
ISSN 0280-5316
ISRN LUTFD2/TFRT--5898--SE

Automatic Implementation and
Analysis for Fixed-point Controllers in

Modelica using Dymola

Ulf Nordström

Lund University
Department of Automatic Control

May 2012

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

May 2012
Document Number

ISRN LUTFD2/TFRT--5898--SE
Author(s)

Ulf Nordström
Supervisor

Dan Eriksson, Dassault Systemes AB, Sweden
Anders Rantzer, Department of Automatic
Control, Lund University, Sweden (Examiner)
Sponsoring organization

Title and subtitle

Automatic Implementation and Analysis for Fixed-point Controllers in Modelica using Dymola
(Automatisk implementering och analys av Modelica-baserade fixpunktsregulatorer i Dymola)

Abstract

In model-based development, floating-point arithmetic is typically used for computations in
algorithms and models. However, on many target platforms, there is no support for floating-point
computations due to constraints on, e.g., price, size, power consumption, and execution speed. A
solution is to use fixed-point arithmetic instead. Manually transforming floating-point code to fixed-
point code is an error-prone and time-consuming task. Therefore, this thesis has explored the
possibility to automatically generate fixed-point code for the controller part of a Modelica system
model using Dymola. To support this scenario, Modelica was extended with new experimental
annotations and Dymola was extended with additional functionality for analysis and code generation.
A complete Modelica model-toembedded code scenario was evaluated using Lego Mindstorms
(NXT) as target platform and a tool chain was developed to be able to compile and run the generated
code. A Modelica library with components corresponding to the NXT sensors and actuators was also
developed. The work has, in addition to this thesis, resulted in two conference papers and has been
used in teaching a project course (FRT090) at the Department of Automatic Control at Lund
University. It was also used in another Master Thesis where the students generated a stabilizing
controller for a two wheeled robot capable of carrying a human.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language

English
Number of pages

1-66
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

1

Preface

This thesis is a part of the degree Master of Science in Electrical Engineering at
Lund Institute of Technology.

The work has in addition to this thesis report resulted in two conference papers;
main author in Automatic Fixed-point Code Generation for Modelica using
Dymola and co-author in Dymola and Modelica_EmbeddedSystems in Teaching –
Experiences from a Project Course in 2009, published in the conference
proceeding of the Modelica Conferences 2006 and 2009 respectively.

The work on this project started in October 2005 and has taken many interesting
directions since then.

Acknowledgements

I would like to start by thanking my family, especially Anna and Alice, for their
never-ending love and support.

I would like to thank everyone at Dassault Systèmes, Lund for their support,
especially Hilding Elmqvist, Hans Olsson, Dag Brück, Sven-Erik Mattson, Peter
Nilsson and Dan Henriksson who have been supporting me with help and ideas,
José Dias Lopes who was my supervisior at Dynasim when the project started and
Anders Rantzer, my supervisor at the Department of Automatic Control at LTH.

I would like to thank Johan Åkesson, main-author of one of the conference
papers, and course coordinator of FRT090 Projects in Automatic Control. I would
like to thank the students who selected the Dymola project in the LTH course
FRT090 Projects in Automatic Control given in the spring of 2009, 2010, 2011
and 2012 as well as Andrés and Carlos who used this in their Master’s thesis, for
their feedback, bug reports and suggestion for improvements as well as patience
for using and testing my code in beta status.

2

3

Contents

Acknowledgements .. 1

1. Introduction .. 5

1.1 Motivation... 5

1.2 Problem definition ... 5

1.3 Goals ... 6

2. Background .. 7

2.1 Modelica ... 7

Modelica ... 7
Dymola .. 8
Modelica_EmbeddedSystems .. 8
CommunicationMSWindows ... 14

2.2 Fixed-point ...15

Data representation .. 16
Fixed-point representation ... 17
Range .. 17
Resolution ... 18
Q-notation ... 18

3. Implementation and Analysis .. 19

3.1 Fixed-point arithmetics ...19

Conversion .. 19
Arithmetic operations ... 20
Boolean operations ... 26
Relational operations .. 27
Relative and absolute resolution ... 28
Limitations .. 30

3.2 Range analysis ...30

Bit propagation ... 30
Interval arithmetics ... 31
Simulation-based approach .. 31
Approach in Dymola ... 32

3.3 Experimental annotations ...32

3.4 Defaults and heuristics ...32

Parameters .. 33
Variables ... 33

3.5 Code Generation ..35

Internal fixed-point ... 35
External fixed-point .. 38

3.6 Automatic error-checking code...41

4. Application Examples .. 43

4.1 Platform and tools ..43

Lego Mindstorms NXT .. 43
HiTechnic .. 44
Mindsensors .. 44
nxtOSEK ... 45
Cygwin .. 45

4.2 Tool chain ..45

4.3 Dymola Lego Mindstorms API ...46

4

LEGO_Mindstroms library ... 46
dymola_wrapper ... 52

4.4 Dymola Bluetooth interface for plotting and animation54

4.5 Dymola Bluetooth interface for direct communication55
4.6 Online plotting and animation ..55

Internal fixed-point target ... 55
External target .. 56

4.7 Lego Segway ..57

4.8 Elektor Wheelie..58

5. Summary .. 61

5.1 Results and conclusions ..61

5.2 Future work ..62

Bibliography ... 63

5

1. Introduction

1.1 Motivation

Hardware-In-the-Loop Simulations (HILS) and Rapid Controller Prototyping
(RPC) are widely used today for design and testing of control systems in industry.
Typical hardware devices for such tests are Digital Signal Processors (DSP) and
Field Programmable Gate Arrays (FPGA). The development of algorithms and
models is typically done in high level languages, not directly related to the target
hardware. This can be advantageous since conceptual studies can be performed
and tested early in the development phase and it also helps to keep the models
independent. However, after initial development and studies, code generation for
specific target platforms, such as DSPs or FPGAs, has to be done to study the
process with the real hardware.

During the development phase, floating-point arithmetics is often used for
computations in algorithms and models. However in many applications,
economical and technical constraints like price per unit, characteristics of the
system and performance of the target platform do not justify the use of such
demanding floating-point calculations. Sometimes they are even an obstacle to
HILS and production code, since floating-point computations can be to slow for
systems with high sampling rates.Integer arithmetic operations execute faster than
their corresponding floating-point operations because of their simplicity. In the
case of FPGA targets, silicon surface area and power consumption can also be
significantly reduced using integer arithmetics. Also, DSP devices often come
with only simple arithmetic logic units (ALU), completely lacking hardware
support for floating-point arithmetics. Using fixed-point arithmetics, one can
utilize the advantages of integer arithmetic operations and generate code for
various hardware targets. The achievable precision using integer arithmetics is
closely related to the architectural word length of the target platform, typically 16,
24 or 32 bits.

1.2 Problem definition

This thesis explores the possibility to use fixed-point arithmetics for simulation
and code generation from models defined using the Modelica language.

Manually transforming equations to fixed-point is a tedious and error prone
task. The aim of this thesis is to automatically find a fixed-point mapping of the
controller part of a system model to investigate the effects of using finite word
length and also to support HILS and RPC by automatically generating fixed-point
C code.

Initially, the plan for this Master thesis project was to investigate and
implement a way to generate fixed-point code for Modelica models using
Modelica code. That work resulted in a conference paper presented at the
Modelica Conference in Vienna, Austria, 2006 [1]. That approach turned out to be
very hard to further develop and maintain, and furthermore, it was not very user-
friendly.

With the later development and official specification of the Modelica
language constructs for embedded systems, came the framework that made the

6

current strategy and implementation possible. Using the extensions one can, in a
very natural way, partition the system model in different parts, e.g. controller and
plant, and map the various parts to different targets, tasks and subtasks. The focus
of this work has lead to extend with new functionality to generate fixed-point
code for certain target configurations.

1.3 Goals

The main goals of this thesis have been to:

• Extend the Modelica language with experimental language constructs to
support specification of properties needed for fixed-point.

• Implement functionality for fixed-point code generation in Dymola based

on the experimental language constructs.

• Evaluate fixed-point code generation in a complete Modelica-model to
embedded code scenario.

7

2. Background

This section will to give a short introduction to Modelica and Dymola as well as
introducing some basic concepts and notations for fixed-point. The description is
intended to be of a general nature to provide the reader with background
information and references for further reading.

2.1 Modelica

Modelica

Modelica is a flexible and object-oriented modeling language in the fast growing
area of system modeling. In order to use Modelica and the Modelica libraries, a
tool with a translator and a compiler is needed in order to run simulations.
Dymola [2] is such a tool equipped with a symbolic engine for translation and
manipulation of the Modelica code. Dymola also provides features for pre
processing of model data and post-processing of simulation data as well as
plotting.

The Modelica language is designed for modeling of large, complex, and
heterogeneous physical systems. It is a multi-domain language allowing users to
combine components from many different engineering domains, such as
electronics, mechanics, hydraulics etc. A variety of components from different
engineering domains can be seen in Figure 1.

Figure 1 Multi-domain Modelica models.

The design of Modelica allows users to utilize standard components from
different, free or commercial, Modelica libraries and, if needed, modify/extend
them or design custom components and libraries. An introduction to modeling
with Modelica can be found in [3] and [4]. More information regarding Modelica,
such as publications, libraries and events can be found in [5].

8

Dymola

Dymola, DYnamic MOdeling LAboratory, is the tool used and extended in this
thesis for modeling and simulation with Modelica. It offers a graphical modeling
environment and an engine for the necessary symbolic manipulation of equations
in Modelica to produce executable code.

In Dymola, a Modelica model can be composed by dragging components
from the library browser and dropping them in the diagram sheet. Different
components and sub-models are connected and can then be simulated after
entering proper component-specific parameters. An alternative to the ”drag-and-
drop” technique is to use the underlying text layer, manually describing the
behavior of the model using differential, discrete and/or algebraic equations. The
text layer can also be used to alter or modify standard components to suit a
specific application.

A Modelica model can often contain a huge set of equations, and without
some form of symbolic pre-processing, this set is not suitable for numerical
integration. Simulation tools, thus, have to include a Modelica translator to
manipulate the equations before simulation. Dymola solves this issue using
advanced symbolic manipulation techniques. In this way, the set of equations is
drastically reduced. After the symbolic manipulation, C-code is generated and
compiled with numerical routines into an executable for simulation.

For post-processing and analysis, result files from simulations can be
processed in Dymola or by other programs supporting .csv or .mat file formats.

Modelica_EmbeddedSystems

Modelica_EmbeddedSystems (version 0.2, 2009-11-20) is a Modelica library
currently under development by the Modelica Association targeting modeling and
configuration of embedded systems. In this section the basic components relevant
for this thesis will be described. For a more in-depth description see [6] and
chapter 16 of the Modelica Language Specification Version 3.1, [7].

The Modelica_EmbeddedSystems library structure can be seen below in
Figure 2. The components that are most relevant to this work are
CommunicateReal and the records that are used to build configuration records:

• Target record
• Task record
• Subtask record

A task is asynchronous with regards to other tasks and it contains one or more
subtasks. A subtask is a synchronous set of equations within a task with the same
numerical integration and sampling properties. Each record type will be discussed
in a separate section below.

9

Figure 2 Modelica_EmbeddedSystems library.

Communication points

A communication block (CommunicateReal, CommunicateInteger or
CommunicateBoolean) provides a user interface to the underlying Modelica code
that is used to decompose the system into tasks and subtasks and define the
communication between them as well as to map those on to different targets. The
component references a configuration record to collect information of the
configuration currently used in the model and use that to “fill” the menus with
appropriate choices. This will be demonstrated in chapter 4 when this is used to
automatically populate the pull-down menus with Lego Mindstroms API
components.

10

Figure 3 Parameter dialog of the CommunicateReal component.

In addition to defining the model decomposition, the block is used to define the
type of communication between the different tasks/subtasks in the model. The
available options that can be selected in the communicationType pull-down
menu as shown in Figure 3, are:

• Direct communication
• Communication between two subtasks
• Communication between two tasks
• Communication to a port
• Communication from a port

Direct communication is the simplest form of communication (� = �) and

is used as a starting point when inserting the communication blocks in the model.
It basically just propagates the input to the output with the possibility to add noise
or delays.

Communication between two subtasks is used to define a border between
two subtasks, i.e. the input and the output of the communication block are in
different subtasks but belong to the same task.

Communication between two tasks means that the input and output
belongs to different tasks. Communication between different tasks is performed in
C code external to Modelica.

Communication to a port is used to send information to an I/O port, e.g.
sending a signal using Bluetooth via a virtual com port.

Communication from a port is used to receive information from an I/O
port.

Configuration records

11

A configuration record is a Modelica record containing one or more
target/task/subtask records to define the configuration of the system. An example,
as implemented in the library is depicted below in Figure 4.

Figure 4 Configuration record from Modelica_EmbeddedSystems.

This particular configuration record has three subtasks that reside in one task on
one target. The configuration record is used here to specify different numerical
integration methods and sample times for the different parts of the system. In this
case, the plant is continuous while the reference and feedback subtasks are
periodically sampled and the reference subtask is specified to run five times
slower that the feedback subtask. These settings cannot be seen in the image but
opening the real model from the library one could pop the parameter dialog and
inspect the settings. Other possible configurations could include multiple targets
(that will be shown later when discussing investigation of fixed-point arithmetics)
and multiple tasks as well.

Target

The Target record contains information on the target. It has two parameters, as
shown in Figure 5.

Figure 5 Parameter dialog of the Target record.

The identifier parameter is used in this thesis to indicate if the target is the

host computer CPU,

, or the Lego device,

and any other value is interpreted as another external target.

The kind parameter is used
have a floating-point arithmetic unit and fixed
the equations belonging to any task/subtask on that target. To activate set

Task

The Task record is used as a container for subtasks that are computationally
related to each other. The parameter dialog can be seen in

Parameter dialog of the Target record.

parameter is used in this thesis to indicate if the target is the

and any other value is interpreted as another external target.

parameter is used in this case to indicate that the target does
point arithmetic unit and fixed-point code is to be generated for

the equations belonging to any task/subtask on that target. To activate set

The Task record is used as a container for subtasks that are computationally
ch other. The parameter dialog can be seen in Figure 6.

parameter is used in this thesis to indicate if the target is the

to indicate that the target does not
point code is to be generated for

The Task record is used as a container for subtasks that are computationally

13

Figure 6 Parameter dialog of the Task record.

In this thesis only the sampleBasePeriod parameter is of interest, the

identifier and onTarget are used as well, to make the model easier to understand
(using good naming) and to specify which target the task runs on. The
sampleBasePeriod is used to set the base sample period for periodically sampled
subtasks in this task. The subtasks can then be sampled at any integer multiple of
the sampleBasePeriod but that configuration is made in the subtask record itself.

Subtask

The subtask record is used to describe sampling properties and numerical
integration methods of the subtasks. The parameter dialog is shown in Figure 7.

Figure 7 Parameter dialog of the Subtask record.

14

The most important parameters for this thesis are the samplingType and

samplePeriodFactor that are used to activate periodic sampling and changing the
effective sample period respectively.

Example of Configuration
An example configuration for running the Lego Mindstorms robot with the
relevant parts of the parameter dialogs expanded is shown below in Figure 8.

Figure 8 Exmple configuration for Lego Mindstorms robot.

CommunicationMSWindows

The CommunicateMSWindows library is an add-on library to the
Modelica_EmbeddedSystems library developed at DLR (German Aerospace
Center, Institute for Robotics and Mechatronics). It contains blocks to access I/O
components on a Windows computer, like keyboard, speakers and game
controllers. The library structure can be seen below in Figure 9.

15

Figure 9 CommunicateMSWindows library from DLR.

In this thesis this library is used to build components that can read signals from a
game controller that then can be used for reference signal generation, e.g. driving
and steering the Lego Mindstorms robot. A component for the Microsoft
SideWinder (steering wheel and throttle/brake pedal) was also implemented and
can be used to generate reference signals. Below in Figure 10 is the game
controllers that were used.

Figure 10 Logitech Game controller and Microsoft SideWinder.

2.2 Fixed-point

Internally, computers treat and store information using bits, � ∈ �0,1
	denoted	ℤ�. The information in a set of bits has no inherent meaning, it
depends entirely on how the data is interpreted. One natural interpretation of bits
is as positive integers, coded in natural binary code (NBC), but it is not the only
one.

Consider a data byte � represented by 8 bits
 � = ���, ��, ��, ��, ��, ��, ��, ��
, ∀�� ∈ ℤ�.

Interpreting the information stored in that byte as a positive integer in NBC,

its real world value �	represented by � would be

16

� =��� ∙ 2� .�
�!�

The byte � = 10011101 would then be interpreted as � = 157 since

� = ��� ∙ 2��
�!�= 1 ∙ 2� + 0 ∙ 2� + 0 ∙ 2� + 1 ∙ 2� + 1 ∙ 2� + 1 ∙ 2� + 0 ∙ 2� + 1 ∙ 2�= 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1= 157.

Another way to interpret the information in � is to treat, for example, ��⋯�� as an integer and the rest as the fractional part. We then have

� = ��� ∙ 2�)�.�
�!�

and, again with � = 10011101, the interpretation would be � = 9.8125 since

� = ��� ∙ 2�)��
�!�= 1 ∙ 2� + 0 ∙ 2� + 0 ∙ 2� + 1 ∙ 2� + 1 ∙ 2)� + 1 ∙ 2)� + 0 ∙ 2)� + 1 ∙ 2)�= 8 + 0 + 0 + 1 + 0.5 + 0.25 + 0 + 0.0625= 9.8125.

which is 157/2�. Thus, � can here be used to store both an integer and a decimal
value depending on how we interpret the information.

Depending on the interpretation, the information could have virtually any
meaning. Integer and decimal values are just examples. The information could
also be interpreted as CPU instructions, memory addresses, characters etc.

Data representation

Computers usually use a floating-point representation of real numbers for
computations. The floating-point representation allows for numbers in a large
span with high resolution. However, when using hardware such as a DSP-
processor or an FPGA, the floating-point representation is often not available.

A hardware implementation of floating-point operations like addition and
multiplication is very surface- and time-expensive compared to integer operations.
Using a fixed-point representation, one can usually achieve faster execution times
and more efficient use of the silicon surface area at the cost of reduced precision
or limited signal range.

The choice of representation, floating-point or fixed-point, is a tradeoff
between precision/range constraints and surface/time constraints. For
computations demanding high accuracy in the results, a floating-point

17

representation might be suitable, but for high speed HILS demanding very fast
computations, a fixed-point representation that trades reduced precision for speed
might be more suitable.

Fixed-point representation

From a hardware point-of-view, fixed-point arithmetics is essentially integer
arithmetics with bit shifting. Using integers to represent non-integer values is
done by considering an imaginary binary point as follows.

Consider the binary representation of an integer in NBC

(�-, �-)�, ⋯ , ��, ��, ��) = ��� ∙ 2� ,			∀� ∈ ℤ�-
�!� .

 �/ �/−1 ⋯ �4 �3 �2 �1 �0
Figure 11 Binary data representation

Now, using the same set of bits to represent a non-integer value can be done

by placing a binary point between 2 − 1 and 2. Thus

(�-,⋯ , �34�, �3, �3)�, ⋯ , ��) = ��� ∙ 2�)3,			∀� ∈ ℤ�-
�!� (2.1)

�- �-)� ⋯ �3 �3)� ⋯ �� ��
 ↑

Figure 12 Fixed-point data representation with binary point

The bit to the far most left, �-, is denoted Most Significant Bit (MSB) and

correspondingly we have Least Significant Bit (LSB) to the right.

Range

The integer data type is limited in size by hardware constraints which are machine
dependent. For standard CPUs however, an integer 6 is bounded by

 0 ≤ 6 ≤ 289 − 1

if unsigned and
 −289)� ≤ 6 ≤ 289)� − 1

if signed and using two´s complement, see eg. [8], where :; is the word length.
Typically we have :; = 32 in most modern PC´s but other values are possible,
e.g. 16, 24 and 64.

18

For a fixed-point representation with the binary point at 2, the remaining :; − 2
bits of the word are used to store the integer part and the sign. We thus have the
following range for a real variable in fixed-point representation
 −289)3)� ≤ � ≤ 289)3)� − 23.

Resolution

A fixed-point representation with the binary point between 2 − 1 and 2 is said to
have 2 bits of precision. The smallest number that can be represented with that
representation is the resolution < given by
 < = 2)3.

With a fixed-point representation it is a trade-off to cover either a large

signal range with low precision or a small range with high precision. The
combination of large signal ranges and need for high precision leads to a
representation using very large :; and most of the benefits of fixed-point can be
lost.

So, for signals with large dynamic range and high precision requirements a
floating-point representation is usually better. For signals, or equations, where one
can accept either limitation in precision or in range, a fixed-point representation
can be accurate enough and even increase some critical performance
requirements, such as execution time or minimize silicon surface area when
implemented in hardware.

Q-notation

The Q-notation is a convenient way to specify a fixed-point representation. It was
introduced by Texas Instruments, see e.g. [9].In Q-notation two integers are used
to specify the number of bits needed to represent the integer and fractional part of
a real number, denoted

 =[?, 2]

or originally
 =?. 2

The integer ? is used to represent the number of bits needed for the two´s
complement of the integer part and 2 the number of bits needed for the fractional
part. Mapping the Q-notation to the range (for a real value) and resolution
described in the section above, the resolution of =[?, 2] is 2)3 and the range is
 −2A ≤ � ≤ 2A − 23

The total number of bits needed are :; = ? + 2 + 1, the extra bit needed to
store the sign of the number (as mentioned in the previous section).

19

3. Implementation and Analysis

This section describes the implementation of fixed-point support in Dymola. It
covers the implementation of arithmetic, Boolean, and relational operations, and a
couple of basic methods for range analysis. Experimental Modelica annotations
used in this report is presented and the structure and details of the generated code
is described.

3.1 Fixed-point arithmetics

Conversion

Converting a floating-point value to a fixed-point value is, if given a
representation, relatively simple. The task is to find an integer to store the
floating-point value in and to find a rule that can be used to recover the floating-
point value without losing too much information. Using binary point-only scaling
(BPO), this is done by introducing an imaginary binary point as in (2.1).
Mathematically, a fixed-point representation 6 of a floating-point variable � can
be described by

 6 = B23 ∙ �C, 2, 6 ∈ ℤ, � ∈ ℝ, (3.1)

where 2 is the precision, or equivalently the placement of the binary point left of
the LSB, and B∙C denotes the floor function (other rounding functions could be
used to customize the rounding, eg. round towards zero or ceiling). The precision 2 can be both positive and negative and can be interpreted as a scaling factor, as
in (3.1). To recover the floating-point value of a fixed-point representation we just
divide with the scaling factor. Hence the recovered value �E of a fixed-point
representation 6 is

 �E = 623 = 2)3 ∙ 6, 2, 6 ∈ ℤ, �E ∈ ℝ. (3.2)

As an example, consider converting a non-integer value to fixed-point using

e.g. 2 = 10 bits of precision. Let us assume that the value to convert is � = 1.1.
The fixed-point value is then, by (3.1)

 6 = B2�� ∙ 1.1C = B1126.4C = 1126 (3.3)

and the recovered value is, by (3.2),

 �E = 11262�� = 2)�� ∙ 1126 ≈ 1.099609375. (3.4)

It is clear that an error has been introduced by the conversion and recovery since �E ≠ �. In fact, the error comes from the rounding towards zero done by the floor

20

function when converting to fixed-point, the recovery itself is error less. Using
(3.1) and (3.2) we can derive a bound on the error by concluding that

 B23 ∙ �C ≤ 23 ∙ � < B23 ∙ �C + 1			 →
 6 ≤ 23 ∙ � < 6 + 1				 →
 0 ≤ 23 ∙ � − 6 < 1			 →
 0 ≤ 23 ∙ � − 23 ∙ �E < 1			 →
 0 ≤ � − �E < 2)3.

Hence the maximum magnitude of the error is
 sup|y − yE| = 2)O.

Using the numerical values from (3.3) and (3.4), we have
 � − �E = 0.000390625 < 2)�� = 0.0009765625.

The smallest number that can be represented is the same as the resolution, 2)3.

In order to assert that no overflow or wraparound occurs
 max(|6|) ≤ 289)� − 1, ∀6

must always hold. This implies that for a given word length there is a limit on the
achievable precision. This is closely coupled to the range of the variable since,
using the Q-notation described in section 2.2, :; = ? + 2 + 1.

Arithmetic operations

The basic arithmetic operations on fixed-point numbers, addition, subtraction,
multiplication, and division, are operations with two inputs (the operands) and one
output (the result). These operators are usually denoted binary operators. They can
be implemented using ordinary integer arithmetic operations and bit shifting. The
bit shifts (left shift and right shift) of an integer number 6 are

 (6 ≪ 2) = 6 ∙ 23 (3.5)

and

 (6 ≫ 2) = B6 ∙ 2)3C. (3.6)

Note that in (3.6) only the integer part of the result is kept and the remainder is
discarded. This means that we lose information and errors are introduced.
Furthermore, the operation (in e.g. C) is compiler dependent for signed integers
taking a negative value [10], so care has to be taken choosing a compiler that

21

interpret right shift as defined above, otherwise obscure and hard-to-trace errors
may be introduced. Bit shifting is a fast operation that is used extensively to
rescale both the inputs of an operation and the output.

An additional note is that since the implementation of right shift is compiler
dependent one can generate code for an integer division with the corresponding
power of two instead and let the compiler optimize the code.

Addition
Addition of two fixed-point variables =� and =� on the form =[?�, 2�] and =[?�, 2�] can be described by finding = such that

 = = =� + =�

In order to add =� and =�, the binary points must be aligned, see. e.g. [11]. This
can be done if both =� and =� have the same number of fractional bits, 2� = 2�	.
This lets us divide fixed-point addition in two different cases;

• Aligned binary points, 2� = 2�
• Unaligned binary points, 2� ≠ 2�

If the binary-points are aligned, the two variables can be added, assuming that the
result is not larger than the representation can handle. If the binary points are not
aligned, then one or more of the operands must be shifted before the addition can
be performed. The different cases are discussed in more detail below.

Case 2� = 2�

When 2� = 2� = 2 the two variables can be added according to
 = = =� + =�

and = will have the same number of fractional bits as the operands, 2. The integer
part of = can be stored using max(?�, ?�) + 1 bits. As a motivating example
consider the “worst case” when =� = =�. Then
 =� + =� = =� + =� = 2 ∙ =� = =� ∙ 2� = =� ≪ 1

or in words, multiplying with 2 is the same as shifting left with one bit, thus one
more bit is needed. Since one more bit is potentially needed there is risk of
overflow. Using the Q-notation this could be written as

 =[?�, 2] + =[?�, 2] = =[max(?�, ?�) + 1, 2] (3.7)

Note that (as explained before) the word length needed to store =[?, 2] is ? + 2 + 1 or for the example above

 (max(?�, ?�) + 1) + 2 + 1 = max(?�,?�) + 2 + 2 (3.8)

22

Case 2� ≠ 2�

If 2� ≠ 2� then the binary points must be aligned before the addition. Essentially
this corresponds to shifting one or both operands using left and/or right shifts as
previously described. There are several possible shifts that can be performed in
order to align the binary points and in order to make a decision a basic strategy
must be defined.

As mentioned in the beginning of this section, left shifts are error less
(assuming that they do not introduce overflow) and right shifts can introduce an
error. In order to lose as little information as possible it is preferable to have no
(or as few as possible) right shifts. The basic strategy is then to only use left shifts
whenever possible. A constraint is that left shifting can cause overflow. We
consider this a sub-case of 2� ≠ 2�.

Sub-case 2� ≠ 2� only left shifts

Left shifts correspond to a multiplication with a power of two of the fixed-point
representation, (3.5). Given that the operand after shifting fits in the word length,
the operand with the smallest number of fractional bits is shifted to make the
alignment.
 2� > 2�
 =[?�, 2�] + (=[?�, 2�] ≪ (2� − 2�)) = =[max(?�, ?�) + 1, 2�]

with the constraint on =� that
 ?� + 2� + 1 ≤ :;

in order to avoid overflow.

Example:
Consider =�[10,15], =�[5,10]	and	:; = 32.
 =� + =�: =�[10,15] + (=�[5,10] ≪ 5) = =[10,15] + =[5,15] = =[11,15].

The constraint on =�is fulfilled since 5 + 15 + 1 < 32.
Note that we must also assert that the result can be stored in a register, (3.8), e.g.
 max(10,5) + 15 + 2 = 27 < 32.

Sub-case 2� ≠ 2� left and right shifts

It is not always possible to only use left shifts. Consider the example below where
the binary points cannot be aligned by only shifting 2� since the constraint will
not be fulfilled and an overflow would occur.

Example:
Consider =�[10,18], =�[15,5]	and	:; = 32. According to the basic strategy we
would like to use left shift on 2�, since 2� > 2�. Doing that would result in

23

 =� + =�:			=�[10,18] + (=�[15,5] ≪ 13) = =[10,15] + =[15,18] = =[16,18].

The constraint on =�	will not be fulfilled since 15 + 18 + 1 = 34 ≰ 32 and we
would risk overflow. Furthermore the result would not be possible to store in a
register since it would require 16 + 18 + 1 = 35 bits. In order to avoid this we
must assure that the constraint is fulfilled and we have
 ?� + (2� ≪ X) + 1 ≤ 32

and the largest left shift X that can be performed is
 X ≤ 32 − 1 −?� − 2�

which for the example gives X = 11. Using that we shift =� and get
 =�[15,5] ≪ 11 = =�[15,16].
 =� now has 16 fractional bits and =� needs to be right shifted in order to align the
binary points. We have, for =�
 =�[10,18] ≫ X = =�[10,16]

giving X = 2. In order to add =�	and	=� in this case we had to apply both left and
right shifts to the operands. The addition becomes
 =� + =�:			(=�[10,18] ≫ 2) + (=�[15,5] ≪ 11) = =[10,16] + =[15,16]= =[16,16]

We need 16 + 16 + 1 = 33 bits to store the result but we only have 32 available.
We thus need to modify the shifts to avoid overflow and it is sufficient to reduce
the number of fractional bits to 15 instead of 16 in order to be able to store the
result. We have
 =� + =�:			(=�[10,18] ≫ 3) + (=�[15,5] ≪ 10) = =[10,15] + =[15,15]= =[16,15].

Before summarizing we introduce a notation for left and right shifts

Yℎ(X) = [≪ 		X	,			\]	X > 0≫ |X|,			\]	X < 0≪ 		0	,			\]	X = 0^

We then have the following rules for =� + =�
 			=�[?�, 2�]	Yℎ(X�) + =�[?�, 2�]	Yℎ(X�) = =[?, 2]

where, if 2� > 2�

24

 ?� + 2� + 2 ≤ :;:			 _ X� = 0X� = 2� − 2� ^ → =[max(?�, ?�) + 1, 2�]
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; −?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2]

else (2� ≤ 2�)
 ?� + 2� + 2 ≤ :;:			 dX� = 2� − 2�X� = 0 ^ → =[max(?�, ?�) + 1, 2�]
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; − ?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2]

Subtraction
Subtraction follows the same rules as addition and we have for =� − =�

 			=�[?�, 2�]	Yℎ(X�) − =�[?�, 2�]	Yℎ(X�) = =[?, 2]

where, if 2� > 2�
 ?� + 2� + 2 ≤ :;:			 _ X� = 0X� = 2� − 2� ^ → =[max(?�, ?�) + 1, 2�]
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; −?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2]

else (2� ≤ 2�)
 ?� + 2� + 2 ≤ :;:			 dX� = 2� − 2�X� = 0 ^ → =[max(?�, ?�) + 1, 2�]
 otherwise:			 _ X� = :; −?� − 2� − 2X� = 	:; − ?� − 2� − 2^ → =[max(?�, ?�) + 1,:; −?� − 2]

Multiplication

Multiplication of two fixed-point variables =�	and	=� on the form =�[?�, 2�], =�[?�, 2�] gives a result on the form =[?� +?� + 1, 2� + 2�],
according to e.g. [11]. We split multiplication in two cases; the result can be
stored and the result is too big to store.

The first case is trivial, just multiplying the factors and getting a result on

the form =[?� +?� + 1, 2� + 2�]. This result could then be rescaled if needed to
remove a portion of the least significant bits. A common choice is to truncate the
result so that is does not have more fractional bits than any of the factors. As

25

before note that we need ? + 2 + 1 bits to store =[?, 2] and thus we need ?� +?� + 2� + 2� + 2 bits to store the multiplication.

Example:
Consider multiplying =�[10,2]	and	=�[3,5] on a system with :; = 32. We then
need 10 + 3 + 2 + 5 + 2 = 22

bits to store the result that will be on the form =[14,7]. In this case the factors can
be multiplied like “regular” integers since the result can be stored without
manipulation.

The second case is more troublesome since we cannot perform the

multiplication without rescaling the factors a priori. Just multiplying them and
then trying to rescale the result would potentially destroy the information (due to
overflow or wraparound). Some processors have an intermediate register that can
hold 2 ∙ :; but that is not the case normally. If such a register is available then
the multiplication could be performed and the result could be truncated and then
returned causing less loss of information.

Since we cannot always count on the availability of a 2 ∙ :; register we
shift the factors prior to multiplying them to assure that the result can be stored
without overflow. We then have

 e=�[?�, 2�]	Yℎ(X�)f ∗ e=�[?�, 2�]	Yℎ(X�)f.

We compute h = :; − 1 − (?� +?� + 1ijjjkjjjlA + 2� + 2�ijkjl3) or in words: what is the

difference between the result and what we can store, how much must the factors
be shifted prior to multiplication in order to make the result fit in :; − 1. We are
free to distribute the shifts Yℎ(h) on the two factors. There has not been time to
investigate if there is a distribution that minimizes the error of this operation so
the naïve approach to distribute the shifts equally has been chosen whenever
possible. Since the shifts are positive this is only possible when h is an even
number. If h is uneven the factor with the most fractional bits is shifted more than
the other. Thus if

2� > 2� :			mX� = nh2oX� = ph2q ̂

and

2� ≤ 2� :			mX� = ph2qX� = nh2o ̂

The result will be on the form

26

 e=�[?�, 2�]	Yℎ(X�)f ∗ e=�[?�, 2�]	Yℎ(X�)f= =[?� +?� + 1, 2� + X� + 2� + X�]

Example:
Consider multiplying =�[10,8]	and	=�[13,5] on a system with :; = 32. To
store the result 10 + 13 + 8 + 5 + 2 = 37 bits would be needed. In order not to
destroy the information we shift the operand according to the rules above. We
have
 h = 32 − 1 − (10 + 13 + 1 + 8 + 5) = 32 − 1 − 37 = −6

and should thus shift according to
 e=�[10,8]	Yℎ(−3)f ∗ e=�[13,5]	Yℎ(−3)f= (=�[10,8] ≫ 3) ∗ (=�[13,5] 	≫ 3) = =�[10,5] ∗ =�[13,2]

to get a result on the form
 =[10 + 13 + 1,5 + 2] = =[24,7]

that can be stored using ? + 2 + 1 = 24 + 7 + 1 = 32 bits.

Division
For division only a simple rule was implemented to make sure that the fractional
bits are set so the results scale correctly. The number of fractional bits for the
result, 2, is set to
 2 = 2� − 2�

where 2� and 2� are the fractional bits of the nominator and denominator.

Interval analysis was used to determine the range of the result, and based on
that allocate integer bits.

This simple rule worked with the applications in this thesis but would need

improvement for more complex applications. One natural step would be to
left shift the nominator as much as possible, while avoiding overflow, in order to
keep as much precision as possible.

Boolean operations

Boolean operators are considered only for single bit Boolean variables, that is,
variables that only can take the value true or false, represented by 1 and 0.
Denoting a single bit Boolean variable � we have
 � ∈ ℤ� = �0,1
.

From Boolean algebra and digital circuit theory we find a number of

Boolean operators used to represent logical functions. For our purpose, since we
only consider the logical functions available in Modelica, only three of them are

27

currently interesting; r2�, st and /uv. Boolean variables and operations do not
introduce any additional errors in the system. This is because the output of a
Boolean operator is uniquely determined by the discrete inputs, which are also
errorless.

And

Standard Boolean bitwise r2� operation defined by
 r2�(��, ��) = _1, \]	��, �� = 10, uvℎwtx\Yw			^

Or

Standard Boolean bitwise st operation defined by
 st(��, ��) = _0, \]��, �� = 01, uvℎwtx\Yw		^

Not

Bitwise inversion, /uv, defined by
 /uv(�) = _0, \]	� = 11, \]	� = 0^

Relational operations

Denoted relational operations are operators that take fixed-point variables as
inputs and produce a Boolean output. They are typically used as conditions in If-
Then-Else like constructs to make decisions.
Here we consider; IfThenElse, Equal, NotEqual, Less, LessEqual, Greater and
GreaterEqual.

Using the fixed-point variables, 6y, and the fixed-point expressions, wXzty,
 6y , wXzty ∈ ℤ, {u2� ∈ ℤ�

the conditional operations are explained below.
Note that in order to make a meaningful evaluation of a condition, for

example if two variables are Equal, the variables might need rescaling to have the
same number of fractional bits, assuming that they are not boolean variables.

Consider again the Equal operator. All variables will be considered to be
equal if the difference of the two inputs is smaller than the resolution for the given
number of fractional bits. This may cause errors, e.g. selecting the wrong branch
in an If-Then-Else construct. This reasoning is valid for all conditional operators
considered here.

As always, when shifting fixed-point variables, care needs to be taken so
that the shifts do not cause overflows.

If-Then-Else
The If-Then-Else operator evaluates a Boolean condition and returns a fixed-point
value or expression. It is used in discrete and/or Boolean equations to evaluate
different branches depending on the condition. It is a ternary operator, i.e., takes
three inputs, and the generic syntax of the If-Then-Else statement is

28

 |]}ℎw2~�Yw({u2�, wXzt�, wXzt�) = _wXzt�, \]	{u2� = 1wXzt�, \]	{u2� = 0̂

Equal
The Equal operator is equivalent to the standard syntax ”==” operator.

 ~6���(6�, 6�) = _1, \]	6� = 6�0, uvℎwtx\Yw^

Not equal
The NotEqual operator is equivalent to the standard syntax ”! =” operator.

 /uv~6���(6�, 6�) = _1, \]	6� ≠ 6�0, uvℎwtx\Yw^
Less
The Less operator is equivalent to the standard syntax ”<” operator.

 ;wYY(6�, 6�) = _1, \]	6� < 6�0, uvℎwtx\Yw^
Less equal
The LessEqual operator is equivalent to the standard syntax ”<=” operator.

 ;wYY~6���(6�, 6�) = _1, \]	6� ≤ 6�0, uvℎwtx\Yw^
Greater
The Greater operator is equivalent to the standard syntax ”>” operator.

 �tw�vwt(6�, 6�) = _1, \]	6� > 6�0, uvℎwtx\Yw ̂

Greater equal
The GreaterEqual operator is equivalent to the standard syntax ”>=” operator.

 �tw�vwt~6���(6�, 6�) = _1, \]	6� ≥ 6�0, uvℎwtx\Yw ̂

Relative and absolute resolution

Resolution, as defined before, is a measure on the smallest number that can be
represented with a fixed-point representation using 2 bits of precision. For
variables and parameters it can be given using either relative or absolute
resolution.

The relation between relative resolution, <���, and absolute resolution, <���, for a
variable, �, is defined by:

29

ℛ(�) ∗ <��� = <���

where ℛ(�) = max	(|�Ay3|, |�A��|)	 is the range of �.

Typically, when the range of a variable is known the relative resolution is a good
way to specify the resolution but in some cases it is very convenient to use
absolute resolution instead. An example could e.g. be a signal coming from an AD
converter where the number of bits used is known.

Example
A relative resolution of 0.001 in the range 100 is
 100 ∗ 0.001 = 0.1

i.e., the absolute resolution is 0.1.

Using (3.2) we see that this requires four fractional bits
 2)� < <��� < 2)� 0.0625 < 0.1 < 0.125

Example
An AD converter outputs a signal with ten bits. The absolute resolution is
 <��� = 2)�� ≈ 0.00098

As can be seen above the number of fractional bits, 2�, is directly related to the
resolution. The exact relation can be found by
 <��� = 2)3� = 123� = ℛ(�) ∗ <��� 			→

23� = 1ℛ(�) ∗ <��� 			→

 2� = log�(1ℛ(�) ∗ <���)

Since 2� ∈ ℤ it needs to be rounded, and to be able to represent the resolution we
require that
 	 2)3� ≤ <���
 23� ≥ 1ℛ(�) ∗ <���
 2� ≥ log�(1ℛ(�) ∗ <���)
which holds for

30

2� = nlog�(1ℛ(�) ∗ <���)o

In Dymola the resolution is used to compute the number of fractional bits needed.
The implementation allows both relative and absolute resolution as input, which
will be shown in section 3.3.

Limitations

Many features of the Modelica language are supported, eg. arrays, matrices,
while-loops, algorithm sections, etc., but there are some limitations. The most
important ones are:

• No function calls (Modelica, built-in nor external)
• No for-loops
• ^ (power operator) not supported

3.2 Range analysis

To achieve high precision in the arithmetic operations it is important to make
good use of the available bits. This means to allocate enough integer bits to make
sure that there is no overflow while not losing too much precision.

As a motivating example consider an expression on a system with an 8-bit

word length
 6 = 6� + 6�

If no information on the range ℛ(6) = 6� + 6� of the expression is available, one
simple approach is to split the available bits evenly between the integer and
fractional part. For this example that would be either =[3,4] or =[4,3]
(remembering that =[?, 2] needs ? + 2 + 1 to store). This gives the result, 6,
three or four bits of precision assuming that the inputs, 6� and 6�, are known with
precision higher or equal to that. Let us now consider that it is known that the
range of the expression is in the interval [0,1]. The expression can then be on =[1,6] format and the result would have 6 bits of precision instead of 3 or 4.

Using range analysis the range of all expressions and sub-expressions can be

determined more or less accurately depending on what method is used and what
data is available on the signals. A couple of different approaches are presented
next.

Bit propagation

Bit propagation is a coarse method to approximate the range of an expression and
how it grows in the expression tree. The idea is to propagate the fixed-point
representation through the expression to get an estimate on the range.

As we know from previous sections, (3.7), adding two fixed-point numbers
requires them to have the same number of fractional bits, 2. In the example below.

 [?�, 2] + [?�, 2] = [max	(?�, ?�) + 1, 2]	

31

two fixed-point numbers are added and we see that the number of integer bits is
increased by one for each addition. The analogy for multiplication is

 [?�, 2�] ∙ [?�, 2�] = [?� +?� + 1, 2� + 2�]

and we see that the integer bits grow rapidly.

Interval arithmetics

Interval arithmetics can be used to estimate intervals of expressions and
intermediate results. It was introduced in the 1960´s by R. E. Moore in
[12].Unfortunately, interval arithmetics also often results in an overestimate of the
resulting intervals.

The basic propagation rules, see eg. [13], are
 [�, �] + [{, �] = [� + {, � + �]
 [�, �] − [{, �] = [� − �, � − {]
 [�, �] ∗ [{, �] = [min	(�{, ��, �{, ��),max	(�{, ��, �{, ��)]
 [�, �][{, �] = �min ��{ , �� , �{ , ��� ,max ��{ , �� , �{ , ����

where 0 is not allowed to be in [{, �] for division.
These rules have been implemented to support interval arithmetics in Dymola. We
also have
 \]	wXzt	vℎw2	[�, �]	w�Yw	[{, �] = [min(a, c) ,?�X(�, �)]

for if-then-else expressions. For interval arithmetics the ranges of the variables are
propagated though the expressions giving resulting intervals for intermediate
results. The range of the variables themselves can be input by the user or it can be
derived/set by heuristics.

Simulation-based approach

Monte Carlo simulations can be used to cover a wide range of use cases and get a
good approximation on the ranges of variables and expressions. Given a set of
cases, one can expect good results on the accuracy of the ranges. However, it is
time-consuming to perform exhaustive sets of simulations and it is hard, if not
impossible, to know if all cases are covered.

There are ways to configure Dymola for Monte Carlo simulations but the
infrastructure to collect and push range information from Monte Carlo simulations
back into the model was missing and therefore this approach was never evaluated.

32

Approach in Dymola

The approach used for range analysis in this work is interval arithmetics. An
implementation of bit propagation was also tested but discarded since interval
arithmetics gave tighter intervals.

3.3 Experimental annotations

In order to be able to specify resolution for a Modelica variable a new
experimental annotation has been introduced. It has the syntax

annotation(fixedpoint(resolution=<Real value>));

to specify the relative resolution, or

annotation(fixedpoint(bits=<Integer value>));

to specify an absolute resolution by specifying the (positive or negative integer)
number of fractional bits for the variable. A negative number of fractional bits can
be view as a scaling, just as a positive number, to reduce the size of large signals.

Example of annotated variables with min and max:

Real I(min=-10, max = 10) annotation(fixedpoint(resolution=0.001));

output Real to_DA(min=0, max=1) annotation(fixedpoint(bits=8));

The annotations can be used as modifiers (not allowed in Modelica language
specification) by enabling special support in Dymola. The reason is that the user
should be able to input additional information (like resolution, min and max) in a
model just by extending from a base model and modifying it, thus working in a
“true” object-oriented style, reusing the base model.

3.4 Defaults and heuristics

In order to get a starting point, to let a user start experimenting without having to
set min/max and resolution for all variables, default values for min, max and
resolution are used in many cases. These apply to two categories of variables;
parameters and variables. Exception are inputs to the system and in many cases
discrete state variables. Inputs must be user annotated and if not, the translation
will be aborted and an error message will list the variables that must be annotated
in order to proceed.

With these requirements and the rules for default values described here, a
starting point for fixed-point simulations is set without the need to provide
min/max and resolution for all variables. The user can, and should, then modify
the defaults to use better (more confident) min/max values, and to use resolution
to control what variables need the most resolution in order to keep the system
within tolerable limits using fixed-point arithmetics instead of floating-point.

33

Parameters

Parameters are variables that are constant during simulation. What separates them
from constants in Modelica is that the user should have the possibility to change
them without recompiling the model. An implication of this is that parameters
cannot be converted to fixed-point literals, like constants and real literals, and
hard-coded for better performance. The constants, or literals, can be converted
once, at translation time, whereas the parameters need to be converted during
runtime in the host.

For parameter the following default values are used:

• ?\2 = −2 ∙ |����w|
• ?�X = 2 ∙ |����w|
• tw��v\�w	twYu��v\u2 = 10)�

where ����w is the value assigned to the parameter at translation time. The
implementation allows the default value to be overridden by setting the Dymola
flag Advanced.ParameterResolution .

Variables

A variable that is not an input to the system, a discrete state variable or a
parameter can be computed using inputs, states and parameters or other variables
that are already known (equation systems are not supported for fixed-point
handling in Dymola). This means that the min/max can be derived using interval
arithmetics for all variables that are not in the categories mentioned above, with
the exception of discrete state variables in some cases, an example will be given
below. Hence, the min/max defaults specified below are just symbolic, after
translation they are normally overwritten by a derived or a user-specified min/max
value.

For variables the following default values are used:

• ?\2 = _ −10)��,														\]	tw��		−2147483647,					\]	\2vw�wt ̂

• ?�X = _ 10)��,														\]	tw��		2147483647,					\]	\2vw�wt ̂
• tw��v\�w	twYu��v\u2 = 10)�

As for parameters, the implementation allows the default value to be overridden
by setting the Dymola flag Advanced.VariableResolution .

As an example when the min/max for a discrete state variable can be derived,
consider a PID controller where we have two discrete states; i and e, described by
the Modelica block below.

block SimplePID
 parameter Real Gain(min=0.1, max=2)=1;

 parameter Real DT(min=0.02, max=1)=0.1;

 parameter Real Ti(min=0.1, max=100)=100;

 parameter Real Td(min=0, max=2)=0;

34

 input Real Sp(min=-10, max=10) annotation(fixedpoint(resolution=1e-5));

 input Real Pv(min=-10, max=10) annotation(fixedpoint(resolution=1e-5));

 output Real C annotation(mapping(...));
protected
 Real e(start=0, fixed=true);
 Real i(start=0, fixed=true, min=-100, max=100) annotation(fixedpoint(resolution=1e-
5));
equation
 when sample(0,DT) then
 e = Sp - Pv;
 i = pre(i) + e;
 C = Gain*(e + DT/Ti*i + Td/DT*(e-pre(e)));
 end when;
end SimplePID;

Using a ramp as set point signal and connecting the controller to a simple process
we get a small system

model Sys
 SimplePID pid;
 Process proc;
equation
 pid.Sp = if time < 0.5 then 0 else 1;
 pid.Pv = Subtask.decouple(proc.y);
 proc.u = Subtask.decouple(pid.C);
end Sys;

Subtask.decouple() is a Modelica operator that is used by Dymola to
partition the system in to different subtasks, described in [7]. For the system
above the following declarations is generated based on the annotations and
interval analysis.

/* input Real pid.Sp(min = -10.0, max = 10.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_16 pid_Sp_FP = 0;
/* Q[1, 14] Derived: min = 0.0, max = 1.0 */

/* input Real pid.Pv(min = -10.0, max = 10.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_16 pid_Pv_FP = 0;
/* Q[1, 14] Derived: min = -1.0, max = 1.0 */

/* discrete Real pid.e */
int_16 pid_e_FP = 0;
/* Q[2, 14] Derived: min = -1.0, max = 2.0 */

/* discrete Real pid.i(min = -100.0, max = 100.0)
annotation(fixedpoint(resolution = 1E-005)); */
int_32 pid_i_FP = 0; /* Q[7, 10] */

/* output discrete Real pid.C */
int_32 pid_C_FP = 0;
/* Q[12, 19] Derived: min = -2602.0, max = 2604.0
*/

35

/* parameter Real pid.DT(min = 0.02, max = 1.0) = 0 .1
*/
int_16 pid_DT_FP = 1638; /* Q[1, 14] */

/* parameter Real pid.Gain(min = 0.1, max = 2.0) = 1 */
int_16 pid_Gain_FP = 8192; /* Q[2, 13] */

/* parameter Real pid.Td(min = 0.0, max = 2.0) = 0 */
int_16 pid_Td_FP = 0; /* Q[2, 13] */

/* parameter Real pid.Ti(min = 0.1, max = 100.0) = 100
*/
int_16 pid_Ti_FP = 12800; /* Q[7, 7] */

As can be seen above the min/max of the output, C, is derived by interval analysis
based on the min/max of other variables. For the input variables, Sp and Pv, the
derived min/max gave a narrower interval than specified by the user. The user
specified min/max attributes are then ignored.

Also note the discrete state variable, e, which only depends on the inputs
and therefore the min/max could be derived.

3.5 Code Generation

Typically, when translating a Modelica model in Dymola, C code for the model
equations is generated and compiled into an executable that can be run on the PC.
This executable (dymosim.exe) is the actual simulator that integrates/solves the
model equations. This “normal” case when simulating a model in Dymola is
supported for fixed-point code generation and we denote it Internal fixed-point in
this report.

Using Modelica_EmbeddedSystems we can, e.g., separate the controller
part in a system from the plant and map that to an external target. Fixed-point
code generation for this scenario is denoted External fixed-point.

The main difference for the scenario above is that the actual computations
of the fixed-point task are performed on the external target instead of on the PC.
The simulator, dymosim, is in this case only used for (optional) data logging for
plotting and animation on the PC.

Internal fixed-point

The ´Internal fixed-point´ mode is typically used to study effects and control
performance using fixed-point computations in a controller compared to using
floating-point. The effects of fixed-point computations can, e.g., introduce
unwanted limit cycles due to quantization and overflows affecting system
stability.

For an efficient workflow it is essential to easily be able to compare signals
and the effect they have on the system. To make it convenient for users, code is
generated such that both fixed-point and floating-point computations are
computed. A Boolean variable in the GUI (accessible in the Dymola variable
browser) can then be used to select if the result of fixed-point or floating-point

36

computations shall be used as output. The benefit of this approach is that the
model only needs to be translated and compiled once. Simulations can then be
performed using either fixed-point or floating-point by toggling the GUI switch
without re-translation.

Below the code for the actual model equations is described in Equations and
the declaration of fixed-point variables in Declarations. Note that the fixed-point
variables/equations are not available in the Modelica code of the model; they are
created during translation and realized in the C code next to the original equations.

When in the Internal fixed-point mode, all code is generated in the same file
where Dymola outputs the normal model equations, called dsmodel.c.

Declarations
The actual fixed-point variables are declared as local integer variables in the C
code and are not stored in the result file after a simulation. Example:

/* Real y */
int_32 y_FP = 0;
/* Q[11, 11] Derived: min = -2.0, max = 1202.0 */

/* parameter Real q1 = 0.5
annotation(fixedpoint(bits = 11)); */
int_16 q1_FP = 1024;
/* Q[1, 11] Derived: min = -1.0, max = 1.0 */

/* parameter Real q2(min = 0.0, max = 1000.0) =
0.5 annotation(fixedpoint(bits = 4)); */
int_16 q2_FP = 8; /* Q[10, 4] */

/* parameter Real q3 = 0.5
annotation(fixedpoint(bits = 5)); */
int_8 q3_FP = 16;
/* Q[1, 5] Derived: min = -1.0, max = 1.0 */

/* parameter Real q4(min = 0.0, max = 100.0) = 0.5
annotation(fixedpoint(bits = 10)); */
int_32 q4_FP = 512; /* Q[7, 10] */

/* time */
int_32 time_FP = 0; /* Q[7, 10] */

Instead new variables are created and the rescaled values of the fixed-point
variables are mapped back during simulation.

For a variable y we declare in dsmodel.c as a local variable

<int_type> y_FP

This is the actual integer variable that holds the value of the fixed-point
computation. Furthermore, we also introduce two new versions of the Modelica
variable under the virtual Modelica component <fixedpoint> . These two
variables are

37

y_fromfixedpoint

which is the recovered value of the fixed-point variable and

y_original

which is the value of the original equation computed using floating-point
arithmetics. This gives a hierarchy in the stored result (that is also reflected in the
Dymola variable browser, see e.g. Figure 20). Note that those two variables are
not declared as local C variables, they are instead declared as if they existed as
real variables in the model. The reason is that it is then possible to get a nice
structure as described below.

As an example of the structure consider three variables a,b,c, where b
and c belong to the fixed-point task. We then get

<a>

<c>
<fixedpoint>
 | -
 | | - fromfixedpoint
 | | - original
 | - <c>
 | | - fromfixedpoint
 | | - original

Below, in the Equations section, the implementation and interpretation of the new
variables are described.

Equations
As mentioned before, code is generated such that equations are computed in both
floating-point and fixed-point. Below is an example in C code for the variable y
from the previous example. As can be seen, the two new variables introduced in
the previous section, y_fromfixedpoint and y_original are always
computed and then only one is used to assign the original variable depending on
the value of the Boolean toggle variable useFixedPoint .

/* Fixedpoint equations */
/* y = q1+q2+q3+q4+time; */
y_FP = ((((q1_FP + (q2_FP << 7)) + (q3_FP << 6))
 + (q4_FP << 1)) + (time_FP << 1));
/* Mapping from fixedPoint variables to Modelica
 variables */
/* y = 2^(-11)*y.FP */
fp_y_fromfixedpoint = 0.00048828125*y_FP;
fp_y_original = q10_0+q20_0+q30_0+q40_0+Time;
y0_0 = useFixedPoint0_0 ? fp_y_fromfixedpoint :
 fp_y_original;

38

The generated code contains automatically generated comments for improved
readability and traceability.
 First in the block is a comment with the original Modelica equation
followed by the actual code for the corresponding fixed-point variable. Then,
before the mapping back to a Modelica variable, the scaling is clarified in a
comment.

External fixed-point

The External fixed-point mode is used to generate code that can be incorporated
in a framework and downloaded on an external target platform for further testing
and verification. To keep the code portable, it is split into two files; declarations.c
and equations.c, containing the variable declarations and the fixed-point model
equations, respectively. These two files can then be included in a user written
framework, see. e.g. dymola_wrapper in section 4.3 for an example
implementation. Code for data logging and interaction (eg. reference signal
generation using a game-pad) is optionally generated for the normal simulator,
dymosim, in the file dsmodel.c.

Declarations
The declarations of local fixed-point variables are in declarations.c, which is
included by the framework code for the external target. In dsmodel.c, the same
file is included if data logging is enabled to get consistent variable declarations.
An example is:

39

/* Type definitions for fixedpoint data types */
#ifndef DYMOLA_FP_TYPES
#define DYMOLA_FP_TYPES
 typedef char bool_8;
 typedef char int_8;
 typedef short int int_16;
 typedef int int_32;
 typedef long long int int_64;
#endif

/* input Modelica.Blocks.Interfaces.RealInput
sendMotorA.u(min = -100.0, max =
 10.0) annotation(fixedpoint(bits = 0)); */
int_8 sendMotorA_u_FP = 0; /* Q[4, 0] Derived:
min = 0.0 */

/* input Modelica.Blocks.Interfaces.RealInput
sendMotorB.u(min = 0.0, max = 100.0) */
int_16 sendMotorB_u_FP = 0; /* Q[7, 8] */

/* parameter Real ramp.height = 100 */
int_16 ramp_height_FP = 6400; /* Q[8, 6] Derived:
min = -200, max = 200 */

In the example above the type definitions are followed by the declaration of

two input variables sendMotorA_u_FP and sendMotorB_u_FP and a
parameter ramp_height_FP .

As can be seen, the declaration of a fixed-point variable includes some
additional comments to improve the traceability to the original variable in the
Modelica model, as well as detailed information on the fixed-point representation
of the variable.

First is a comment containing the original declaration as found in the
Modelica code. It is followed by the declaration of the fixed-point variable. Note
that the fixed-point variable is automatically initialized with the fixed-point
converted value of its real Modelica value.

In the example above the fixed-point parameter ramp_height _FP is
automatically initialized to 6400 which is the value of the Modelica parameter
ramp.height=100 scaled up using the Q[8, 6] format.

 100 ∗ 2� = 6400

Finally there is a comment with the Q notation of the selected fixed-point

representation as well as derived min/max values for those variables where this
was not set by the user. The min/max, either derived or original, can be used to
verify the integer part of the fixed-point representation.

Equations
The fixed-point model equations are generated in equations.c which can be
included in a framework assuming that the declarations.c file already has been
included. As can be seen in the example code below, for a Lego Mindstorms NXT

40

target, each fixed-point equation is preceded by a comment containing the original
Modelica equation for traceability. The block at the end is optionally generated if
data logging is enabled.

/* sendMotorA.u = (if time < ramp.duration then
time*ramp.height/ramp.duration
 else ramp.height); */
sendMotorA_u_FP = ((((time_FP < (ramp_duration_FP
<< 4)) ? ((time_FP *
 ramp_height_FP) / ramp_duration_FP) :
(ramp_height_FP << 4)))) / 2048;
/* readMotorA.y =
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count
 (readMotorA.fromPort.n, time); */
readMotorA_y_FP =
nxt_motor_get_count(readMotorA_fromPort_n_FP);
/* Sending variables using bluetooth */
target_port_bufwrite_int32(sendMotorA_u_FP);
target_port_bufwrite_int32(readMotorA_y_FP);
target_port_write_flush();

The corresponding code in dsmodel.c when data logging is enabled doesn’t
contain any equations from the model. All equations are replaced with a call to
read the actual value from the external target for data logging purposes. In the
example below a generic read function, host_port_read_int32(), is
called to read an integer from the target. For this thesis an implementation to read
from the Lego Mindstorms NXT device was developed. As can be seen in the
example the variable is calculated by reading the value from the target and then it
is rescaled to the Modelica variable. As for the Internal fixed-point model the
variable is preceded by a comment containing its original equation for traceability.

/* sendMotorA.u = (if time < ramp.duration then
time*ramp.height/ramp.duration
 else ramp.height); */
sendMotorA_u_FP = host_port_read_int32();
/* Mapping from fixedPoint variables to Modelica
variables */
/* sendMotorA.u = 2^0*sendMotorA.u.FP */
sendMotorA_u = sendMotorA_u_FP;
/* readMotorA.y =
LEGO_Mindstorms.Communication.ExternalC.ECRobot.Se
rvoMotor.nxt_motor_get_count
 (readMotorA.fromPort.n, time); */
readMotorA_y_FP = host_port_read_int32();
/* Mapping from fixedPoint variables to Modelica
variables */
/* readMotorA.y = 2^0*readMotorA.y.FP */
readMotorA_y = readMotorA_y_FP;

41

If no data logging (and no Bluetooth communication from PC to target) then the
target is completely free from the PC and can be run on its own. The example
code for the Lego Mindstorms NXT target above would then not contain the
section starting with

/* Sending variables using bluetooth */

3.6 Automatic error-checking code

To help users evaluate the fixed-point representation they are using, code can be
generated to automatically check the error. The current implementation is based
on generating assert statements that are evaluated after every computation of the
variable. This will slow down the code and is not applicable when running on an
external target so it is not enabled by default. Furthermore, the current strategy is
not sophisticated enough, a small phase shift in the signal can give a large error in
magnitude and the simulation will stop.

For the error checking code to be usable, more development is needed,
which is outside the scope of this thesis. The main idea with this implementation
is to show that it is possible to integrate that type of code generation in the
framework automatically.

The current implementation uses the following error criteria for a variable �.
 �YYwtv ������A�y�����y3� −	���y�y3��� ≤ 0.001 ∙ e����y�y3��� + �3�Ay3��f�

where ����A�y�����y3� 	is the recovered value from the fixed-point computations, ���y�y3�� is the original value from the floating-point computation and �3�Ay3�� is
the nominal value of the variable (default value in Dymola is �3�Ay3�� = 1 except
for pressure variables where �3�Ay3�� = 10�).

Checking of min/max attributes set by the user can be done by enabling
assertions for min/max in Dymola.

42

43

4. Application Examples

To evaluate the code for External fixed-point the Lego Mindstoms NXT device
was used as target platform. A Dymola Lego Mindstorms API in the form of a
Modelica library was developed to support the platform.

This section describes some application examples, starting with the
platform, tool chain and Dymola Lego Mindstorms API. Online plotting over
Bluetooth and the Lego Segway are introduced as application examples.

4.1 Platform and tools

Lego Mindstorms NXT

Lego Mindstorms NXT [14] is essentially a programmable Lego toy. Due to its
openness and the numerous ways to program, configure and use it, a community
of technically interested people has grown around it further pushing the limits of
usage. It is used at several universities, e.g. Lund University and RWTH Aachen,
as a popular hardware platform in control engineering and mechatronic systems.

The heart of the unit is the NXT device (in the center of the image below).

Figure 13. Lego Mindstorms robot.

44

The NXT device is a Lego brick containing a micro-controller with a
graphical display, Bluetooth chip and interface (ports) to a number of sensors and
actuators. It is configurable in numerous ways and the basic kit includes

• The NXT device
• Touch sensor
• Sound sensor
• Light sensor
• Ultrasonic sensor
• Servo motors
• Basic Lego building blocks.

In addition to the basic building blocks, additional add-on sensors and

actuators can be acquired from third-party vendors.

HiTechnic

HiTechnic is a manufacturer of a big range of robotic sensors for the Lego
Mindstorms NXT. Among their products are the following sensors:

• Acceleration / Tilt Sensor1
• Color Sensor
• Compass Sensor
• Gyro Sensor1
• IRReciver Sensor
• IRSeeker Sensor

Several of their sensors are available in the C API from nxtOSEK, presented

in a coming section.

Mindsensors

Mindsensors is another manufacturer of accessories to the Lego Mindstorms
NXT. Among their products are:

• Realtime Clock
• Multi-Sensitivity Acceleration Sensor1

Their products are not supported in the nxtOSEK C API. E.g. the

Acceleration Sensor, is supported in NXT-G, NXC/NBC, RobotC but not in the C
API from nxtOSEK. To use a Mindsensors sensor in the nxtOSEK Real-Time
Operating System (RTOS), low level drivers had to be written, which make them
a bit more hard-to-use than the HiTechnic sensors (for this particular platform).
On the other hand, e.g. the Acceleration Sensor from Mindsensors is much more
sensitive than the one from HiTechnic.

1 Supported in LEGO_Mindstorms library implemented for this thesis

45

nxtOSEK

nxtOSEK, [15], is a freely available RTOS for Lego Mindstorms NXT. It is
supplied as an open-source project and provides the user with, in particular:

• A programming environment using a GCC tool chain
• C API to Lego Mindstorms sensors and motors
• C API to some third-party sensors
• A large set of code examples

Based on the extensive set of examples supplied with nxtOSEK, a wrapper

has been developed to form a base for the Dymola-generated fixed-point C code
such that it can be compiled into an executable for the NXT using the standard
GCC tool chain.

The nxtOSEK web page [15] also supplies several methods to download the
compiled executable to the NXT device. The most trivial one uploads the program
to an NXT without firmware installed. In that case the program is uploaded to and
executed from the RAM memory of the device and it is then lost after termination
of the device. Another alternative is to install an enhanced NXT firmware that
allows you to upload the program to the flash memory of the device. The program
is then kept in the memory when the NXT is restarted. When running the program
it is copied to the RAM and executed from there just as for the first method. This
alternative was found to be much more convenient than the first one, since the
program is kept in the NXT after reboot. A third option is also described on the
webpage [15] but it has not been tested during this work.

Cygwin

Cygwin [16] is a program that enables some Unix functionality on Windows by
acting like a Unix-like environment.

In the scope of this thesis it is used as a command-line tool to compile and
link the Dymola-generated code into an executable that can be run in the
nxtOSEK RTOS. It is also used to download the executable code to the Lego
device.

4.2 Tool chain

The tool chain when running the model on the Lego target is illustrated in Figure
14 below.

46

Figure 14. Tool chain.

Dymola is used to develop models of plant and controller to investigate effects of
e.g. fixed-point aritmetics and sampling. Code can then be generated for the Lego
target and using Cygwin the generated code is compiled and downloaded to the
hardware. To evaluate the design and to collect data (data logging is described
later in section 4.4) the Lego device can be run together with the simulation
process from Dymola.

4.3 Dymola Lego Mindstorms API

The Dymola – Lego Mindstorms API consists of two main parts:

• LEGO_Mindstorms, a Modelica library with blocks that can be used to
map signals to parts of the NXT’s sensors and actuators

• dymola_wrapper.c, a framework/wrapper for the automatically generated
model code from Dymola.

LEGO_Mindstroms library

The LEGO_Mindstorms library was developed to implement an API to a subset of
the sensors and actuators available for the Lego Mindstorms NXT platform. The
main structure of the library can be seen in Figure 15.

47

Figure 15. LEGO_Mindstorms Modelica library.

The library is designed to be compatible with Modelica_EmbeddedSystem in such
a way that the API components can be accessible directly from the parameter
dialog of the communicateReal block. This is done by extending from the
architecture defined in Modelica_EmbeddedSystems, i.e., the components/blocks
extend from a base class in Modelica_EmbeddedSystems.

The communicateReal can then be used in a model to map a signal to a
specific low-level C function on the target. An example would be to send a
control signal to a motor or to read from a sensor, e.g., touch sensor to detect
contact.

The benefit of this design is that when the LEGO_Mindstroms library is
loaded in Dymola, the new components will automatically appear as new choices
that can be selected in the parameter dialog of communicateReal, shown in Figure
16, actuators, and in Figure 17, sensors.

48

Figure 16. NXT actuators in the communicateReal parameter dialog

Figure 17. NXT sensors in the communicateReal parameter dialog

If additional sensors or actuators are needed, a user can follow the same design
principle and implement his own API block that also will appear automatically in
the dialogs. This makes the framework very flexible for the user.

The current implementation supports a subset of the nxtOSEK C API

• ECRobot
o Servo motor
o Light sensor

49

o Sound sensor
o Touch sensor
o Ultrasonic sensor

• HiTechnic
o Acceleration sensor (NAC1040)
o Gyro sensor (NGY1044)

• Mindsensors
o Acceleration sensor (ACCL-Nx-v3)

described in more detail below.

NXT standard I/O modules
The ECRobot sub-package contains an interface to the standard Lego Mindstorms
sensors and actuators. Each block contains a mapping to the corresponding
nxtOSEK C API function, adding min/max values whenever possible. The blocks
extends from a base class in Modelica_EmbeddedSystems and then uses the
Modelica external function concept to map the signal to the C function from the
API. As an example consider the touch sensor. The API, as can be seen in Figure
18, uses the U8 type (unsigned 8-bit integer) as input and return value.

Figure 18. nxtOSEK Touch Sensor API

The corresponding Modelica function in LEGO_Mindstorms is

function ecrobot_get_touch_sensor

 input Integer port_id(min=0, max=3)
 "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4";
 input Real Time;
 output Real signal;
external "C" signal = ecrobot_get_touch_sensor(port_id);
end ecrobot_get_touch_sensor;

As can be seen above, the Modelica function uses the Modelica external function
concept (external “C” y =foo(u)) and contains the call to the actual C function as
defined in the API. The input variable Time was needed make the function time
varying since Dymola otherwise evaluates the function. For the above function to
fit in the Modelica_EmbeddedSystems framework, i.e, to make it selectable in the
communicateReal block as in Figure 17, a Modelica block has been constructed
by extending the appropriate base class. This block, as shown below, contain a
call to the function above as well as assigning min/max attributes of the output of
the sensor.

block ecrobot_get_touch_sensor "Read touch sensor"

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.

 PartialReadRealFromPort(minValue=0, maxValue=1,
 y(min=0, max=1));
 parameter Integer port_id(min=0, max=3) = 0

50

 "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4";
equation
 // Returns touch sensor status. 0 = not touched, 1 = touched.
 y = ExternalC.ECRobot.TouchSensor.ecrobot_get_touch_sensor(port_id, time);
end ecrobot_get_touch_sensor;

Note that the Modelica implementation returns a Real whereas the C function
returns an integer (U8). The reason for this is to make all sensors and actuators
available from the communicateReal block (communicateReal handles real
signals as the name indicates). This will make usage straight-forward, the user can
always use communicateReal and know that all supported components can be
found there. If the formally more correct approach was used, i.e., using
communicateInteger and communicateBoolean as well, then the user would have
to use the C API to figure out what return type the underlying C function has and
then use the appropriate communication block type.

HiTechnic Gyro Sensor
The HiTechnic Gyro Sensor is a third party sensor form HiTechnic and is found in
the HiTechnic sub-package. The implementation was straight-forward, similar to
the one described in NXT standard I/O modules above (nxtOSEK contains a C
API for this sensor in the same style as above).

HiTechnic Acceleration Sensor
The Acceleration Sensor, found in the HiTechnic sub-package, also had a C API
available in nxtOSEK as can be seen below in Figure 19.

Figure 19. nxtOSEK Acceleration sensor API

It is based on passing pointers but the communication blocks do not take pointers
(arrays) only scalars so a C wrapper was developed to interface it. The idea is
simple. In Dymola you select which axis you would like to use with a parameter
and then that axis is extracted from the array in the C wrapper and passed as a
scalar variable to the Modelica block. The C implementation is

/* Wrapper to read one axis from the Hi Technic Acc eleration
sensor */
S16 get_accel_axis(U8 port_id, U8 axis)
{
 S16 buffer[3];
 ecrobot_get_accel_sensor(port_id, buffer);
 return buffer[axis];
}

and the corresponding Modelica block

block get_accel_axis

 "Read Hi Technic acceleration sensor (one axis)."

 extends Modelica_EmbeddedSystems.Interfaces.BaseReal.

51

 PartialReadRealFromPort(y(min=-600, max=600),
 minValue=-600, maxValue=600);

 parameter Integer port_id(
 min=0,
 max=3) = 0
 "0 = NXT_PORT_S1, 1 = NXT_PORT_S2, 2 = NXT_PORT_S3, 3 = NXT_PORT_S4";
 parameter Integer axis(min=0,max=2)=0 "0 = X-axis, 1 = Y-axis, 2 = Z-axis";
equation
 // Returns raw A/D data from one axis from the accel sensor

 y = LEGO_Mindstorms.Communication.ExternalC.HiTechnic.
 AccelerationSensor.get_accel_axis (port_id, axis, time);
end get_accel_axis;

Mindsensors
In the Mindsensors sub-package another, third-party acceleration sensor is found;
the ACCL-Nx-v3 acceleration sensor, which is more sensitive than the
acceleration sensor from HiTechnic. This sensor is not supported in the nxtOSEK
C API so both the Modelica part and the C part had to be implemented. The C
implementation is based on reading raw data from the I2C bus, on which the
sensor is connected, and then use wrappers to extract either tilt or acceleration in
the selected axis. Below the function for reading raw data and the wrappers.

S16 mindsensors_get_accel_axis(U8 port_id, U8 axis)
{
 return mindsensors_get_accel_sensor(port_id, axis+3);
}

S16 mindsensors_get_tilt_axis(U8 port_id, U8 axis)
{
 return mindsensors_get_accel_sensor(port_id, axis);
}

S16 mindsensors_get_accel_sensor(U8 port_id, U8 axi s)
{
 static S16 state[6];
 static U8 data[9];
 if (i2c_busy(port_id) == 0)
 {
 /* tilt data */
 state[0] = (S16)data[0];
 state[1] = (S16)data[1];
 state[2] = (S16)data[2];
 /* 10 bit acceleration data */
 state[3] = (S16)data[3] + ((S16)data[4] << 8);
 state[4] = (S16)data[5] + ((S16)data[6] << 8);
 state[5] = (S16)data[7] + ((S16)data[8] << 8);
 i2c_start_transaction(port_id,1,0x42,1,&data[0],9 ,0);
 }
 return state[axis];
}

The corresponding Modelica blocks are implemented just as for the previous
examples.

Bluetooth
The Bluetooth sub-package contains Modelica blocks to access Bluetooth
communication routines from within the model. An example of usage is to send

52

reference signals from the host computer to the Lego Mindstorms NXT device.
The implementation has been made such that the user can use the communication
routines in the same convenient way as the previously described sensors and
actuators, just by selecting from the pull-down menu of the communicateReal
block, see e.g. Figure 16 and Figure 17.
The available blocks are

• nxt_read_bluetooth
• nxt_write_bluetooth
• host_read_bluetooth
• host_write_bluetooth

The blocks call the underlying Modelica functions needed for the Dymola
Bluetooth communication API (host_…_bluetooth) developed for this thesis, as
well as Modelica functions for the Bluetooth communication routines in the
nxtOSEK C API (nxt_..._bluetooth).

In order to use the Bluetooth communication features, a communication
channel had to be established between the host computer and the Lego
Mindstorms NXT device. To make this setup as convenient as possible for the
user a component that opens and closes a channel was implemented. The
component can be found under the sub-package Components and has the icon
depicted below and contains the following Modelica code:

block Bluetooth
 parameter Integer port=8 "Virtural COM port number";
initial algorithm
 LEGO_Mindstorms.Communication.ExternalC.BlueTooth.openChannel(port);
equation
 when terminal() then
 LEGO_Mindstorms.Communication.ExternalC.BlueTooth.closeChannel();
 end when;
end Bluetooth;

The code ensures that the communication channel is opened before any
computations are made and that the channel is properly closed at the end of the
simulation. The input parameter “port” is the numeric value of the assigned virtual
COM port. This value is determined when the device is paired with the host
computer, using, e.g., Windows (the device must be paired and connected before
any communication features can be used).

dymola_wrapper

This section describes the dymola_wrapper.c framework that is used as a base for
the automatically generated model code in order to make it run on the Lego
Mindstorms NXT under the nxtOSEK operating system. The code is based on
examples from the nxtOSEK source code and is outlined below.

<includes>

53

#include "target_port.h"

/* OSEK declarations */

/* Include fixedpoint variable declarations */
#include "declarations.c"
/* Include API to sensors from Mindsensors */
#include "mindsensors.c"
int startTime = 0;

/* LEJOS OSEK hooks */
 <code>
/* LEJOS OSEK hook to be invoked from an ISR in
category 2 */
 <code>
/* Wrapper to read one axis from the Hi Technic
Acceleration sensor */
S16 get_accel_axis(U8 port_id, U8 axis)
{
 <code>
}

/* Task1 executed every x msec */
TASK(Task1)
{
 /* map system time to fixedpoint time */
 /* reset motor count to 0 */
 <code>

 /* include fixedpoint equations */
 #include "equations.c"

 /* display time in seconds*/
 <code>

 TerminateTask();
}

The essential part is the task (Task1) that is executed periodically. It contains (by
an include statement) the model equations as generated by the fixed-point
machinery of Dymola. Every time the task is executed the model equations are
recomputed with updated inputs and sensor values.

A detail that is not obvious at first glance is the first couple of lines in the
task starting with the comments “ /* map system time …”. The full code is

 /* map system time to fixedpoint time */
 /* reset motor count to 0 */
 if (startTime == 0) {
 // only executed the first execution cycle
 startTime=systick_get_ms();
 nxt_motor_set_count(NXT_PORT_B,0);

54

 nxt_motor_set_count(NXT_PORT_C,0);
 }
 time_FP = (int)1024*(systick_get_ms()-
startTime)/1000;

The purpose of this code is to scale the time variable for, e.g., time-dependent
reference signals such as ramps and to remove bias. The time variable is
constructed by using a built in millisecond counter. The counter is started when
the Lego Mindstorms NXT device is powered up and will thus always be biased.
In the Dymola-generated model equations, the time variable is by default scaled
with 10 fractional bits and thus we need to incorporate that scaling (1024) when
updating the time variable as well as rescale it from milliseconds to seconds. To
remove the bias, the value of the counter at the first execution is stored and then
subtracted each update. At first execution the counters of the motors (in the
example above connected to port B and C) are also reset to make sure they always
start counting on 0 when the code starts.

The last section is an example how to output variables to the Lego
Mindstorms NXT display for, e.g., debugging. Below is example code to display
the time variable (in seconds) on the display, both scaled and uscaled (raw).

 /* display time in seconds*/
 display_clear(0);
 display_goto_xy(0, 0);
 display_string("My display");
 display_goto_xy(0, 2);
 display_string("TIME:");
 display_int(time_FP/1024, 0);
 display_goto_xy(0,4);
 display_string("TIME unscaled:");
 display_int(time_FP, 0);

 display_update();

4.4 Dymola Bluetooth interface for plotting and animation

Debugging embedded systems can be a very difficult and time-consuming task.
One of the main problems is that it is usually very hard to get usable/reliable data
of the internal state of the embedded system, only a few inputs/outputs are
available. The reason for this is that many embedded systems lack an internal file
system or if one exist, the area of persistent storage would likely be relatively
small and would thus quickly fill if one attempts to use it for data logging.

To facilitate automatic data logging for the Lego Mindstorms NXT device,
we utilize the fact that it has a built-in Bluetooth chip and, using nxtOSEK, a C
API for read/write operations. The user can enable this feature by setting a flag in
the Dymola command prompt and if activated, code will automatically be
generated to support data logging of the internal signals.

The basic idea is to generate two variants of the model code, one (in fixed-
point) to be downloaded to the embedded system and one for the PC with Dymola
that instead of computing values listens on a Bluetooth communication channel
and stores the information received from the embedded system. The code for the

55

embedded system (Lego Mindstorms NXT) contains, in addition to the model
equations in fixed-point, also Bluetooth send commands.

In the current implementation, there is no way to select which variable shall
be logged. If the flag is set then all variables are logged and if not set none are
logged. During testing, approximately 30 signals could be logged while running
the system with 10ms sample rate. This implicitly puts a limit on the size of the
model when the automatic data logging can be used. If this limit is exceeded then
plotting and animation cannot be run.

4.5 Dymola Bluetooth interface for direct communication

Above we discussed automatic data logging using the Bluetooth communication
channel. The Bluetooth channel cannot only be used for that purpose, it can also
be used for direct communication with the model from the PC with Dymola. An
example, that has been implemented and tested, is to send reference values to a
controller from a model in Dymola.

Using the Modelica_EmbeddedSystems framework, Bluetooth
communication blocks have been implemented and can be reached in the
fromPort and toPort modes of the communication points as can be seen in Figure
3, section 2.1. The Modelica implementation is a mapping to the actual C routines
that is used for the communication between target and host. The target routines
(on the Lego Mindstorms NXT) make use of the nxtOSEK Bluetooth C API.

The tested example used a USB game controller connected to Dymola to
generate reference speed signals for the wheels of the Lego Mindstorms NXT.
Those signals where then sent to the NXT using the Bluetooth components
described in section 4.3.

4.6 Online plotting and animation

Online plotting and animation is closely coupled to Bluetooth data logging when
running the code on the Lego Mindstorms NXT. Without it, there would be no
data to plot or animate. We thus need to separate the two cases, internal target
(fixed-point simulation in Dymola) and external target (Lego Mindstorms NXT).

Internal fixed-point target

With internal target we denote running a Software-In-the-Loop simulation in
Dymola to investigate the effects of fixed-point arithmetics on, e.g., controller
performance. The typical scenario is to have a system with a plant and a
controller, decoupled using components from Modelica_EmbeddedSystems. With
the support for fixed-point activated, code is generated to compute both the
normal floating-point computations of the model equations and their fixed-point
counter parts. The user can for example run the model with the fixed-point
equations as slaves to the real controller, acting as “fixed-point sampling” of the
signals, as well as driving the system with the fixed-point controller. A parameter
is introduced in the variable browser to toggle between the two modes without the
need to re-translate the model.

Since the code always computes both the floating-point and fixed-point
versions of a variable, the signals can be compared for analysis. Under a virtual
fixed-point component in the Dymola variables browser (as well as in the .mat

56

result file) all variables that are computed using fixed-point have two clones, see
Figure 20;

• <Name>_fromfixedpoint
• <Name>_original

The “original” signal is the signal computed using floating-point and the
“fromfixedpoint”, as the name indicates, is the recovered value when rescaling the
fixed-point value back to a real value.

Figure 20. Variable browser and fixed-point plot

The plotting itself is the same as when running any other model in Dymola, online
in the sense that values are reloaded in the plot as often as the user has specified in
the experiment setup.

External target

When running the code on an external target, online plotting (and animation)
depends on the use of Bluetooth data logging. The basic idea differs a bit from
plotting and logging when running on an internal target.

57

The basic idea is to be able to plot signals for debugging purposes. Only using the
recovered values one can be fooled since they are automatically rescaled
correctly. Particularly when using sensors and actuators it is preferable to be able
to see the raw data as seen by the hardware. The structure in the variable browser
is the same but the interpretation of “original” and “fromfixedpoint” differs. Just
as before, “fromfixedpoint” is the recovered value, comparable with any other
signal since it is rescaled to a real value. The “original” value is now the raw
integer data as seen by the hardware. The original values are not comparable to
each other, since they can vary very much in magnitude due to their scaling. But
as mentioned, sometimes it can be critical to be able to see what the raw value is.

4.7 Lego Segway

The fixed-point capability of Dymola described in this thesis has been used in
teaching at the Department of Automatic Control at Lund University in the
advanced level course FRT090 – Projects in Automatic Control. Two groups
selected the Dymola project in 2009, one group in the spring of 2010, two groups
in the spring of 2011 and two groups in the spring of 2012.

In the projects, Dymola was used to model a Lego Segway, and to design a
stabilizing controller, [17]. Fixed-point code for the controller was then generated
and downloaded to the Lego target. Using the Bluetooth interface, data could be
collected for plotting and animation, see Figure 21.

Figure 21. Dymola animation of the Lego Segway

58

4.8 Elektor Wheelie

During 2011 there was a Master’s Thesis project, Modeling, Control and
Automatic Code Generation for a Two-Wheeled Self-Balancing Vehicle Using
Modelica [18], that used the features described in this thesis for control of a full-
scale Segway [19] clone, ElektorWheelie [20], capable of carrying a person.

Figure 22. Elektor Wheelie in action

Using Modelica_EmbeddedSystems to partition the system model, Figure 23, and
the automatic fixed-point code generation capabilities of Dymola, controller code
was generated and downloaded to the ElektorWheelie. The students made several
experiments and compared the Dymola generated code with manually written
fixed-point code and concluded:

- “The results were satisfactory from an experimental point of view, the
estimators and controller achieve the control objective and it was verified
that the automatic code generation by Dymola manages to be as accurate
as the manual fixed-point coding.”

- “The manual and automatically generated code performance was tested
during experimental rides. There was no significant difference between
both results which shows that the automatic code generation is a useful
tool comparable to the manual coding”

The report also mentions some areas of improvements. As an example the
Atmega32 processor of the ElektorWheelie does not support division in its
instruction set. The code had to be manually adapted to convert division by a
power of two to left shifts. However, testing on other platforms indicated that
modern compilers can handle this automatically.

59

Figure 23. Modelica system model of the ElektorWheelie and controller.

60

61

5. Summary

5.1 Results and conclusions

The work in this thesis has in addition to this report also resulted in two
conference papers, [1] and [21]. It has also been used in project courses and a
Master’s Thesis in automatic control at Lund University. Although it is far from a
product ready for release, the main principle and strategy has been demonstrated
to work in the above mentioned projects.

Experimental Modelica annotations were introduced to complement the
existing attributes of Modelica variables to be able to set resolution needed for
fixed-point. Two annotations were introduced to conveniently input the resolution
with either an absolute or relative measure. It would be even more convenient if
resolution existed as an attribute, since then there would be no need to use
annotations as modifiers which would give more compact and easy-to-read
Modelica code.

Using the new experimental annotations, Dymola was extended with
functionality for analysis and code generation for fixed-point. Two different
methods of range analysis were implemented; bit propagation and interval
analysis. Interval analysis, although conservative, was concluded to never give
larger intervals than bit propagation and was selected as the active method. It
would be desirable to further analyze the expressions and improve that range
analysis to give tighter intervals when possible.

The scaling of variables is based on user input (using the experimental
annotations) as well as heuristics and some rules to propagate bits through the
expressions. With a deeper analysis it should be possible to find “smarter” scaling
to guarantee that no overflow can occur while minimizing the precision loss.

The code generation was intended to be portable but was influenced by the
Lego Mindstorms target since that was the only platform we tested on ourselves.
As an example it was detected in the Master’s Thesis [17] that the generated
divisions by a power of two are not supported on the ElektorWheelie processor.
More user configurability would be desirable but it would also increase the
complexity of the code.

The implementation of Bluetooth communication for data logging turned
out to be a very good complement to “on-screen-debugging” on the Lego
Mindstorms device. Less optimal was the fact that in this first implementation
only one task is supported. This meant, e.g., that the controller code and code for
data logging resided in the same task and all calculations were executed with the
same priority. More desirable would have been to generate the data logging code
in a separate task that could run with lower priority to avoid it influencing control
performance. The same holds for reference signal generation using, e.g., a
gamepad. Ideally that code should also be run in a separate task with lower
priority.

Using the Lego Mindstorms device, a full Modelica-model to embedded
code scenario could be tested and evaluated which was one of the original goals
set for the thesis.

62

5.2 Future work

Some interesting topics for future work are:

• Range analysis of nonlinear functions and user-written functions by offline
evaluation based on the range of the inputs.

• More sophisticated fixed-point analysis enabling smarter bit shifting for

addition, subtraction, multiplication and division to reduce losses in
accuracy.

• Generate tables with interpolation to support functions in fixed-point with

a user-specified resolution and range. Identify periodic functions.

• Introduce guard bits for variables with uncertain ranges.

• Asserts for overflow in the fixed-point code.

• User specified rounding functions.

• More advanced range analysis.

63

 Bibliography

[1] Ulf Nordström, José Díaz López, and Hilding Elmqvist, Automatic Fixed-
point Code Generation for Modelica using Dymola. Conference
Proceedings of the International Modelica Conference, Vienna, Austria,
2006.

[2] Multi-Engineering Modeling and Simulation - Dymola - CATIA -
Dassault Systèmes, April 2012. URL
http://www.3ds.com/products/catia/portfolio/dymola

[3] Peter Fritzson, Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. IEEE PRESS, 2004.

[4] Michael M. Tiller, Introduction to Physical Modeling with Modelica.
Kluwer Academic Publishers, 2001.

[5] Modelica and the Modelica Association, April 2012. URL
http://www.modelica.org

[6] Hilding Elmqvist, Martin Otter, Dan Henriksson, Bernhard Thiele, and
Sven Erik Mattsson, Modelica for Embedded Systems. Conference
Proceedings of the International Modelica Conference, Como, Italy, 2009.
DOI: 10.3384/ecp09430096.

[7] Modelica - A Unified Object-Oriented Language for Physical Systems
Modeling, Language Specification, Version 3.1. Modelica Association,
2009.

[8] Two's complement - Wikipedia, April 2012. URL
http://en.wikipedia.org/wiki/Two's_complement

[9] Texas Instruments - TMS320C64x DSP Library, October 2003. URL
http://focus.ti.com/lit/ug/spru565b.pdf

[10] International Organization for Standardization, Programming languages -
C. Draft Internaltional Standard ISO/IEC DIS 9899, 1989.

[11] Randy Yates, Fixed-Point Arithmetic: An Introduction. Digital Signal
Labs, 2009.

[12] R. E. Moore, Interval Analysis. Prentice-Hall, 1966. ISBN 0-13-476853-1.

[13] Interval arithmetic - Wikipedia, April 2012. URL
http://en.wikipedia.org/wiki/Interval_arithmetic

[14] Lego.com MINDSTORMS : Home, April 2012. URL
http://mindstorms.lego.com

[15] nxtOSEK : index, April 2012. URL http://lejos-
osek.sourceforge.net

[16] Cygwin, April 2012. URL http://www.cygwin.com

[17] Joel Pettersson, Pär Isaksson, Sofia Dahlberg, Stefan Flixeder. Lego Robot
with Modelica/Dymola. Project report in FRT090, Department of
Automatic Control, Lund University, 2011.

64

[18] Carabel, Carlos Javier Pedreira och García, Andrés Alejandro Zambrano,
Modeling, Control and Automatic Code Generation for a Two-Wheeled
Self-Balancing Vehicle Using Modelica. Master Thesis, Department of
Automatic Control, Lund University, 2011. ISRN LUTFD2/TFRT--5884--
SE.

[19] Segway – The leader in personal, green transportation, April 2012. URL
http://www.segway.com/

[20] ElektorWheelie, April 2012. URL
https://www.elektor.com/projects/elektorwheelie.98
6808.lynkx

[21] Johan Åkesson, Ulf Nordström, and Hilding Elmqvist, Dymola and
Modelica_EmbeddedSystems in Teaching - Experiences from a Project
Course. Conference Proceedings of the International Modelica
Conference, Como, Italy, 2009. DOI: 10.2284/ecp09430086.

	5898_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

	Docdata_5898.pdf
	Lund University
	Department of Automatic Control
	Box 118

