerslev et al, 1988) and BEKK model (Engle
et al, 1995). In this paper, we just focus on (extended) dynamic conditional
correlation GARCH model and Multivariate EWMA model.

2.4.1 Multivariate EWMA model

EWMA is developed on the basis of equally weighted moving average and cap-
tures the dynamic features of volatility. But different with the equally weighted
estimator of volatility, the most recent observations of returns are assigned with
higher weights. As a result, the volatility reacts faster to shocks in the market.

In practice, it is more reasonable to use EWMA and assume today’s volatility is
more affected by the most recent events. Previous research based on the EWMA
volatility model shows its reliable performance in VaR estimation.

In the univariate EWMA volatility model, the estimator of conditional variance
defines variance of next period σt+1 as a weighted average of the current period’s
variance σ2

t and squared current deviations from the average loss ε2
t .

σ2
t+1 = λσ2

t + (1− λ)ε2
t

The equation can be expanded to the multivariate EWMA, with the definition of
covariance matrix (Σt). The future covariance of portfolio components Σt can be
estimated by today’s changes in returns εt and covariance of portfolio components
at t-1, Σt−1.

Σt = λΣt−1 + (1− λ)εtε
′
t

where λ is a fixed constant and with the range from 0 to 1. A lower λ makes older
changes in volatility irrelevant quickly and vice versa. In this paper, we prefer to
use λ = 0.94 which is consistent with the choice of RiskmetricsTM.

2.4.2 Conditional Correlation GARCH Model

An alternative for multivariate EWMA model is conditional correlation GARCH
model. It can be viewed as a non-linear combination of univariate GARCH models.
And the model can be separated into two parts, GARCH models (conditional vari-
ance) and correlation matrices. In the model, any individual conditional variance
can be specified separately and a conditional correlation matrix can be constructed
to describe the dependence structure between the individual series.
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Bollerslev (1990) proposes a constant conditional correlation GARCH (CCC-GARCH)
model in which the conditional correlations are constant. The conditional covari-
ances are proportional to the product of the corresponding conditional standard
deviations. The CCC-GARCH model is defined as,

Ht = DtRDt

where Dt is the k × k diagonal matrix of time varying standard deviations from
univariate GARCH models with

√
hii on the ith diagonal, and Rt is the time

varying correlation matrix.

Dt = diag(h
1/2
11t · · ·h

1/2
NNt)

Rt =


ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · ρnn


hiit in matrix Dt is the conditional variances and can be defined as any univariate
GARCH model, taking GARCH(1,1) as example,

hiit = wi + αiε
2
i,t−1 + βihii,t−1

However, in practice, the assumption that conditional correlations are constant
overtime, is unrealistic. As an improvement on the CCC-GARCH model, Engel
(2002), Christodoulakis and Satchell (2002) and Tse and Tsui (2002) propose a
generalization of the CCC-GARCH model called dynamic conditional correlation
GARCH (DCC-GARCH) model.

In this paper, we only focus on the Engel’s DCC-GARCH model which define the
conditional correlation matrix as time-varying. Mathematically,

Rt = Q∗−1
t QtQ

∗−1
t

where Qt is the unconditional covariance of standardized residuals resulting from
the univariate GARCH models and Q∗t is a diagonal matrix consists of the square
root of the diagonal elements of Qt

Q∗t = Diag(
√
q11,
√
q22, · · · ,

√
qnn)

Engel (2002) performed a comparison of several conditional covariance and showed
that DCC-GARCH model was overall best in estimation. Despite its accurate
estimation of future covariances, potential weaknesses still exist. One potential
drawback of the DCC-GARCH model is that all conditional correlations follow
the same dynamic structure is unrealistic in practice.
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2.5 Copula-based Monte Carlo approach

2.5.1 Introduction

As discussed in section 2.3.5, Monte Carlo approaches of multivariate VaR esti-
mation require the joint distributions of portfolio component returns to be known.
In addition, the accuracy of Monte Carlo method is very sensitive to the assump-
tion of joint distribution. A deviation from the actual distribution may lead to
inadequate VaR estimations. Thus, the feasibility of the approach highly depends
on an accurate modelling of joint distribution.

The copula theory was first developed in Sklar (1959). It is a very powerful tool
for modelling joint distribution because it does not require any assumptions on the
selection of distribution function and allows us to decompose any n-dimensional
joint distribution into n marginal distributions and a copula function.

In this section, we take the advantage of copula theory and develop a copula-
based Monte carlo approach. In consistent with the other parts of our research,
only bivariate copula is introduced in this paper.

The study starts with a definition of the bivariate copula functions.

Definition 1 A 2-dimensional copula is a function C(u, v) defined in the domain

[0, 1]× [0, 1] and with the range of [0, 1], i.e. [0, 1]2 → [0, 1]. The copula function

satisfied following properties,

(1) Boundary condition

For all u, v ∈ [0, 1],
C(u, 0) = C(0, v) = 0

C(u, 1) = u,C(1, v) = v

(2) Monotonic condition

For all u1, u2, v1, v2 ∈ [0, 1], when u1 ≤ u2, v1 ≤ v2

C(u2, v2) + C(v1, u1)− C(u2, v1)− C(u1, v2) ≥ 0

With the definition of copula function, Sklar (1959) proposes the sklar’s theorem
that shows the importance and usefulness of copula function.

Theorem 1 (Sklar’s Theorem) Let H(x, y) = P [X ≤ x, Y ≤ y] be a joint distri-

bution function with marginal distribution F (x) = P (X ≤ x) and G(y) = P (Y ≤

y). Then there exists a copula function C: [0, 1]2 → [0, 1] such that,

H(x, y) = C(F (x), G(y))
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If F (x) and G(y) are continuous, then copula function C is unique. Namely, if C is
a copula and F (x) and G(y) are distribution functions, then the function H(x, y)
is a joint distribution function with margins F (x) and G(y).

The main implication of Sklar’s theorem is that a joint distribution can be de-
composed into two univariate marginal distributions F (x) and G(y). Conversely,
we can link any group of two univariate distributions with a copula function and
construct a valid joint distribution for the two variables. This implication offers
an effective way for modelling joint distributions.

Despite its convenience of constructing joint probability distribution, bivariate
copula function is also a measurement of dependence structure between two ran-
dom variables. Each bivariate copula functions has its specific features of describ-
ing the dependence structure. Some of them focus on the linear correlations, while
the others focus on the tail dependence/independence. As a result, VaR models
with different assumptions on the copula functions are expected to have different
results.

2.5.2 Some families of Copula

Five families of copula functions are introduced in this paper: Gaussian copula,
Student’s t-copula, Gumbel copula, Clayton copula and Frank copula. In addition,
Gumbel copula, Clayton copula and Frank copula are also known as Archimedean
class copulas. In this part, both the definitions of copula functions and their
features are discussed.

Bivariate Gaussian Copula

The bivariate Gaussian copula is a dependence function associated with bivariate
normality and is given by,

CGa(u, v) = Φρ(Φ
−1(u),Φ−1(v))

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp(

2ρst− s2 − t2

2(1− ρ2)
)dsdt

where Φ−1 is the quantile function of the corresponding standard normal cumu-
lative distribution function and Φρ(x, y) is the standard bivariate normal distri-
bution with correlation parameter ρ. Since it is parametrized by the correlation
coefficient ρ, we can also write the bivariate Gaussian copula function as CGa

ρ .

In the bivariate Gaussian copula function, the dependence structure is described
by the linear correlation coefficient ρ. As a result, the bivariate Gaussian copula
gives an overall description of the dependence structure between the stochastic
variables.

Figure 1 illustrates the joint density function constructed with bivariate normal
copula and standard normal marginal distributions. The correlation coefficient
ρ = 0.5
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Figure 1: Density and level curves of the Gaussian Copula with ρ = 0.5

Bivariate Student’s t-Copula

The student’s t-copula function is defined as,

Tρ,v(u, z) = tρ,v(t
−1
v (u), t−1

v (z))

=

∫ t−1
v (u)

−∞

∫ t−1
v (z)

−∞

1

2π
√

1− ρ2
(1 +

s2 + t2 − 2ρst

v(1− ρ2)
)−

v+2
2 dsdt

where ρ and v are the parameters of the copula, t−1
v (v) is the inverse of the standard

student t-distribution with degrees of freedom v. The stronger correlation ρ and
the lower the degree of freedom v, the stronger is the tail dependence. As a result,
the student’s t copula consider both the tail dependence and overall dependence
in composing joint distributions.

Figure 2 shows the joint density function constructed with bivariate student’s t-
copula and standard normal marginal distributions. The correlation coefficient
ρ = 0.5 and degree of freedom df = 3.
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Figure 2: Density and level curves of the Student’s t-Copula with ρ = 0.5 and
df = 3
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Archimedean Copulas

Archimedean copulas is an important class of copula functions that are easy to
construct and have good analytical properties. Before introducing it, two im-
portant concepts have to be defined: generator function φ and pseudo-inverse of
generator function φ[−1].

Definition 2 Function φ can be a generator function, if it satisfies,

• φ : [0,∞)→ [0, 1], φ(0) = 1, limx→∞ φ(x) = 0

• φ is continuous

• φ is strictly decreasing on [0, φ−1(0)]

• φ−1 is given by φ−1(x) = inf{u : φ(u) ≤ x}

Definition 3 The pseudo-inverse of generator function φ is defined as,

φ[−1](v) =

{
φ−1(v) 0 ≤ v ≤ φ(0)

0 φ(0) ≤ v ≤ +∞

With the definitions above, an bivariate Archimedean copula function can be ’gen-
erated’ by the generator function:

CA(u, v) = φ[−1](φ(u) + φ(v))

Numerous Archimedean copula functions can be generated, with different assump-
tions of generator functions. In this paper, we will present three widely used
Archimedean family copula functions. Figure 3 shows the level curves of the prob-
ability density function of them with standard normal margins and α = 2.
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Frank Copula

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 3: Level curves of the Archimedean Copula density with α = 2

The first Archimedean copula employed is the Gumbel copula. It was first pro-
posed by Gumbel (1960). The generator function is in the form of φα(t) =
(−ln(t))α. The Gumbel copula is an asymmetric copula but exhibits greater
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greater tail dependence in the upper tail (Figure 3, left). This copula function
is give by,

C(u, v) = exp{−[(−ln(u))α + (−ln(v))α]1/α}

The parameter α determines the degree of dependency. Independence is obtained
when α = 1, while perfect dependence is obtained as α→∞.

The second Archimedean copula used is the Clayton copula. It is also asymmetric
but exhibits greater tail dependence in the lower tails (Figure 3, middle). It
was first proposed by Clayton (1978). The generator function of Clayton copula
φα(t) = 1

α
(t−α − 1). And the copula function is,

C(u, v) = max[(u−α + v−α − 1)−1/α), 0]

When α → ∞, perfect tail dependence is obtained. When α → 0 implies tail
independence.

The third Archimedean copula is Frank copula which is first introduced in Frank
(1979). The generator function is φα(t) = −ln exp(−αt)−1

exp(−α)−1
. Different with Gumbel/-

Clayton copula, Frank copula exhibits tail independence (Figure 3, right). The
copula function,

C(u, v) = − 1

α
ln(1 +

(exp(−αu)− 1)(exp(−αv)− 1)

exp(−α)− 1
)

2.5.3 Marginal distribution of copula function

Marginal distribution plays an important role in copula theory. As the bivariate
copula functions are defined in the space [0, 1]× [0, 1], the real observations cannot
be substituted into the copula function directly. The marginal distributions can
work as a proxy between copula function and the real observations. In a portfolio
case, the marginal distribution is simply the probability distribution (CDF) of the
portfolio components.

Theoretically, copula method do not restrict the choice of marginal distribution
and it works with any assumption of marginal distribution. In previous researches,
normal distribution, t distribution and generalized pareto distribution (GPD) are
frequently used. In this paper, for simplicity and illustration purposes, we select
the normal distribution as the marginal distribution.

2.5.4 Pseudo observations: An alternative for marginal distribution

In section 2.5.1-2.5.3, we discuss the definition of a traditional copula. In the
traditional copula framework, a marginal distribution should be defined and the
parameters of the marginal distribution have to be estimated before modelling
copula function. However, the estimation procedure copula is computationally
intensive and time consuming. The application of traditional copula on the Monte
Carlo simulation would be limited, as a full the estimations of margins and copula
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function have to be performed in each iteration.

Yan (2007) proposed an alternative approach for constructing copula function.
This approach uses the empirical cumulative probability distribution instead of
marginal distribution. The original datasets (Xi1, Xi2, · · · , Xin) are transformed
into pseudo-observations (Ui1, · · · , Uin).

Uij =
rank(Xij)

n+ 1

Thus, the copula function can be estimated based on the pseudo-observations
instead of real data. There is no need to specify and estimate the marginal distri-
bution of the copula function.

2.5.5 Estimation: Inference functions for margins method

In general, there are two approaches can be used for estimating copula param-
eters, including one step maximum likelihood estimation and inference functions
for margins (IFM) method. In this paper, we choose the IFM method (Joe and
Xu, 1996). It is less efficient than one-step maximum likelihood method, but it is
computationally more attractive and allows larger flexibility in choosing the esti-
mation techniques for the marginal distribution. The procedures of IFM method
is presented in this part.

Suppose that we observe n independent observations Xt = (xt1, xt2, · · · , xtp) from
an multivariate distribution, which can be constructed with p marginal distri-
butions and a copula function C(F1(x), · · · , Fn(x);α) with parameter α. Fur-
thermore, the probability density function (PDF) of the marginal distributions is
defined as fi(x; θi) and the corresponding cumulative density distribution (CDF)
is denoted as Fi(x; θi), where θi is the parameter of marginal distributions. The
IFM method estimates the parameters of marginal distribution in the first step.
The log-likelihood function of the first step could be written as,

Logl(θ) =
n∑
i=1

p∑
j=1

logfi(xij; θi).

The estimation of the parameter θ = (θ1, · · · , θn) of marginal distributions can be
made through maximizing the log-likelihood function.

θ̂i = arg max
n∑
i=1

p∑
j=1

logfi(xij; θi)

Then the parameter α of the copula function is estimated in the second step of
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IFM, with the parameter θ̂ of the p marginal distributions.

α̂ = arg max
n∑
t=1

logC(F1(xi1; θ̂1), · · · , Fp(xip; θ̂p);α)

2.5.6 Copula-based Monte Carlo approach

Based on the Monte Carlo simulation method and the theory of copula discussed
in this section, we propose a detailed procedure of copula-based Monte Carlo
approach of estimating portfolio VaR,

1. Select a class of Copula model (Gaussian/Student’s t/Archimedean etc.)
according to their different features.

2. Select a marginal distribution for each portfolio component and estimate the
parameters of the marginal distribution.

3. Transform the original data into the domain of copula function by using each
margin’s distribution function Fx(x).

4. Fit the copula model to the stochastic variables and estimate the parameters
of the copula function.

5. Use the estimated copula function to generate random variables from the
estimated joint probability density.

6. Invert the generated random variables by using the quantile function of the
marginal probability function.

7. Calculate the portfolio loss/profit based on the simulated variables.

8. Repeat these simulation enough times to be confident that the simulation
distribution is sufficiently close to the ’true’ distribution.

9. Infer the VaR from the distribution of the simulated portfolio returns

2.6 Evaluation Methods

2.6.1 Christoffersen frequency test

Christoffersen frequency test is a standard tool that evaluates the performance of
VaR models individually. It aims at examining whether the observed frequency of
violations satisfy the unconditional coverage property and the independent prop-
erty (Christoffersen, 1998). If a VaR model is adequate, the frequency of violations
of the estimated VaR should be consistence with the expected frequency of tail
losses and violations are independent and identical distributed.

The Christoffersen frequency test is constructed following its aims. It consists of
two individual tests and an overall conditional coverage test.
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• Unconditional coverage test (or Kupiec test)

• Independence test

• Conditional coverage (overall) test

Unconditional coverage test

The unconditional coverage test examines unconditional coverage property of VaR
estimates. The null hypothesis for this test is,

H0: The probability of occurrence of a violation is p

Denote the number of observations in the test period by N, the expected frequency
of violations by the p and the observed frequency of losses exceeds VaR by π =
x/N . The test statistics,

LRuc = −2[ln(px(1− pN−x))− ln(πx(1− π)N−x)] ∼ χ2(1)

Under the 95% confidence level, when LRuc > LRcritical = 3.841, the null hypoth-
esis is rejected. It indicates the VaR model fails to generate the adequate VaR
estimations.

Independence test

The independence of frequency test was first proposed in Christoffersen (1998). It
examines if the probability of a violation at time t given a violation occurred at
time t − 1 is equal to the probability of a violation at time t given no violation
occurred at time t−1. The null hypothesis and alternative hypothesis of this test,

H0: VaR non-violations and violations are independent over time

H1: VaR non-violations and violations follow a two state Markov chain.

Assume that the violations and non-violations follows a Markov chain with tran-
sition matrix,

Π =

(
π00 π10

π01 π11

)
Where state 1 represents violation, state 0 represents violation. Denote n0, n1, n00, n01, n10, n11

as the number of the states or transitions of Markov stochastic process. Then,

π00 =
n00

n00 + n01

, π01 =
n01

n00 + n01

π10 =
n10

n10 + n11

, π11 =
n11

n10 + n11

And Define π0 = n0/N , π1 = n1/N . The log-likelihood ratio test statistic,

LRind = −2[ln(πn0
0 πn1

1 )− ln(πn00
00 π

n01
01 π

n10
10 π

n11
11 )] ∼ χ2(1)
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Similarly, under the 95% confidence level, if LRind > LRcritical = 3.841, the null
hypothesis is rejected and indicates non-violation and violation is not independent
over time. Hence, the model does not pass the independence test.

Conditional coverage test

It is an overall test of the unconditional coverage and independence test. The test
statistic is the sum of the test statistic for unconditional coverage and indepen-
dence test.

LRcc = LRuc + LRind ∼ χ2(2)

Under the 95% confidence level, the LRcritical for the conditional coverage test is
5.991. Namely, when LRcc ≤ 5.991, the VaR model passes the test.

2.6.2 Ranking alternative VaR models

It is often the case that management and investors are not only interested in the
performance of an individual VaR model, but also in the comparison of different
VaR models. Previous researches on the evaluation of VaR models already devel-
ops several effective ranking methods such as quadratic probability score function
(Lopez, 1998), quadratic score function (Blanco and Ihle, 1999). Both of them
offers possible measurements of relative performance of VaR models.

In evaluating the relative performance of different VaR models, two conflicting
objectives are often taken into account. On one hand, we expect the estimated
VaR to be high and as a result, the difference between VaR and actual loss would
be low at violation days. It is because if a violation occurs and the reserved capital
is too small to cover the losses, the firm would face financial distress or even go
bankruptcy. On the other hand, we expect the estimated VaR to be low. It is
because a high VaR means high capital reserves for the potential loss. But as the
capital is costly, a firm or an investor want a low amount of reserve.

In this part, we discuss the quadratic probability score (QPS) function as a mea-
surement of the first objective of evaluating relative performance and root mean
squared error (RMSE) as a measurement of the second objective.

Quadratic probability score function

Lopez (1998) introduces the quadratic probability score function as a measurement
of relative performance of VaR models. It is defined as,

QPS =
2

n

n∑
t=1

(Ct − p)2

where n is the number of observations, p is the expected probability of violation,
i.e. the actual loss is larger than estimated VaR. Ct is a predetermined loss function
which reflects the interest of users. In this paper, we use the binary loss function
proposed by Lopez (1998). This loss function is intended for the user who is
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concerned with the frequency of violations.

Ct =

{
1 Lt > V aRt

0 Lt ≤ V aRt

The QPS takes a value in the range [0, 2], and under general conditions, accu-
rate VaR estimates will generate the lowest possible numeric score (Lopez, 1998).
Namely, smaller QPS indicates better performance in the violation-days.

Root mean squared error

Root mean squared error, or RMSE is a common measurement of the difference
between the estimated value and the true value. Denote the estimated VaR as
V aRt and the actual losses as Lt, the definition of RMSE is,

RMSE =
√
E[(V aRt − Lt)2] =

√
1

n

∑
(V aRt − Lt)2

In this paper, we employ root mean square error as a measurement of excess
reserved capital during non-violation days. Hence, the t in the above equation
represents the non-violation days in the test period. If estimated V aRt has a
smaller RMSE, the corresponding VaR model is considered as the better one.
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3 Data

3.1 Data description

The theories presented in last section are applied to a portfolio composed by S&P
500 index and Hang Seng Index (HSI). The dataset contains 2974 daily closing
prices from January 3rd, 2000 to March 29th, 2012. The daily closing prices are
presented in Figure 11 (see Appendix A). In order to apply the multivariate VaR
models, the original indexes are transformed into log-returns. We denote the log-
returns of S&P 500 index as variable 1, the log-returns of Hang Seng Index (HSI)
as variable 2. Figure 4 presents the daily log-returns of both series. In the figure,
we can observe the evidence of stylized fact known as volatility clustering. Large
returns follow with large returns, and similar for small returns.

Log−Returns − Hang Seng Index

20042000 2008 2012

Log−Returns − S&P 500 Index

20042000 2008 2012

Figure 4: Daily log-returns of HSI and S&P 500 Index

3.2 Setting of rolling window periodic sampling

In order to analyse the performance of various multivariate VaR models, we employ
the method of rolling window with sample size 2600, i.e. for each VaR estimation,
we use the 2600 observations ahead of it. Figure 5 illustrates the rolling window
vividly.

 

 

 

Total observations: 2974 
Time 

Sample 1:Obs 1~2600 

Sample 2:Obs 2~2601 

VaR(t=2601) 

VaR(t=2602) 

… … 
VaR(t=2974) 

Sample 274:Obs 274~2973 

Figure 5: Rolling window periodic sampling

The whole dataset is divided into two parts: in-sample period and test period.
The in-sample period starts on January 3rd, 2000 and ends with September 20th,
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2010. It consists of 2600 daily return of each stock index and offers the historical
information needed for estimating VaR. The test-period starts on September 21th,
2010 and ends on March 29th, 2012. It is used for testing the performance of VaR
models. The size of the test period is 374. VaR is estimated for each day in the
test period, with the information offered by the 2600 observations ahead of it. The
accuracy of different VaR model can be assessed by comparing the estimated VaR
and the actual loss. Table 1 summaries the sample division.

Table 1: In-sample period and test period

Period In-sample period test period Total

Date 3/1/2000-20/9/2010 21/9/2010-29/3/2012
Number of observations N1 = 2600 N2 = 374 N=2974

3.3 Static and dynamic analysis on probability distribu-

tions

In this part, we discuss the static and dynamic statistical features of both indexes’
log-returns. The study begins with a descriptive statistics on the log-return series,
which is shown in Table 2.

Table 2: Descriptive statistics of daily log-return of HSI and S&P 500 indexes

Statistics Hang Seng Index S&P 500 Index

Mean 5.753× 10−5 −1.222× 10−5

Min -0.147 -0.095
Max 0.134 0.110

Kurtosis 11.749 9.981
Skewness -0.253 -0.150

Jarque-Bera Test 9513.012 6048.956

The table shows that Hang Seng Index has a positive average daily return, while
S&P 500 Index has a negative average daily return. Both series are nearly sym-
metric, but fat-tailed (kurtosis > 3). In addition, the Jarque-Bera normality
test rejects its normality null hypothesis (critical value for Jargue-Bera test is
5.991, at 95% significance level), i.e. the returns of both indexes are not normally
distributed.

Furthermore, a comparison of descriptive statistics is made between the sample
period and test period (Table 3). The results indicate that the distributions of
both index returns have large differences between sample-period and test-period.
Estimating their VaR with multivariate normal distribution or multivariate t dis-
tribution assumptions can be problematic and result in inadequate VaR estima-
tions.
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Table 3: Descriptive statistics of daily log-return of HSI and S&P 500 indexes

Statistics
Hang Seng Index S&P 500 Index

In-sample period Test period In-sample period Test period

Mean 9.053× 10−5 −1.718× 10−4 −9.302× 10−5 5.492× 10−4

Min -0.147 -0.058 -0.095 -0.069
Max 0.134 0.055 0.110 0.046

Kurtosis 12.116 5.158 10.211 7.216
Skewness -0.251 -0.285 -0.105 -0.544

By employing multivariate kernel smoothing and kernel density estimation (KDE)
techniques (Duong, 2007), we present the estimated density of the joint probability
distribution (Figure 6). The figure on the right shows the shape of empirical
probability distribution is asymmetry and very sharp. It indicates no evidence of
multivariate normality, but shows evidence of excess kurtosis.
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Figure 6: Joint kernel density and level curve of HSI and S&P 500 index

Afterwards, we analyse the dynamics of the sample distribution, by observing
the rolling samples of both index. The results are illustrated in Figure 12 and
Figure 13 (see Appendix A). Figure 12 indicates the sample distribution of Hang
Seng index is unstable and varies with time. The volatility of Hang Seng index is
decreasing along the test period, and the probability distribution tends to be more
and more fat-tailed. Different with Hang Seng index, the continuously increasing
average return in Figure 13 indicates the strong performance of S&P 500 index.
Furthermore, the dynamics of sample volatility and kurtosis show no significant
pattern. To conclude with, distributions of both index returns are unstable and
the research based on them should pay more attention to their time-varying sample
probability distribution.

27



4 Methodology: VaR models and notations

The accuracy of VaR models depends heavily on the model settings. For an
adequate estimation of VaR, the characteristics of financial data must be taken
into account. Brooks (2008) exhibit a number of interesting statistical property
of financial time series which are common to a wide range of markets and time
periods. In this paper, we focus on leptokurtosis and volatility clustering.

• Leptokurtosis. The distribution of financial returns displays a heavy tail with
excess kurtosis (kurtosis > 3).

• Volatility clustering Large returns are expected to follow large returns, small
returns to follow small returns.

Regarding the characteristics of financial data, some techniques have been devel-
oped. In previous studies on VaR estimation, the most common way to deal with
leptokurtosis is by assuming a more proper probability distribution of financial re-
turns. And volatility clustering effects are reduced by using time varying volatility
instead of constant volatility.

In this paper, we discuss 22 different multivariate VaR models. According to differ-
ent assumptions on the loss distributions, they can be separated into four groups:
non-parametric approaches (based on empirical loss distribution), multivariate
normal approaches (based on multivariate normal distribution), multivariate t ap-
proaches (based on multivariate t distribution) and copula approaches (based on
joint distributions composed by copula). Table 4 summaries the models and gives
their notations in our research.

There are four main highlights in this table:

1. The multivariate historical simulation approach (HS) is performed according
to the theory discussed in section 2.3.1. The age-weighted multivariate his-
torical simulation approach (AWHS) is performed with exponential decreas-
ing age weighing assumption. Constant λ is set to be 0.94. As discussed
in section 2.4, the volatility weighted historical simulation approaches are
modelled with Hull and White transformation, r∗t = σT+1

σt
rt (Hull and White,

1998)

2. In multivariate Normal VaR model (mvn), VaR is estimated by the equation
(2) in section 2.3.3. In multivariate t VaR model (mvt), VaR is estimated
by equation (3) in section 2.3.4. The volatility adjusted models (DVW-
mvn/EVW-mvn/DVW-mvt/EVW-mvt) is estimated by replacing the σp in
equation (2) and (3) with the adjusted volatility (σEWMA or σDCC−GARCH).

3. The aim of Monte Carlo multivariate normal/t models is examining if there
is a difference between the basic model (mvt or mvn) and Monte Carlo
simulation model (MC-mvt or MC-mvn). Theoretically, there should be
no difference between them. These models can be seen as benchmarks for
assessing the effectiveness of copula theory.
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Table 4: VaR models and notation

Model Notation

Historical Simulation HS
Age weighted Historical Simulation AWHS
Volatility weighted (DCC-GARCH) Historical Simulation DVWHS
Volatility weighted (EWMA) Historical Simulation EVWHS

Multivariate Normal approach mvn
Monte Carlo-multivariate normal MC-mvn
Volatility adjusted (DCC-GARCH) Multivariate Normal DVW-mvn
Volatility adjusted (EWMA) Multivariate Normal EVW-mvn

Multivariate t approach mvt
Monte Carlo-multivariate t MC-mvt
Volatility adjusted (DCC-GARCH) Multivariate t DVW-mvt
Volatility adjusted (EWMA) Multivariate t EVW-mvt

Monte Carlo-Gaussian Copula(pseudo) MC-GCp
Monte Carlo-Gaussian Copula(normal) MC-GCn
Monte Carlo-Student’s t-Copula(pseudo) MC-tCp
Monte Carlo-Student’s t-Copula(normal) MC-tCn
Monte Carlo-Gumbel Copula(pseudo) MC-GuCp
Monte Carlo-Gumbel Copula(normal) MC-GuCn
Monte Carlo-Clayton Copula(pseudo) MC-ClCp
Monte Carlo-Clayton Copula(normal) MC-ClCn
Monte Carlo-Frank Copula(pseudo) MC-FrCp
Monte Carlo-Frank Copula(normal) MC-FrCn

4. Monte Carlo-Gaussian/t/Gumbel/Clayton/Frank copula represents the copula-
based multivariate VaR model. The models are performed following the pro-
cedures proposed in section 2.5.6. Pseudo/normal in the parentheses shows
the assumption of marginal distribution. ’Pseudo’ denotes the copula is con-
structed on the pseudo observations and without specifying the marginal
distribution. ’Normal’ denotes the normal distribution is specified as the
marginal distribution of copula function.
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5 Modelling Volatility

The section starts with a focus on the time series properties of the S&P 500
Index and Hang Seng Index. Next, multivariate DCC-GARCH model and EWMA
model are employed as an estimation of time-varying volatility. A discussion on
the results of multivariate volatility model is presented. This section ends with a
study on the dependence structure between S&P 500 Index and Hang Seng Index.

5.1 Time series properties

The construction of DCC-GARCH multivariate volatility model is based on a time-
varying correlation matrix and conditional volatility of each stochastic variable.
For an accurate estimation, we have to focus on the time series property of each
stock index before the multivariate volatility modelling. Figure 7 and 8 show the
autocorrelation function (ACF) and partial autocorrelation function (PACF) for
the log-returns of Hang Seng Index and S&P 500 Index.
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Figure 7: ACF and PACF of Hang Seng Index

The autocorrelation function is insignificant after lag 0, shows no discernible pat-
tern at any order lags of moving average process. Together with the partial auto-
correlation function, the time series of Hang Seng Index log-return should follow
the ARMA(0,0) process, with the form,

rt = µ+ εt

Recall the GARCH(1,1) model, the conditional volatility model of Hang Seng
index is conducted.

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1

The ARMA(0,0)-GARCH(1,1) models can be estimated by maximum likelihood
estimation (MLE) method. Table 6 presents the estimated parameters. The * indi-
cates the corresponding estimated parameter is statistically significant at the 95%
significance level. And both parameters in the table are significant and reliable. In
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addition, the results of LM ARCH test show ’ARCH-effects’ presents in residuals
of the ARMA(0,0) model and it makes sense to employ an ARCH/GARCH model.

Table 5: ARMA-GARCH model estimation results, Hang Seng Index

Parameters Estimates Standard Error p-value

µ 5.597× 10−4 2.312× 10−4 0.01547*
α0 1.292× 10−6 4.438× 10−7 0.00359*
α1 6.870× 10−2 8.559× 10−3 0.00000*
β1 9.279× 10−1 8.488× 10−3 0.00000*

Loglikelihood 7412.912
AIC -5.699
BIC -5.690

LM Arch Test p=0.07535
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Figure 8: ACF and PACF of S&P 500 Index

The autocorrelation function of S&P 500 log-return shows a different pattern. The
correlations at lag 1 and 2 are significant and negative. We can identify this series
as it follows ARMA(0,2) process. Similar with Hang Seng Index, we construct the
ARMA(0,2)-GARCH(1,1) model for S&P 500 index,

rt = µ+ εt + θ1εt−1 + θ2εt−2

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1

The results of ARMA(0,2)-GARCH(1,1) are presented in Table 6. In a similar
manner, the results show the estimated parameters are significant (significance lev-
el, 95%) and reliable. The results of LM ARCH test show ’ARCH-effects’ presents
in residuals of the ARMA(0,2) model and it makes sense to use an ARCH/GARCH
model.
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Table 6: ARMA-GARCH model estimation results, S&P 500 Index

Parameters Estimates Standard Error p-value

µ 3.652× 10−4 1.625× 10−4 0.02462*
θ1 −6.050× 10−2 2.068× 10−2 0.00344*
θ2 −4.252× 10−2 2.066× 10−2 0.03904*
α0 1.302× 10−6 3.220× 10−7 0.00005*
α1 8.193× 10−2 9.494× 10−3 0.00000*
β1 9.110× 10−1 9.647× 10−3 0.00000*

Loglikelihood 8010.256
AIC -6.157
BIC -6.144

LM Arch Test p=0.077241

5.2 DCC-GARCH model

With the results of univariate ARMA-GARCH model, we model the time-varying
volatility of the portfolio by employing DCC-GARCH model. The form of DCC-
GARCH model is,

Ht = DtRDt

The estimation starts with the diagonal matrices of conditional variances (Dt =
Diag(h1t, · · · , hnt)).

ht = a+ Aεt−1 +Bht−1

where a,A,B are coefficient matrices of the DCC-GARCH model, ht is the matri-
ces consists of each component’s volatility (h1t, h2t). For the diagonal specification
(original DCC-GARCH model, volatility spillover not allowed), the coefficient ma-
trices,

a =

(
a1

a2

)
A =

(
A11 0
0 A22

)
B =

(
B11 0
0 B22

)
Further, the dynamic conditional correlation matrix is defined as

Rt =

(
ρ11 ρ12

ρ21 ρ22

)
The DCC-GARCH model is estimated by maximizing likelihood. The parameters
of the DCC-GARCH model and the dynamic conditional correlation matrix at
t = 2600 are presented in Table 7. Both estimates are reliable.

Finally, define Dt = diag(h1t, h2t). With the estimated dynamic conditional corre-
lation matrix Rt and portfolio weights matrix w, the time-varying volatilities σp,t
are derived as,

σp,t = w′Htw
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Table 7: DCC-GARCH estimation results

Parameters Estimates Standard Error

a1 1.292× 10−6 4.910× 10−7

a2 1.302× 10−6 1.378× 10−2

A11 6.870× 10−2 1.111× 10−2

A22 8.193× 10−2 5.960× 10−7

B11 9.279× 10−1 1.251× 10−2

B22 9.110× 10−1 1.149× 10−2

Dynamic conditional correlation matrix at t = 2600

ρ11 = ρ22 1.000
ρ12 = ρ21 0.187

Loglikelihood 38242.61

5.3 Multivariate EWMA

Compared with modelling volatility with DCC-GARCH model, multivariate EW-
MA approach is easier to be realized. This approach starts with the unconditional
covariance matrix of the first 2600 observations (In-sample period).

Σ0(rHSI , rS&P500) =

(
0.01713 0.00736
0.00736 0.01409

)

Then, the covariance matrix at time t = 2601 (denote as Σ1),

Σ1 = λΣ0(rHSI , rS&P500) + (1− λ)ε0ε
′
0

Where ε0 = r0 − µ. And in this paper, we assume λ = 0.94. Then the covariance
matrix for any time in the test period (Σt) can be derived by the following equation.

Σt = λΣt−1 + (1− λ)εt−1ε
′
t−1

With the calculated time-varying covariance matrix (Σ0,Σ1, · · · ,Σn), the time-
varying portfolio volatility σp,t is derived by,

σp,t = w′Σtw

5.4 Dependence structure

In this part, we discuss the dependence structures between the portfolio compo-
nents. It is an important concept to the estimation of portfolio VaR. It determines
the covariance matrix and defines the risk level of the portfolio.
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The discussion starts with the static measurement of the dependence structures.
Dependence structure between Hang Seng Index and S&P 500 index is measured
in terms of Pearson’s ρ (linear dependence), Kendall’s τ and Spearman’s ρ (rank
correlation coefficient). The result is shown in Table 8. Both the results show the
two indexes are positive correlated, but their correlation is not strong. They are
facing with different risk factors. It is worth consisting a portfolio that diversify
the unsystematic risks.

Table 8: Static dependence structure measurement

Measurement of dependence structure Value

Pearson’s ρ 0.2247
Kendall’s τ 0.1111

Spearman’s ρ 0.1610

Afterwards, we focus on the dynamic conditional correlation matrices estimated
by DCC-GARCH model. It gives the measurement of time-varying dependence
structures between Hang Seng Index and S&P 500 Index (Figure 9).
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Figure 9: Dynamic of conditional correlation between HSI and S&P 500

The figure shows the dynamic correlations of HSI and S&P 500 are time-varying
and volatiles at the range between 0.11 and 0.2455. In addition, by observing the
probability distribution of the dependence structures, more than 70% observations
of correlation lying in range between 0.15 and 0.2. It is highly concentrated and
tends to continue fluctuating in the interval 0.15-0.2, which can be treated as
relatively stable in a short period of time.

Thus, the correlation matrix of the HSI and S&P indexes could be assumed to
be constant overtime in the test period. With the assumption, there is no need
to estimate DCC-GARCH model for each day in the test period. The correlation
between Hang Seng index and S&P 500 index is assumed to be consistent with
the estimated correlation matrix of DCC-GARCH model (Table 6) at the end of
the sample period (t = 2600), in the matrix form:

ρ =

(
1 0.187

0.187 1

)
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6 Empirical Results

This section presents the empirical results of various multivariate VaR models
that defined in methodology section. Both models are calculated on the 99%
confidence level (α = 0.99) and the holding period (H) is one-day. For each Monte
Carlo simulations process, 10000 iterations are performed. The results for each
model are presented (Table 9) in terms of three evaluation criteria: Christoffersen
test, quadratic probability score (QPS) and root mean squared error (RMSE).
Significant LR statistics are highlighted in bold, which indicate the VaR models
fail to pass the corresponding test.

Table 9: Model evaluation, V aRα : 1− α = 1%

Christoffersen Test Relative Performance
VaR Model Violations LRuc LRind LRcc QPS RMSE

HS 1 2.862 2.666 5.528 0.005441 353.656
AWHS 13 14.106 2.666 16.772 0.068328 299.312

DVWHS 7 2.284 2.666 4.950 0.036884 277.616
EVWHS 4 0.018 2.666 2.684 0.021163 278.234

mvn 11 9.357 2.666 12.023 0.057847 314.098
MC-mvn 10 7.256 2.666 9.922 0.052606 313.526

DVW-mvn 4 0.018 2.666 2.684 0.021163 282.902
EVW-mvn 4 0.018 2.666 2.684 0.021163 281.837

mvt 11 9.357 2.666 12.023 0.057847 314.157
MC-mvt 11 9.357 2.666 12.023 0.057847 313.981

DVW-mvt 4 0.018 2.666 2.684 0.021163 282.951
EVW-mvt 4 0.018 2.666 2.684 0.021163 281.886

MC-GCp 4 0.018 2.666 2.684 0.021163 341.869
MC-GCn 1 2.862 2.666 5.528 0.005441 374.886
MC-tCp 3 0.159 2.666 2.825 0.015922 351.993
MC-tCn 1 2.862 2.666 5.528 0.005441 375.996

MC-GuCp 6 1.166 2.666 3.832 0.031643 337.798
MC-GuCn 2 0.984 2.666 3.650 0.010681 376.275
MC-ClCp 2 0.984 2.666 3.650 0.010681 362.967
MC-ClCn 1 2.862 2.666 5.528 0.005441 375.681
MC-FrCp 7 2.284 2.666 4.950 0.036884 333.797
MC-FrCn 1 2.862 2.666 5.528 0.005441 376.747

LRcritic, α
∗ = 95% 3.841 3.841 5.991

Confidence Interval, violations (Obs=374, α∗ = 99%) 0-9
Confidence Interval, violations (Obs=374, α∗ = 95%) 1-8

The results can be summarized as follows:

1. Basic multivariate VaR models (mvn/mvt/HS/AWHS) do not perform well
in predicting future losses. As indicated by the christoffersen test (LRuc)
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(Table 9), three of them (mvn/mvt/AWHS) fail to generate adequate esti-
mation of future losses. As a results, their QPS is larger than other models.
In addition, the number of violations during the test period is relatively
large, which indicates their underestimation of future losses.

However, one of them - the historical simulation VaR model (HS) passes
the christoffersen test and have few violation during the test period. Conse-
quently, its QPS is low which indicates its good performance in the violation
days. The historical simulation VaR model could have a lower probability of
occurring violations. Despite its good performance in violation days, some
evidences of overestimating the future losses are found. Compared with the
other VaR models, the RMSE of historical simulation VaR model is larg-
er. It shows its relatively poor performance in non-violation days: users
have to hold a higher level of capital reserves, which is costly. Figure 14
(see Appendix A) also shows some evidences of overestimating future loss-
es. The estimated VaR is slightly higher than the other basic VaR models.
Less violations are at the expense of higher reserves in non-violation days.
For a regulatory purposes, the model is acceptable and conservative enough.
However, from the users’ perspective, it is costly to accept the historical
simulation model.

2. Volatility adjusted multivariate VaR models (DVWHS/EVWHS/DVW-mvn/
EVW-mvn/DVW-mvt/EVW-mvt) shows notable improvements in the per-
formance of predicting future losses, compared with the basic multivariate
VaR models. Both volatility adjusted multivariate VaR models pass the
christoffersen test (Table 9, LRuc, LRind, LRcc). The relatively low QPS and
the relatively low RMSE shows its good performance in the violation days
as well as the non-violation days. Compared with the other VaR models,
they have less probability of violations and at the same time, do not require
a high-level capital reserve.

The DCC-GARCH model and the multivariate EWMA model have similar
performances in estimating the future volatilities. However, their features
are slightly different. Among volatility adjusted parametric VaR model-
s (DVW-mvn/EVW-mvn/DVW-mvt/EVW-mvt), the RMSE statistics in
Table 9 indicate VaR models with multivariate EWMA volatility perform
slightly better in non-violation days. In addition, figure 15 and 16 (see Ap-
pendix A) show DCC-GARCH model overestimates the volatility’s sudden
change in August, 2011. On other days of the test period, it is hard to
figure out any difference between multivariate EWMA volatility model and
multivariate DCC-GARCH volatility model. In non-parametric VaR models
(DVWHS/EVWHS), the RMSE statistics indicate VaR models with DCC-
GARCH have better performance in non-violation days. While the QPS
statistics indicate VaR models with multivariate EWMA have lower viola-
tions in the test period. VaR models with multivariate EWMA are more
conservative, compared with VaR models with multivariate DCC-GARCH.

3. Monte Carlo approaches of multivariate VaR (MC-mvn/MC-mvt) show con-
sistent results with basic multivariate VaR models. Theoretically, Monte
Carlo approach and its corresponding basic VaR model are under the same
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assumptions and they should have the same results. The differences between
QPS and RMSE statistics come from the standard errors of estimation. The
bias can be decreased by increasing the simulation iterations.

4. Compared with basic multivariate VaR models, copula-based multivariate
VaR models have better predictive power on future losses. Both copula-based
multivariate VaR models pass the christoffersen test (Table 9), which indicate
their adequate estimation of future losses. Their number of violations in the
test period is low. Consequently, the QPS statistics is lower than the basic
models (mvn/mvt/AWHS). From the regulatory perspective, copula-based
multivariate VaR models performs well.

In basic multivariate VaR models, we assume the probability distribution of
loss as a specific statistical probability distribution. However, in practice,
the actual losses do not always follow a certain probability distribution that
can be specified by a simple equation. Sometimes, the probability distribu-
tion can be complex. In that case, the VaR estimation based on a specific
probability distribution could be inadequate. By contrast, the copula theo-
ry shows its brilliant ability of describing complex multivariate probability
distributions. The selection of probability distribution is not limited on the
existing probability distribution. With the copula theory, we can construct
an unknown distribution that fits the data best. It is the reason behind the
better performance of copula-based multivariate VaR models.

Despite its advantages over the basic models, they face the same problem
with non-volatility adjusted VaR models: in order to lower the probability
of violations, the estimated VaR values have to be more conservative than
the volatility adjusted models. As a results, their RMSE statistics can be
relatively high. From the users’ perspective, it is costly to have a high level
capital reserves.

However, the problem can be solved by introducing volatility models into the
copula theory, namely, conditional copula models. Due to the limited time
frame, we do not employ the conditional copula models. But it is available
for future study. We believe it can generate a VaR estimation with less
violations and demanding less capital reserves.

In the paper, five families of copula functions and two different assump-
tions on marginal distributions are employed. As indicated by the results,
they have shown different features in estimating multivariate VaR. As indi-
cated by the RMSE statistics and the figures (Figure 17-21, see Appendix),
copula-based copula VaR models with normal marginal distribution are more
conservative (RMSE is higher) than the copula-based copula VaR models
based on pseudo observations. As a results, they have lower probability of
violations.

Among different copula functions (Gaussian/t/Gumbel/Clayton/Frank), Clay-
ton copula and student’s t copula perform the best in lowering violations.
Gaussian copula performs on the average level and is less conservative than
Clayton/student’s t copula. Gumbel copula ranks at the fourth and Frank
copula performs the least conservative. The results are consistent with some
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basic features of copula functions. The comparisons of different copula-based
multivariate VaR models are presented in Table 9.

Table 10: Features and comparison of different copula-based VaR models

VaR Model Violations QPS RMSE Features of copula function

Gaussian(P) 4 0.021163 341.869 Reflecting overall dependence
structure.Gaussian(N) 1 0.005441 374.886

t(P) 3 0.015922 351.993 Focus on the tail dependence
(Both upper and lower sides)t(N) 1 0.005441 375.996

Gumbel(P) 6 0.031643 337.798 Focus on the tail dependence
(Upper side)Gumbel(N) 2 0.010681 376.275

Clayton(P) 2 0.010681 362.967 Focus on the tail dependence
(Lower side)Clayton(N) 1 0.005441 375.681

Frank(P) 7 0.036884 333.797
Tail independence

Frank(N) 1 0.005441 376.747

In the Table, ’N’ represents the copula model with normal margins and ’P’
represents the copula model based on pseudo observations. The table in-
dicates that the estimated VaR would be more conservative (larger RMSE
and less violations) with the increasing focus on the lower tail dependence
and tail losses. The model with the most focus on the lower tail dependence
(Clayton copula) performs best in lowering number of violations. The model
assumes the tail independence (Frank copula) performs the worst. Depen-
dence structure is an important part of multivariate VaR models, especially
the lower tail dependence (Actually, the VaR estimation locates here). More
conservative results will be get, if the VaR model describes the characteristics
of tail losses better.
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7 Conclusion

The aim of this paper has been to examine the one-day predictive power of sever-
al multivariate VaR models, including basic multivariate VaR models, volatility-
adjusted multivariate VaR models and copula-based multivariate VaR models.
The comparison is made on a portfolio consisting of S&P 500 index and Hang
Seng Index. Christoffersen test, quadratic probability score and root mean square
error are used as standard tools to evaluate the performance. Following the re-
search questions in the introduction section, the empirical results can be concluded
as follows:

1. Based on the results of quadratic probability score and the root mean squared
error, basic multivariate VaR models (mvn/mvt/HS/AWHS) show poor per-
formances in estimating future losses. Additionally, three basic multivariate
VaR models (mvn/mvt/AWHS) fail to pass the christoffersen test. Their
VaR estimation can be treated as inadequate.

2. Multivariate EWMA and DCC-GARCH model are employed as the multi-
variate volatility model. Both models are easy to implement (section 5) and
the results indicate the accurate estimation of the time-varying multivariate
volatility.

3. Both volatility adjusted multivariate VaR models pass the christoffersen
test. Compared with the basic multivariate VaR models, they have high-
er quadratic probability scores and lower root mean squared errors. The
results indicate that volatility adjusted multivariate VaR models have bet-
ter predictive performances than the basic VaR models.

4. Compared with basic multivariate VaR models, copula-based multivariate
VaR models show notable improvements in lowering probability of violations.
The copula theory constructs multivariate distributions with attentions on
the tail losses and tail dependence. As a result, the copula-based multivariate
VaR models have a better predictive power on the tail losses and show similar
characters with extreme value theory (EVT) VaR models. All the copula-
based multivariate VaR models pass the christoffersen test and have a lower
quadratic probability score.

As a final point, the main implication of this research for practitioners is it offers a
practical guidance for estimating portfolio VaR by multivariate VaR models. The
comparison between different multivariate VaR models gives an overview of their
performances and features. This paper can be effective as a reference when facing
portfolio risk measurement problems or facing the problem of selecting adequate
multivariate VaR models.
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Appendix A
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Figure 10: A simple illustration of Monte Carlo approach

This figure graphs a realization of 100000 simulated portfolio returns. The port-
folio is consist of two assets with equal weights. The assets follow a multivariate

normal distribution, with µ = (0.1, 1) and Σ =

(
1 0.4

0.4 1

)
. Additionally, the 99%

VaR can be point out as the 99% quantile of the loss distribution.
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Figure 11: Daily closing price of Hang Seng Index and S&P 500 Index
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Figure 12: Dynamic of log-return distributions (Hang Seng Index)

The figure on the left shows the time-varying sample mean of Hang Seng Index.
The average return seems to have a gap in t = 240 ∼ 260. The figure in the
middle shows the time-varying sample standard deviation of Hang Seng Index. It
shows a trend that the volatility of the index returns is decreasing. The figure
on the right shows the time-varying kurtosis of Hang Seng Index. It seems the
probability distribution tends to be more and more fat-tailed overtime. It can be
improper to assume the loss distributions follow normal distribution.
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Figure 13: Dynamic of log-return distributions (S&P 500 Index)

The figure on the left shows the time-varying sample mean of S&P 500 Index. The
average return is increasing overtime, and the performance of the index is strong.
The figure in the middle shows the time-varying sample standard deviation of S&P
500 Index. The figure on the right shows the time-varying kurtosis of S&P 500
Index.
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Figure 14: Estimated VaR: Multivariate historical simulation approach

The black fold line represents the actual losses of the portfolio. The blue line represents the
estimated VaR by multivariate historical simulation VaR model (HS). The red line denotes the
estimated VaR by multivariate age-weighted historical simulation VaR model (AWHS). The green
line denotes the estimated VaR by volatility weighted (EWMA) historical simulation VaR model
(EVWHS). The pink line represents the estimated VaR by volatility weighted (DCC-GARCH)
historical simulation VaR model (DVWHS).
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Figure 15: Estimated VaR: Multivariate normal approach

The black fold line represents the actual losses of the portfolio. The blue and pink line represents
the estimated VaR by multivariate normal VaR model (mvn) and Monte Carlo multivariate
normal VaR model (MC-mvn). The red line denotes the estimated VaR by volatility weighted
(EWMA) multivariate normal VaR model (EVW-mvn). The green line denotes the estimated
VaR by volatility weighted (DCC-GARCH) multivariate normal VaR model (DVW-mvn).
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Figure 16: Estimated VaR: Multivariate t approach

The black fold line represents the actual losses of the portfolio. The blue and pink line represents
the estimated VaR by multivariate t VaR model (mvt) and Monte Carlo multivariate t VaR
model (MC-mvt). The red line denotes the estimated VaR by volatility weighted (EWMA)
multivariate t VaR model (EVW-mvt). The green line denotes the estimated VaR by volatility
weighted (DCC-GARCH) multivariate t VaR model (DVW-mvt).
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Figure 17: Estimated VaR: Gaussian Copula Monte Carlo approach

The black fold line represents the actual losses of the portfolio. The red line denotes the estimated
VaR by Gaussian Copula (normal margin) multivariate VaR model (MC-GCn). The blue line
denotes the estimated VaR by Gaussian Copula (pseudo observations) multivariate VaR model
(MC-GCp).
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Figure 18: Estimated VaR: Student’s t Copula Monte Carlo approach

The black fold line represents the actual losses of the portfolio. The red line denotes the estimated
VaR by student’s t Copula (normal margin) multivariate VaR model (MC-tCn). The blue line
denotes the estimated VaR by student’s t Copula (pseudo observations) multivariate VaR model
(MC-tCp).
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Figure 19: Estimated VaR: Gumbel Copula Monte Carlo approach

The black fold line represents the actual losses of the portfolio. The red line denotes the estimated
VaR by Gumbel Copula (normal margin) multivariate VaR model (MC-GuCn). The blue line
denotes the estimated VaR by Gumbel Copula (pseudo observations) multivariate VaR model
(MC-GuCp).
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Figure 20: Estimated VaR: Clayton Copula Monte Carlo approach

The black fold line represents the actual losses of the portfolio. The red line denotes the estimated
VaR by Clayton Copula (normal margin) multivariate VaR model (MC-ClCn). The blue line
denotes the estimated VaR by Clayton Copula (pseudo observations) multivariate VaR model
(MC-ClCp).
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Figure 21: Estimated VaR: Frank Copula Monte Carlo approach

The black fold line represents the actual losses of the portfolio. The red line denotes the estimated
VaR by Frank Copula (normal margin) multivariate VaR model (MC-FrCn). The blue line
denotes the estimated VaR by Frank Copula (pseudo observations) multivariate VaR model
(MC-FrCp).
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Appendix B

R codes for this paper(304 lines)

R: A Language and Environment for Statistical Computing, Version 2.15.0 (2012-3-30). R De-
velopment Core Team. http://www.R-project.org

1 #Define Portfolio weights , sample size and alpha level

2 w=c(0.5 ,0.5)

3 tP=374

4 si=0.01

5

6 #Multivariate EWMA volatility

7 xdata=cbind(hsreturn ,spreturn)

8 res=xdata -apply(xdata ,2,mean)

9 s=var(sdata)

10 lambda =0.94

11 s=lambda*s

12 sigma=sqrt(t(w)%*%s%*%w)

13 EWMAsigma=rep(0,T+1)

14 EWMAsigma [1]= sigma

15 T=length(hsreturn)

16 for(i in 2:(T+1)){

17 s=lambda*s+(1- lambda)*res[(i-1) ,]%*%t(res[(i-1) ,])

18 sigma=sqrt(t(w)%*%s%*%w)

19 EWMAsigma[i]= sigma

20 }

21

22 #Dynamic conditional correlation GARCH volatility

23 library(ccgarch)

24 library(fGarch)

25 f1=garchFit(~garch (1,1),sdata[,1],trace=FALSE)

26 f1=f1@fit$coef

27 f2=garchFit(~arma (0,2)+garch (1,1),sdata[,2],trace=FALSE)

28 #f2=garchFit(~garch (1,1),sdata[,2],trace=FALSE)

29 f2=f2@fit$coef

30 inia=c(f1[2],f2[4])

31 iniA=diag(c(f1[3],f2[5]))

32 iniB=diag(c(f1[4],f2[6]))

33 dcc.para=c(0.01 ,0.97) #intial Value

34 dcc.results=dcc.estimation(inia ,iniA ,iniB ,dcc.para ,sdata ,model="diagonal")

35 #dcc.results=dcc.estimation(inia ,iniA ,iniB ,dcc.para ,sdata ,model=" extended ")

36 DCCGarchsigma=rep(0,( length(hsreturn)+1))

37 for(i in 1:2600){

38 D=diag(sqrt(dcc.results$h[i,]))

39 R=matrix(dcc.results$DCC[i,],2,2)

40 H=D%*%R%*%D

41 DCCGarchsigma[i]=sqrt(t(w)%*%H%*%w)

42 }

43 T=length(sdata [,1])
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44 h=matrix (0,(tP+1) ,2)

45 h[1,]=dcc.results$h[T,]

46 for(i in 2:(tP+1)){

47 h[i,]=c(dcc.results$out[1,1],dcc.results$out[1,2])+diag(c(dcc.results$out[1,3],

dcc.results$out[1,4]))%*%c(res[(i+2598) ,1]^2,res[(i+2598) ,2]^2)+diag(c(dcc.

results$out[1,5],dcc.results$out [1 ,6]))%*%h[i-1,]

48 }

49 R=matrix(dcc.results$DCC[T,],2,2)

50 for(i in 2601:2974){

51 D=diag(sqrt(h[(i -2599) ,]))

52 H=D%*%R%*%D

53 DCCGarchsigma[i]=sqrt(t(w)%*%H%*%w)}

54

55 #Multivariate t VaR model

56 VaRmt=rep(0,tP)

57 VaRmtEWMA=rep(0,tP)

58 VaRmtDCCG=rep(0,tP)

59 mupts=rep(0,tP)

60 sigmapts=rep(0,tP)

61 for(i in 1:tP){

62 data1=NULL

63 data1=cbind(hsi[i,],sp[i,])

64 kurt1=kurtosis(data1[,1],method="moment")

65 #kurt1=kurtosis(data1 [,1])

66 kurt2=kurtosis(data1[,2],method="moment")

67 #kurt1=kurtosis(data1 [,2])

68 kavg=( kurt1+kurt2)/2

69 df=(4*kavg -6)/(kavg -3)

70 mu=apply(data1 ,2,mean)

71 T=length(sdata [,1])

72 sigmat =(T-1)*var(data1)/T

73 cort=cor(data1)

74 params=c(mu,df)

75 out <-nlm(mlogl ,params ,cort ,data1)

76 mue=c(out$estimate [1],out$estimate [2])

77 df=out$estimate [3]

78 mupts[i]=w%*%mue

79 sigmapts[i]=sqrt(t(w)%*%sigmat%*%w)

80 VaRmt[i]= cpprice[i]*(-mupts[i]-sigmapts[i]*sqrt((df -2)/df)*qt(si,df))

81 VaRmtEWMA[i]= cpprice[i]*(-mupts[i]-EWMAsigma[i+2600]*sqrt((df -2)/df)*qt(si,df))

82 VaRmtDCCG[i]= cpprice[i]*(-mupts[i]-DCCGarchsigma[i+2600]*sqrt((df -2)/df)*qt(si,df

))

83 }

84

85 #Multivariate normal VaR models

86 VaRmn=rep(0,tP)

87 VaRmnEWMA=rep(0,tP)

88 VaRmnDCCG=rep(0,tP)

89 mupns=rep(0,tP)
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90 sigmapns=rep(0,tP)

91 library(mvnmle)

92 for(i in 1:tP){

93 data1=NULL

94 data1=cbind(hsi[i,],sp[i,])

95 fit=mlest(data1)

96 mun=fit$muhat

97 sigman=fit$sigmahat

98 mupns[i]=w%*%mun

99 sigmapns[i]=sqrt(t(w)%*%sigman%*%w)

100 VaRmn[i]= cpprice[i]*(-mupns[i]-sigmapns[i]*qnorm(si))

101 VaRmnEWMA[i]= cpprice[i]*(-mupns[i]-EWMAsigma[i+2600]*qnorm(si))

102 VaRmnDCCG[i]= cpprice[i]*(-mupns[i]-DCCGarchsigma[i+2600]*qnorm(si))

103 }

104

105 #Multivariate historical simulation VaR model

106 T=length(sdata [,1])

107 op=T*si

108 VaRHS=rep(0,tP)

109 for(i in 1:tP){

110 data1=NULL

111 data1=cbind(hsi[i,],sp[i,])

112 HSp=data1%*%w

113 sdata1=sort(HSp)

114 VaRHS[i]=-sdata1[op]*cpprice[i]

115 }

116 T=length(sdata [,1])

117 op=T*si

118 VaRVWHSD=rep(0,tP)

119 VaRVWHSE=rep(0,tP)

120 for(i in 1:tP){

121 data1=NULL

122 data1=cbind(hsi[i,],sp[i,])

123 HSp=data1%*%w

124 HSpWD=rep(0,length(data [,1]))

125 HSpWE=rep(0,length(data [,1]))

126 for(j in 1: length(data1 [,1])){

127 HSpWD[j]=HSp[j]*DCCGarchsigma[i+2600]/DCCGarchsigma[i+j]

128 HSpWE[j]=HSp[j]*EWMAsigma[i+2600]/EWMAsigma[i+j]

129 }

130 sdata1=sort(HSpWD)

131 VaRVWHSD[i]=-sdata1[op]*cpprice[i]

132 sdata2=sort(HSpWE)

133 VaRVWHSE[i]=-sdata2[op]*cpprice[i]

134 }

135 lambda =0.94

136 T=length(sdata [,1])

137 w2=rep(0,T)

138 w2[1]=(1 - lambda)/(1-lambda^T)
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139 VaRAWHS=rep(0,tP)

140 for(i in 2:T){w2[i]=w2[i-1]*lambda}

141 for(i in 1:tP){

142 data1=NULL

143 data1=cbind(hsi[i,],sp[i,])

144 HSp=data1%*%w

145 AWHS=cbind(HSp ,w2)

146 sAWHS=AWHS[order(AWHS [,1]) ,]

147 prob=0

148 j=1

149 while(prob <=si){

150 prob=prob+sAWHS[j,2]

151 j=j+1

152 }

153 op=j

154 VaRAWHS[i]=-sAWHS[op ,1]*cpprice[i]

155 }

156

157 #Monte Carlo Method - mvt & mvn

158 library(MASS)

159 MCVaRn=rep(0,tP)

160 for(i in 1:tP){

161 data1=NULL

162 data1=cbind(hsi[i,],sp[i,])

163 fit=mlest(data1)

164 mun=fit$muhat

165 sigman=fit$sigmahat

166 MC=mvrnorm (10000 ,mun ,sigman)

167 MCportfolio=MC%*%w

168 MCVaRn[i]=-cpprice[i]*quantile(MCportfolio ,p=si)

169 }

170 library(mvtnorm)

171 MCVaRt=rep(0,tP)

172 for(i in 1:tP){

173 data1=NULL

174 data1=cbind(hsi[i,],sp[i,])

175 kurt1=kurtosis(data1[,1],method="moment")

176 kurt2=kurtosis(data1[,2],method="moment")

177 kavg=( kurt1+kurt2)/2

178 df=(4*kavg -6)/(kavg -3)

179 mu=apply(data1 ,2,mean)

180 T=length(sdata [,1])

181 cort=cor(data1)

182 params=c(mu,df)

183 sigmat =(T-1)*var(data1)/T

184 out <-nlm(mlogl ,params ,cort ,data1)

185 mue=c(out$estimate [1],out$estimate [2])

186 df=out$estimate [3]

187 MC=rmvt (10000 , sigmat ,df,mue)
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188 MCportfolio=MC%*%w

189 MCVaRt[i]=-cpprice[i]*quantile(MCportfolio ,p=si)

190 }

191

192 #Copula -based multivariate VaR models

193 library(copula)

194 VaRGaussianC=rep(0,tP)

195 VaRGaussianC2=rep(0,tP)

196 VaRtC=rep(0,tP)

197 VaRtC2=rep(0,tP)

198 VaRGC=rep(0,tP)

199 VaRGC2=rep(0,tP)

200 VaRCC=rep(0,tP)

201 VaRCC2=rep(0,tP)

202 VaRFC=rep(0,tP)

203 VaRFC2=rep(0,tP)

204 for(i in 1:tP){

205 v=4

206 data1=NULL

207 data1=cbind(hsi[i,],sp[i,])

208 fit1=fitdistr(data1[,1],"normal")

209 fit2=fitdistr(data1[,2],"normal")

210 u1=pnorm(data1[,1],fit1$estimate [1],fit1$estimate [2])

211 u2=pnorm(data1[,2],fit2$estimate [1],fit2$estimate [2])

212 Un=cbind(u1 ,u2)

213 T=length(data1 [,1])

214 Up=apply(data1 ,2,rank)/(T+1) #pseudo -observations

215 fitGp=fitCopula(normalCopula (0.6,dim=2,dispstr="ex"),Up,method="mpl")

216 fitGn=fitCopula(normalCopula (0.6,dim=2,dispstr="ex"),Un,method="mpl")

217 fitTp=fitCopula(tCopula (0.6,dim=2,dispstr="ex",df=v,df.fixed=TRUE),Up,method="mpl

")

218 fitTn=fitCopula(tCopula (0.6,dim=2,dispstr="ex",df=v,df.fixed=TRUE),Un,method="mpl

")

219 fitGUp=fitCopula(gumbelCopula (2,dim=2),Up,method="mpl")

220 fitGUn=fitCopula(gumbelCopula (2,dim=2),Un,method="mpl")

221 fitCp=fitCopula(claytonCopula (2,dim =2),Up,method="mpl")

222 fitCn=fitCopula(claytonCopula (2,dim =2),Un,method="mpl")

223 fitFp=fitCopula(frankCopula (2,dim=2),Up,method="mpl")

224 fitFn=fitCopula(frankCopula (2,dim=2),Un,method="mpl")

225 xGp=rcopula(normalCopula(fitGp@estimate ,dim=2,dispstr="ex") ,10000)

226 xGn=rcopula(normalCopula(fitGn@estimate ,dim=2,dispstr="ex") ,10000)

227 xTp=rcopula(tCopula(fitTp@estimate ,dim=2,dispstr="ex",df=v,df.fixed=TRUE) ,10000)

228 xTn=rcopula(tCopula(fitTn@estimate ,dim=2,dispstr="ex",df=v,df.fixed=TRUE) ,10000)

229 xGUp=rcopula(gumbelCopula(fitGUp@estimate ,dim=2) ,10000)

230 xGUn=rcopula(gumbelCopula(fitGUn@estimate ,dim=2) ,10000)

231 xCp=rcopula(claytonCopula(fitCp@estimate ,dim=2) ,10000)

232 xCn=rcopula(claytonCopula(fitCn@estimate ,dim=2) ,10000)

233 xFp=rcopula(frankCopula(fitFp@estimate ,dim=2) ,10000)

234 xFn=rcopula(frankCopula(fitFn@estimate ,dim=2) ,10000)
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235 yGp=w[1]*quantile(data1[,1],xGp[,1])+w[2]*quantile(data1[,2],xGp[,2])

236 yGn=w[1]*qnorm(xGn[,1],fit1$estimate [1],fit1$estimate [2])+w[2]*qnorm(xGn[,1],fit2

$estimate [1],fit2$estimate [2])

237 yTp=w[1]*quantile(data1[,1],xTp[,1])+w[2]*quantile(data1[,2],xTp[,2])

238 yTn=w[1]*qnorm(xTn[,1],fit1$estimate [1],fit1$estimate [2])+w[2]*qnorm(xTn[,1],fit2

$estimate [1],fit2$estimate [2])

239 yGUp=w[1]*quantile(data1[,1],xGUp [,1])+w[2]*quantile(data1[,2],xGUp [,2])

240 yGUn=w[1]*qnorm(xGUn[,1],fit1$estimate [1],fit1$estimate [2])+w[2]*qnorm(xGUn[,1],

fit2$estimate [1],fit2$estimate [2])

241 yCp=w[1]*quantile(data1[,1],xCp[,1])+w[2]*quantile(data1[,2],xCp[,2])

242 yCn=w[1]*qnorm(xCn[,1],fit1$estimate [1],fit1$estimate [2])+w[2]*qnorm(xCn[,1],fit2

$estimate [1],fit2$estimate [2])

243 yFp=w[1]*quantile(data1[,1],xFp[,1])+w[2]*quantile(data1[,2],xFp[,2])

244 yFn=w[1]*qnorm(xFn[,1],fit1$estimate [1],fit1$estimate [2])+w[2]*qnorm(xFn[,1],fit2

$estimate [1],fit2$estimate [2])

245 VaRGaussianC[i]=-quantile(yGp ,si)*cpprice[i]

246 VaRGaussianC2[i]=-quantile(yGn ,si)*cpprice[i]

247 VaRtC[i]=-quantile(yTp ,si)*cpprice[i]

248 VaRtC2[i]=-quantile(yTn ,si)*cpprice[i]

249 VaRGC[i]=-quantile(yGUp ,si)*cpprice[i]

250 VaRGC2[i]=-quantile(yGUn ,si)*cpprice[i]

251 VaRCC[i]=-quantile(yCp ,si)*cpprice[i]

252 VaRCC2[i]=-quantile(yCn ,si)*cpprice[i]

253 VaRFC[i]=-quantile(yFp ,si)*cpprice[i]

254 VaRFC2[i]=-quantile(yFn ,si)*cpprice[i]

255 }

256

257 #Backtesting methdology

258 #Christoffersen Test

259 CC<-function(ploss ,VaR ,p){

260 n=length(VaR)

261 v=sum(ploss >VaR)

262 LRuc=0

263 LRuc=2*(log((v/n)^v*(1-v/n)^(n-v))-log(p^v*(1-p)^(n-v)))

264 LRind=0

265 I=rep(0,n)

266 n0=n1=n00=n01=n10=n11=0

267 pi0=pi1=pi00=pi01=pi10=pi11=0

268 for(i in 1:n){if(ploss[i]>VaRmt[i]){I[i]=1}}

269 for(i in 2:n){

270 if(I[i -1]==0 & I[i]==0){n00=n00+1}

271 if(I[i -1]==1 & I[i]==1){n11=n11+1}

272 if(I[i -1]==0 & I[i]==1){n01=n01+1}

273 if(I[i -1]==1 & I[i]==0){n10=n10+1}

274 }

275 n0=n00+n10

276 n1=n01+n11

277 pi0=n0/n

278 pi1=n1/n
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279 pi00=n00/(n00+n01)

280 pi01=n01/(n00+n01)

281 pi10=n10/(n10+n11)

282 pi11=n11/(n10+n11)

283 LRind=2*(log(pi00^n00*pi01^n01*pi10^n10*pi11^n11)-log(pi0^n0*pi1^n1))

284 LRcc=LRuc+LRind

285 return(list(LRuc=LRuc ,LRind=LRind ,LRcc=LRcc ,chisq1=qchisq (0.95 ,df=1),chisq2=

qchisq (0.95,df=2)))

286 }

287 #QPS statistic

288 QPS <-function(ploss ,VaR ,p){

289 n=length(VaR)

290 QPS=0

291 C=rep(0,n)

292 for(i in 1:n){if(ploss[i]>VaR[i]){C[i]=1}}

293 QPS=2*sum((C-p)^2)/n

294 return(QPS)

295 }

296 #RMSE statistic

297 RMSE <-function(ploss ,VaR){

298 temp1=ploss[ploss <=VaR]

299 temp2=VaR[ploss <=VaR]

300 n=length(temp1)

301 RMSE=0

302 RMSE=sqrt((sum((temp1 -temp2)^2))/(n-1))

303 return(RMSE)

304 }
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