ISSN 0280-5316
ISRN LUTFD2/TFRT--5898--SE

Automatic Implementation and
Analysis for Fixed-point Controllers in
Modelica using Dymola

Ulf Nordstrom

Lund University

Department of Automatic Control
May 2012






Lund University Document name

Department of Automatic Control gﬁffa}i}j THESIS
Box 118 May 2012
SE-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5898--SE
Author(s) Supervisor
Ulf Nordstrom Dan Eriksson, Dassault Systemes AB, Sweden

Anders Rantzer, Department of Automatic
Control, Lund University, Sweden (Examiner)

Sponsoring organization

Title and subtitle
Automatic Implementation and Analysis for Fixed-point Controllers in Modelica using Dymola
(Automatisk implementering och analys av Modelica-baserade fixpunktsregulatorer i Dymola)

Abstract

In model-based development, floating-point arithmetic is typically used for computations in
algorithms and models. However, on many target platforms, there is no support for floating-point
computations due to constraints on, e.g., price, size, power consumption, and execution speed. A
solution is to use fixed-point arithmetic instead. Manually transforming floating-point code to fixed-
point code is an error-prone and time-consuming task. Therefore, this thesis has explored the
possibility to automatically generate fixed-point code for the controller part of a Modelica system
model using Dymola. To support this scenario, Modelica was extended with new experimental
annotations and Dymola was extended with additional functionality for analysis and code generation.
A complete Modelica model-toembedded code scenario was evaluated using Lego Mindstorms
(NXT) as target platform and a tool chain was developed to be able to compile and run the generated
code. A Modelica library with components corresponding to the NXT sensors and actuators was also
developed. The work has, in addition to this thesis, resulted in two conference papers and has been
used in teaching a project course (FRT090) at the Department of Automatic Control at Lund
University. It was also used in another Master Thesis where the students generated a stabilizing
controller for a two wheeled robot capable of carrying a human.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 1-66

Security classification

http://www.control.lth.se/publications/







Preface

This thesis is a part of the degree Master of ®ei@n Electrical Engineering at
Lund Institute of Technology.

The work has in addition to this thesis report lteslin two conference papers;
main author inAutomatic Fixed-point Code Generation for Modelinaing
Dymola and co-author iDymola and Modelica_ EmbeddedSystems in Teaching —
Experiences from a Project Course 2009, published in the conference
proceeding of the Modelica Conferences 2006 an® 2@€pectively.

The work on this project started in October 2008 has taken many interesting
directions since then.
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1. Introduction

1.1 Motivation

Hardware-In-the-Loop Simulations (HILS) and Rapi@ntroller Prototyping
(RPC) are widely used today for design and tesifngpntrol systems in industry.
Typical hardware devices for such tests are Digdighal Processors (DSP) and
Field Programmable Gate Arrays (FPGA). The devekqunof algorithms and
models is typically done in high level languages, directly related to the target
hardware. This can be advantageous since concegitudies can be performed
and tested early in the development phase andat lalps to keep the models
independent. However, after initial development andlies, code generation for
specific target platforms, such as DSPs or FPGAs, tb be done to study the
process with the real hardware.

During the development phase, floating-point aretios is often used for
computations in algorithms and models. However imnyn applications,
economical and technical constraints like price peit, characteristics of the
system and performance of the target platform dojwustify the use of such
demanding floating-point calculations. Sometimesytlare even an obstacle to
HILS and production code, since floating-point cangions can be to slow for
systems with high sampling rates.Integer arithmeierations execute faster than
their corresponding floating-point operations bessaof their simplicity. In the
case of FPGA targets, silicon surface area and pemesumption can also be
significantly reduced using integer arithmeticss@l DSP devices often come
with only simple arithmetic logic units (ALU), corgtely lacking hardware
support for floating-point arithmetics. Using fix@dint arithmetics, one can
utilize the advantages of integer arithmetic operst and generate code for
various hardware targets. The achievable precigging integer arithmetics is
closely related to the architectural word lengthhaf target platform, typically 16,
24 or 32 bits.

1.2 Problem definition

This thesis explores the possibility to use fixadap arithmetics for simulation
and code generation from models defined using tbddlica language.

Manually transforming equations to fixed-point isedious and error prone
task. The aim of this thesis is to automaticallydfia fixed-point mapping of the
controller part of a system model to investigate #ffects of using finite word
length and also to support HILS and RPC by autarabyi generating fixed-point
C code.

Initially, the plan for this Master thesis projesfas to investigate and
implement a way to generate fixed-point code fordklca models using
Modelica code. That work resulted in a conferenepep presented at the
Modelica Conference in Vienna, Austria, 2006 [1haT approach turned out to be
very hard to further develop and maintain, andhiemnore, it was not very user-
friendly.

With the later development and official specificati of the Modelica
language constructs for embedded systems, cam@atmework that made the



current strategy and implementation possible. Udiregextensions one can, in a
very natural way, partition the system model irfedént parts, e.g. controller and
plant, and map the various parts to different tagasks and subtasks. The focus
of this work has lead to extend with new functigtyato generate fixed-point
code for certain target configurations.

1.3 Goals

The main goals of this thesis have been to:

» Extend the Modelica language with experimental legg constructs to
support specification of properties needed fordipeint.

* Implement functionality for fixed-point code gengwoa in Dymola based
on the experimental language constructs.

» Evaluate fixed-point code generation in a complgiedelica-model to
embedded code scenario.



2. Background

This section will to give a short introduction toolkelica and Dymola as well as
introducing some basic concepts and notationsixedfpoint. The description is
intended to be of a general nature to provide thader with background
information and references for further reading.

2.1 Modelica

Modelica

Modelica is a flexible and object-oriented modellagguage in the fast growing
area of system modeling. In order to use Modeliwé e Modelica libraries, a
tool with a translator and a compiler is neededoider to run simulations.
Dymola [2] is such a tool equipped with a symbdadirgine for translation and
manipulation of the Modelica code. Dymola also |uleg features for pre
processing of model data and post-processing otillaiion data as well as
plotting.

The Modelica language is designed for modelingasge, complex, and
heterogeneous physical systems. It is a multi-dorfenguage allowing users to
combine components from many different engineershgmains, such as
electronics, mechanics, hydraulics etc. A varietycomponents from different
engineering domains can be seen in Figure 1.
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Figure 1 Multi-domain Modelica models.

The design of Modelica allows users to utilize d&md components from
different, free or commercial, Modelica librariesda if needed, modify/extend
them or design custom components and librariesinfroduction to modeling
with Modelica can be found in [3] and [4]. More @animation regarding Modelica,
such as publications, libraries and events cambed in [5].



Dymola

Dymola, DYnamic MOdeling LAboratoryis the tool used and extended in this
thesis for modeling and simulation with Modelicaoffers a graphical modeling
environment and an engine for the necessary symbwhipulation of equations
in Modelica to produce executable code.

In Dymola, a Modelica model can be composed by glireggcomponents
from the library browser and dropping them in thegdam sheet. Different
components and sub-models are connected and can biesimulated after
entering proper component-specific parameters. léarrative to the "drag-and-
drop” technique is to use the underlying text layeanually describing the
behavior of the model usirgjfferential discreteand/oralgebraic equationsThe
text layer can also be used to alter or modify daath components to suit a
specific application.

A Modelica model can often contain a huge set afagiqns, and without
some form of symbolic pre-processing, this set @ suitable for numerical
integration. Simulation tools, thus, have to in€ud Modelica translator to
manipulate the equations before simulation. Dymstdves this issue using
advanced symbolic manipulation techniques. In Way, the set of equations is
drastically reduced. After the symbolic manipulati€C-code is generated and
compiled with numerical routines into an executdbtesimulation.

For post-processing and analysis, result files freimulations can be
processed in Dymola or by other programs supportigg or .mat file formats.

Modelica_EmbeddedSystems

Modelica_EmbeddedSystems (version 0.2, 2009-11i20a Modelica library
currently under development by the Modelica Assommetargeting modeling and
configuration of embedded systems. In this sedtenbasic components relevant
for this thesis will be described. For a more ipitiedescription see [6] and
chapter 16 of the Modelica Language Specificatiension 3.1, [7].

The Modelica_ EmbeddedSystems library structure lmarseen below in
Figure 2. The components that are most relevant this work are
CommunicateReal and the records that are usedltbdmnfiguration records:

» Target record
 Task record
e Subtask record

A task is asynchronous with regards to other tasid it contains one or more
subtasks. A subtask is a synchronous set of eaqsatiithin a task with the same
numerical integration and sampling properties. Badord type will be discussed
in a separate section below.



= [JModelica_EmbeddedSystems
1§ Users Guide
# [T Examples
=[] Interfaces
& CommunicateReal
- CommunicateBoolean
Communicatelnteger
+ [C] BaseReal
] BaseBoolean
+ [T] Baselnteger
# [T Communication
=[] Configuration
B Target
E Task
{4 Subtask
4 Bus
# ] Types
# [ cons
# (] Builtln

Figure 2 Modelica_EmbeddedSystems library.

Communication points

-

A communication block (CommunicateReal, Communicaéger or
CommunicateBoolean) provides a user interface éautiderlying Modelica code
that is used to decompose the system into taskssahthsks and define the
communication between them as well as to map tboge different targets. The
component references a configuration record toecbllinformation of the
configuration currently used in the model and us# to “fill” the menus with
appropriate choices. This will be demonstratedhapter 4 when this is used to
automatically populate the pull-down menus with deilindstroms API
components.



controllerToPlant in Modelica_EmbeddedSystems.Examples.SimpleControlledDrive.SimulatedCommunication @@

General | Add modifiers

Companent o
Name ‘:\'.untmlh:q"“'n:iar-r
Comment T e: E
Model
Path Modelica_EmbeddedSystems.Interfaces.CommunicateReal

Comment Interface between tasks to communicate Real signals

Communication between input and output

communicationType ‘3_,EmheddedSystems.Types.CnmmunicatinnType.D\rectCnmmumcatmn vi' Type of communication

fromInputToOutput _. Simulated DA or AD converter block(] - Communication block (simulated or subtask communication)
toPort | 3 Communication port to which the input signal is transmitted

fromPort |reded 1iReal IdealRead - B Communication port from which the output signal is received

Sampling and other configurations of subtask to which input andfor output belongs (if de-activated, the information is defined somewhere else)

defineInSubtask | j I* = true, if sampling/configuration for input is defined
defineOutSubtask | + = true, if sampling/configuration for output is defined
inSubtask | : e f t [e= Sampling/configuration for input
outSubtask [Modelicz edd htask{samy ubtask EE Sampling/configuration for output

[ 0K ] [ Info ] l Cancel

Figure 3 Parameter dialog of the CommunicateReapoment.

In addition to defining the model decompositiore thlock is used to define the
type of communication between the different taskstéssks in the model. The
available options that can be selected in ¢benmunicationType pull-down
menu as shown in Figure 3, are:

» Direct communication

» Communication between two subtasks
e Communication between two tasks

e Communication to a port

e Communication from a port

Direct communication is the simplest form of communicatiop € u) and
is used as a starting point when inserting the comaoation blocks in the model.
It basically just propagates the input to the ottpith the possibility to add noise
or delays.

Communication between two subtasks is used to define a border between
two subtasks, i.e. the input and the output of cbenmunication block are in
different subtasks but belong to the same task.

Communication between two tasks means that the input and output
belongs to different tasks. Communication betwaéerént tasks is performed in
C code external to Modelica.

Communication to a port is used to send information to an 1/O port, e.g.
sending a signal using Bluetooth via a virtual qoort.

Communication from a port is used to receive information from an I/O
port.

Configuration records

5
2=

10



A configuration record is a Modelica record contagn one or more
target/task/subtask records to define the configuraof the system. An example,
as implemented in the library is depicted beloWigure 4.

target

DefaultTarget

defaultTask

defaulTask
on target

reference feedback plant

e

reterence feedback plant
in default Task in default Task in default Task

Figure 4 Configuration record from Modelica_Embedisigstems.

This particular configuration record has three asks that reside in one task on
one target. The configuration record is used herspecify different numerical
integration methods and sample times for the diffeparts of the system. In this
case, the plant is continuous while the referencé feedback subtasks are
periodically sampled and the reference subtaskpexiBed to run five times
slower that the feedback subtask. These settingsotde seen in the image but
opening the real model from the library one coubgp phe parameter dialog and
inspect the settings. Other possible configuratiomsld include multiple targets
(that will be shown later when discussing invegtgaof fixed-point arithmetics)
and multiple tasks as well.

Target

P

The Target record contains information on the tarfjehas two parameters, as
shown in Figure 5.

11



target in LEGO_Mindstorms.Configuration. NXT

General | Add modifiers

Component Tcon

Name  |target ._ Target
Comment | |

Model

Path Modelica_EmbeddedSystems.Configuration. Target

Comment Definition of target machine

Parameters

identifier | NXT" b Unigque identification of the target machine
kind | -.;'-Esc-térnéilzi-;cea;n.i;t.'r;' Type of target (defines, e.qg., type of processor)
[ OK I [ Infa J [ Cancel I

Figure SParameter dialog of the Target rec

Theidentifier parameter is used in this thesis to indicate iftdrget is the
host computer CPU,

defaultTarget

identifier = { .
dymosim

, or the Lego device,
identifier = NXT,

and any other value is interpreted as another madt¢airge!
The kind parameter is usein this casdo indicate that the target dc not

have a floatinggoint arithmetic unit and fixe-point code is to be generated
the equations belonging to any task/subtask ontdéingét. To activate ¢

kind = {InternalFixedPoint
ExternalFixedPoint

Task

The Task record is used as a container for subtdsksare computational
related to eeh other. The parameter dialog can be se Figure 6.



controllerTask in LEGO_Mindstorms.Configuration. NXT

General | Add modifiers |

Component LT
Name |cnntrol|erTask | fack
Comment | | E

Model on

Path Modelica_EmbeddedSystems. Configuration.Task
Comment Definition of (asynchronuous) task running on a target

Parameters
onTarget | target!E 3 Target on which the task is running
identifier | "ControllerTask" i' Unique identification of the task on the target
If multi-processor/core target (otherwise ignored):
onProcessor | - :b = -1: automatic selection of processor/core;
>= 0 run task onProcessor (tool specific)
priceRy I 1] Fixed pl?lnl’ll‘y’ value of task (may be overridden depending on
L | scheduling policy)
sampleBasePeriod | 0.01 s Sample base period for periodic subtasks

[ 0K H Infa H Cancel }

Figure 6 Parameter dialog of the Task record.

In this thesis only thesampleBasePeriod parameter is of interest, the
identifier andonTarget are used as well, to make the model easier torstzotel
(using good naming) and to specify which target thsk runs on. The
sampleBasePeriod is used to set the base sampbel per periodically sampled
subtasks in this task. The subtasks can then bpledrat any integer multiple of
the sampleBasePeriod but that configuration is nradee subtask record itself.

Subtask

—o

The subtask record is used to describe samplingepties and numerical
integration methods of the subtasks. The parand&érg is shown in Figure 7.

controllertSubTask in LEGO_Mindstorms.Configuration.NXT

General | Add modifiers |

Compenent Icon
Name ‘cnntmller‘tSubTask | Subtask
Cnmment‘ | B
Model

in
Path Modelica_EmbeddedSystems. Configuration. Subtask
Comment Identifies a set of equations inside a task that are executed in the same way (e.g. same sample period, same integrators)

Parameters
T Task in which subtask is running (syncronization between subtasks is
S | contro\lerTaskl ' automatic due to equation sorting)
identifier | "ControllerSubTask" 1’ Identifier of subtask (unique within the task)
samplingType | Subtask.SamplingType.FPeriodic v;> Type of subtask (Continuous, Periodic, Triggered, Disabled)
g I 1 If periodic subtask: Sample period =
leFeriodFact I
SAmpIEeno = /" samplePeriodFactor*task.sampleBasePeriod
T - If periodic subtask: Offset =
sl tacor | i sampleOffsetFactor*task.sampleBasePeriod
integrationMethod SameAsSimulator" [wr Integration method
fixedStepSize samplePeriodFacte Task.sampleBaseFeriod v § Step size for fixed step integration method

[ 0K I l Info ] [ Cancel

Figure 7 Parameter dialog of the Subtask record.
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The most important parameters for this thesis hee samplingType and
samplePeriodFactor that are used to activate pergainpling and changing the
effective sample period respectively.

Example of Configuration

An example configuration for running the Lego Mitwisns robot with the
relevant parts of the parameter dialogs expandskag/n below in Figure 8.

target
- : Parameters
identifier | "MET v Unique identification of the target machine
kind "ExternalFixedPoint s Type of target (defines, e.q., tvpe of processor)
Parameters
controllerTask onTarget
identifier
onProcessar L4
ControllerTask riorit I
on target M i L
sampleBasePeriod oo s
controllertSubTask
Parameters
= inTask, 4
| identifier | “Controller SubTask! |+
ControllerSubTask T T |
in controller Task samplingType | Subtask.SamplingType. Periodic  |»
samplePeriodFactar | »
sampleOffsetFactar I
inteqr ationMethod SamEAsTimLlE (b
fixedStepsize samplePetiodFactorinTask, sampleBasePariod [(» &

Figure 8 Exmple configuration for Lego Mindstornabot.

CommunicationMSWindows

The CommunicateMSWindows library is an add-on liprato the
Modelica_ EmbeddedSystems library developed at DiGerihan Aerospace
Center, Institute for Robotics and Mechatronicsdntains blocks to access 1/0
components on a Windows computer, like keyboardcakprs and game
controllers. The library structure can be seenwweafoFigure 9.

14



=l [T CommunicationMSWindows
ﬁExampIes

e [CJGamecontroller

"mCUmpIeteGamecontroller

- [&] Gamecontrollerconfig

- | dlGamecontrolleraxis

- | dkGamecontrollerButton

# [ Internal

[CJKeyboard

- |_|KeyboardKey

= [JInternal

# [JPCSpeaker

# [ Types

I
L

Figure 9 CommunicateMSWindows library from DLR.

In this thesis this library is used to build coments that can read signals from a
game controller that then can be used for refersigreal generation, e.g. driving
and steering the Lego Mindstorms robot. A componfamt the Microsoft
SideWinder (steering wheel and throttle/brake pedals also implemented and
can be used to generate reference signals. Belowigare 10 is the game
controllers that were used.

Figure 10 Logitech Game controller and MicrosottesVinder.

2.2 Fixed-point

Internally, computers treat and store informatisimg bits,
b € {0,1} denoted Z,. The information in a set of bits has no inherenanieag, it
depends entirely on how the data is interpretece @atural interpretation of bits
is as positive integers, coded in natural binargec@NBC), but it is not the only
one.

Consider a data bytérepresented by 8 bits

d = {b7, b6' bs,b4, b3,b2, bl' bo}, Vbj € Zz.

Interpreting the information stored in that byteaggositive integer in NBC,
its real world valuey represented by would be

15



7
j=0

The byted = 10011101 would then be interpreted gis= 157 since

7

j=0
=1:-2"40-2°40-2541-2%+1-234+1-224+0-214+1-2°
=1284+04+0+16+8+4+0+1
= 157.

Another way to interpret the information ih is to treat, for example,
b, --- b; as an integer and the rest as the fractional p&tthen have

7
y = Zb] . 2]'_4.
j=0

and, again witll = 10011101, the interpretation would be= 9.8125 since

7
y = Zb] . 2j_4
j=0

=1-2240-2240-2'4+1-2°4+1-2714+1-27240-2341-27%
=8+0+0+4+1+05+0.25+0+ 0.0625
= 9.8125.

which is157/2*. Thus,d can here be used to store both an integer andimale
value depending on how we interpret the information

Depending on the interpretation, the informatiomldohave virtually any
meaning. Integer and decimal values are just ex@snglhe information could
also be interpreted as CPU instructions, memoryesdes, characters etc.

Data representation

Computers usually use a floating-point represemtatof real numbers for
computations. The floating-point representatiorowal for numbers in a large
span with high resolution. However, when using hend such as a DSP-
processor or an FPGA, the floating-point repregentas often not available.

A hardware implementation of floating-point opeoas like addition and
multiplication is very surface- and time-expensbeenpared to integer operations.
Using a fixed-point representation, one can usualyieve faster execution times
and more efficient use of the silicon surface atthe cost of reduced precision
or limited signal range.

The choice of representation, floating-point orefixpoint, is a tradeoff
between precision/range constraints and surface/timonstraints. For
computations demanding high accuracy in the resudts floating-point

16



representation might be suitable, but for high dpElé_S demanding very fast
computations, a fixed-point representation thaddsareduced precision for speed
might be more suitable.

Fixed-point representation

From a hardware point-of-view, fixed-point arithmaet is essentially integer
arithmetics with bit shifting. Using integers topresent non-integer values is
done by considering an imaginary binary point dieWs.

Consider the binary representation of an integ&NBC

N
(lebN—ll...lel bl: bo) = Zb] - 2], Vb € Zz.
j=0

| by | byy | o+ | by | by [ by | by | by |

Figure 11 Binary data representation

Now, using the same set of bits to represent aimeger value can be done
by placing a binary point betwean— 1 andn. Thus

N
(bn, s brs1, by by—q, -+, bo) = Z b - 277", Vb € I, (2.1)
j=0

I T I B T
T
Figure 12 Fixed-point data representation with kyinmint

The bit to the far most lefhy, is denoted Most Significant Bit (MSB) and
correspondingly we have Least Significant Bit (L$8}he right.

Range

The integer data type is limited in size by hardwemnstraints which are machine
dependent. For standard CPUs however, an integebounded by

0<g<2"l-1
if unsigned and
_2WL—1 < q < 2WL—1 -1
if signed and using two’s complement, see eg.WBgreWL is the word length.

Typically we haveW L = 32 in most modern PC’s but other values are possible,
e.g. 16, 24 and 64.
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For a fixed-point representation with the binarynp@atn, the remaining/L —n
bits of the word are used to store the integer gadt the sign. We thus have the
following range for a real variable in fixed-ponapresentation

_2WL—n—1 < y < 2WL—n—1 _ 2n'

Resolution

A fixed-point representation with the binary polbgtweem — 1 andn is said to
haven bits of precision. The smallest number that carrdpresented with that
representation is the resolutiergiven by

e=2"",

With a fixed-point representation it is a trade-tff cover either a large
signal range with low precision or a small rangehwhigh precision. The
combination of large signal ranges and need foih higecision leads to a
representation using very lary§eL. and most of the benefits of fixed-point can be
lost.

So, for signals with large dynamic range and higdcision requirements a
floating-point representation is usually betterr Bignals, or equations, where one
can accept either limitation in precision or ingana fixed-point representation
can be accurate enough and even increase somealcriierformance
requirements, such as execution time or minimidieosi surface area when
implemented in hardware.

Q-notation

The Q-notation is a convenient way to specify adipoint representation. It was
introduced by Texas Instruments, see e.g. [9].Imo€&tion two integers are used
to specify the number of bits needed to representriteger and fractional part of
a real number, denoted

Q[m,n]
or originally

QOm.n
The integerm is used to represent the number of bits neededh@rtwo’s
complement of the integer part andhe number of bits needed for the fractional
part. Mapping the Q-notation to the range (for al realue) and resolution
described in the section above, the resolutiof[ef, n] is2™" and the range is

The total number of bits needed at8. = m + n + 1, the extra bit needed to
store the sign of the number (as mentioned in teeipus section).
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3. Implementation and Analysis

This section describes the implementation of fipeiht support in Dymola. It
covers the implementation of arithmetic, Booleard eelational operations, and a
couple of basic methods for range analysis. Expantal Modelica annotations
used in this report is presented and the struetndedetails of the generated code
is described.

3.1 Fixed-point arithmetics

Conversion

Converting a floating-point value to a fixed-poiMalue is, if given a
representation, relatively simple. The task is ited fan integer to store the
floating-point value in and to find a rule that dae used to recover the floating-
point value without losing too much information.ikg binary point-only scaling
(BPO), this is done by introducing an imaginary don point as in (2.1).
Mathematically, a fixed-point representatigrof a floating-point variables can
be described by

gq=12"-yl, nq€Z  yeR, (3.1)

wheren is the precision, or equivalently the placementhef binary point left of
the LSB, and|-| denotes the floor function (other rounding funeticcould be
used to customize the rounding, eg. round towaeds ar ceiling). The precision
n can be both positive and negative and can bepigtd as a scaling factor, as
in (3.1). To recover the floating-point value dfixeed-point representation we just
divide with the scaling factor. Hence the recovexedue y of a fixed-point
representatioq is

- 49 - -
y=2—n=2"-q, n,q €Z, y €R. (3.2)
As an example, consider converting a non-integkrevo fixed-point using
e.g.n = 10 bits of precision. Let us assume that the valueotovert isy = 1.1.
The fixed-point value is then, by (3.1)

q=121-1.1] = [1126.4] = 1126 (3.3)

and the recovered value is, by (3.2),

1126

§ =5 = 2710 1126 ~ 1.099609375. (3.4)

It is clear that an error has been introduced lycitnversion and recovery since
¥ # y. In fact, the error comes from the rounding towgazdro done by the floor
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function when converting to fixed-point, the recovéself is error less. Using
(3.1) and (3.2) we can derive a bound on the dyaroncluding that

2" -yl <2y <[2"-y|+1 -
q<2"-y<q+1 -
0<2"y—q<1 -
02" y=-2"-y<1 -
0<y-—-y<2™
Hence the maximum magnitude of the error is
suply — ¥ = 27"
Using the numerical values from (3.3) and (3.4) hage
y —§ = 0.000390625 < 2719 = 0.0009765625.
The smallest number that can be represented sathe as the resolutio®;™.
In order to assert that no overflow or wraparouocuos
max(|q|) < 2Wi-1 —1, vq
must always hold. This implies that for a given évéegngth there is a limit on the
achievable precision. This is closely coupled te tange of the variable since,
using the Q-notation described in section &2, = m +n + 1.

Arithmetic operations

The basic arithmetic operations on fixed-point nemsb addition, subtraction,
multiplication, and division, are operations withotinputs (the operands) and one
output (the result). These operators are usuatptde binary operators. They can
be implemented using ordinary integer arithmetieraions and bit shifting. The
bit shifts (left shift and right shift) of an integnumber are

(g «Kn)=gq-2" (3.5)
and
(@»n)=|q-27"]. (3.6)

Note that in (3.6) only the integer part of theutess kept and the remainder is
discarded. This means that we lose information anwrs are introduced.
Furthermore, the operation (in e.g. C) is compilependent for signed integers
taking a negative value [10], so care has to bertathoosing a compiler that
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interpret right shift as defined above, otherwibsaure and hard-to-trace errors
may be introduced. Bit shifting is a fast operatibiat is used extensively to
rescale both the inputs of an operation and thpubut

An additional note is that since the implementatbmight shift is compiler
dependent one can generate code for an integesiativivith the corresponding
power of two instead and let the compiler optintize code.

Addition

Addition of two fixed-point variable®); and Q, on the formQ[m,,n,] and
Q[m,, n,] can be described by findir@ such that

Q=0.+0;

In order to add); and@,, the binary points must be aligned, see. e.g.. [This
can be done if botl; and@Q, have the same number of fractional bits= n, .
This lets us divide fixed-point addition in two fdifent cases;

» Aligned binary pointsp;, = n,

* Unaligned binary pointsy; # n,
If the binary-points are aligned, the two varialdaes be added, assuming that the
result is not larger than the representation canllea If the binary points are not

aligned, then one or more of the operands mushified before the addition can
be performed. The different cases are discussawme detail below.

Casen, =n,
Whenn; = n, = n the two variables can be added according to
Q=0;+0Q;
andQ will have the same number of fractional bits asaperands;. The integer

part of Q can be stored usingax(m,,m,) + 1 bits. As a motivating example
consider the “worst case” whéh = Q,. Then

Q:+Q,=0,+0:=2-Q,=0,-2' =0, K1

or in words, multiplying with 2 is the same as 8hd left with one bit, thus one
more bit is needed. Since one more bit is potdntiaéeded there is risk of
overflow. Using the Q-notation this could be writtas

Q[mltn] + Q[mZIn] = Q[max(ml'mz) + 1,7’1] (37)

Note that (as explained before) the word lengthdadeto storeQ[m,n] is
m + n + 1 or for the example above

(max(m,,m,) + 1) + n+ 1 = max(m;,m,) + n + 2 (3.8)

21



Casen; #n,

If n; # n, then the binary points must be aligned beforeatidition. Essentially
this corresponds to shifting one or both operarsisguleft and/or right shifts as
previously described. There are several possikfesshat can be performed in
order to align the binary points and in order tokena decision a basic strategy
must be defined.

As mentioned in the beginning of this section, Iefiifts are error less
(assuming that they do not introduce overflow) aigtit shifts can introduce an
error. In order to lose as little information asgible it is preferable to have no
(or as few as possible) right shifts. The basiategy is then to only use left shifts
whenever possible. A constraint is that left shgtican cause overflow. We
consider this a sub-casemgyf # n,.

Sub-case n; # n, only left shifts
Left shifts correspond to a multiplication with avger of two of the fixed-point
representation, (3.5). Given that the operand ahéting fits in the word length,
the operand with the smallest number of fractidniéd is shifted to make the
alignment.
ny >n,

Q[my,ny] + (Q[my, n;] K (1 — np)) = Q[max(my, my) + 1,n4]
with the constraint o, that

my,+n,+1<WL

in order to avoid overflow.

Example:
ConsiderQ,[10,15], Q,[5,10] and WL = 32.

Q1 + Q5: 01[10,15] + (Q4[5,10] « 5) = Q[10,15] + Q[5,15] = Q[11,15].

The constraint 0i@,is fulfilled since5 + 15 + 1 < 32.
Note that we must also assert that the result eastdred in a register, (3.8), e.qg.

max(10,5) + 15 + 2 = 27 < 32.
Sub-case n; # n, left and right shifts
It is not always possible to only use left shiffansider the example below where
the binary points cannot be aligned by only shifti; since the constraint will
not be fulfilled and an overflow would occur.
Example:

ConsiderQ,[10,18],Q,[15,5] and WL = 32. According to the basic strategy we
would like to use left shift on,, sincen, > n,. Doing that would result in
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Q: + Q3 Q4[10,18] + (Q,[15,5] « 13) = Q[10,15] + Q[15,18] = Q[16,18].
The constraint or®, will not be fulfilled sincel5 + 18 + 1 = 34 « 32 and we
would risk overflow. Furthermore the result wouldtrbe possible to store in a
register since it would requirk6 + 18 + 1 = 35 bits. In order to avoid this we
must assure that the constraint is fulfilled andhaee

m,+(n, Kx)+1<32
and the largest left shiit that can be performed is
x<32—-1—-m, —n,
which for the example gives= 11. Using that we shif@, and get

Q,[15,5] « 11 = Q,[15,16].

Q, now has 16 fractional bits arfy needs to be right shifted in order to align the
binary points. We have, fa,

Q.[10,18] » x = Q,[10,16]

giving x = 2. In order to add@); and Q, in this case we had to apply both left and
right shifts to the operands. The addition becomes

Q1 + Q,: (04[10,18] > 2) + (Q,[15,5] « 11) = Q[10,16] + Q[15,16]
= Q[16,16]

We needl6 + 16 + 1 = 33 bits to store the result but we only have 32 add.
We thus need to modify the shifts to avoid overflamd it is sufficient to reduce
the number of fractional bits to 15 instead of &6order to be able to store the
result. We have

Q1 + Q,: (04[10,18] > 3) + (Q,[15,5] « 10) = Q[10,15] + Q[15,15]
= Q[16,15].

Before summarizing we introduce a notation for &ftl right shifts
K x, ifx>0
sh(x) =<>|x|, if x<O0
< 0, ifx=0

We then have the following rules @y + Q.

Q1[my,ny] sh(xy) + Qz[my, ny] sh(xy) = Q[m,n]

where, ifn; > n,
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x, =0

Xy =y -y — Q[max(my,m,) + 1,n,4]

my,+n,+2<WL: {

x1=WL—m2—TL1—2

Xy = WL —my—ny—2 - Q[max(my,m,) + 1, WL —m, — 2]

otherwise: {

else(n; < n,)

X1 =N, — Ny

X, =0 Q[max(my,my) + 1,n,]

m1+n2+2SWL' {

=WL—-m; —ny —2
*1 = - Q[max(my,m,) + 1, WL — m; — 2]

otherwise: {xz — WL—m,—ny—2

Subtraction
Subtraction follows the same rules as additionwadave folQ; — Q,

Q1[my,ny] sh(x1) — Qz[my, ny] sh(x,) = Q[m,n]
where, ifn; > n,

x1:0

X, =Ny — Ny - Q[max(mllmZ) + 11 nl]

m2+n1+2SWL. {

xy=WL—-my —n; —2

Xy = WL —my —ny —2 - Q[max(my,m,) + 1, WL —m, — 2]

otherwise: {

else(n, < n,)

=N, —ny

,=0 Q[max(my, m,) + 1,n,]

X1
m1+n2+2SWL. {

x1=WL—m1—TL1—2

Xy = WL—my —n,—2 - Q[max(m,,m;) + 1, WL — m; — 2]

otherwise: {

Multiplication

Multiplication of two fixed-point variables Q; and @, on the form
Q1[mq4,n4],Q;[m,,n,] gives a result on the forn@[m; + m, + 1,n, + n,],
according to e.g. [11]. We split multiplication two cases; the result can be
stored and the result is too big to store.

The first case is trivial, just multiplying the tacs and getting a result on
the formQ[m, + m, + 1,n, + n,]. This result could then be rescaled if needed to
remove a portion of the least significant bits. @xmon choice is to truncate the
result so that is does not have more fractiona thian any of the factors. As
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before note that we need + n + 1 bits to storeQ[m,n] and thus we need
my; + m, + n; + n, + 2 bits to store the multiplication.

Example:
Consider multiplying?,[10,2] and Q,[3,5] on a system witlW/L = 32. We then
need

10+34+24+5+2=22

bits to store the result that will be on the fo@fi4,7]. In this case the factors can
be multiplied like “regular” integers since the wkscan be stored without
manipulation.

The second case is more troublesome since we caperdorm the
multiplication without rescaling the factors a prioJust multiplying them and
then trying to rescale the result would potentia@stroy the information (due to
overflow or wraparound). Some processors have ennrediate register that can
hold 2 - WL but that is not the case normally. If such a tegiss available then
the multiplication could be performed and the resould be truncated and then
returned causing less loss of information.

Since we cannot always count on the availabilityadf- WL register we
shift the factors prior to multiplying them to assuhat the result can be stored
without overflow. We then have

(Q1[m1:n1] Sh(x1)) * (Qz [m;, n,] Sh(xz))-

We computed = WL —1— (my + m, + 1+ n; +n,) or in words: what is the

m n
difference between the result and what we can stee much must the factors
be shifted prior to multiplication in order to matke result fit inW/’L — 1. We are
free to distribute the shiftsh(d) on the two factors. There has not been time to
investigate if there is a distribution that minieszthe error of this operation so
the naive approach to distribute the shifts equalg been chosen whenever
possible. Since the shifts are positive this isygmbssible wheny is an even
number. If§ is uneven the factor with the most fractional stshifted more than
the other. Thus if

-3
nyg > ny: T (25
w =[]
and
3
ny < ny: T 2

The result will be on the form
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(Q1 [my,ny] Sh(x1)) * (Qz [my,n,] Sh(xz))
=Q[my +my + 1,ny +x; + 1, + x5

Example:

Consider multiplyingQ,[10,8] and Q,[13,5] on a system with/L = 32. To
store the result0 + 13 + 8 + 5 + 2 = 37 bits would be needed. In order not to
destroy the information we shift the operand accgrdo the rules above. We
have

§=32-1-(10+13+1+8+4+5)=32-1-37=—-6

and should thus shift according to

(0,[10,8] sh(=3)) * (Q2[13,5] sh(-3))
= (Q1[10,8] » 3) = (Q,[13,5] > 3) = Q4[10,5] * Q,[13,2]

to get a result on the form
Q[10 + 13 + 1,5 + 2] = Q[24,7]

that can be stored usimg+n +1 =24+ 7 + 1 = 32 bits.

Division

For division only a simple rule was implementedrtake sure that the fractional
bits are set so the results scale correctly. Thabeu of fractional bits for the
result,n, is set to

n=ny—n,

wheren,; andn, are the fractional bits of the nominator and deinanor.
Interval analysis was used to determine the rafgieeoresult, and based on
that allocate integer bits.

This simple rule worked with the applications ifstthesis but would need
improvement for more complex applications. One ratstep would be to
left shift the nominator as much as possible, waileiding overflow, in order to
keep as much precision as possible.

Boolean operations

Boolean operators are considered only for singteBbblean variables, that is,
variables that only can take the value true orefalepresented by 1 and O.
Denoting a single bit Boolean varialtiave have

b €Z, ={0,1}.
From Boolean algebra and digital circuit theory ¥ied a number of

Boolean operators used to represent logical funsti&or our purpose, since we
only consider the logical functions available in dética, only three of them are
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currently interestingAnd, Or andNot. Boolean variables and operations do not
introduce any additional errors in the system. Tikivecause the output of a

Boolean operator is uniquely determined by therdiscinputs, which are also

errorless.

And
Standard Boolean bitwisénd operation defined by

1, lf bl' bz =1

And(by, by) = {0, otherwise

Or
Standard Boolean bitwiggr operation defined by

0, ifbl,bz =0

Or (b, by) = {1, otherwise

Not
Bitwise inversionNot, defined by

nor® =y iy 2

Relational operations

Denoted relational operations are operators thiee fixed-point variables as
inputs and produce a Boolean output. They are &jlgicised as conditions in If-
Then-Else like constructs to make decisions.
Here we considertfThenElse Equal NotEqual Less LessEqual Greater and
GreaterEqual

Using the fixed-point variableg;, and the fixed-point expressior;pr;,

qi, expr; €EZ, cond € Z,

the conditional operations are explained below.

Note that in order to make a meaningful evaluatidna condition, for
example if two variables afequal the variables might need rescaling to have the
same number of fractional bits, assuming that Hreynot boolean variables.

Consider again th&qual operator. All variables will be considered to be
equal if the difference of the two inputs is smatlean the resolution for the given
number of fractional bits. This may cause errorg, selecting the wrong branch
in an If-Then-Else construct. This reasoning isdsébr all conditional operators
considered here.

As always, when shifting fixed-point variables, eareeds to be taken so
that the shifts do not cause overflows.

If-Then-Else

Thelf-Then-Elseoperator evaluates a Boolean condition and retarfirsed-point
value or expression. It is used in discrete anBfolean equations to evaluate
different branches depending on the conditions l iternary operator, i.e., takes
three inputs, and the generic syntax oflfAiEhen-Elsestatement is
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expry, if cond =1

IfThenElse(cond, expry, expry) = {expr if cond = 0
2y -

Equal
The Equal operator is equivalent to the standard syntax "epé&rator.

1, i =
Equal(q,q;) = {0 oj;f?elrwizz

Not equal
TheNotEqualoperator is equivalent to the standard syntax "bpérator.

1, if 41 # q2

NotEqual(qy, q2) = {0 otherwise

Less
TheLessoperator is equivalent to the standard syntixdperator.

1, [ <
Less(qq,q2) = {O chgrwizz

Less equal
TheLessEquabperator is equivalent to the standard syntax

operator.

1, if g1 < q

LessEqual(qq,q;) = {0 otherwise

Greater
The Greateroperator is equivalent to the standard syntéxdperator.

1, if 1> q

Greater(qy, qz) = {0 otherwise

Greater equal
The GreaterEqualoperator is equivalent to the standard syntsx’"operator.

1, if 41 = qz

GreaterEqual(qs, 42) = {0 otherwise

Relative and absolute resolution

Resolution, as defined before, is a measure orsmhelest number that can be
represented with a fixed-point representation usingits of precision. For
variables and parameters it can be given usingeritielative or absolute
resolution.

The relation between relative resolutiap,;, and absolute resolutiop,;, for a
variable,y, is defined by:
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R(y) * Erel = Egbs
whereR(y) = max (|yminl, [¥max|) is the range of.
Typically, when the range of a variable is knowa telative resolution is a good
way to specify the resolution but in some casess ivery convenient to use
absolute resolution instead. An example couldl@a signal coming from an AD
converter where the number of bits used is known.

Example
A relative resolution of 0.001 in the range 100 is

100 * 0.001 = 0.1
i.e., the absolute resolution is 0.1.
Using (3.2) we see that this requires four fracildsits

27 < g <273
0.0625 < 0.1 < 0.125

Example
An AD converter outputs a signal with ten bits. Himsolute resolution is

Eaps = 2710 ~ 0.00098

As can be seen above the number of fractional bRs,is directly related to the
resolution. The exact relation can be found by

1
Eaps = 27 = — = :R(y) *Ergl T

onF

2nF — 1
R(Y) * Erel

nF =1lo —_—
82 (R(y) * grel)

SincenF € Z it needs to be rounded, and to be able to repréisemesolution we
require that

—-nF
2 < Eabs

271F > 1
- :R(y) * Epel

nF = log,(

:R(y) * Srel)

which holds for
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1
nF - logz (R(y) * grel)]

In Dymola the resolution is used to compute the lemnof fractional bits needed.
The implementation allows both relative and absohaisolution as input, which
will be shown in section 3.3.

Limitations

Many features of the Modelica language are supgprég. arrays, matrices,
while-loops, algorithm sections, etc., but there aome limitations. The most
important ones are:

» No function calls (Modelica, built-in nor external)
* No for-loops
» " (power operator) not supported

3.2 Range analysis

To achieve high precision in the arithmetic opewadi it is important to make
good use of the available bits. This means to atbenough integer bits to make
sure that there is no overflow while not losing tooch precision.

As a motivating example consider an expression eyséem with an 8-bit
word length

q=q1tq>

If no information on the rang®(q) = q; + g, of the expression is available, one
simple approach is to split the available bits é&vdretween the integer and
fractional part. For this example that would beheitQ[3,4] or Q[4,3]
(remembering tha@[m,n] needsm + n + 1 to store). This gives the resuit,
three or four bits of precision assuming that tiuis,q; andqg,, are known with
precision higher or equal to that. Let us now cdesithat it is known that the
range of the expression is in the interj@f1]. The expression can then be on
Q[1,6] format and the result would have 6 bits of precishstead of 3 or 4.

Using range analysis the range of all expressiodssab-expressions can be
determined more or less accurately depending ort mieéhod is used and what
data is available on the signals. A couple of déf¢ approaches are presented
next.

Bit propagation

Bit propagation is a coarse method to approximaerange of an expression and
how it grows in the expression tree. The idea iptopagate the fixed-point
representation through the expression to get amast on the range.

As we know from previous sections, (3.7), adding fixed-point numbers
requires them to have the same number of fractioitgn. In the example below.

[mq, n] + [my, n] = [max (my,m,) + 1,n]
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two fixed-point numbers are added and we see Hehtmber of integer bits is
increased by one for each addition. The analogynidtiplication is

[my, ny] - [mg,nz] = [my + my + L,ny +ny]
and we see that the integer bits grow rapidly.

Interval arithmetics
Interval arithmetics can be used to estimate iaiervof expressions and

intermediate results. It was introduced in the 1960y R. E. Moore in
[12].Unfortunately, interval arithmetics also oftesults in an overestimate of the
resulting intervals.
The basic propagation rules, see eg. [13], are
[a,b] + [c,d] =[a+c,b+d]
[a,b] —[c,d] =[a—d,b—c]
[a, b] * [c,d] = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)]

[a,b]_{_(aabb) (aabb)}
[c,d] )M \cared

where 0 is not allowed to be o, d] for division.
These rules have been implemented to support aitarithmetics in Dymola. We
also have

if expr then [a, b] else [c,d] = [min(a, c), max(b,d)]

for if-then-elseexpressions. For interval arithmetics the randekeovariables are
propagated though the expressions giving resultinigrvals for intermediate
results. The range of the variables themselvedednput by the user or it can be
derived/set by heuristics.

Simulation-based approach

Monte Carlo simulations can be used to cover a nadge of use cases and get a
good approximation on the ranges of variables afmessions. Given a set of
cases, one can expect good results on the accafabg ranges. However, it is
time-consuming to perform exhaustive sets of sitmua and it is hard, if not
impossible, to know if all cases are covered.

There are ways to configure Dymola for Monte Cailmulations but the
infrastructure to collect and push range informafitem Monte Carlo simulations
back into the model was missing and thereforeadpmoach was never evaluated.
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Approach in Dymola

The approach used for range analysis in this werknierval arithmetics. An
implementation of bit propagation was also testatl discarded since interval
arithmetics gave tighter intervals.

3.3 Experimental annotations

In order to be able to specify resolution for a Mich variable a new
experimental annotation has been introduced. Ith@syntax

annotatioffixedpoint(resolution=<Real value>));
to specify the relative resolution, or
annotatiolffixedpoint(bits=<Integervalue>));

to specify an absolute resolution by specifying hesitive or negative integer)
number of fractional bits for the variable. A negathumber of fractional bits can
be view as a scaling, just as a positive numbeedace the size of large signals.

Example of annotated variables with min and max:
Reall(min=-10, max = 10@nnotatiolffixedpoint(resolution=0.001));
outputRealto_DA(min=0, max=1pnnotatioifixedpoint(bits=8));

The annotations can be used as modifiers (not atlom Modelica language
specification) by enabling special support in Dyandlhe reason is that the user
should be able to input additional information €likesolution, min and max) in a
model just by extending from a base model and modifit, thus working in a
“true” object-oriented style, reusing the base nhode

3.4 Defaults and heuristics

In order to get a starting point, to let a userts&perimenting without having to
set min/max and resolution for all variables, d&faalues for min, max and
resolution are used in many cases. These applwdocategories of variables;
parameters and variables. Exception are inputedosystem and in many cases
discrete state variables. Inputs must be user atetbtand if not, the translation
will be aborted and an error message will listwhgables that must be annotated
in order to proceed.

With these requirements and the rules for defaalites described here, a
starting point for fixed-point simulations is setitiout the need to provide
min/max and resolution for all variables. The usan, and should, then modify
the defaults to use better (more confident) min/malxes, and to use resolution
to control what variables need the most resoluiioorder to keep the system
within tolerable limits using fixed-point arithmesi instead of floating-point.
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Parameters

Parameters are variables that are constant durmgation. What separates them
from constants in Modelica is that the user shdwdde the possibility to change
them without recompiling the model. An implicatianf this is that parameters
cannot be converted to fixed-point literals, likenstants and real literals, and
hard-coded for better performance. The constamtsitevals, can be converted
once, at translation time, whereas the parameteesl mo be converted during
runtime in the host.

For parameter the following default values are used

e min = -2 " |value|
e max = 2 - |value|
e relative resolution = 10™*

where value is the value assigned to the parameter at tramsldime. The
implementation allows the default value to be adelen by setting the Dymola
flag Advanced.ParameterResolution

Variables

A variable that is not an input to the system, scidite state variable or a
parameter can be computed using inputs, statepanadneters or other variables
that are already known (equation systems are nppasted for fixed-point
handling in Dymola). This means that the min/man ba derived using interval
arithmetics for all variables that are not in tleegories mentioned above, with
the exception of discrete state variables in soases, an example will be given
below. Hence, the min/max defaults specified belw just symbolic, after
translation they are normally overwritten by a ded or a user-specified min/max
value.

For variables the following default values are used

) { —10790, if real
* min= o
—2147483647, if integer
10760, if real

) max:{2147483647, if integer

e relative resolution = 1078

As for parameters, the implementation allows thiawlée value to be overridden
by setting the Dymola flagdvanced.VariableResolution

As an example when the min/max for a discrete stateable can be derived,
consider a PID controller where we have two discstates; i and e, described by
the Modelica block below.

block SimplePID
parameteRealGain(min=0.1, max=2)=1,;
parameteReal DT(min=0.02, max=1)=0.1;
parameteReal Ti(min=0.1, max=100)=100;
parameteReal Td(min=0, max=2)=0;
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input Real Sp(min=-10, max=10nnotatioffixedpoint(resolution=1e-5));
input RealPv(min=-10, max=10xnnotatioffixedpoint(resolution=1e-5));
outputReal C annotatiofmapping(...));
protected
Reale(start=0, fixed=true);
Reali(start=0, fixed=true, min=-100, max=10notatiolfixedpoint(resolution=1e-
5));
equation
whensampl€0,DT) then
e=Sp-Pyv;
i =prei) + e;
C = Gain*(e + DT/Ti*i + Td/DT*(epre(e)));
end when
endSimplePID;

Using a ramp as set point signal and connectingoinéroller to a simple process
we get a small system

modelSys
SimplePIDpid;
Procesgroc;
equation
pid.Sp =if time < 0.5then0 elsel;
pid.Pv =Subtask.decoup(proc.y);
proc.u =Subtask.decoup(pid.C);
endSys;

Subtask.decouple() is a Modelica operator that is used by Dymola to
partition the system in to different subtasks, desd in [7]. For the system
above the following declarations is generated bagedthe annotations and
interval analysis.

[* input Real pid.Sp(min =-10.0, max = 10.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_16 pid_Sp_FP =0;

/* Q[1, 14] Derived: min = 0.0, max = 1.0 */

/* input Real pid.Pv(min = -10.0, max = 10.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_16 pid_Pv_FP =0;

/* Q[1, 14] Derived: min =-1.0, max = 1.0 */

[* discrete Real pid.e */
int 16 pid_ e FP =0;
/* Q[2, 14] Derived: min =-1.0, max = 2.0 */

[* discrete Real pid.i(min = -100.0, max = 100.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_32 pid_i_FP =0; I* Q[7, 10] */

/* output discrete Real pid.C */

int_32 pid_C_FP =0;

/* Q[12, 19] Derived: min = -2602.0, max = 2604.0
*/
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[* parameter Real pid.DT(min = 0.02, max =1.0) =0 A1
*/

int_16 pid_DT_FP = 1638; I* Q[1, 14] */

[* parameter Real pid.Gain(min = 0.1, max = 2.0) = 1%
int_16 pid_Gain_FP = 8192; I*Q[2, 13] */

[* parameter Real pid.Td(min = 0.0, max =2.0) =0 */
int_16 pid_Td_FP = 0; I* Q[2, 13] */

[* parameter Real pid.Ti(min = 0.1, max = 100.0) = 100
*/

int_16 pid_Ti_FP = 12800; I*Q[7, 7] *

As can be seen above the min/max of the outQug derived by interval analysis
based on the min/max of other variables. For tipativariablesSp andPv, the
derived min/max gave a narrower interval than dpetiby the user. The user
specified min/max attributes are then ignored.

Also note the discrete state variatdewhich only depends on the inputs
and therefore the min/max could be derived.

3.5 Code Generation

Typically, when translating a Modelica model in Dgla, C code for the model
equations is generated and compiled into an exeleutaat can be run on the PC.
This executable (dymosim.exe) is the actual simoul#ttat integrates/solves the
model equations. This “normal” case when simulatingnodel in Dymola is
supported for fixed-point code generation and weotke itInternal fixed-pointin
this report.

Using Modelica_EmbeddedSystems we can, e.g., depéra controller
part in a system from the plant and map that texernal target. Fixed-point
code generation for this scenario is dendigtérnal fixed-point

The main difference for the scenario above is thatactual computations
of the fixed-point task are performed on the exietarget instead of on the PC.
The simulator, dymosim, is in this case only usad(bptional) data logging for
plotting and animation on the PC.

Internal fixed-point

The ’“Internal fixed-point™ mode is typically used s$tudy effects and control
performance using fixed-point computations in atculer compared to using
floating-point. The effects of fixed-point computats can, e.g., introduce
unwanted limit cycles due to quantization and deer$ affecting system
stability.

For an efficient workflow it is essential to eadilg able to compare signals
and the effect they have on the system. To makerivenient for users, code is
generated such that both fixed-point and floatiog¥#p computations are
computed. A Boolean variable in the GUI (accessihléghe Dymola variable
browser) can then be used to select if the redulixed-point or floating-point
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computations shall be used as output. The bengfibhis approach is that the
model only needs to be translated and compiled.o8teulations can then be
performed using either fixed-point or floating-pbloy toggling the GUI switch
without re-translation.

Below the code for the actual model equations s£deed inEquationsand
the declaration of fixed-point variables eclarations Note that the fixed-point
variables/equations are not available in the Medetiode of the model; they are
created during translation and realized in the @eamext to the original equations.

When in theinternal fixed-pointmode, all code is generated in the same file
where Dymola outputs the normal model equatioried¢asmodel.c.

Declarations

The actual fixed-point variables are declared asllinteger variables in the C
code and are not stored in the result file afteinaulation. Example:

/* Real y */
int. 32y FP =0;
/* Q[11, 11] Derived: min = -2.0, max = 1202.0 */

[* parameter Real q1 = 0.5
annotation(fixedpoint(bits = 11)); */

int_ 16 q1_FP =1024;

/* Q[1, 11] Derived: min =-1.0, max = 1.0 */

/* parameter Real g2(min = 0.0, max = 1000.0) =
0.5 annotation(fixedpoint(bits = 4)); */
int_16 q2_FP = 8; I* Q[10, 4] */

/* parameter Real g3 =0.5
annotation(fixedpoint(bits = 5)); */

int_8 q3_FP = 16;

/* Q[1, 5] Derived: min =-1.0, max = 1.0 */

[* parameter Real g4(min = 0.0, max = 100.0) = 0.5
annotation(fixedpoint(bits = 10)); */

int. 32 g4 _FP =512; I* Q[7, 10] */
[* time */
int_32 time_FP = 0; I* Q[7, 10] */

Instead new variables are created and the rescalkets of the fixed-point
variables are mapped back during simulation.
For a variabley we declare in dsmodel.c as a local variable

<int_type> y FP
This is the actual integer variable that holds tfedue of the fixed-point
computation. Furthermore, we also introduce two wewsions of the Modelica

variable under the virtual Modelica componetitxedpoint> . These two
variables are
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y_fromfixedpoint
which is the recovered value of the fixed-pointiale and
y_original

which is the value of the original equation complutesing floating-point
arithmetics. This gives a hierarchy in the storeslitt (that is also reflected in the
Dymola variable browser, see e.g. Figure 20). Nb& those two variables are
not declared as local C variables, they are insteaddiared as if they existed as
real variables in the model. The reason is thas then possible to get a nice
structure as described below.

As an example of the structure consider three bkesa,b,c, where b
andc belong to the fixed-point task. We then get

<a>
<b>
<c>
<fixedpoint>
| - <b>
| |- fromfixedpoint
| |- original
| - <c>
| |- fromfixedpoint
| |- original

Below, in theEquationssection, the implementation and interpretatiothefnew
variables are described.

Equations

As mentioned before, code is generated such thattegs are computed in both
floating-point and fixed-point. Below is an examheC code for the variablhg
from the previous example. As can be seen, thengvo variables introduced in
the previous sectiony_fromfixedpoint and y_original are always
computed and then only one is used to assign flgenal variable depending on
the value of the Boolean toggle variabkeFixedPoint

[* Fixedpoint equations */

[*y = ql+q2+q3+qg4+time; */

y FP =((((q1_FP + (q2_FP << 7)) + (q3_FP << 6))
+ (g4_FP << 1)) + (time_FP << 1));

[* Mapping from fixedPoint variables to Modelica
variables */

[*y = 27 (-11)*y.FP */

fp_y_fromfixedpoint = 0.00048828125*y FP;

fp_y_original = q10_0+g20_0+q30_0+g40_0+Time;

y0 0 = useFixedPoint0_0 ? fp_y fromfixedpoint :
fp_y_original;
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The generated code contains automatically generadetments for improved
readability and traceability.

First in the block is a comment with the origindiodelica equation
followed by the actual code for the correspondinged-point variable. Then,
before the mapping back to a Modelica variable, ghaling is clarified in a
comment.

External fixed-point

The External fixed-point mode is used to generatdechat can be incorporated
in a framework and downloaded on an external tgogform for further testing

and verification. To keep the code portable, gpkt into two files; declarations.c
and equations.c, containing the variable declamatiand the fixed-point model
equations, respectively. These two files can thenngluded in a user written
framework, see. e.g.dymola_wrapper in section 4.3 for an example
implementation. Code for data logging and inteact(eg. reference signal
generation using a game-pad) is optionally gendr&te the normal simulator,

dymosim, in the file dsmodel.c.

Declarations
The declarations of local fixed-point variables amedeclarations.c, which is
included by the framework code for the externafj¢éar In dsmodel.c, the same

file is included if data logging is enabled to gensistent variable declarations.
An example is:
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[* Type definitions for fixedpoint data types */
#ifndef DYMOLA_FP_TYPES
#define DYMOLA_FP_TYPES

typedef char bool_8§;

typedef char int_8;

typedef short int int_16;

typedef int int_32;

typedef long long int int_64;
#endif

/* input Modelica.Blocks.Interfaces.Reallnput
sendMotorA.u(min = -100.0, max =

10.0) annotation(fixedpoint(bits = 0)); */
int_8 sendMotorA_u_FP = 0; I* Q[4, O] Derived:
min = 0.0 */

[* input Modelica.Blocks.Interfaces.Reallnput
sendMotorB.u(min = 0.0, max = 100.0) */
int_16 sendMotorB_u_FP = 0; I*QI[7, 8] */

[* parameter Real ramp.height = 100 */
int_16 ramp_height FP = 6400; I* Q[8, 6] Derived:
min = -200, max = 200 */

In the example above the type definitions are fdd by the declaration of
two input variablessendMotorA_ u FP and sendMotorB_ u FP and a
parameteramp_height_FP

As can be seen, the declaration of a fixed-pointats¢e includes some
additional comments to improve the traceabilitytihe original variable in the
Modelica model, as well as detailed informationtloa fixed-point representation
of the variable.

First is a comment containing the original declaratas found in the
Modelica code. It is followed by the declarationtloé fixed-point variable. Note
that the fixed-point variable is automatically ialized with the fixed-point
converted value of its real Modelica value.

In the example above the fixed-point parame@mnp_height _FP is
automatically initialized to 6400 which is the valof the Modelica parameter
ramp.height=100 scaled up using the Q[8, 6] format.

100 * 2 = 6400

Finally there is a comment with the Q notation lé selected fixed-point
representation as well as derived min/max valueshose variables where this
was not set by the user. The min/max, either ddriveoriginal, can be used to
verify the integer part of the fixed-point repretsgion.

Equations

The fixed-point model equations are generated inaggns.c which can be
included in a framework assuming that the declanstc file already has been
included. As can be seen in the example code bétova, Lego Mindstorms NXT
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target, each fixed-point equation is preceded byrament containing the original
Modelica equation for traceability. The block a¢ #nd is optionally generated if
data logging is enabled.

[* sendMotorA.u = (if time < ramp.duration then
time*ramp.height/ramp.duration

else ramp.height); */
sendMotorA_u_FP = ((((time_FP < (ramp_duration_FP
<< 4)) ? ((time_FP *

ramp_height_FP) / ramp_duration_FP) :
(ramp_height_FP << 4)))) / 2048;
/* readMotorA.y =
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count

(readMotorA.fromPort.n, time); */
readMotorA y FP =
nxt_motor_get_count(readMotorA_fromPort_n_FP);
/* Sending variables using bluetooth */
target_port_bufwrite_int32(sendMotorA_u_FP);
target_port_bufwrite_int32(readMotorA_y_FP);
target_port_write_flush();

The corresponding code in dsmodel.c when data hgggs enabled doesn’t
contain any equations from the model. All equatians replaced with a call to
read the actual value from the external targetdfaia logging purposes. In the
example below a generic read functidmst_port_read_int32(), is
called to read an integer from the target. For tiésis an implementation to read
from the Lego Mindstorms NXT device was developad.can be seen in the
example the variable is calculated by reading tilaesfrom the target and then it
is rescaled to the Modelica variable. As for theeinal fixed-point model the
variable is preceded by a comment containing itgral equation for traceability.

/* sendMotorA.u = (if time < ramp.duration then
time*ramp.height/ramp.duration
else ramp.height); */
sendMotorA_u_FP = host_port_read_int32();
/* Mapping from fixedPoint variables to Modelica
variables */
/* sendMotorA.u = 2*"0*sendMotorA.u.FP */
sendMotorA_u = sendMotorA _u_FP;
/* readMotorA.y =
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count
(readMotorA.fromPort.n, time); */
readMotorA_y FP = host_port_read_int32();
[* Mapping from fixedPoint variables to Modelica
variables */
/* readMotorA.y = 2°0*readMotorA.y.FP */
readMotorA_y = readMotorA_y FP;
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If no data logging (and no Bluetooth communicatimmm PC to target) then the
target is completely free from the PC and can beaw its own. The example
code for the Lego Mindstorms NXT target above wotlldn not contain the
section starting with

[* Sending variables using bluetooth */

3.6 Automatic error-checking code

To help users evaluate the fixed-point representdtiey are using, code can be
generated to automatically check the error. Theectirimplementation is based

on generating assert statements that are evalaéftesdevery computation of the

variable. This will slow down the code and is nppkcable when running on an

external target so it is not enabled by defaulttf@rmore, the current strategy is
not sophisticated enough, a small phase shiftarsignal can give a large error in
magnitude and the simulation will stop.

For the error checking code to be usable, more Idprent is needed,
which is outside the scope of this thesis. The ndaa with this implementation
is to show that it is possible to integrate thgietyof code generation in the
framework automatically.

The current implementation uses the following eariteria for a variable.

assert (l%’romfixedpoint - yoriginal| < 0.001- (|YOriginal| + Ynominal))

Where Y omrixeapoint 1S the recovered value from the fixed-point compates,
Yoriginai 1S the original value from the floating-point coatation andy,omina: is
the nominal value of the variable (default valu®ymola isy,,ominas = 1 €xcept
for pressure variables wheyg, mina: = 10°).

Checking of min/max attributes set by the user bandone by enabling
assertions for min/max in Dymola.
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4.  Application Examples

To evaluate the code for External fixed-point tregh Mindstoms NXT device
was used as target platform. A Dymola Lego Minde®API in the form of a
Modelica library was developed to support the phatf.

This section describes some application exampledirgy with the
platform, tool chain and Dymola Lego Mindstorms A@hline plotting over
Bluetooth and the Lego Segway are introduced alcagipn examples.

4.1 Platform and tools

Lego Mindstorms NXT

Lego Mindstorms NXT [14] is essentially a prograniealLego toy. Due to its
openness and the numerous ways to program, coafgui use it, a community
of technically interested people has grown arourfdrther pushing the limits of
usage. It is used at several universities, e.gdLlniversity and RWTH Aachen,
as a popular hardware platform in control engimegeand mechatronic systems.
The heart of the unit is the NXT device (in theteerf the image below).

Figure 13. Lego Mindstorms robot.
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The NXT device is a Lego brick containing a micantoller with a
graphical display, Bluetooth chip and interfacer{gjoto a number of sensors and
actuators. It is configurable in numerous ways thiedbasic kit includes

* The NXT device

e Touch sensor

* Sound sensor

* Light sensor

» Ultrasonic sensor

e Servo motors

» Basic Lego building blocks.

In addition to the basic building blocks, additibreadd-on sensors and
actuators can be acquired from third-party vendors.

HiTechnic

HiTechnic is a manufacturer of a big range of rab&ensors for the Lego
Mindstorms NXT. Among their products are the follog/sensors:

« Acceleration / Tilt Sensbr
e Color Sensor

* Compass Sensor

«  Gyro Sensdr

* IRReciver Sensor

* |IRSeeker Sensor

Several of their sensors are available in the CfAdth nxtOSEK, presented
in a coming section.

Mindsensors

Mindsensors is another manufacturer of accessadethe Lego Mindstorms
NXT. Among their products are:

* Realtime Clock
« Multi-Sensitivity Acceleration Sensbor

Their products are not supported in the nxtOSEK @I.AE.g. the
Acceleration Sensor, is supported in NXT-G, NXC/NB®botC but not in the C
API from nxtOSEK. To use a Mindsensors sensor & nRtOSEK Real-Time
Operating System (RTOS), low level drivers had @éoaitten, which make them
a bit more hard-to-use than the HiTechnic sendorstliis particular platform).
On the other hand, e.g. the Acceleration Senson findsensors is much more
sensitive than the one from HiTechnic.

! Supported in LEGO_Mindstorms library implementedthis thesis
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NXtOSEK

nxtOSEK, [15], is a freely available RTOS for Leitindstorms NXT. It is
supplied as an open-source project and providegshewith, in particular:

» A programming environment using a GCC tool chain
» C API to Lego Mindstorms sensors and motors

» C API to some third-party sensors

* Alarge set of code examples

Based on the extensive set of examples supplidd witOSEK, a wrapper
has been developed to form a base for the Dymalargéed fixed-point C code
such that it can be compiled into an executabletfierNXT using the standard
GCC tool chain.

The nxtOSEK web page [15] also supplies severahaukt to download the
compiled executable to the NXT device. The mostatione uploads the program
to an NXT without firmware installed. In that cabe program is uploaded to and
executed from the RAM memory of the device and thien lost after termination
of the device. Another alternative is to install @mhanced NXT firmware that
allows you to upload the program to the flash mgnudrthe device. The program
is then kept in the memory when the NXT is restar®hen running the program
it is copied to the RAM and executed from there pssfor the first method. This
alternative was found to be much more conveniean tthe first one, since the
program is kept in the NXT after reboot. A thirdtiop is also described on the
webpage [15] but it has not been tested duringvibisk.

Cygwin

Cygwin [16] is a program that enables some Unixcfiomality on Windows by
acting like a Unix-like environment.

In the scope of this thesis it is used as a comrAiaadool to compile and
link the Dymola-generated code into an executabkg ttan be run in the
nxtOSEK RTOS. It is also used to download the etedaila code to the Lego
device.

4.2 Tool chain

The tool chain when running the model on the Leygdt is illustrated in Figure
14 below.
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o arals Code generation Code generation
eclarations.c

i - > dsmodel.c
equations.c \ _f__f’{f

dymola_wrapper.c

build R

mane . \5}0@

- J Send internal variables over bluetooth i |
L - ® dymosim

Figure 14. Tool chain.

Dymola is used to develop models of plant and odietrto investigate effects of

e.g. fixed-point aritmetics and sampling. Code ttean be generated for the Lego
target and using Cygwin the generated code is dedhgind downloaded to the
hardware. To evaluate the design and to collea @@ata logging is described
later in section 4.4) the Lego device can be ruyetiter with the simulation

process from Dymola.

4.3 DymolaLego Mindstorms API

The Dymola — Lego Mindstorms API consists of twamzarts:

« LEGO_Mindstorms, a Modelica library with blocks th@an be used to
map signals to parts of the NXT’s sensors and amtsia

» dymola_wrapper.c, a framework/wrapper for the aatically generated
model code from Dymola.

LEGO_Mindstroms library

The LEGO_Mindstorms library was developed to impetan API to a subset of
the sensors and actuators available for the Legu#orms NXT platform. The
main structure of the library can be seen in Fidlte
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=l [CJLEGO_Mindstorms
+ [CJExamples
= [CJ Communication
+ (] Bluetooth
- [JECRobot
+ (CJLightSensor
+ (] ServeMator
+ [CJSoundSensor
+ [JTeuchSensor
: (JultrasonicSensor
= [TJHiTechnic
+ [T AccelerationSensor
v [CJGyroSensor
- [ JMindsensors
+ [JACCL_Nx_v3
+ [C] ExternalC
- [J Configuration
L T

+ [C] Components

Figure 15. LEGO_Mindstorms Modelica library.

The library is designed to be compatible with Mackel| EmbeddedSystem in such
a way that the APl components can be accessibéettirfrom the parameter
dialog of the communicateReal block. This is done dxtending from the
architecture defined in Modelica_EmbeddedSysteras, the components/blocks
extend from a base class in Modelica_ EmbeddedSgstem

The communicateReal can then be used in a modelai a signal to a
specific low-level C function on the target. An axasle would be to send a
control signal to a motor or to read from a sensag,, touch sensor to detect
contact.

The benefit of this design is that when the LEGOnddtroms library is
loaded in Dymola, the new components will autonadlifcappear as new choices
that can be selected in the parameter dialog ohwamicateReal, shown in Figure
16, actuators, and in Figure 17, sensors.
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sendMotorA in LEGO_Mindstorms.Examples.LegoTargetSetSpeedAndReadSensors

General | Add modifiers |
Companent e

Name | sendMotorA 1

Comment @
Model

Path Modelica_ C eal
Comment Interface between tasks to communicate Real signals

Parameters

u u annotation (foedpoint{bits=0}) | ES » Signal transmitted out of the task connected to the input u

Communication between input and output

CUUTLIE Rl EmbeddedSystems. Types. CommunicationType. ToPortCommunicationfidly Type of communication

fromInputToOutput |/ sal,Idaa i C ion block (; or subtask i )

toPort e | Set motar speed F:?: » Communication pert to which the input signal is transmitted

fromPort | sRemave: moidiier = Communication port from which the output signal is received

|+_] Dummy Write port
Sampling and other cos *_| Template: WriteRaafToPort

7 Write to NXT biuetooth port ated, the information is defined somewhere else)
4 rite to uetooth pol

definelnSubtask 4| Write to host bluetooth port true v = true, if sampling/configuration for input is defined
|+_| Set motor count ¥

defineQutSubtask W Set motor speed | ] = true, if sampling/configuration for output is defined

inSubtask | LegoConfiguration.controllertsubTask + EE » Sampling/configuration for input

outSubtask [ H

r Sampling/configuration for output

[ ok ][ mwh ][ cancel

Figure 16. NXT actuators in the communicateReahpater dialog

readSonarSensor in LEGO_Mindstorms.Examples.LegoTargetSetSpeadAndReadSensors

General | Add modifiers

Component Teon
Name readSonarSensor .

‘Comment ) -' 6:3
Model

Path Modelica_Embec Interfaces.Ce eal

Comment Interface between tasks to communicate Real signals

Communication between input and output

ionType mbeddedSy Types.CommunicationType.FromPortCommunication v |» Type of communication

fromInputToOutput | redecis N stion.Ideal.idealReal. Ideal 3 tionioc v |§8 » Ce ication block (simulated or subtask communication)
toPort | ation.Ideal.Ide deal\Writs F M Communication port to which the input signal is transmitted
fromPort [ Read sonar sensor(...) v‘gﬂl b Communication port from which the output signal is recefved

| %1 Read NXT biuetooth port -

Sampling and other co 3 Read host bluetoath port ated, the information is defined somewhere eise)
_I Read light sensor. - -

definelnSubtask | CJ Read motor count false ~|* = true, if sampling/configuration for input is defined
defineOutSubtask | I Read sound sensor true v * = true, if sampling/configuration for output is defined

| _} Read touch sensor ey

inSubtask B Read sonar sensor
| _I Read Hi Technic acceleration sensor (one axis).

* Sampling/configuration for input

outSubtask "1 Read Hi Technic gyro sensor. sk v [EE » Sampling/configuration for output
| L} Read Mindsensors ACCL-Nx-v...acceleration in one axis).
| L} Read Mindsensors ACCL-Nx-v3... sensor (tilt in one axis). b
] 0K I [ Info ] [ Cancel

Figure 17. NXT sensors in the communicateRealrpater dialog

If additional sensors or actuators are neededea aen follow the same design
principle and implement his own API block that algifl appear automatically in
the dialogs. This makes the framework very flexiiolethe user.

The current implementation supports a subset onxt®@SEK C API

« ECRobot

0 Servo motor
o Light sensor
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0 Sound sensor
o Touch sensor
o Ultrasonic sensor
e HiTechnic
o0 Acceleration sensor (NAC1040)
o Gyro sensor (NGY1044)
* Mindsensors
0 Acceleration sensor (ACCL-Nx-v3)

described in more detail below.

NXT standard I/O modules

The ECRobot sub-package contains an interfaceetstdindard Lego Mindstorms
sensors and actuators. Each block contains a nmppinthe corresponding
nxtOSEK C API function, adding min/max values whesrepossible. The blocks
extends from a base class in Modelica_ Embedded8gstnd then uses the
Modelica external function concept to map the digoahe C function from the
API. As an example consider the touch sensor. TiRE &s can be seen in Figure
18, uses the U8 type (unsigned 8-bit integer) pstiand return value.

Touch Sensor AP
Ug
ecrobot_get touch sensor(US porr i4)

Figure 18. nxtOSEK Touch Sensor API

The corresponding Modelica function in LEGO_Mindsts is

function ecrobot_get_touch_sensor
input Integerport_id(min=0, max=3)
"0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_POR3, $= NXT_PORT_S4"
inputReal Time;
outputRealsignal;

external'C" signal =ecrobot_get_touch_sengport_id);
endecrobot_get_touch_sensor;

As can be seen above, the Modelica function usedtibdelica external function
concept (external “C” y =foo(u)) and contains tladl ¢o the actual C function as
defined in the API. The input variabléme was needed make the function time
varying since Dymola otherwise evaluates the famctFor the above function to
fit in the Modelica_EmbeddedSystems framework,toenake it selectable in the
communicateReal block as in Figure 17, a Modelicekbhas been constructed
by extending the appropriate base class. This blaskshown below, contain a

call to the function above as well as assigning/max attributes of the output of
the sensor.

block ecrobot_get_touch_sensétead touch sensor"”
extendsModelica_EmbeddedSystems.Interfaces.BaseReal.
PartialReadRealFromP{minValue=0, maxValue=1,
y(min=0, max=1));
parameteintegerport_id(min=0, max=3) = 0
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"0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_POR3, S= NXT_PORT_S4"
equation

/I Returns touch sensor status. 0 = not touchedoliched.

y = ExternalC.ECRobot. TouchSensor.ecrobot_get_toucisogport_id, time);
endecrobot_get_touch_sensor;

Note that the Modelica implementation returns alRezereas the C function
returns an integer (U8). The reason for this isnttke all sensors and actuators
available from the communicateReal block (commueiRaal handles real
signals as the name indicates). This will make e@sagight-forward, the user can
always use communicateReal and know that all supgporomponents can be
found there. If the formally more correct approaslas used, i.e., using
communicatelnteger and communicateBoolean as thelh the user would have
to use the C API to figure out what return type tinelerlying C function has and
then use the appropriate communication block type.

HiTechnic Gyro Sensor

The HiTechnic Gyro Sensor is a third party seneanfHiTechnic and is found in
the HiTechnic sub-package. The implementation viasght-forward, similar to
the one described in NXT standard I/O modules alifox6OSEK contains a C
API for this sensor in the same style as above).

HiTechnic Acceleration Sensor

The Acceleration Sensor, found in the HiTechnic-pabkage, also had a C API
available in nxtOSEK as can be seen below in Fig9re

HiTechnic Acceleration Sensor API
void
ecrobot_get accel sensor(US port id, 516 buyf[3])

Figure 19. nxtOSEK Acceleration sensor API

It is based on passing pointers but the commuicdilocks do not take pointers
(arrays) only scalars so a C wrapper was developeadterface it. The idea is
simple. In Dymola you select which axis you woukklto use with a parameter
and then that axis is extracted from the arrayhan € wrapper and passed as a
scalar variable to the Modelica block. The C impeation is

[* Wrapper to read one axis from the Hi Technic Acc eleration
sensor */
S16 get_accel_axis(U8 port_id, U8 axis)

S16 buffer[3];
ecrobot_get_accel_sensor(port_id, buffer);
return  buffer[axis];

}
and the corresponding Modelica block

block get_accel_axis
"Read Hi Technic acceleration sensor (one axis)."
extendsModelica_EmbeddedSystems.Interfaces.BaseReal.
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PartialReadRealFromP ¢y(min=-600, max=600),
minValue=-600, maxValue=600);
parameteintegerport_id(
min=0,
max=3) =0
"0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_POR3, S= NXT_PORT_S4"
parameteintegeraxis(min=0,max=2)=00 = X-axis, 1 = Y-axis, 2 = Z-axis"
equation
/I Returns raw A/D data from one axis from the dseasor
y =LEGO_Mindstorms.Communication.ExternalC.HiTechnic.
AccelerationSensor.get_accel_afpsrt_id, axis, time);
endget_accel_axis;

Mindsensors

In the Mindsensors sub-package another, third-mrtgleration sensor is found;
the ACCL-Nx-v3 acceleration sensor, which is morensitive than the

acceleration sensor from HiTechnic. This sensooissupported in the nxtOSEK
C API so both the Modelica part and the C part ttabbe implemented. The C
implementation is based on reading raw data froe I#C bus, on which the
sensor is connected, and then use wrappers tocegither tilt or acceleration in
the selected axis. Below the function for reading data and the wrappers.

S16 mindsensors_get_accel_axis(U8 port_id, U8 axis)

{
return mindsensors_get_accel_sensor(port_id, axis+3);
}
S16 mindsensors_get_tilt_axis(U8 port_id, U8 axis)
{
return mindsensors_get_accel_sensor(port_id, axis);
}
S16 mindsensors_get_accel_sensor(U8 port_id, U8 axi s)
{
static ~ S16 state[6];
static U8 data[9];
if (i2c_busy(port_id) == 0)
{
[* tilt data */
state[0] = (S16)data[0];
state[1] = (S16)data[1];
state[2] = (S16)data[2];
/* 10 bit acceleration data */
state[3] = (S16)data[3] + ((S16)data[4] << 8);
state[4] = (S16)data[5] + ((S16)data[6] << 8);
state[5] = (S16)data[7] + ((S16)data[8] << 8);
i2c_start_transaction(port_id,1,0x42,1,&data[0],9 ,0);
}
return  state[axis];
}

The corresponding Modelica blocks are implementest ps for the previous
examples.

Bluetooth

The Bluetooth sub-package contains Modelica bloaksaccess Bluetooth
communication routines from within the model. Araeple of usage is to send

51



reference signals from the host computer to theolindstorms NXT device.
The implementation has been made such that thecaseuse the communication
routines in the same convenient way as the preljodsscribed sensors and
actuators, just by selecting from the pull-down mexi the communicateReal
block, see e.g. Figure 16 and Figure 17.

The available blocks are

* nxt_read_bluetooth
e nxt_write_bluetooth
* host_read_bluetooth
* host_write_bluetooth

The blocks call the underlying Modelica functionseded for the Dymola
Bluetooth communication API (host_... bluetooth) deped for this thesis, as
well as Modelica functions for the Bluetooth comnuation routines in the
NxtOSEK C API (nxt_..._bluetooth).

In order to use the Bluetooth communication featuie communication
channel had to be established between the host wemmnd the Lego
Mindstorms NXT device. To make this setup as corem@nas possible for the
user a component that opens and closes a chanrelimglemented. The
component can be found under the sub-package Canpomnd has the icon
depicted below and contains the following Modetioae:

S

block Bluetooth
parameteintegerport=8"Virtural COM port number,"
initial algorithm
LEGO_Mindstorms.Communication.ExternalC.BlueToopewaChanndgport);
equation
whenterminal() then
LEGO_Mindstorms.Communication.ExternalC.Blue TodttseChannég);
end when
endBluetooth;

The code ensures that the communication channebpisned before any

computations are made and that the channel is pyoplesed at the end of the
simulation. The input parameter “port” is the nuimerlue of the assigned virtual
COM port. This value is determined when the devggaired with the host

computer, using, e.g., Windows (the device muspdieed and connected before
any communication features can be used).

dymola_wrapper

This section describes the dymola_wrapper.c framlewt is used as a base for
the automatically generated model code in ordemske it run on the Lego

Mindstorms NXT under the nxtOSEK operating systdihe code is based on
examples from the nxtOSEK source code and is adllvelow.

<includes>
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#include  "target_port.h"
/* OSEK declarations */

/* Include fixedpoint variable declarations */
#include  "declarations.c"

/* Include API to sensors from Mindsensors */
#include "mindsensors.c"

int startTime = 0;

/* LEJOS OSEK hooks */
<code>
/* LEJOS OSEK hook to be invoked from an ISR in
category 2 */
<code>
I* Wrapper to read one axis from the Hi Technic
Acceleration sensor */
S16 get_accel_axis(U8 port_id, U8 axis)

{

<code>

}

/* Taskl executed every x msec */

TASK(Task1)

{
[* map system time to fixedpoint time */
/[* reset motor count to 0 */
<code>
/* include fixedpoint equations */
#include  "equations.c"
[* display time in seconds*/
<code>
TerminateTask();

}

The essential part is the task (Taskl) that is @eecperiodically. It contains (by
an include statement) the model equations as gewderay the fixed-point
machinery of Dymola. Every time the task is exedutee model equations are
recomputed with updated inputs and sensor values.

A detail that is not obvious at first glance is first couple of lines in the
task starting with the comments “ /* map systemetim”. The full code is

[* map system time to fixedpoint time */
/* reset motor count to O */
if (startTime == 0) {
/I only executed the first execution cycle
startTime=systick_get_ms();
nxt_motor_set_count(NXT_PORT_B,0);
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nxt_motor_set_count(NXT_PORT_C,0);
}
time_FP =(  int )1024*(systick_get_ms()-
startTime)/1000;

The purpose of this code is to scale the time béidor, e.g., time-dependent
reference signals such as ramps and to remove Mises. time variable is
constructed by using a built in millisecond countBne counter is started when
the Lego Mindstorms NXT device is powered up anill thus always be biased.
In the Dymola-generated model equations, the tiaréable is by default scaled
with 10 fractional bits and thus we need to incoape that scaling (1024) when
updating the time variable as well as rescaleoinfimilliseconds to seconds. To
remove the bias, the value of the counter at tts¢ éixecution is stored and then
subtracted each update. At first execution the tsnof the motors (in the
example above connected to port B and C) are ekt to make sure they always
start counting on 0 when the code starts.

The last section is an example how to output véesmlo the Lego
Mindstorms NXT display for, e.g., debugging. Bel@wexample code to display
the time variable (in seconds) on the display, Isatided and uscaled (raw).

[* display time in seconds*/
display_clear(0);
display_goto_xy(0, 0);

display_string( "My display" );
display_goto_xy(0, 2);
display_string( "TIME:" );

display_int(time_FP/1024, 0);
display_goto_xy(0,4);
display_string( "TIME unscaled:" );
display_int(time_FP, 0);
display_update();

4.4 Dymola Bluetooth interface for plotting and animation

Debugging embedded systems can be a very diffaqudt time-consuming task.
One of the main problems is that it is usually vieayd to get usable/reliable data
of the internal state of the embedded system, @nliew inputs/outputs are
available. The reason for this is that many embédgystems lack an internal file
system or if one exist, the area of persistentag®rwould likely be relatively
small and would thus quickly fill if one attemptsuse it for data logging.

To facilitate automatic data logging for the Leganifstorms NXT device,
we utilize the fact that it has a built-in Bluetbathip and, using nxtOSEK, a C
API for read/write operations. The user can en#iikefeature by setting a flag in
the Dymola command prompt and if activated, coddl awtomatically be
generated to support data logging of the interigglads.

The basic idea is to generate two variants of thdehcode, one (in fixed-
point) to be downloaded to the embedded systenoaador the PC with Dymola
that instead of computing values listens on a Blogtt communication channel
and stores the information received from the embddystem. The code for the
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embedded system (Lego Mindstorms NXT) containsaddition to the model
equations in fixed-point, also Bluetooth send comdsa

In the current implementation, there is no wayelest which variable shall
be logged. If the flag is set then all variables Byxgged and if not set none are
logged. During testing, approximately 30 signalsilddoe logged while running
the system with 10ms sample rate. This implicitlifspa limit on the size of the
model when the automatic data logging can be ugdais limit is exceeded then
plotting and animation cannot be run.

4.5 Dymola Bluetooth interface for direct communication

Above we discussed automatic data logging usingBinetooth communication
channel. The Bluetooth channel cannot only be @isethat purpose, it can also
be used for direct communication with the modetrfrthe PC with Dymola. An
example, that has been implemented and tested, 9erid reference values to a
controller from a model in Dymola.

Using the  Modelica_EmbeddedSystems  framework,  Batat
communication blocks have been implemented and lwanreached in the
fromPort and toPort modes of the communication §so&s can be seen in Figure
3, section 2.1. The Modelica implementation is gpiag to the actual C routines
that is used for the communication between targelt fzost. The target routines
(on the Lego Mindstorms NXT) make use of the nxt@$Huetooth C API.

The tested example used a USB game controller ctewhdo Dymola to
generate reference speed signals for the wheetlseof.ego Mindstorms NXT.
Those signals where then sent to the NXT using Bhestooth components
described in section 4.3.

4.6 Online plotting and animation

Online plotting and animation is closely coupledBioetooth data logging when
running the code on the Lego Mindstorms NXT. Withduthere would be no

data to plot or animate. We thus need to sepah&tdwo cases, internal target
(fixed-point simulation in Dymola) and externaldat (Lego Mindstorms NXT).

Internal fixed-point target

With internal target we denote running a Softwardke-Loop simulation in
Dymola to investigate the effects of fixed-pointtlanetics on, e.g., controller
performance. The typical scenario is to have aesystwith a plant and a
controller, decoupled using components from ModelEEmbeddedSystems. With
the support for fixed-point activated, code is geated to compute both the
normal floating-point computations of the model &tipns and their fixed-point
counter parts. The user can for example run theemuwdth the fixed-point
equations as slaves to the real controller, aamdfixed-point sampling” of the
signals, as well as driving the system with thedbpoint controller. A parameter
is introduced in the variable browser to toggleasstn the two modes without the
need to re-translate the model.

Since the code always computes both the floatingtpand fixed-point
versions of a variable, the signals can be compimednalysis. Under a virtual
fixed-point component in the Dymola variables brew§as well as in the .mat
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result file) all variables that are computed udimgd-point have two clones, see

Figure 20;

<Name>_fromfixedpoint
<Name>_original

The “original” signal is the signal computed usiffigating-point and the
“fromfixedpoint”, as the name indicates, is theaegred value when rescaling the
fixed-point value back to a real value.
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Figure 20. Variable browser and fixed-point plot

The plotting itself is the same as when running @imer model in Dymola, online
in the sense that values are reloaded in the ploftan as the user has specified in
the experiment setup.

External target

When running the code on an external target, ontileéting (and animation)
depends on the use of Bluetooth data logging. Tdschidea differs a bit from
plotting and logging when running on an internag)éd.
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The basic idea is to be able to plot signals fdrudging purposes. Only using the
recovered values one can be fooled since they atematically rescaled
correctly. Particularly when using sensors andatots it is preferable to be able
to see the raw data as seen by the hardware. iiloduse in the variable browser
is the same but the interpretation of “original'ddtiromfixedpoint” differs. Just
as before, “fromfixedpoint” is the recovered vale®mparable with any other
signal since it is rescaled to a real value. Thegioal” value is now the raw
integer data as seen by the hardware. The origalaks are not comparable to
each other, since they can vary very much in magdaidue to their scaling. But
as mentioned, sometimes it can be critical to be tbsee what the raw value is.

4.7 Lego Segway

The fixed-point capability of Dymola described imst thesis has been used in
teaching at the Department of Automatic ControlLand University in the
advanced level course FRTO90Rrojects in Automatic ControlTwo groups
selected the Dymola project in 2009, one groughéndpring of 2010, two groups
in the spring of 2011 and two groups in the spohg012.

In the projects, Dymola was used to model a Legpv@g, and to design a
stabilizing controller, [17]. Fixed-point code ftite controller was then generated
and downloaded to the Lego target. Using the Bhtbtinterface, data could be
collected for plotting and animation, see Figure 21

Figure 21. Dymola animation of the Lego Segway
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4.8 Elektor Wheelie

During 2011 there was a Master's Thesis projédtdeling, Control and
Automatic Code Generation for a Two-Wheeled Sdlsigang Vehicle Using
Modelica[18], that used the features described in thisigh®r control of a full-
scale Segway [19] clone, ElektorWheelie [20], cépalh carrying a person.

Figure 22. Elektor Wheelie in action

Using Modelica_ EmbeddedSystems to partition théesysnodel, Figure 23, and
the automatic fixed-point code generation capadslibf Dymola, controller code
was generated and downloaded to the ElektorWheHtie.students made several
experiments and compared the Dymola generated witthe manually written
fixed-point code and concluded:

- “The results were satisfactory from an experimemi@int of view, the
estimators and controller achieve the control dbjecand it was verified
that the automatic code generation by Dymola man&gde as accurate
as the manual fixed-point coding.”

- “The manual and automatically generated code pmdaoce was tested
during experimental rides. There was no significdifiterence between
both results which shows that the automatic codeeigdion is a useful
tool comparable to the manual coding”

The report also mentions some areas of improvemekgsan example the
Atmega32 processor of the ElektorWheelie does mppart division in its

instruction set. The code had to be manually adiafieconvert division by a
power of two to left shifts. However, testing orhet platforms indicated that
modern compilers can handle this automatically.
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Figure 23. Modelica system model of the ElektorWieesnd controller.
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5.  Summary

5.1 Results and conclusions

The work in this thesis has in addition to this agpalso resulted in two
conference papers, [1] and [21]. It has also besad un project courses and a
Master’'s Thesis in automatic control at Lund Unsigr. Although it is far from a
product ready for release, the main principle anatesgy has been demonstrated
to work in the above mentioned projects.

Experimental Modelica annotations were introducedcomplement the
existing attributes of Modelica variables to beeat set resolution needed for
fixed-point. Two annotations were introduced to\eamently input the resolution
with either an absolute or relative measure. It ikdne even more convenient if
resolution existed as an attribute, since thenetheould be no need to use
annotations as modifiers which would give more caotpand easy-to-read
Modelica code.

Using the new experimental annotations, Dymola weasended with
functionality for analysis and code generation foxed-point. Two different
methods of range analysis were implemented; bitpggation and interval
analysis. Interval analysis, although conservativas concluded to never give
larger intervals than bit propagation and was s$ete@s the active method. It
would be desirable to further analyze the expressiand improve that range
analysis to give tighter intervals when possible.

The scaling of variables is based on user inpuingushe experimental
annotations) as well as heuristics and some rulgsrdpagate bits through the
expressions. With a deeper analysis it should Issipke to find “smarter” scaling
to guarantee that no overflow can occur while mining the precision loss.

The code generation was intended to be portablevhatinfluenced by the
Lego Mindstorms target since that was the onlyfptat we tested on ourselves.
As an example it was detected in the Master's Bh§kr] that the generated
divisions by a power of two are not supported am EhektorWheelie processor.
More user configurability would be desirable butwbuld also increase the
complexity of the code.

The implementation of Bluetooth communication fatad logging turned
out to be a very good complement to “on-screen-ggimg” on the Lego
Mindstorms device. Less optimal was the fact tmathis first implementation
only one task is supported. This meant, e.qg., ttieatcontroller code and code for
data logging resided in the same task and all tlons were executed with the
same priority. More desirable would have been toegate the data logging code
in a separate task that could run with lower ptyaio avoid it influencing control
performance. The same holds for reference signakrgéion using, e.g., a
gamepad. Ideally that code should also be run Beparate task with lower
priority.

Using the Lego Mindstorms device, a full Modelicadel to embedded
code scenario could be tested and evaluated whishome of the original goals
set for the thesis.

61



5.2 Future work

Some interesting topics for future work are:

* Range analysis of nonlinear functions and useravritunctions by offline
evaluation based on the range of the inputs.

* More sophisticated fixed-point analysis enablingager bit shifting for
addition, subtraction, multiplication and divisidlw reduce losses in
accuracy.

» Generate tables with interpolation to support fioms in fixed-point with
a user-specified resolution and range. Identifygake functions.

» Introduce guard bits for variables with uncertainges.
» Asserts for overflow in the fixed-point code.
» User specified rounding functions.

* More advanced range analysis.
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