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1. Introduction 

1.1 Motivation 

Hardware-In-the-Loop  Simulations (HILS) and Rapid Controller Prototyping 
(RPC) are widely used today for design and testing of control systems in industry. 
Typical hardware devices for such tests are Digital Signal Processors (DSP) and 
Field Programmable Gate Arrays (FPGA). The development of algorithms and 
models is typically done in high level languages, not directly related to the target 
hardware. This can be advantageous since conceptual studies can be performed 
and tested early in the development phase and it also helps to keep the models 
independent. However, after initial development and studies, code generation for 
specific target platforms, such as DSPs or FPGAs, has to be done to study the 
process with the real hardware. 

During the development phase, floating-point arithmetics is often used for 
computations in algorithms and models. However in many applications, 
economical and technical constraints like price per unit, characteristics of the 
system and performance of the target platform do not justify the use of such 
demanding floating-point calculations. Sometimes they are even an obstacle to 
HILS and production code, since floating-point computations can be to slow for 
systems with high sampling rates.Integer arithmetic operations execute faster than 
their corresponding floating-point operations because of their simplicity. In the 
case of FPGA targets, silicon surface area and power consumption can also be 
significantly reduced using integer arithmetics. Also, DSP devices often come 
with only simple arithmetic logic units (ALU), completely lacking hardware 
support for floating-point arithmetics. Using fixed-point arithmetics, one can 
utilize the advantages of integer arithmetic operations and generate code for 
various hardware targets. The achievable precision using integer arithmetics is 
closely related to the architectural word length of the target platform, typically 16, 
24 or 32 bits. 

1.2 Problem definition 

This thesis explores the possibility to use fixed-point arithmetics for simulation 
and code generation from models defined using the Modelica language.  

Manually transforming equations to fixed-point is a tedious and error prone 
task. The aim of this thesis is to automatically find a fixed-point mapping of the 
controller part of a system model to investigate the effects of using finite word 
length and also to support HILS and RPC by automatically generating fixed-point 
C code. 

Initially, the plan for this Master thesis project was to investigate and 
implement a way to generate fixed-point code for Modelica models using 
Modelica code. That work resulted in a conference paper presented at the 
Modelica Conference in Vienna, Austria, 2006 [1]. That approach turned out to be 
very hard to further develop and maintain, and furthermore, it was not very user-
friendly. 

With the later development and official specification of the Modelica 
language constructs for embedded systems, came the framework that made the 
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current strategy and implementation possible. Using the extensions one can, in a 
very natural way, partition the system model in different parts, e.g. controller and 
plant, and map the various parts to different targets, tasks and subtasks. The focus 
of this work has lead to extend with new functionality to generate fixed-point 
code for certain target configurations. 

1.3 Goals 

The main goals of this thesis have been to: 
 

• Extend the Modelica language with experimental language constructs to 
support specification of properties needed for fixed-point.  

 
• Implement functionality for fixed-point code generation in Dymola based 

on the experimental language constructs. 
 

• Evaluate fixed-point code generation in a complete Modelica-model to 
embedded code scenario. 
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2. Background 

This section will to give a short introduction to Modelica and Dymola as well as 
introducing some basic concepts and notations for fixed-point. The description is 
intended to be of a general nature to provide the reader with background 
information and references for further reading. 

2.1 Modelica 

Modelica 

Modelica is a flexible and object-oriented modeling language in the fast growing 
area of system modeling. In order to use Modelica and the Modelica libraries, a 
tool with a translator and a compiler is needed in order to run simulations. 
Dymola [2] is such a tool equipped with a symbolic engine for translation and 
manipulation of the Modelica code. Dymola also provides features for pre 
processing of model data and post-processing of simulation data as well as 
plotting. 

The Modelica language is designed for modeling of large, complex, and 
heterogeneous physical systems. It is a multi-domain language allowing users to 
combine components from many different engineering domains, such as 
electronics, mechanics, hydraulics etc. A variety of components from different 
engineering domains can be seen in Figure 1.  

 

 
Figure 1 Multi-domain Modelica models. 

 
The design of Modelica allows users to utilize standard components from 
different, free or commercial, Modelica libraries and, if needed, modify/extend 
them or design custom components and libraries. An introduction to modeling 
with Modelica can be found in [3] and [4]. More information regarding Modelica, 
such as publications, libraries and events can be found in [5]. 
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Dymola 

Dymola, DYnamic MOdeling LAboratory, is the tool used and extended in this 
thesis for modeling and simulation with Modelica. It offers a graphical modeling 
environment and an engine for the necessary symbolic manipulation of equations 
in Modelica to produce executable code. 

In Dymola, a Modelica model can be composed by dragging components 
from the library browser and dropping them in the diagram sheet. Different 
components and sub-models are connected and can then be simulated after 
entering proper component-specific parameters. An alternative to the ”drag-and-
drop” technique is to use the underlying text layer, manually describing the 
behavior of the model using differential, discrete and/or algebraic equations. The 
text layer can also be used to alter or modify standard components to suit a 
specific application. 

A Modelica model can often contain a huge set of equations, and without 
some form of symbolic pre-processing, this set is not suitable for numerical 
integration. Simulation tools, thus, have to include a Modelica translator to 
manipulate the equations before simulation. Dymola solves this issue using 
advanced symbolic manipulation techniques. In this way, the set of equations is 
drastically reduced. After the symbolic manipulation, C-code is generated and 
compiled with numerical routines into an executable for simulation.  

For post-processing and analysis, result files from simulations can be 
processed in Dymola or by other programs supporting .csv or .mat file formats. 

Modelica_EmbeddedSystems 

Modelica_EmbeddedSystems (version 0.2, 2009-11-20) is a Modelica library 
currently under development by the Modelica Association targeting modeling and 
configuration of embedded systems. In this section the basic components relevant 
for this thesis will be described. For a more in-depth description see [6] and 
chapter 16 of the Modelica Language Specification Version 3.1, [7]. 

The Modelica_EmbeddedSystems library structure can be seen below in 
Figure 2. The components that are most relevant to this work are 
CommunicateReal and the records that are used to build configuration records: 

 
• Target record 
• Task record 
• Subtask record 

 
A task is asynchronous with regards to other tasks and it contains one or more 
subtasks. A subtask is a synchronous set of equations within a task with the same 
numerical integration and sampling properties. Each record type will be discussed 
in a separate section below. 
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Figure 2 Modelica_EmbeddedSystems library. 

Communication points 

 
A communication block (CommunicateReal, CommunicateInteger or 
CommunicateBoolean) provides a user interface to the underlying Modelica code 
that is used to decompose the system into tasks and subtasks and define the 
communication between them as well as to map those on to different targets. The 
component references a configuration record to collect information of the 
configuration currently used in the model and use that to “fill” the menus with 
appropriate choices. This will be demonstrated in chapter 4 when this is used to 
automatically populate the pull-down menus with Lego Mindstroms API 
components. 
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Figure 3 Parameter dialog of the CommunicateReal component. 

 
In addition to defining the model decomposition, the block is used to define the 
type of communication between the different tasks/subtasks in the model. The 
available options that can be selected in the communicationType pull-down 
menu as shown in Figure 3, are: 
 

• Direct communication 
• Communication between two subtasks 
• Communication between two tasks 
• Communication to a port 
• Communication from a port 

 
Direct communication is the simplest form of communication (� = �) and 

is used as a starting point when inserting the communication blocks in the model. 
It basically just propagates the input to the output with the possibility to add noise 
or delays. 

Communication between two subtasks is used to define a border between 
two subtasks, i.e. the input and the output of the communication block are in 
different subtasks but belong to the same task. 

Communication between two tasks means that the input and output 
belongs to different tasks. Communication between different tasks is performed in 
C code external to Modelica. 

Communication to a port is used to send information to an I/O port, e.g. 
sending a signal using Bluetooth via a virtual com port. 

Communication from a port is used to receive information from an I/O 
port. 

Configuration records 
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A configuration record is a Modelica record containing one or more 
target/task/subtask records to define the configuration of the system. An example, 
as implemented in the library is depicted below in Figure 4. 
 

 
Figure 4 Configuration record from Modelica_EmbeddedSystems. 

 
This particular configuration record has three subtasks that reside in one task on 
one target. The configuration record is used here to specify different numerical 
integration methods and sample times for the different parts of the system. In this 
case, the plant is continuous while the reference and feedback subtasks are 
periodically sampled and the reference subtask is specified to run five times 
slower that the feedback subtask. These settings cannot be seen in the image but 
opening the real model from the library one could pop the parameter dialog and 
inspect the settings. Other possible configurations could include multiple targets 
(that will be shown later when discussing investigation of fixed-point arithmetics) 
and multiple tasks as well. 

Target 

 
The Target record contains information on the target. It has two parameters, as 
shown in Figure 5. 

 



Figure 5 Parameter dialog of the Target record.

 
The identifier parameter is used in this thesis to indicate if the target is the 

host computer CPU, 

, or the Lego device,  

and any other value is interpreted as another external target.
 

The kind parameter is used 
have a floating-point arithmetic unit and fixed
the equations belonging to any task/subtask on that target. To activate set

 

Task 

 
The Task record is used as a container for subtasks that are computationally 
related to each other. The parameter dialog can be seen in

 

 
Parameter dialog of the Target record. 

parameter is used in this thesis to indicate if the target is the 

 

 
and any other value is interpreted as another external target. 

parameter is used in this case to indicate that the target does
point arithmetic unit and fixed-point code is to be generated for 

the equations belonging to any task/subtask on that target. To activate set 

 

The Task record is used as a container for subtasks that are computationally 
ch other. The parameter dialog can be seen in Figure 6. 

parameter is used in this thesis to indicate if the target is the 

to indicate that the target does not 
point code is to be generated for 

The Task record is used as a container for subtasks that are computationally 
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Figure 6 Parameter dialog of the Task record. 

 
In this thesis only the sampleBasePeriod parameter is of interest, the 

identifier and onTarget are used as well, to make the model easier to understand 
(using good naming) and to specify which target the task runs on. The 
sampleBasePeriod is used to set the base sample period for periodically sampled 
subtasks in this task. The subtasks can then be sampled at any integer multiple of 
the sampleBasePeriod but that configuration is made in the subtask record itself. 

Subtask 

 
The subtask record is used to describe sampling properties and numerical 
integration methods of the subtasks. The parameter dialog is shown in Figure 7. 

 

 
Figure 7 Parameter dialog of the Subtask record. 
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The most important parameters for this thesis are the samplingType and 

samplePeriodFactor that are used to activate periodic sampling and changing the 
effective sample period respectively. 

Example of Configuration 
An example configuration for running the Lego Mindstorms robot with the 
relevant parts of the parameter dialogs expanded is shown below in Figure 8. 

 

 
Figure 8 Exmple configuration for Lego Mindstorms robot. 

CommunicationMSWindows 

The CommunicateMSWindows library is an add-on library to the 
Modelica_EmbeddedSystems library developed at DLR (German Aerospace 
Center, Institute for Robotics and Mechatronics). It contains blocks to access I/O 
components on a Windows computer, like keyboard, speakers and game 
controllers. The library structure can be seen below in Figure 9. 
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Figure 9 CommunicateMSWindows library from DLR. 

 
In this thesis this library is used to build components that can read signals from a 
game controller that then can be used for reference signal generation, e.g. driving 
and steering the Lego Mindstorms robot. A component for the Microsoft 
SideWinder (steering wheel and throttle/brake pedal) was also implemented and 
can be used to generate reference signals. Below in Figure 10 is the game 
controllers that were used. 

 

 
Figure 10 Logitech Game controller and Microsoft SideWinder. 

2.2 Fixed-point 

Internally, computers treat and store information using bits,  � ∈ �0,1
	denoted	ℤ�. The information in a set of bits has no inherent meaning, it 
depends entirely on how the data is interpreted. One natural interpretation of bits 
is as positive integers, coded in natural binary code (NBC), but it is not the only 
one. 

Consider a data byte � represented by 8 bits  
 � = ���, ��, ��, ��, ��, ��, ��, ��
, ∀�� ∈ ℤ�. 
 
Interpreting the information stored in that byte as a positive integer in NBC, 

its real world value �	represented by � would be 
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� =��� ∙ 2� .�
�!�  

 
The byte � = 10011101 would then be interpreted as � = 157 since 
 

� = ��� ∙ 2��
�!�= 1 ∙ 2� + 0 ∙ 2� + 0 ∙ 2� + 1 ∙ 2� + 1 ∙ 2� + 1 ∙ 2� + 0 ∙ 2� + 1 ∙ 2�= 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1= 157. 

 
Another way to interpret the information in � is to treat, for example, ��⋯�� as an integer and the rest as the fractional part. We then have 
 

� = ��� ∙ 2�)�.�
�!�  

 
and, again with � = 10011101, the interpretation would be � = 9.8125 since 
 

� = ��� ∙ 2�)��
�!�= 1 ∙ 2� + 0 ∙ 2� + 0 ∙ 2� + 1 ∙ 2� + 1 ∙ 2)� + 1 ∙ 2)� + 0 ∙ 2)� + 1 ∙ 2)�= 8 + 0 + 0 + 1 + 0.5 + 0.25 + 0 + 0.0625= 9.8125. 

 
which is 157/2�. Thus, � can here be used to store both an integer and a decimal 
value depending on how we interpret the information. 

Depending on the interpretation, the information could have virtually any 
meaning. Integer and decimal values are just examples. The information could 
also be interpreted as CPU instructions, memory addresses, characters etc. 

Data representation 

Computers usually use a floating-point representation of real numbers for 
computations. The floating-point representation allows for numbers in a large 
span with high resolution. However, when using hardware such as a DSP-
processor or an FPGA, the floating-point representation is often not available. 

A hardware implementation of floating-point operations like addition and 
multiplication is very surface- and time-expensive compared to integer operations. 
Using a fixed-point representation, one can usually achieve faster execution times 
and more efficient use of the silicon surface area at the cost of reduced precision 
or limited signal range. 

The choice of representation, floating-point or fixed-point, is a tradeoff 
between precision/range constraints and surface/time constraints. For 
computations demanding high accuracy in the results, a floating-point 
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representation might be suitable, but for high speed HILS demanding very fast 
computations, a fixed-point representation that trades reduced precision for speed 
might be more suitable. 

Fixed-point representation 

From a hardware point-of-view, fixed-point arithmetics is essentially integer 
arithmetics with bit shifting. Using integers to represent non-integer values is 
done by considering an imaginary binary point as follows. 

Consider the binary representation of an integer in NBC 
 

(�-, �-)�, ⋯ , ��, ��, ��) = ��� ∙ 2� ,			∀� ∈ ℤ�-
�!� . 

 �/ �/−1 ⋯ �4 �3 �2 �1 �0 
Figure 11 Binary data representation 

 
Now, using the same set of bits to represent a non-integer value can be done 

by placing a binary point between 2 − 1 and 2. Thus 
 

 

 
 
 

(�-,⋯ , �34�, �3, �3)�, ⋯ , ��) = ��� ∙ 2�)3,			∀� ∈ ℤ�-
�!�  (2.1) 

�- �-)� ⋯ �3 �3)� ⋯ �� �� 
         ↑ 

Figure 12 Fixed-point data representation with binary point 

 
The bit to the far most left, �-, is denoted Most Significant Bit (MSB) and 

correspondingly we have Least Significant Bit (LSB) to the right.  

Range 

The integer data type is limited in size by hardware constraints which are machine 
dependent. For standard CPUs however, an integer 6 is bounded by 

 0 ≤ 6 ≤ 289 − 1 
 

if unsigned and  
 −289)� ≤ 6 ≤ 289)� − 1 
 
if signed and using two´s complement, see eg. [8], where :; is the word length. 
Typically we have :; = 32 in most modern PC´s but other values are possible, 
e.g. 16, 24 and 64. 
 



18 

For a fixed-point representation with the binary point at 2, the remaining :; − 2 
bits of the word are used to store the integer part and the sign. We thus have the 
following range for a real variable in fixed-point representation 
 −289)3)� ≤ � ≤ 289)3)� − 23. 
 

Resolution 

A fixed-point representation with the binary point between 2 − 1 and 2 is said to 
have 2 bits of precision. The smallest number that can be represented with that 
representation is the resolution < given by 
 < = 2)3. 

 
With a fixed-point representation it is a trade-off to cover either a large 

signal range with low precision or a small range with high precision. The 
combination of large signal ranges and need for high precision leads to a 
representation using very large :; and most of the benefits of fixed-point can be 
lost. 

So, for signals with large dynamic range and high precision requirements a 
floating-point representation is usually better. For signals, or equations, where one 
can accept either limitation in precision or in range, a fixed-point representation 
can be accurate enough and even increase some critical performance 
requirements, such as execution time or minimize silicon surface area when 
implemented in hardware. 

Q-notation 

The Q-notation is a convenient way to specify a fixed-point representation. It was 
introduced by Texas Instruments, see e.g. [9].In Q-notation two integers are used 
to specify the number of bits needed to represent the integer and fractional part of 
a real number, denoted  

 =[?, 2] 
 

or originally  
 =?. 2 
 
The integer ? is used to represent the number of bits needed for the two´s 
complement of the integer part and 2 the number of bits needed for the fractional 
part. Mapping the Q-notation to the range (for a real value) and resolution 
described in the section above, the resolution of =[?, 2] is 2)3 and the range is 
 −2A ≤ � ≤ 2A − 23 
 
The total number of bits needed are :; = ? + 2 + 1, the extra bit needed to 
store the sign of the number (as mentioned in the previous section). 
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3. Implementation and Analysis 

This section describes the implementation of fixed-point support in Dymola. It 
covers the implementation of arithmetic, Boolean, and relational operations, and a 
couple of basic methods for range analysis. Experimental Modelica annotations 
used in this report is presented and the structure and details of the generated code 
is described. 

3.1 Fixed-point arithmetics 

Conversion 

Converting a floating-point value to a fixed-point value is, if given a 
representation, relatively simple. The task is to find an integer to store the 
floating-point value in and to find a rule that can be used to recover the floating-
point value without losing too much information. Using binary point-only scaling 
(BPO), this is done by introducing an imaginary binary point as in (2.1). 
Mathematically, a fixed-point representation 6 of a floating-point variable � can 
be described by 

 

 6 = B23 ∙ �C, 2, 6 ∈ ℤ, � ∈ ℝ, (3.1) 

 
where 2 is the precision, or equivalently the placement of the binary point left of 
the LSB, and B∙C denotes the floor function (other rounding functions could be 
used to customize the rounding, eg. round towards zero or ceiling). The precision 2 can be both positive and negative and can be interpreted as a scaling factor, as 
in (3.1). To recover the floating-point value of a fixed-point representation we just 
divide with the scaling factor. Hence the recovered value �E of a fixed-point 
representation 6 is 
 

 �E = 623 = 2)3 ∙ 6, 2, 6 ∈ ℤ, �E ∈ ℝ. (3.2) 

 
As an example, consider converting a non-integer value to fixed-point using 

e.g. 2 = 10 bits of precision. Let us assume that the value to convert is � = 1.1. 
The fixed-point value is then, by (3.1) 

 

 6 = B2�� ∙ 1.1C = B1126.4C = 1126 (3.3) 

 
and the recovered value is, by (3.2), 
 

 �E = 11262�� = 2)�� ∙ 1126 ≈ 1.099609375. (3.4) 

 
It is clear that an error has been introduced by the conversion and recovery since �E ≠ �. In fact, the error comes from the rounding towards zero done by the floor 



20 

function when converting to fixed-point, the recovery itself is error less. Using 
(3.1) and (3.2) we can derive a bound on the error by concluding that 

 B23 ∙ �C ≤ 23 ∙ � < B23 ∙ �C + 1			 → 
 6 ≤ 23 ∙ � < 6 + 1				 → 
 0 ≤ 23 ∙ � − 6 < 1			 → 
 0 ≤ 23 ∙ � − 23 ∙ �E < 1			 → 
 0 ≤ � − �E < 2)3. 
 

Hence the maximum magnitude of the error is 
 sup|y − yE| = 2)O. 

 
Using the numerical values from (3.3) and (3.4), we have 
 � − �E = 0.000390625 < 2)�� = 0.0009765625. 
 
The smallest number that can be represented is the same as the resolution, 2)3.  
 
In order to assert that no overflow or wraparound occurs  
 max(|6|) ≤ 289)� − 1, ∀6 
 
must always hold. This implies that for a given word length there is a limit on the 
achievable precision. This is closely coupled to the range of the variable since, 
using the Q-notation described in section 2.2, :; = ? + 2 + 1. 

Arithmetic operations 

The basic arithmetic operations on fixed-point numbers, addition, subtraction, 
multiplication, and division, are operations with two inputs (the operands) and one 
output (the result). These operators are usually denoted binary operators. They can 
be implemented using ordinary integer arithmetic operations and bit shifting. The 
bit shifts (left shift and right shift) of an integer number 6 are 

 

 (6 ≪ 2) = 6 ∙ 23 (3.5) 

 
and 
 

 (6 ≫ 2) = B6 ∙ 2)3C. (3.6) 

 
Note that in (3.6) only the integer part of the result is kept and the remainder is 
discarded. This means that we lose information and errors are introduced. 
Furthermore, the operation (in e.g. C) is compiler dependent for signed integers 
taking a negative value [10], so care has to be taken choosing a compiler that 
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interpret right shift as defined above, otherwise obscure and hard-to-trace errors 
may be introduced. Bit shifting is a fast operation that is used extensively to 
rescale both the inputs of an operation and the output. 

An additional note is that since the implementation of right shift is compiler 
dependent one can generate code for an integer division with the corresponding 
power of two instead and let the compiler optimize the code. 

Addition 
Addition of two fixed-point variables =� and =� on the form =[?�, 2�] and =[?�, 2�] can be described by finding = such that 

 = = =� + =� 
 

In order to add =� and =�, the binary points must be aligned, see. e.g. [11]. This 
can be done if both =� and =� have the same number of fractional bits, 2� = 2�	. 
This lets us divide fixed-point addition in two different cases; 

 
• Aligned binary points, 2� = 2� 
• Unaligned binary points, 2� ≠ 2� 

 
If the binary-points are aligned, the two variables can be added, assuming that the 
result is not larger than the representation can handle. If the binary points are not 
aligned, then one or more of the operands must be shifted before the addition can 
be performed. The different cases are discussed in more detail below. 
 
Case 2� = 2�  
 
When 2� = 2� = 2 the two variables can be added according to 
 = = =� + =� 
 
and = will have the same number of fractional bits as the operands, 2. The integer 
part of = can be stored using max(?�, ?�) + 1 bits. As a motivating example 
consider the “worst case” when =� = =�. Then 
 =� + =� = =� + =� = 2 ∙ =� = =� ∙ 2� = =� ≪ 1 
 
or in words, multiplying with 2 is the same as shifting left with one bit, thus one 
more bit is needed. Since one more bit is potentially needed there is risk of 
overflow. Using the Q-notation this could be written as 

 

 =[?�, 2] + =[?�, 2] = =[max(?�, ?�) + 1, 2] (3.7) 

 
Note that (as explained before) the word length needed to store =[?, 2] is ? + 2 + 1 or for the example above 
 

 (max(?�, ?�) + 1) + 2 + 1 = max(?�,?�) + 2 + 2 (3.8) 
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Case 2� ≠ 2�  
 
If 2� ≠ 2� then the binary points must be aligned before the addition. Essentially 
this corresponds to shifting one or both operands using left and/or right shifts as 
previously described. There are several possible shifts that can be performed in 
order to align the binary points and in order to make a decision a basic strategy 
must be defined. 

As mentioned in the beginning of this section, left shifts are error less 
(assuming that they do not introduce overflow) and right shifts can introduce an 
error. In order to lose as little information as possible it is preferable to have no 
(or as few as possible) right shifts. The basic strategy is then to only use left shifts 
whenever possible. A constraint is that left shifting can cause overflow. We 
consider this a sub-case of 2� ≠ 2�. 
 
Sub-case 2� ≠ 2� only left shifts 
 
Left shifts correspond to a multiplication with a power of two of the fixed-point 
representation, (3.5). Given that the operand after shifting fits in the word length, 
the operand with the smallest number of fractional bits is shifted to make the 
alignment.  
 2� > 2�  
 =[?�, 2�] + (=[?�, 2�] ≪ (2� − 2�)) = =[max(?�, ?�) + 1, 2�] 
 
with the constraint on =� that 
 ?� + 2� + 1 ≤ :; 
 
in order to avoid overflow. 
 
Example:  
Consider =�[10,15], =�[5,10]	and	:; = 32. 
 =� + =�: =�[10,15] + (=�[5,10] ≪ 5) = =[10,15] + =[5,15] = =[11,15]. 
 
The constraint on =�is fulfilled since 5 + 15 + 1 < 32. 
Note that we must also assert that the result can be stored in a register, (3.8), e.g. 
 max(10,5) + 15 + 2 = 27 < 32. 
 
Sub-case 2� ≠ 2� left and right shifts 
 
It is not always possible to only use left shifts. Consider the example below where 
the binary points cannot be aligned by only shifting 2� since the constraint will 
not be fulfilled and an overflow would occur. 
 
Example: 
Consider =�[10,18], =�[15,5]	and	:; = 32. According to the basic strategy we 
would like to use left shift on 2�, since 2� > 2�. Doing that would result in   
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 =� + =�:			=�[10,18] + (=�[15,5] ≪ 13) = =[10,15] + =[15,18] = =[16,18]. 
 
The constraint on =�	will not be fulfilled since 15 + 18 + 1 = 34 ≰ 32 and we 
would risk overflow. Furthermore the result would not be possible to store in a 
register since it would require 16 + 18 + 1 = 35 bits. In order to avoid this we 
must assure that the constraint is fulfilled and we have 
 ?� + (2� ≪ X) + 1 ≤ 32 
 
and the largest left shift X that can be performed is  
 X ≤ 32 − 1 −?� − 2� 
 
which for the example gives X = 11. Using that we shift =� and get 
 =�[15,5] ≪ 11 = =�[15,16]. 
 =� now has 16 fractional bits and =� needs to be right shifted in order to align the  
binary points. We have, for =� 
 =�[10,18] ≫ X = =�[10,16] 
 
giving X = 2. In order to add =�	and	=� in this case we had to apply both left and 
right shifts to the operands. The addition becomes 
 =� + =�:			(=�[10,18] ≫ 2) + (=�[15,5] ≪ 11) = =[10,16] + =[15,16]= =[16,16] 
 
We need 16 + 16 + 1 = 33 bits to store the result but we only have 32 available. 
We thus need to modify the shifts to avoid overflow and it is sufficient to reduce 
the number of fractional bits to 15 instead of 16 in order to be able to store the 
result. We have 
 =� + =�:			(=�[10,18] ≫ 3) + (=�[15,5] ≪ 10) = =[10,15] + =[15,15]= =[16,15]. 
 
Before summarizing we introduce a notation for left and right shifts 
 

Yℎ(X) = [≪ 		X	,			\]	X > 0≫ |X|,			\]	X < 0≪ 		0	,			\]	X = 0^ 
 
 
We then have the following rules for =� + =� 
 			=�[?�, 2�]	Yℎ(X�) + =�[?�, 2�]	Yℎ(X�) = =[?, 2] 
 
where, if 2� > 2� 
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 ?� + 2� + 2 ≤ :;:			 _ X� = 0X� = 2� − 2� ^ → =[max(?�, ?�) + 1, 2�] 
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; −?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2] 
 
else (2� ≤ 2�) 
 ?� + 2� + 2 ≤ :;:			 dX� = 2� − 2�X� = 0 ^ → =[max(?�, ?�) + 1, 2�] 
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; − ?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2] 
 
 
 

Subtraction 
Subtraction follows the same rules as addition and we have for =� − =� 

 			=�[?�, 2�]	Yℎ(X�) − =�[?�, 2�]	Yℎ(X�) = =[?, 2] 
 
where, if 2� > 2� 
 ?� + 2� + 2 ≤ :;:			 _ X� = 0X� = 2� − 2� ^ → =[max(?�, ?�) + 1, 2�] 
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; −?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2] 
 
else (2� ≤ 2�) 
 ?� + 2� + 2 ≤ :;:			 dX� = 2� − 2�X� = 0 ^ → =[max(?�, ?�) + 1, 2�] 
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; − ?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2] 
 

Multiplication 

Multiplication of two fixed-point variables =�	and	=� on the form =�[?�, 2�], =�[?�, 2�] gives a result on the form =[?� +?� + 1, 2� + 2�], 
according to e.g. [11]. We split multiplication in two cases; the result can be 
stored and the result is too big to store. 

 
The first case is trivial, just multiplying the factors and getting a result on 

the form =[?� +?� + 1, 2� + 2�]. This result could then be rescaled if needed to 
remove a portion of the least significant bits. A common choice is to truncate the 
result so that is does not have more fractional bits than any of the factors. As 
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before note that we need ? + 2 + 1 bits to store =[?, 2] and thus we need ?� +?� + 2� + 2� + 2 bits to store the multiplication. 
 

Example: 
Consider multiplying =�[10,2]	and	=�[3,5] on a system with :; = 32. We then 
need 10 + 3 + 2 + 5 + 2 = 22 
 
bits to store the result that will be on the form =[14,7]. In this case the factors can 
be multiplied like “regular” integers since the result can be stored without 
manipulation. 

 
The second case is more troublesome since we cannot perform the 

multiplication without rescaling the factors a priori. Just multiplying them and 
then trying to rescale the result would potentially destroy the information (due to 
overflow or wraparound). Some processors have an intermediate register that can 
hold 2 ∙ :; but that is not the case normally. If such a register is available then 
the multiplication could be performed and the result could be truncated and then 
returned causing less loss of information. 

Since we cannot always count on the availability of a 2 ∙ :; register we 
shift the factors prior to multiplying them to assure that the result can be stored 
without overflow. We then have 

 e=�[?�, 2�]	Yℎ(X�)f ∗ e=�[?�, 2�]	Yℎ(X�)f. 
 
We compute h = :; − 1 − (?� +?� + 1ijjjkjjjlA + 2� + 2�ijkjl3 ) or in words: what is the 

difference between the result and what we can store, how much must the factors 
be shifted prior to multiplication in order to make the result fit in :; − 1. We are 
free to distribute the shifts Yℎ(h) on the two factors. There has not been time to 
investigate if there is a distribution that minimizes the error of this operation so 
the naïve approach to distribute the shifts equally has been chosen whenever 
possible. Since the shifts are positive this is only possible when h is an even 
number. If h is uneven the factor with the most fractional bits is shifted more than 
the other. Thus if 
 

2� > 2� :			mX� = nh2oX� = ph2q ̂
 
and 

 

2� ≤ 2� :			mX� = ph2qX� = nh2o ̂
 
The result will be on the form  



26 

 e=�[?�, 2�]	Yℎ(X�)f ∗ e=�[?�, 2�]	Yℎ(X�)f= =[?� +?� + 1, 2� + X� + 2� + X�] 
 
Example: 
Consider multiplying =�[10,8]	and	=�[13,5] on a system with :; = 32. To 
store the result 10 + 13 + 8 + 5 + 2 = 37 bits would be needed. In order not to 
destroy the information we shift the operand according to the rules above. We 
have 
 h = 32 − 1 − (10 + 13 + 1 + 8 + 5) = 32 − 1 − 37 = −6 
 
and should thus shift according to  
 e=�[10,8]	Yℎ(−3)f ∗ e=�[13,5]	Yℎ(−3)f= (=�[10,8] ≫ 3) ∗ (=�[13,5] 	≫ 3) = =�[10,5] ∗ =�[13,2] 
 
to get a result on the form 
 =[10 + 13 + 1,5 + 2] = =[24,7] 
 
that can be stored using ? + 2 + 1 = 24 + 7 + 1 = 32 bits. 

Division 
For division only a simple rule was implemented to make sure that the fractional 
bits are set so the results scale correctly. The number of fractional bits for the 
result, 2, is set to 
 2 = 2� − 2� 
 
where 2� and 2� are the fractional bits of the nominator and denominator. 

Interval analysis was used to determine the range of the result, and based on 
that allocate integer bits.  

 
This simple rule worked with the applications in this thesis but would need 

improvement for more complex applications. One natural step would be to  
left shift the nominator as much as possible, while avoiding overflow, in order to 
keep as much precision as possible. 

Boolean operations 

Boolean operators are considered only for single bit Boolean variables, that is, 
variables that only can take the value true or false, represented by 1 and 0. 
Denoting a single bit Boolean variable � we have 
 � ∈ ℤ� = �0,1
. 

 
From Boolean algebra and digital circuit theory we find a number of 

Boolean operators used to represent logical functions. For our purpose, since we 
only consider the logical functions available in Modelica, only three of them are 
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currently interesting; r2�, st and /uv. Boolean variables and operations do not 
introduce any additional errors in the system. This is because the output of a 
Boolean operator is uniquely determined by the discrete inputs, which are also 
errorless. 

And 

Standard Boolean bitwise r2� operation defined by  
 r2�(��, ��) = _1, \]	��, �� = 10, uvℎwtx\Yw			^ 

Or 

Standard Boolean bitwise st operation defined by 
 st(��, ��) = _0, \]��, �� = 01, uvℎwtx\Yw		^ 

Not 

Bitwise inversion, /uv, defined by 
 /uv(�) = _0, \]	� = 11, \]	� = 0^ 

Relational operations 

Denoted relational operations are operators that take fixed-point variables as 
inputs and produce a Boolean output. They are typically used as conditions in If-
Then-Else like constructs to make decisions. 
Here we consider; IfThenElse, Equal, NotEqual, Less, LessEqual, Greater and 
GreaterEqual. 

Using the fixed-point variables, 6y, and the fixed-point expressions, wXzty, 
 6y , wXzty ∈ ℤ, {u2� ∈ ℤ� 
 

the conditional operations are explained below. 
Note that in order to make a meaningful evaluation of a condition, for 

example if two variables are Equal, the variables might need rescaling to have the 
same number of fractional bits, assuming that they are not boolean variables. 

Consider again the Equal operator. All variables will be considered to be 
equal if the difference of the two inputs is smaller than the resolution for the given 
number of fractional bits. This may cause errors, e.g. selecting the wrong branch 
in an If-Then-Else construct. This reasoning is valid for all conditional operators 
considered here. 

As always, when shifting fixed-point variables, care needs to be taken so 
that the shifts do not cause overflows. 

If-Then-Else 
The If-Then-Else operator evaluates a Boolean condition and returns a fixed-point 
value or expression. It is used in discrete and/or Boolean equations to evaluate 
different branches depending on the condition. It is a ternary operator, i.e., takes 
three inputs, and the generic syntax of the If-Then-Else statement is 
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 |]}ℎw2~�Yw({u2�, wXzt�, wXzt�) = _wXzt�, \]	{u2� = 1wXzt�, \]	{u2� = 0̂ 

Equal 
The Equal operator is equivalent to the standard syntax ”==” operator. 

 ~6���(6�, 6�) = _1, \]	6� = 6�0, uvℎwtx\Yw^ 
 

Not equal 
The NotEqual operator is equivalent to the standard syntax ”! =” operator. 

 /uv~6���(6�, 6�) = _1, \]	6� ≠ 6�0, uvℎwtx\Yw^ 
Less 
The Less operator is equivalent to the standard syntax ”<” operator. 

 ;wYY(6�, 6�) = _1, \]	6� < 6�0, uvℎwtx\Yw^ 
Less equal 
The LessEqual operator is equivalent to the standard syntax ”<=” operator. 

 ;wYY~6���(6�, 6�) = _1, \]	6� ≤ 6�0, uvℎwtx\Yw^ 
Greater 
The Greater operator is equivalent to the standard syntax ”>” operator. 

 �tw�vwt(6�, 6�) = _1, \]	6� > 6�0, uvℎwtx\Yw ̂

Greater equal 
The GreaterEqual operator is equivalent to the standard syntax ”>=” operator. 

 �tw�vwt~6���(6�, 6�) = _1, \]	6� ≥ 6�0, uvℎwtx\Yw ̂

Relative and absolute resolution 

Resolution, as defined before, is a measure on the smallest number that can be 
represented with a fixed-point representation using 2 bits of precision. For 
variables and parameters it can be given using either relative or absolute 
resolution.  

 
The relation between relative resolution, <���, and absolute resolution, <���, for a 
variable, �, is defined by: 
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ℛ(�) ∗ <��� = <��� 
 

where ℛ(�) = max	(|�Ay3|, |�A��|)	 is the range of �. 
 
Typically, when the range of a variable is known the relative resolution is a good 
way to specify the resolution but in some cases it is very convenient to use 
absolute resolution instead. An example could e.g. be a signal coming from an AD 
converter where the number of bits used is known.  
 
Example 
A relative resolution of 0.001 in the range 100 is 
 100 ∗ 0.001 = 0.1 
 
i.e., the absolute resolution is 0.1. 
 
Using (3.2) we see that this requires four fractional bits 
 2)� < <��� < 2)� 0.0625 < 0.1 < 0.125 
 
Example 
An AD converter outputs a signal with ten bits. The absolute resolution is  
 <��� = 2)�� ≈ 0.00098 
 

As can be seen above the number of fractional bits, 2�, is directly related to the 
resolution. The exact relation can be found by  
 <��� = 2)3� = 123� = ℛ(�) ∗ <��� 			→ 

23� = 1ℛ(�) ∗ <��� 			→ 

 2� = log�( 1ℛ(�) ∗ <���) 
 
Since 2� ∈ ℤ it needs to be rounded, and to be able to represent the resolution we 
require that 
 	 2)3� ≤ <��� 
 23� ≥ 1ℛ(�) ∗ <��� 
 2� ≥ log�( 1ℛ(�) ∗ <���) 
which holds for 
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2� = nlog�( 1ℛ(�) ∗ <���)o 
 
In Dymola the resolution is used to compute the number of fractional bits needed. 
The implementation allows both relative and absolute resolution as input, which 
will be shown in section 3.3.  

Limitations 

Many features of the Modelica language are supported, eg. arrays, matrices, 
while-loops, algorithm sections, etc., but there are some limitations. The most 
important ones are: 

 
• No function calls (Modelica, built-in nor external) 
• No for-loops 
• ^ (power operator) not supported 

3.2 Range analysis 

To achieve high precision in the arithmetic operations it is important to make 
good use of the available bits. This means to allocate enough integer bits to make 
sure that there is no overflow while not losing too much precision. 

 
As a motivating example consider an expression on a system with an 8-bit 

word length 
 6 = 6� + 6� 

 
If no information on the range ℛ(6) = 6� + 6� of the expression is available, one 
simple approach is to split the available bits evenly between the integer and 
fractional part. For this example that would be either =[3,4] or =[4,3] 
(remembering that =[?, 2] needs ? + 2 + 1 to store). This gives the result, 6, 
three or four bits of precision assuming that the inputs, 6� and 6�, are known with 
precision higher or equal to that. Let us now consider that it is known that the 
range of the expression is in the interval [0,1]. The expression can then be on =[1,6] format and the result would have 6 bits of precision instead of 3 or 4. 

 
Using range analysis the range of all expressions and sub-expressions can be 

determined more or less accurately depending on what method is used and what 
data is available on the signals. A couple of different approaches are presented 
next. 

Bit propagation 

Bit propagation is a coarse method to approximate the range of an expression and 
how it grows in the expression tree. The idea is to propagate the fixed-point 
representation through the expression to get an estimate on the range. 

As we know from previous sections, (3.7), adding two fixed-point numbers 
requires them to have the same number of fractional bits, 2. In the example below. 

 [?�, 2] + [?�, 2] = [max	(?�, ?�) + 1, 2]	 
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two fixed-point numbers are added and we see that the number of integer bits is  
increased by one for each addition. The analogy for multiplication is 

 [?�, 2�] ∙ [?�, 2�] = [?� +?� + 1, 2� + 2�] 
 
and we see that the integer bits grow rapidly. 

Interval arithmetics 

Interval arithmetics can be used to estimate intervals of expressions and 
intermediate results. It was introduced in the 1960´s by R. E. Moore in 
[12].Unfortunately, interval arithmetics also often results in an overestimate of the 
resulting intervals. 
 
The basic propagation rules, see eg. [13], are 
 [�, �] + [{, �] = [� + {, � + �] 
 [�, �] − [{, �] = [� − �, � − {] 
 [�, �] ∗ [{, �] = [min	(�{, ��, �{, ��),max	(�{, ��, �{, ��)] 
 [�, �][{, �] = �min ��{ , �� , �{ , ��� ,max ��{ , �� , �{ , ���� 
 
where 0 is not allowed to be in [{, �] for division. 
These rules have been implemented to support interval arithmetics in Dymola. We 
also have 
 \]	wXzt	vℎw2	[�, �]	w�Yw	[{, �] = [min(a, c) ,?�X(�, �)] 
 
for if-then-else expressions. For interval arithmetics the ranges of the variables are 
propagated though the expressions giving resulting intervals for intermediate 
results. The range of the variables themselves can be input by the user or it can be 
derived/set by heuristics. 

Simulation-based approach 

Monte Carlo simulations can be used to cover a wide range of use cases and get a 
good approximation on the ranges of variables and expressions. Given a set of 
cases, one can expect good results on the accuracy of the ranges. However, it is 
time-consuming to perform exhaustive sets of simulations and it is hard, if not 
impossible, to know if all cases are covered. 

There are ways to configure Dymola for Monte Carlo simulations but the 
infrastructure to collect and push range information from Monte Carlo simulations 
back into the model was missing and therefore this approach was never evaluated. 
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Approach in Dymola 

The approach used for range analysis in this work is interval arithmetics. An 
implementation of bit propagation was also tested but discarded since interval 
arithmetics gave tighter intervals. 

3.3 Experimental annotations 

In order to be able to specify resolution for a Modelica variable a new 
experimental annotation has been introduced. It has the syntax 
 

annotation(fixedpoint(resolution=<Real value>)); 

 
to specify the relative resolution, or 
 

annotation(fixedpoint(bits=<Integer value>)); 
 
to specify an absolute resolution by specifying the (positive or negative integer) 
number of fractional bits for the variable. A negative number of fractional bits can 
be view as a scaling, just as a positive number, to reduce the size of large signals. 
 
Example of annotated variables with min and max: 
 

Real I(min=-10, max = 10) annotation(fixedpoint(resolution=0.001)); 
 

output Real to_DA(min=0, max=1) annotation(fixedpoint(bits=8)); 
 

The annotations can be used as modifiers (not allowed in Modelica language 
specification) by enabling special support in Dymola. The reason is that the user 
should be able to input additional information (like resolution, min and max) in a 
model just by extending from a base model and modifying it, thus working in a 
“true” object-oriented style, reusing the base model.  

3.4 Defaults and heuristics 

In order to get a starting point, to let a user start experimenting without having to 
set min/max and resolution for all variables, default values for min, max and 
resolution are used in many cases. These apply to two categories of variables; 
parameters and variables. Exception are inputs to the system and in many cases 
discrete state variables. Inputs must be user annotated and if not, the translation 
will be aborted and an error message will list the variables that must be annotated 
in order to proceed. 

With these requirements and the rules for default values described here, a 
starting point for fixed-point simulations is set without the need to provide 
min/max and resolution for all variables. The user can, and should, then modify 
the defaults to use better (more confident) min/max values, and to use resolution 
to control what variables need the most resolution in order to keep the system 
within tolerable limits using fixed-point arithmetics instead of floating-point. 
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Parameters 

Parameters are variables that are constant during simulation. What separates them 
from constants in Modelica is that the user should have the possibility to change 
them without recompiling the model. An implication of this is that parameters 
cannot be converted to fixed-point literals, like constants and real literals, and 
hard-coded for better performance. The constants, or literals, can be converted 
once, at translation time, whereas the parameters need to be converted during 
runtime in the host.  
 
For parameter the following default values are used: 
 

• ?\2 = −2 ∙ |����w| 
• ?�X = 2 ∙ |����w| 
• tw��v\�w	twYu��v\u2 = 10)� 

 
where ����w is the value assigned to the parameter at translation time. The 
implementation allows the default value to be overridden by setting the Dymola 
flag Advanced.ParameterResolution . 

Variables 

A variable that is not an input to the system, a discrete state variable or a 
parameter can be computed using inputs, states and parameters or other variables 
that are already known (equation systems are not supported for fixed-point 
handling in Dymola). This means that the min/max can be derived using interval 
arithmetics for all variables that are not in the categories mentioned above, with 
the exception of discrete state variables in some cases, an example will be given 
below. Hence, the min/max defaults specified below are just symbolic, after 
translation they are normally overwritten by a derived or a user-specified min/max 
value. 
 
For variables the following default values are used: 
 

• ?\2 = _ −10)��,														\]	tw��		−2147483647,					\]	\2vw�wt ̂

• ?�X = _ 10)��,														\]	tw��		2147483647,					\]	\2vw�wt ̂
• tw��v\�w	twYu��v\u2 = 10)� 

 
As for parameters, the implementation allows the default value to be overridden 
by setting the Dymola flag Advanced.VariableResolution . 
 
As an example when the min/max for a discrete state variable can be derived, 
consider a PID controller where we have two discrete states; i and e, described by 
the Modelica block below.  
 

block SimplePID 
  parameter Real Gain(min=0.1, max=2)=1; 

  parameter Real DT(min=0.02, max=1)=0.1; 

  parameter Real Ti(min=0.1, max=100)=100; 

  parameter Real Td(min=0, max=2)=0; 
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  input Real Sp(min=-10, max=10) annotation(fixedpoint(resolution=1e-5)); 

  input Real Pv(min=-10, max=10) annotation(fixedpoint(resolution=1e-5)); 

  output Real C annotation(mapping(...)); 
protected  
  Real e(start=0, fixed=true); 
  Real i(start=0, fixed=true, min=-100, max=100) annotation(fixedpoint(resolution=1e-
5)); 
equation  
  when sample(0,DT) then 
    e = Sp - Pv; 
    i = pre(i) + e; 
    C = Gain*(e + DT/Ti*i + Td/DT*(e-pre(e))); 
  end when; 
end SimplePID; 

 
Using a ramp as set point signal and connecting the controller to a simple process 
we get a small system  
 

model Sys 
  SimplePID pid; 
  Process proc; 
equation  
  pid.Sp = if time < 0.5 then 0 else 1; 
  pid.Pv = Subtask.decouple(proc.y); 
  proc.u = Subtask.decouple(pid.C); 
end Sys; 

 
Subtask.decouple()  is a Modelica operator that is used by Dymola to 
partition the system in to different subtasks, described in [7]. For the system 
above the following declarations is generated based on the annotations and 
interval analysis. 
 

/* input Real pid.Sp(min = -10.0, max = 10.0) 
annotation(fixedpoint(resolution = 1E-005)); */ 
int_16 pid_Sp_FP = 0;  
/* Q[1, 14] Derived: min = 0.0, max = 1.0 */ 
 
/* input Real pid.Pv(min = -10.0, max = 10.0) 
annotation(fixedpoint(resolution = 1E-005)); */ 
int_16 pid_Pv_FP = 0;  
/* Q[1, 14] Derived: min = -1.0, max = 1.0 */ 
 
/* discrete Real pid.e */ 
int_16 pid_e_FP = 0;  
/* Q[2, 14] Derived: min = -1.0, max = 2.0 */ 
 
/* discrete Real pid.i(min = -100.0, max = 100.0) 
annotation(fixedpoint(resolution = 1E-005)); */ 
int_32 pid_i_FP = 0; /* Q[7, 10] */ 

 
/* output discrete Real pid.C */ 
int_32 pid_C_FP = 0;  
/* Q[12, 19] Derived: min = -2602.0, max = 2604.0 
*/ 
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/* parameter Real pid.DT(min = 0.02, max = 1.0) = 0 .1 
*/ 
int_16 pid_DT_FP = 1638; /* Q[1, 14] */ 
 
/* parameter Real pid.Gain(min = 0.1, max = 2.0) = 1 */ 
int_16 pid_Gain_FP = 8192; /* Q[2, 13] */ 
 
/* parameter Real pid.Td(min = 0.0, max = 2.0) = 0 */ 
int_16 pid_Td_FP = 0; /* Q[2, 13] */ 
 
/* parameter Real pid.Ti(min = 0.1, max = 100.0) = 100 
*/ 
int_16 pid_Ti_FP = 12800; /* Q[7, 7] */  

 
As can be seen above the min/max of the output, C, is derived by interval analysis 
based on the min/max of other variables. For the input variables, Sp and Pv, the 
derived min/max gave a narrower interval than specified by the user. The user 
specified min/max attributes are then ignored. 

Also note the discrete state variable, e, which only depends on the inputs 
and therefore the min/max could be derived. 

3.5 Code Generation 

Typically, when translating a Modelica model in Dymola, C code for the model 
equations is generated and compiled into an executable that can be run on the PC. 
This executable (dymosim.exe) is the actual simulator that integrates/solves the 
model equations. This “normal” case when simulating a model in Dymola is 
supported for fixed-point code generation and we denote it Internal fixed-point in 
this report. 

Using Modelica_EmbeddedSystems we can, e.g., separate the controller 
part in a system from the plant and map that to an external target. Fixed-point 
code generation for this scenario is denoted External fixed-point.  

The main difference for the scenario above is that the actual computations 
of the fixed-point task are performed on the external target instead of on the PC. 
The simulator, dymosim, is in this case only used for (optional) data logging for 
plotting and animation on the PC. 

Internal fixed-point 

The ´Internal fixed-point´ mode is typically used to study effects and control 
performance using fixed-point computations in a controller compared to using 
floating-point. The effects of fixed-point computations can, e.g., introduce 
unwanted limit cycles due to quantization and overflows affecting system 
stability. 

For an efficient workflow it is essential to easily be able to compare signals 
and the effect they have on the system. To make it convenient for users, code is 
generated such that both fixed-point and floating-point computations are 
computed. A Boolean variable in the GUI (accessible in the Dymola variable 
browser) can then be used to select if the result of fixed-point or floating-point 
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computations shall be used as output. The benefit of this approach is that the 
model only needs to be translated and compiled once. Simulations can then be 
performed using either fixed-point or floating-point by toggling the GUI switch 
without re-translation. 

Below the code for the actual model equations is described in Equations and 
the declaration of fixed-point variables in Declarations. Note that the fixed-point 
variables/equations are not available in the Modelica code of the model; they are 
created during translation and realized in the C code next to the original equations. 

When in the Internal fixed-point mode, all code is generated in the same file 
where Dymola outputs the normal model equations, called dsmodel.c. 

Declarations 
The actual fixed-point variables are declared as local integer variables in the C 
code and are not stored in the result file after a simulation. Example: 

 
/* Real y */ 
int_32 y_FP = 0;  
/* Q[11, 11] Derived: min = -2.0, max = 1202.0 */ 
 
/* parameter Real q1 = 0.5 
annotation(fixedpoint(bits = 11)); */ 
int_16 q1_FP = 1024;  
/* Q[1, 11] Derived: min = -1.0, max = 1.0 */ 
 
/* parameter Real q2(min = 0.0, max = 1000.0) = 
0.5 annotation(fixedpoint(bits = 4)); */ 
int_16 q2_FP = 8; /* Q[10, 4] */ 
 
/* parameter Real q3 = 0.5 
annotation(fixedpoint(bits = 5)); */ 
int_8 q3_FP = 16;  
/* Q[1, 5] Derived: min = -1.0, max = 1.0 */ 
 
/* parameter Real q4(min = 0.0, max = 100.0) = 0.5 
annotation(fixedpoint(bits = 10)); */ 
int_32 q4_FP = 512; /* Q[7, 10] */ 
 
/*  time */ 
int_32 time_FP = 0; /* Q[7, 10] */ 

 
Instead new variables are created and the rescaled values of the fixed-point 
variables are mapped back during simulation.  

For a variable y  we declare in dsmodel.c as a local variable 
 
<int_type>  y_FP  

 
This is the actual integer variable that holds the value of the fixed-point 
computation. Furthermore, we also introduce two new versions of the Modelica 
variable under the virtual Modelica component <fixedpoint> . These two 
variables are 
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y_fromfixedpoint 

 
which is the recovered value of the fixed-point variable and 
 

y_original   
 
which is the value of the original equation computed using floating-point 
arithmetics. This gives a hierarchy in the stored result (that is also reflected in the 
Dymola variable browser, see e.g. Figure 20). Note that those two variables are 
not declared as local C variables, they are instead declared as if they existed as 
real variables in the model. The reason is that it is then possible to get a nice 
structure as described below.  

As an example of the structure consider three variables a,b,c,  where  b 
and c  belong to the fixed-point task. We then get 

 
<a> 
<b> 
<c> 
<fixedpoint> 
   | - <b> 
   |      | - fromfixedpoint  
   |      | - original  
   | - <c> 
   |      | - fromfixedpoint  
   |      | - original  

 
Below, in the Equations section, the implementation and interpretation of the new 
variables are described. 

Equations 
As mentioned before, code is generated such that equations are computed in both 
floating-point and fixed-point. Below is an example in C code for the variable y  
from the previous example. As can be seen, the two new variables introduced in 
the previous section, y_fromfixedpoint  and y_original  are always 
computed and then only one is used to assign the original variable depending on 
the value of the Boolean toggle variable useFixedPoint . 

 
/* Fixedpoint equations */  
/* y = q1+q2+q3+q4+time; */  
y_FP = ((((q1_FP + (q2_FP << 7)) + (q3_FP << 6)) 
 + (q4_FP << 1)) + (time_FP << 1)); 
/* Mapping from fixedPoint variables to Modelica  
 variables */ 
/* y = 2^(-11)*y.FP */ 
fp_y_fromfixedpoint = 0.00048828125*y_FP; 
fp_y_original = q10_0+q20_0+q30_0+q40_0+Time; 
y0_0 = useFixedPoint0_0 ? fp_y_fromfixedpoint :  
 fp_y_original; 
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The generated code contains automatically generated comments for improved 
readability and traceability. 
 First in the block is a comment with the original Modelica equation 
followed by the actual code for the corresponding fixed-point variable. Then, 
before the mapping back to a Modelica variable, the scaling is clarified in a 
comment. 

External fixed-point 

The External fixed-point mode is used to generate code that can be incorporated 
in a framework and downloaded on an external target platform for further testing 
and verification. To keep the code portable, it is split into two files; declarations.c 
and equations.c, containing the variable declarations and the fixed-point model 
equations, respectively. These two files can then be included in a user written 
framework, see. e.g. dymola_wrapper in section 4.3 for an example 
implementation. Code for data logging and interaction (eg. reference signal 
generation using a game-pad) is optionally generated for the normal simulator, 
dymosim, in the file dsmodel.c.  

Declarations 
The declarations of local fixed-point variables are in declarations.c, which is 
included by the framework code for the external target. In dsmodel.c, the same 
file is included if data logging is enabled to get consistent variable declarations. 
An example is: 
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/* Type definitions for fixedpoint data types */ 
#ifndef  DYMOLA_FP_TYPES 
#define  DYMOLA_FP_TYPES 
  typedef           char  bool_8; 
  typedef           char  int_8; 
  typedef      short  int  int_16; 
  typedef            int  int_32; 
  typedef  long  long  int  int_64; 
#endif 
 
/* input Modelica.Blocks.Interfaces.RealInput 
sendMotorA.u(min = -100.0, max =  
  10.0) annotation(fixedpoint(bits = 0)); */ 
int_8 sendMotorA_u_FP = 0; /* Q[4, 0] Derived: 
min = 0.0 */ 
 
/* input Modelica.Blocks.Interfaces.RealInput 
sendMotorB.u(min = 0.0, max = 100.0) */ 
int_16 sendMotorB_u_FP = 0; /* Q[7, 8] */ 
 
/* parameter Real ramp.height = 100 */ 
int_16 ramp_height_FP = 6400; /* Q[8, 6] Derived: 
min = -200, max = 200 */ 

 
In the example above the type definitions are followed by the declaration of 

two input variables sendMotorA_u_FP  and sendMotorB_u_FP  and a 
parameter ramp_height_FP . 

As can be seen, the declaration of a fixed-point variable includes some 
additional comments to improve the traceability to the original variable in the 
Modelica model, as well as detailed information on the fixed-point representation 
of the variable. 

First is a comment containing the original declaration as found in the 
Modelica code. It is followed by the declaration of the fixed-point variable. Note 
that the fixed-point variable is automatically initialized with the fixed-point 
converted value of its real Modelica value.  

In the example above the fixed-point parameter ramp_height _FP is 
automatically initialized to 6400 which is the value of the Modelica parameter 
ramp.height=100 scaled up using the Q[8, 6] format. 

 100 ∗ 2� = 6400 
 
Finally there is a comment with the Q notation of the selected fixed-point 

representation as well as derived min/max values for those variables where this 
was not set by the user. The min/max, either derived or original, can be used to 
verify the integer part of the fixed-point representation. 

Equations 
The fixed-point model equations are generated in equations.c which can be 
included in a framework assuming that the declarations.c file already has been 
included. As can be seen in the example code below, for a Lego Mindstorms NXT 
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target, each fixed-point equation is preceded by a comment containing the original 
Modelica equation for traceability. The block at the end is optionally generated if 
data logging is enabled. 
 

/* sendMotorA.u = (if time < ramp.duration then 
time*ramp.height/ramp.duration 
   else ramp.height); */ 
sendMotorA_u_FP = ((((time_FP < (ramp_duration_FP 
<< 4)) ? ((time_FP *  
  ramp_height_FP) / ramp_duration_FP) : 
(ramp_height_FP << 4)))) / 2048; 
/* readMotorA.y = 
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count 
  (readMotorA.fromPort.n, time); */ 
readMotorA_y_FP = 
nxt_motor_get_count(readMotorA_fromPort_n_FP); 
/* Sending variables using bluetooth */ 
target_port_bufwrite_int32(sendMotorA_u_FP); 
target_port_bufwrite_int32(readMotorA_y_FP); 
target_port_write_flush(); 

 
The corresponding code in dsmodel.c when data logging is enabled doesn’t 
contain any equations from the model. All equations are replaced with a call to 
read the actual value from the external target for data logging purposes. In the 
example below a generic read function, host_port_read_int32(),  is 
called to read an integer from the target. For this thesis an implementation to read 
from the Lego Mindstorms NXT device was developed. As can be seen in the 
example the variable is calculated by reading the value from the target and then it 
is rescaled to the Modelica variable. As for the Internal fixed-point model the 
variable is preceded by a comment containing its original equation for traceability. 
 

/* sendMotorA.u = (if time < ramp.duration then     
time*ramp.height/ramp.duration 
     else ramp.height); */ 
sendMotorA_u_FP = host_port_read_int32(); 
/* Mapping from fixedPoint variables to Modelica 
variables */ 
/* sendMotorA.u = 2^0*sendMotorA.u.FP */ 
sendMotorA_u = sendMotorA_u_FP; 
/* readMotorA.y = 
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count 
    (readMotorA.fromPort.n, time); */ 
readMotorA_y_FP = host_port_read_int32(); 
/* Mapping from fixedPoint variables to Modelica 
variables */ 
/* readMotorA.y = 2^0*readMotorA.y.FP */ 
readMotorA_y = readMotorA_y_FP; 
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If no data logging (and no Bluetooth communication from PC to target) then the 
target is completely free from the PC and can be run on its own. The example 
code for the Lego Mindstorms NXT target above would then not contain the 
section starting with 
 

/* Sending variables using bluetooth */ 
 

3.6 Automatic error-checking code 

To help users evaluate the fixed-point representation they are using, code can be 
generated to automatically check the error. The current implementation is based 
on generating assert statements that are evaluated after every computation of the 
variable. This will slow down the code and is not applicable when running on an 
external target so it is not enabled by default. Furthermore, the current strategy is 
not sophisticated enough, a small phase shift in the signal can give a large error in 
magnitude and the simulation will stop. 

For the error checking code to be usable, more development is needed, 
which is outside the scope of this thesis. The main idea with this implementation 
is to show that it is possible to integrate that type of code generation in the 
framework automatically. 

The current implementation uses the following error criteria for a variable �. 
 �YYwtv ������A�y�����y3� −	���y�y3��� ≤ 0.001 ∙ e����y�y3��� + �3�Ay3��f� 

 
where ����A�y�����y3� 	is the recovered value from the fixed-point computations, ���y�y3�� is the original value from the floating-point computation and �3�Ay3�� is 
the nominal value of the variable (default value in Dymola is �3�Ay3�� = 1 except 
for pressure variables where �3�Ay3�� = 10�). 

Checking of min/max attributes set by the user can be done by enabling 
assertions for min/max in Dymola. 
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4. Application Examples 

To evaluate the code for External fixed-point the Lego Mindstoms NXT device 
was used as target platform. A Dymola Lego Mindstorms API in the form of a 
Modelica library was developed to support the platform. 

This section describes some application examples, starting with the 
platform, tool chain and Dymola Lego Mindstorms API. Online plotting over 
Bluetooth and the Lego Segway are introduced as application examples. 

4.1 Platform and tools 

Lego Mindstorms NXT 

Lego Mindstorms NXT [14] is essentially a programmable Lego toy. Due to its 
openness and the numerous ways to program, configure and use it, a community 
of technically interested people has grown around it further pushing the limits of 
usage. It is used at several universities, e.g. Lund University and RWTH Aachen, 
as a popular hardware platform in control engineering and mechatronic systems. 

The heart of the unit is the NXT device (in the center of the image below). 
 

 
Figure 13. Lego Mindstorms robot. 
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The NXT device is a Lego brick containing a micro-controller with a 
graphical display, Bluetooth chip and interface (ports) to a number of sensors and 
actuators. It is configurable in numerous ways and the basic kit includes  

 
• The NXT device 
• Touch sensor 
• Sound sensor 
• Light sensor 
• Ultrasonic sensor 
• Servo motors 
• Basic Lego building blocks. 

 
In addition to the basic building blocks, additional add-on sensors and 

actuators can be acquired from third-party vendors. 

HiTechnic 

HiTechnic is a manufacturer of a big range of robotic sensors for the Lego 
Mindstorms NXT. Among their products are the following sensors: 

 
• Acceleration / Tilt Sensor1 
• Color Sensor 
• Compass Sensor  
• Gyro Sensor1 
• IRReciver Sensor 
• IRSeeker Sensor 

 
Several of their sensors are available in the C API from nxtOSEK, presented 

in a coming section.  

Mindsensors 

Mindsensors is another manufacturer of accessories to the Lego Mindstorms 
NXT. Among their products are: 

 
• Realtime Clock 
• Multi-Sensitivity Acceleration Sensor1 

 
Their products are not supported in the nxtOSEK C API. E.g. the 

Acceleration Sensor, is supported in NXT-G, NXC/NBC, RobotC but not in the C 
API from nxtOSEK. To use a Mindsensors sensor in the nxtOSEK Real-Time 
Operating System (RTOS), low level drivers had to be written, which make them 
a bit more hard-to-use than the HiTechnic sensors (for this particular platform). 
On the other hand, e.g. the Acceleration Sensor from Mindsensors is much more 
sensitive than the one from HiTechnic. 

                                                
1 Supported in LEGO_Mindstorms library implemented for this thesis 
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nxtOSEK 

nxtOSEK, [15], is a freely available RTOS for Lego Mindstorms NXT. It is 
supplied as an open-source project and provides the user with, in particular: 
 

• A programming environment using a GCC tool chain 
• C API to Lego Mindstorms sensors and motors 
• C API to some third-party sensors 
• A large set of code examples 

 
Based on the extensive set of examples supplied with nxtOSEK, a wrapper 

has been developed to form a base for the Dymola-generated fixed-point C code 
such that it can be compiled into an executable for the NXT using the standard 
GCC tool chain. 

The nxtOSEK web page [15] also supplies several methods to download the 
compiled executable to the NXT device. The most trivial one uploads the program 
to an NXT without firmware installed. In that case the program is uploaded to and 
executed from the RAM memory of the device and it is then lost after termination 
of the device. Another alternative is to install an enhanced NXT firmware that 
allows you to upload the program to the flash memory of the device. The program 
is then kept in the memory when the NXT is restarted. When running the program 
it is copied to the RAM and executed from there just as for the first method. This 
alternative was found to be much more convenient than the first one, since the 
program is kept in the NXT after reboot. A third option is also described on the 
webpage [15] but it has not been tested during this work. 

Cygwin 

Cygwin [16] is a program that enables some Unix functionality on Windows by 
acting like a Unix-like environment. 

In the scope of this thesis it is used as a command-line tool to compile and 
link the Dymola-generated code into an executable that can be run in the 
nxtOSEK RTOS. It is also used to download the executable code to the Lego 
device. 

4.2 Tool chain 

The tool chain when running the model on the Lego target is illustrated in Figure 
14 below. 
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Figure 14. Tool chain. 

Dymola is used to develop models of plant and controller to investigate effects of 
e.g. fixed-point aritmetics and sampling. Code can then be generated for the Lego 
target and using Cygwin the generated code is compiled and downloaded to the 
hardware. To evaluate the design and to collect data (data logging is described 
later in section 4.4) the Lego device can be run together with the simulation 
process from Dymola. 

4.3 Dymola Lego Mindstorms API 

The Dymola – Lego Mindstorms API consists of two main parts: 
 

• LEGO_Mindstorms, a Modelica library with blocks that can be used to 
map signals to parts of the NXT’s sensors and actuators  

• dymola_wrapper.c, a framework/wrapper for the automatically generated 
model code from Dymola. 

LEGO_Mindstroms library 

The LEGO_Mindstorms library was developed to implement an API to a subset of 
the sensors and actuators available for the Lego Mindstorms NXT platform. The 
main structure of the library can be seen in Figure 15. 
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Figure 15. LEGO_Mindstorms Modelica library. 

 
The library is designed to be compatible with Modelica_EmbeddedSystem in such 
a way that the API components can be accessible directly from the parameter 
dialog of the communicateReal block. This is done by extending from the 
architecture defined in Modelica_EmbeddedSystems, i.e., the components/blocks 
extend from a base class in Modelica_EmbeddedSystems.  

The communicateReal can then be used in a model to map a signal to a 
specific low-level C function on the target. An example would be to send a 
control signal to a motor or to read from a sensor, e.g., touch sensor to detect 
contact. 

The benefit of this design is that when the LEGO_Mindstroms library is 
loaded in Dymola, the new components will automatically appear as new choices 
that can be selected in the parameter dialog of communicateReal, shown in Figure 
16, actuators, and in Figure 17, sensors. 
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Figure 16. NXT actuators in the communicateReal parameter dialog 

 

 
Figure 17.  NXT sensors in the communicateReal parameter dialog 

 
If additional sensors or actuators are needed, a user can follow the same design 
principle and implement his own API block that also will appear automatically in 
the dialogs. This makes the framework very flexible for the user. 

The current implementation supports a subset of the nxtOSEK C API 
 

• ECRobot 
o Servo motor 
o Light sensor 
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o Sound sensor 
o Touch sensor 
o Ultrasonic sensor 

• HiTechnic 
o Acceleration sensor (NAC1040) 
o Gyro sensor (NGY1044) 

• Mindsensors 
o Acceleration sensor (ACCL-Nx-v3) 

 
described in more detail below. 

NXT standard I/O modules 
The ECRobot sub-package contains an interface to the standard Lego Mindstorms 
sensors and actuators. Each block contains a mapping to the corresponding 
nxtOSEK C API function, adding min/max values whenever possible. The blocks 
extends from a base class in Modelica_EmbeddedSystems and then uses the 
Modelica external function concept to map the signal to the C function from the 
API. As an example consider the touch sensor. The API, as can be seen in Figure 
18, uses the U8 type (unsigned 8-bit integer) as input and return value. 

 

 
Figure 18. nxtOSEK Touch Sensor API 

 
The corresponding Modelica function in LEGO_Mindstorms is 
 

function ecrobot_get_touch_sensor 

  input Integer port_id(min=0, max=3)  
  "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4"; 
  input Real Time; 
  output Real signal; 
external "C" signal = ecrobot_get_touch_sensor(port_id); 
end ecrobot_get_touch_sensor; 

 
As can be seen above, the Modelica function uses the Modelica external function 
concept (external “C” y =foo(u)) and contains the call to the actual C function as 
defined in the API. The input variable Time was needed make the function time 
varying since Dymola otherwise evaluates the function. For the above function to 
fit in the Modelica_EmbeddedSystems framework, i.e, to make it selectable in the 
communicateReal block as in Figure 17, a Modelica block has been constructed 
by extending the appropriate base class. This block, as shown below, contain a 
call to the function above as well as assigning min/max attributes of the output of 
the sensor. 
 

block ecrobot_get_touch_sensor "Read touch sensor" 

     extends Modelica_EmbeddedSystems.Interfaces.BaseReal. 

    PartialReadRealFromPort(minValue=0, maxValue=1,  
      y(min=0, max=1)); 
  parameter Integer port_id(min=0, max=3) = 0  
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  "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4"; 
equation  
  // Returns touch sensor status. 0 = not touched, 1 = touched. 
  y = ExternalC.ECRobot.TouchSensor.ecrobot_get_touch_sensor(port_id, time); 
end ecrobot_get_touch_sensor; 

 
Note that the Modelica implementation returns a Real whereas the C function 
returns an integer (U8). The reason for this is to make all sensors and actuators 
available from the communicateReal block (communicateReal handles real 
signals as the name indicates). This will make usage straight-forward, the user can 
always use communicateReal and know that all supported components can be 
found there. If the formally more correct approach was used, i.e., using 
communicateInteger and communicateBoolean as well, then the user would have 
to use the C API to figure out what return type the underlying C function has and 
then use the appropriate communication block type. 

HiTechnic Gyro Sensor 
The HiTechnic Gyro Sensor is a third party sensor form HiTechnic and is found in 
the HiTechnic sub-package. The implementation was straight-forward, similar to 
the one described in NXT standard I/O modules above (nxtOSEK contains a C 
API for this sensor in the same style as above). 

HiTechnic Acceleration Sensor 
The Acceleration Sensor, found in the HiTechnic sub-package, also had a C API  
available in nxtOSEK as can be seen below in Figure 19. 
 

 
Figure 19. nxtOSEK Acceleration sensor API 

 
It is based on passing pointers but the communication blocks do not take pointers 
(arrays) only scalars so a C wrapper was developed to interface it. The idea is 
simple. In Dymola you select which axis you would like to use with a parameter 
and then that axis is extracted from the array in the C wrapper and passed as a 
scalar variable to the Modelica block. The C implementation is 

 
/* Wrapper to read one axis from the Hi Technic Acc eleration 
sensor */ 
S16 get_accel_axis(U8 port_id, U8 axis) 
{ 
 S16 buffer[3]; 
 ecrobot_get_accel_sensor(port_id, buffer); 
 return  buffer[axis]; 
} 

 
and the corresponding Modelica block 
 

block get_accel_axis  

  "Read Hi Technic acceleration sensor (one axis)." 

   extends Modelica_EmbeddedSystems.Interfaces.BaseReal. 
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    PartialReadRealFromPort(y(min=-600, max=600), 
      minValue=-600, maxValue=600); 

  parameter Integer port_id( 
    min=0, 
    max=3) = 0  
  "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4"; 
  parameter Integer axis(min=0,max=2)=0 "0 = X-axis, 1 = Y-axis, 2 = Z-axis"; 
equation  
  // Returns raw A/D data from one axis from the accel sensor 

   y = LEGO_Mindstorms.Communication.ExternalC.HiTechnic. 
  AccelerationSensor.get_accel_axis (port_id, axis, time); 
end get_accel_axis; 

Mindsensors 
In the Mindsensors sub-package another, third-party acceleration sensor is found; 
the ACCL-Nx-v3 acceleration sensor, which is more sensitive than the 
acceleration sensor from HiTechnic. This sensor is not supported in the nxtOSEK 
C API so both the Modelica part and the C part had to be implemented. The C 
implementation is based on reading raw data from the I2C bus, on which the 
sensor is connected, and then use wrappers to extract either tilt or acceleration in 
the selected axis. Below the function for reading raw data and the wrappers. 
 
S16 mindsensors_get_accel_axis(U8 port_id, U8 axis)  
{  
 return  mindsensors_get_accel_sensor(port_id, axis+3); 
} 
 
S16 mindsensors_get_tilt_axis(U8 port_id, U8 axis) 
{  
 return  mindsensors_get_accel_sensor(port_id, axis); 
}  
 
S16 mindsensors_get_accel_sensor(U8 port_id, U8 axi s) 
{ 
 static  S16 state[6]; 
 static  U8 data[9]; 
 if  (i2c_busy(port_id) == 0) 
 { 
  /* tilt data */ 
  state[0] = (S16)data[0]; 
  state[1] = (S16)data[1]; 
  state[2] = (S16)data[2]; 
  /* 10 bit acceleration data */ 
  state[3] = (S16)data[3] + ((S16)data[4] << 8); 
  state[4] = (S16)data[5] + ((S16)data[6] << 8); 
  state[5] = (S16)data[7] + ((S16)data[8] << 8); 
  i2c_start_transaction(port_id,1,0x42,1,&data[0],9 ,0); 
 } 
 return  state[axis]; 
}  
 
The corresponding Modelica blocks are implemented just as for the previous 
examples. 

Bluetooth 
The Bluetooth sub-package contains Modelica blocks to access Bluetooth 
communication routines from within the model. An example of usage is to send 
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reference signals from the host computer to the Lego Mindstorms NXT device. 
The implementation has been made such that the user can use the communication 
routines in the same convenient way as the previously described sensors and 
actuators, just by selecting from the pull-down menu of the communicateReal 
block, see e.g. Figure 16 and Figure 17. 
The available blocks are 

 
• nxt_read_bluetooth 
• nxt_write_bluetooth 
• host_read_bluetooth 
• host_write_bluetooth 

 
The blocks call the underlying Modelica functions needed for the Dymola 
Bluetooth communication API (host_…_bluetooth) developed for this thesis, as 
well as Modelica functions for the Bluetooth communication routines in the 
nxtOSEK C API (nxt_..._bluetooth). 

In order to use the Bluetooth communication features, a communication 
channel had to be established between the host computer and the Lego 
Mindstorms NXT device. To make this setup as convenient as possible for the 
user a component that opens and closes a channel was implemented. The 
component can be found under the sub-package Components and has the icon 
depicted below and contains the following Modelica code: 
 

 
 
block Bluetooth 
  parameter Integer port=8 "Virtural COM port number"; 
initial algorithm  
  LEGO_Mindstorms.Communication.ExternalC.BlueTooth.openChannel(port); 
equation  
  when terminal() then 
    LEGO_Mindstorms.Communication.ExternalC.BlueTooth.closeChannel(); 
  end when; 
end Bluetooth; 
 
The code ensures that the communication channel is opened before any 
computations are made and that the channel is properly closed at the end of the 
simulation. The input parameter “port” is the numeric value of the assigned virtual 
COM port. This value is determined when the device is paired with the host 
computer, using, e.g., Windows (the device must be paired and connected before 
any communication features can be used). 

dymola_wrapper 

This section describes the dymola_wrapper.c framework that is used as a base for 
the automatically generated model code in order to make it run on the Lego 
Mindstorms NXT under the nxtOSEK operating system. The code is based on 
examples from the nxtOSEK source code and is outlined below. 
 
<includes> 
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#include  "target_port.h" 
 
/* OSEK declarations */ 
 
/* Include fixedpoint variable declarations */ 
#include  "declarations.c" 
/* Include API to sensors from Mindsensors */ 
#include  "mindsensors.c" 
int  startTime = 0; 
 
/* LEJOS OSEK hooks */ 
 <code>  
/* LEJOS OSEK hook to be invoked from an ISR in 
category 2 */ 
 <code> 
/* Wrapper to read one axis from the Hi Technic 
Acceleration sensor */ 
S16 get_accel_axis(U8 port_id, U8 axis) 
{ 
 <code> 
} 
 
/* Task1 executed every x msec */ 
TASK(Task1) 
{ 
 /* map system time to fixedpoint time */ 
 /* reset motor count to 0 */ 
 <code> 
   
 /* include fixedpoint equations */ 
 #include  "equations.c" 
 
 /* display time in seconds*/ 
 <code> 
 
 TerminateTask(); 
}  
 
The essential part is the task (Task1) that is executed periodically. It contains (by 
an include statement) the model equations as generated by the fixed-point 
machinery of Dymola. Every time the task is executed the model equations are 
recomputed with updated inputs and sensor values. 

A detail that is not obvious at first glance is the first couple of lines in the 
task starting with the comments “ /* map system time …”. The full code is 
 
 /* map system time to fixedpoint time */ 
 /* reset motor count to 0 */ 
 if  (startTime == 0) { 
  // only executed the first execution cycle 
  startTime=systick_get_ms(); 
  nxt_motor_set_count(NXT_PORT_B,0); 
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  nxt_motor_set_count(NXT_PORT_C,0); 
 } 
 time_FP = ( int )1024*(systick_get_ms()-
startTime)/1000; 
 
The purpose of this code is to scale the time variable for, e.g., time-dependent 
reference signals such as ramps and to remove bias. The time variable is 
constructed by using a built in millisecond counter. The counter is started when 
the Lego Mindstorms NXT device is powered up and will thus always be biased. 
In the Dymola-generated model equations, the time variable is by default scaled 
with 10 fractional bits and thus we need to incorporate that scaling (1024) when 
updating the time variable as well as rescale it from milliseconds to seconds. To 
remove the bias, the value of the counter at the first execution is stored and then 
subtracted each update. At first execution the counters of the motors (in the 
example above connected to port B and C) are also reset to make sure they always 
start counting on 0 when the code starts. 

The last section is an example how to output variables to the Lego 
Mindstorms NXT display for, e.g., debugging. Below is example code to display 
the time variable (in seconds) on the display, both scaled and uscaled (raw). 

 
 /* display time in seconds*/ 
 display_clear(0); 
    display_goto_xy(0, 0); 
 display_string( "My display" ); 
    display_goto_xy(0, 2); 
    display_string( "TIME:" ); 
    display_int(time_FP/1024, 0); 
 display_goto_xy(0,4); 
 display_string( "TIME unscaled:" ); 
    display_int(time_FP, 0); 

 display_update();  

4.4 Dymola Bluetooth interface for plotting and animation 

Debugging embedded systems can be a very difficult and time-consuming task. 
One of the main problems is that it is usually very hard to get usable/reliable data 
of the internal state of the embedded system, only a few inputs/outputs are 
available. The reason for this is that many embedded systems lack an internal file 
system or if one exist, the area of persistent storage would likely be relatively 
small and would thus quickly fill if one attempts to use it for data logging. 

To facilitate automatic data logging for the Lego Mindstorms NXT device, 
we utilize the fact that it has a built-in Bluetooth chip and, using nxtOSEK, a C 
API for read/write operations. The user can enable this feature by setting a flag in 
the Dymola command prompt and if activated, code will automatically be 
generated to support data logging of the internal signals. 

The basic idea is to generate two variants of the model code, one (in fixed-
point) to be downloaded to the embedded system and one for the PC with Dymola 
that instead of computing values listens on a Bluetooth communication channel 
and stores the information received from the embedded system. The code for the 
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embedded system (Lego Mindstorms NXT) contains, in addition to the model 
equations in fixed-point, also Bluetooth send commands. 

In the current implementation, there is no way to select which variable shall 
be logged. If the flag is set then all variables are logged and if not set none are 
logged. During testing, approximately 30 signals could be logged while running 
the system with 10ms sample rate. This implicitly puts a limit on the size of the 
model when the automatic data logging can be used. If this limit is exceeded then 
plotting and animation cannot be run. 

4.5 Dymola Bluetooth interface for direct communication 

Above we discussed automatic data logging using the Bluetooth communication 
channel. The Bluetooth channel cannot only be used for that purpose, it can also 
be used for direct communication with the model from the PC with Dymola. An 
example, that has been implemented and tested, is to send reference values to a 
controller from a model in Dymola. 

Using the Modelica_EmbeddedSystems framework, Bluetooth 
communication blocks have been implemented and can be reached in the 
fromPort and toPort modes of the communication points as can be seen in Figure 
3, section 2.1. The Modelica implementation is a mapping to the actual C routines 
that is used for the communication between target and host. The target routines 
(on the Lego Mindstorms NXT) make use of the nxtOSEK Bluetooth C API. 

The tested example used a USB game controller connected to Dymola to 
generate reference speed signals for the wheels of the Lego Mindstorms NXT. 
Those signals where then sent to the NXT using the Bluetooth components 
described in section 4.3. 

4.6 Online plotting and animation 

Online plotting and animation is closely coupled to Bluetooth data logging when 
running the code on the Lego Mindstorms NXT. Without it, there would be no 
data to plot or animate. We thus need to separate the two cases, internal target 
(fixed-point simulation in Dymola) and external target (Lego Mindstorms NXT). 

Internal fixed-point target 

With internal target we denote running a Software-In-the-Loop simulation in 
Dymola to investigate the effects of fixed-point arithmetics on, e.g., controller 
performance. The typical scenario is to have a system with a plant and a 
controller, decoupled using components from Modelica_EmbeddedSystems. With 
the support for fixed-point activated, code is generated to compute both the 
normal floating-point computations of the model equations and their fixed-point 
counter parts. The user can for example run the model with the fixed-point 
equations as slaves to the real controller, acting as “fixed-point sampling” of the 
signals, as well as driving the system with the fixed-point controller. A parameter 
is introduced in the variable browser to toggle between the two modes without the 
need to re-translate the model. 

Since the code always computes both the floating-point and fixed-point 
versions of a variable, the signals can be compared for analysis. Under a virtual 
fixed-point component in the Dymola variables browser (as well as in the .mat 
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result file) all variables that are computed using fixed-point have two clones, see 
Figure 20;  

 
• <Name>_fromfixedpoint 
• <Name>_original 

 
The “original” signal is the signal computed using floating-point and the 
“fromfixedpoint”, as the name indicates, is the recovered value when rescaling the 
fixed-point value back to a real value. 
 

 

Figure 20. Variable browser and fixed-point plot 

 
The plotting itself is the same as when running any other model in Dymola, online 
in the sense that values are reloaded in the plot as often as the user has specified in 
the experiment setup. 

External target 

When running the code on an external target, online plotting (and animation) 
depends on the use of Bluetooth data logging. The basic idea differs a bit from 
plotting and logging when running on an internal target. 
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The basic idea is to be able to plot signals for debugging purposes. Only using the 
recovered values one can be fooled since they are automatically rescaled 
correctly. Particularly when using sensors and actuators it is preferable to be able 
to see the raw data as seen by the hardware. The structure in the variable browser 
is the same but the interpretation of “original” and “fromfixedpoint” differs. Just 
as before, “fromfixedpoint” is the recovered value, comparable with any other 
signal since it is rescaled to a real value. The “original” value is now the raw 
integer data as seen by the hardware. The original values are not comparable to 
each other, since they can vary very much in magnitude due to their scaling. But 
as mentioned, sometimes it can be critical to be able to see what the raw value is.  

4.7 Lego Segway 

The fixed-point capability of Dymola described in this thesis has been used in 
teaching at the Department of Automatic Control at Lund University in the 
advanced level course FRT090 – Projects in Automatic Control. Two groups 
selected the Dymola project in 2009, one group in the spring of 2010, two groups 
in the spring of 2011 and two groups in the spring of 2012. 

In the projects, Dymola was used to model a Lego Segway, and to design a 
stabilizing controller, [17]. Fixed-point code for the controller was then generated 
and downloaded to the Lego target. Using the Bluetooth interface, data could be 
collected for plotting and animation, see Figure 21. 

 
Figure 21. Dymola animation of the Lego Segway 
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4.8 Elektor Wheelie 

During 2011 there was a Master’s Thesis project, Modeling, Control and 
Automatic Code Generation for a Two-Wheeled Self-Balancing Vehicle Using 
Modelica [18], that used the features described in this thesis for control of a full-
scale Segway [19] clone, ElektorWheelie [20], capable of carrying a person. 
 

 

Figure 22. Elektor Wheelie in action 

 
Using Modelica_EmbeddedSystems to partition the system model, Figure 23, and 
the automatic fixed-point code generation capabilities of Dymola, controller code 
was generated and downloaded to the ElektorWheelie. The students made several 
experiments and compared the Dymola generated code with manually written 
fixed-point code and concluded: 
 

- “The results were satisfactory from an experimental point of view, the 
estimators and controller achieve the control objective and it was verified 
that the automatic code generation by Dymola manages to be as accurate 
as the manual fixed-point coding.” 

- “The manual and automatically generated code performance was tested 
during experimental rides. There was no significant difference between 
both results which shows that the automatic code generation is a useful 
tool comparable to the manual coding” 

 
The report also mentions some areas of improvements. As an example the 
Atmega32 processor of the ElektorWheelie does not support division in its 
instruction set. The code had to be manually adapted to convert division by a 
power of two to left shifts. However, testing on other platforms indicated that 
modern compilers can handle this automatically. 
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Figure 23. Modelica system model of the ElektorWheelie and controller. 
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5. Summary 

5.1 Results and conclusions 

The work in this thesis has in addition to this report also resulted in two 
conference papers, [1] and [21]. It has also been used in project courses and a 
Master’s Thesis in automatic control at Lund University. Although it is far from a 
product ready for release, the main principle and strategy has been demonstrated 
to work in the above mentioned projects. 

Experimental Modelica annotations were introduced to complement the 
existing attributes of Modelica variables to be able to set resolution needed for 
fixed-point. Two annotations were introduced to conveniently input the resolution 
with either an absolute or relative measure. It would be even more convenient if 
resolution existed as an attribute, since then there would be no need to use 
annotations as modifiers which would give more compact and easy-to-read 
Modelica code. 

Using the new experimental annotations, Dymola was extended with 
functionality for analysis and code generation for fixed-point. Two different 
methods of range analysis were implemented; bit propagation and interval 
analysis. Interval analysis, although conservative, was concluded to never give 
larger intervals than bit propagation and was selected as the active method. It 
would be desirable to further analyze the expressions and improve that range 
analysis to give tighter intervals when possible.  

The scaling of variables is based on user input (using the experimental 
annotations) as well as heuristics and some rules to propagate bits through the 
expressions. With a deeper analysis it should be possible to find “smarter” scaling 
to guarantee that no overflow can occur while minimizing the precision loss.  

The code generation was intended to be portable but was influenced by the 
Lego Mindstorms target since that was the only platform we tested on ourselves. 
As an example it was detected in the Master’s Thesis [17] that the generated 
divisions by a power of two are not supported on the ElektorWheelie processor. 
More user configurability would be desirable but it would also increase the 
complexity of the code.  

The implementation of Bluetooth communication for data logging turned 
out to be a very good complement to “on-screen-debugging” on the Lego 
Mindstorms device. Less optimal was the fact that in this first implementation 
only one task is supported. This meant, e.g., that the controller code and code for 
data logging resided in the same task and all calculations were executed with the 
same priority. More desirable would have been to generate the data logging code 
in a separate task that could run with lower priority to avoid it influencing control 
performance. The same holds for reference signal generation using, e.g., a 
gamepad. Ideally that code should also be run in a separate task with lower 
priority. 

Using the Lego Mindstorms device, a full Modelica-model to embedded 
code scenario could be tested and evaluated which was one of the original goals 
set for the thesis. 
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5.2 Future work 

Some interesting topics for future work are: 
 

• Range analysis of nonlinear functions and user-written functions by offline 
evaluation based on the range of the inputs. 

 
• More sophisticated fixed-point analysis enabling smarter bit shifting for 

addition, subtraction, multiplication and division to reduce losses in 
accuracy. 

 
• Generate tables with interpolation to support functions in fixed-point with 

a user-specified resolution and range. Identify periodic functions. 
 

• Introduce guard bits for variables with uncertain ranges. 
 

• Asserts for overflow in the fixed-point code. 
 

• User specified rounding functions. 
 

• More advanced range analysis. 
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