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1

Introduction

1.1 Background

Historically the forest industry, iron ore mining and hydroelectric power have been
of great importance for Sweden. From these roots the Swedish process industry has
developed into a high-tech industry, which produces refined products. [IVA, 2006]
highlights the process industry sectors: Pulp and paper, chemicals and plastics,
pharmaceutics, mining, iron/ steel and food processing. High productivity, high
level of automation and export orientation are characteristics for this industry in
Sweden.

Challenges for the Process Industry

Recently the industrialisation of China and Eastern Europe have imposed pressure
on the industry to reduce costs and innovate faster to stay competitive. One way to
stay ahead of competition is development of more sophisticated information systems
for control and supervision of the manufacturing processes [IVA, 2006]. In a more
recent report about the challenges in enterprise-wide optimisation, the same pressure
from the global marketplace in relation to the U.S process industry is identified
[Grossmann and Furman, 2009]. Even though enterprise-wide optimisation involves
optimising all aspects of the business to reduce costs, the scheduling and modelling
of manufacturing facilities are identified as a major focus of this trend [Grossmann
and Furman, 2009].
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Process Industrial Centre at Lund University

This study stems from a problem related to the utility disturbance management
research-project within the Process Industrial Centre at Lund University (PIC-LU).
Within this centre, the aim is to conduct research and develop competence in process
automation and control in collaboration with the Swedish process industry. From the
Faculty of Engineering at Lund University the departments of Chemical Engineering
and Automatic Control participate in PIC-LU. The PIC-LU centre is founded by
the Swedish process industry and the Foundation of Strategic Research (SSF).

Perstorp AB

Perstorp AB is an international company in the process industry focused on special-
ity chemicals. Perstorp has manufacturing sites in eleven countries [Perstorp AB,
2010]. Perstorp AB manufactures paints and coatings, materials, adhesives, feed and
food, synthetic lubricants, formalin technology and catalysts fuels. The Perstorp AB
production site in Stenungsund has been used as an example site in this study. In the
Stenungsund site Perstorp AB produces biofuels and plasticisers. The biofuel may
be used for blending into fossil diesel or used as 100% renewable fuel. Plasticisers
are used by many industries like automotive, construction consumer products and
cable & wires. Currently the growth of the oxo (biodegradable plastic) market has
been driving the expansion of the Stenungsund site [Perstorp AB, 2010].

1.2 Problem Description

How to operate a site within the process industry is typically known when the site
is running without disturbances. But when equipment that delivers services for the
production fails, the production may stop or be reduced. Examples of required ser-
vices, referred to as utilities, are electricity, steam and cooling-water. Unpredictable
failures force the site’s operators to make decisions for minimising the losses. How-
ever, knowing how to respond to utility-disturbances becomes increasingly hard since
sites can be divided into a network of several areas. Each area needs one or several
utilities in order to be able to produce and each utility has a different likelihood,
length and reason for failure.

Aim of the Study

If the operators at, for example the Stenungsund site, could experiment with a model
of the site, they would be better equipped to take the appropriate measures when
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operating the site. The model needs to be able to simulate failure in utilities and
their affect on the production.

The next step would be to find the optimal operating trajectories for the model
during a disturbance, and finally a method for modelling uncertainty is needed to
model the fact that the length and scope of a disturbance may not be known in
advance. To summarise, this study aims to:

1. Build a model capable of representing an area network with utilities that can
affect the production in one or several areas.

2. Find a method for optimising the production in the areas that minimises the
revenue loss during a disturbance in one of the utilities.

3. Introduce uncertainty so the conclusions drawn from the model mimics the fact
that operators seldom have perfect information about disturbances in advance.

Focus and Limitations

This report is focused on finding and verifying that the solution to the posed prob-
lems are suitable for solving problems related to utility disturbances. So far the
utility disturbance management at the site level does not fit well into any research
area, which makes it difficult to find relevant work to expand upon. Therefore, this
study will have to start more or less from scratch, and through trial and error and
collaboration with the industry find a solution that can satisfy the aims.

The study will be limited to looking for solutions in the fields of modelling, operations
research and production & operations analysis.
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2

Theory

2.1 Hierarchical Structure of Enterprises

Enterprises that conduct discrete or continuous manufacturing usually have their
assets used for production divided into a hierarchical structure. At the top is the
enterprise level, followed by one or several sites. A site is generally defined by its
geographic location or what is a logic distinction depending on its production [ISA-
95, 2009].

For this study, the focus will be on the area level that resides within the site. Areas
are, just as sites, defined by geography (proximity) or based on what they produce.
An important characteristic of areas are that they generally have well defined manu-
facturing capabilities and capacities which makes them good building blocks within
a model.

Flowcharts and Dependencies

Flowcharts can be used to illustrate the flow of products or material through the
enterprise, plants, areas or units [Lindholm, 2011].

Here it is appropriate to construct flowcharts displaying the flow of material between
areas. The buffer tanks available for storage between areas will also be shown as
separate blocks in the flowchart. But physically the buffers may be found inside an
area, or at the other side of the factory, which means the physical layout of the plant
may not resemble the flowchart. An example flowchart of the Stenungsund site is
displayed in Figure 2.1.
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Figure 2.1: Flowchart of the Stenungsund site

Storage Units

Of several lower-level elements that may be found within an area, the storage zone,
which in turn contains storage units, is worth mentioning here.

Storage areas contain buffer tanks also known as intermediate storage vessels, holding
tanks, surge drums, inventories etc. Buffer tanks are of interest here because their use
in between areas can allow independent operation of areas upstream and downstream
from the buffer tank. This may be necessary if for example there is a temporary
shut-down of the areas feeding the buffer tank [Faanes and Skogestad, 2003].

2.2 Utilities

In the process industry the support processes that are necessary for production, but
are not part of the end product, are called utilities [Lindholm, 2011]. In the [ISA-95,
2009] standard these processes are defined as material, and they may also be referred
to as services. Examples of utilities are steam, fuel, electricity, cooling water, raw
water, compressed air, nitrogen, and refrigerated coolants [Brennan, 1998].

Steam is used for heating or providing energy and can be needed in distillation or
reaction processes, and cooling water may be needed for the distillation phase or for
cooling the reaction processes [Lindholm, 2011].
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Disturbances in Utilities

Normally utilities do not affect the production unless some disturbance interrupt the
service, or pushes the utility properties over a limit beyond which the production is
affected. For example cooling water could have a temperature limit over which the
production is affected negatively. When the utilities operate outside their limits a
disturbance is said to have occurred [Lindholm, 2011].

This is illustrated in an example from [Lindholm, 2011], where the temperature limit
for cooling water is examined by plotting maximum production against cooling water
temperature. The graph for one area at an industrial site is displayed in Figure 2.2,
and has the suggested limit (27◦C) represented by the red dashed line.
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Figure 2.2: Production as a function of cooling water temperature

The effect of a utility disturbance that rises the temperature of the cooling water
will only affect the areas production if it pushes the temperature over the limit. In
the [Lindholm, 2011] example, cooling water temperatures above this limit reduces
the areas maximum production in a somewhat linear way, but not all areas neces-
sarily respond in such an ideal way. Some may respond in nonlinear ways, and the
production may also have been changed for reasons unrelated to utility disturbances
[Lindholm, 2011].

In discussions with industry representatives it has been noted that some areas may
be prioritised during utility disturbances at the expense of other areas.
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Start-up Costs

Areas within a manufacturing plant are usually considered hard to start. An example
of equipment with this characteristic are distillation columns. Start-up of distillation
columns usually takes long time, during which energy and raw material is wasted
since the initial products do not meet specification requirements. [Wozny and Li,
2004].

This has also been pointed out by industry representatives stating that preferably
the flow of material through an area should not go under a critical level, else the
production cannot continue, and the products are of poor quality and have to be
discarded.

Because of this behaviour, modelled areas are here considered to have a lower limit
of operation. This means areas may only be stopped or has to produce at or above
the lower limit. If it is necessary to stop an area, the start-up procedure that follows
will be represented by a penalising start-up cost.

2.3 Performance and Economic Indicators

Evaluating the performance of areas or sites in economic terms requires the knowl-
edge of some economic indicators, which are introduced here (in alphabetic order).

Availability dictates how large part (normally in percent) of the total time of a
period that the facility have been operational. It might be more convenient to use
downtime, which is measured not as a fraction but a length of time (hours, year,
etc.) that the facility has been stopped [Forsman, 2005].

Contribution margin for each sold product is the selling price minus the variable
costs. It is called contribution because this margin have to contribute to paying off
the fixed costs and hopefully even provide a profit [Forsman, 2005].

Fixed costs are costs that are independent of how large quantities that are pro-
duced. Some good examples are property rents, salaries and depreciation of value in
production equipment [Forsman, 2005].

Holding cost is commonly used in inventory theory, and represents all the costs
associated with holding inventory. This could include costs for binding capital, space,
insurance, protection and taxes attributed to storage [Hillier and Lieberman, 2001].

Market limited production plants have spare capacity since the market will not
buy everything the plant can produce. External factors such as price and demand
structure in the market will affect this limit [Forsman, 2005].
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Plant utilisation is how much the facility has produced during a time interval di-
vided by its production capacity during that interval. Or more precisely: Availability
× production rate ÷ production capacity [Forsman, 2005].

Production capacity is the physical upper limit for of how much a facility can
produce per time period [Forsman, 2005].

Production rate is the amount produced in the facility per unit of time [Forsman,
2005].

Variable costs are the costs that can be directly attributed to the production of
another unit or amount of the product. This can for example be costs of raw material
that goes into the product or energy used for the production process [Forsman, 2005].

2.4 Linear Programming (LP)

Developed in the mid-20th century linear programming (LP) has been widely used
as a tool for allocating limited resources among competing activities in an optimal
way. In LP, the problem is expressed as a mathematical model of linear functions.
The decisions are represented by a number of decision variables that are included in
the objective function, which then are to be maximised or minimised. The objective
function is restricted by a number of constraints including non-negativity constraints
[Hillier and Lieberman, 2001]. If x are our decision variables, then our LP problem
can be stated as (2.1).

min cTx subject to

{
Ax = b
x ≥ 0

(2.1)

Where x ∈ Rn×1, b ∈ Rm×1, c ∈ Rn×1 and A ∈ Rm×n

If a solution exists that satisfies all constraints, it is called a feasible solution, oth-
erwise the solution is said to be infeasible. Optimal solutions are feasible solutions
that generate the best value of the objective function, which could be a maximising
or minimising objective. If the optimal solution grows to infinity, the problem is
called unbounded [Goemans, 1994].

Mixed-integer Linear Programming (MILP)

If all decision variables are constrained to only take on integer values, the problem is
called an integer program (IP). When both integer and continuous decision variables
are allowed the problem is called a mixed-integer program (MIP) [Smith and Taşkin,
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2007]. If all of the functions in a MIP are linear it is called a mixed-integer linear
program (MILP) [Grossmann et al., 1999].

IP and MIP expansions of (2.1) is stated similarly but with an additional condition
that some or all variables xi may only be integer [Smith and Taşkin, 2007].

By constraining some decision variables to only take integer values IP or MIP models
may better represent real systems since integrality of quantities, if-then statements,
enforce at least k out of p restrictions and non-linear product terms can be modelled
[Goemans, 1994].

Robustness of the Solution to a LP or MIP

If there are two decision variables and two constraints, in addition to x1 ≥ 0, x2 ≥ 0,
then a LP problem, originally from [Böiers, 2010], can be illustrated as in Figure
2.3. In this plot the feasible set S is shown in grey, and the axes of the figure are the
decision variables x1 and x1. The objective function f decides the slope of the bold
straight line, and grows in the direction indicated by the perpendicular arrow. Any
optimal solution minimising f must then be found in one of the points A, B or C.
Which point that is optimal depends on the slope of f and the constraints. Since f
and the constraints are linear there may be times when small changes made in f or
the constraints make the optimal solution move from one point to another [Böiers,
2010].

The behaviour just described can be a problem in this study since the optimal
solutions will represent decisions for how to operate a site during utility disturbances.
If the solution is not robust big changes in the production plans may be suggested
in response to small changes in the model input, or the solution may not be optimal
for very long.

Solving MIP Problems

Solving MIP problems can be done with dedicated LP optimisation codes or by
extending the ’linprog’ function in Matlab. In this study an open-source optimisation
code called LPSolve will be used. This program solves LP and MIP problems with
the revised simplex method and the branch-and-bound method for MIP [Thorncraft
et al., 2006].

Computational speed is not a key issue in this study, but it is good practice to under-
stand the basics of solving your own models. If larger systems or longer evaluations
will be of interest it might be good to have knowledge of how modelling practices
affect the solving speed.
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Figure 2.3: Illustration of a LP example

To illustrate the branch-and-bond algorithm, consider an example from [Smith and
Taşkin, 2007]:

min 4x1 + 6x2

s.t. 2x1 + 2x2 ≥ 5,

x1 − x2 ≤ 1, (2.2)

x1, x2 ≥ 0 and integer.

If the problem is relaxed to allow non-integers then the feasible region of the problem
will be the grey area in Figure 2.4. For the relaxed problem a minimum objective
function value of 11.5 is found in the point (1.75, 0.75). But for the original MIP
problem this solution is infeasible since x1 and x2 are not integers. The feasible
solution to the MIP problem must be equal to or larger than the solution to the
relaxed problem, which thus provides a lower bound for integer solutions. If the
problem then is split into two sub problems as in Figure 2.5 one of the infeasible
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regions can be excluded and for each of the two new areas the best relaxed solution
can be searched for.

The procedure above is called branching, and the areas in Figure 2.5 are branched
further until the optimal relaxed solution for an area is found to be feasible. The
algorithm will also stop branching an area when its relaxed solution is larger than
any other area’s feasible solution.

Since the branch-and-bound algorithm requires solving many relaxed problems and
compare the solutions it can be computational intensive. It is thus wise to use as
few integer variables as possible when setting up large MIP problems.
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Figure 2.4: Feasible region of the LP relaxation
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Figure 2.5: Feasible regions for the subproblems

2.5 Stochastic Programming

When solving LP or MIP problems it is assumed we have full information of the
constraints. If some constraints represent future limitations that may be uncertain
stochastic programming can be used to optimise the present decisions in relation to
the uncertainty of future events.
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Farmer’s Example

An illustrative example, adapted from [Smith and Taşkin, 2007], is farmer allocating
land to crops without knowledge of how weather conditions will affect future crop
yields. Data for an example with two types of crops: wheat and corn is presented in
Table 2.1.

Wheat Corn

Normal yield (Ton/acre) 2.5 3
High yield (Ton/acre) 3 4
Low yield (Ton/acre) 2 2
Planting cost ($ /acre) 150 230
Selling price ($ /Ton) 170 150
Purchase price ($ /Ton) 238 210
Minimum requirement (Ton) 200 240

Total Available land: 500 acres

Table 2.1: Data for farmer’s problem

By using the data in Table 2.1 a LP model for the farmer’s example can be expressed
as in (2.3), where x are the crop’s yield, y the purchased amount of crops and w
the sold amount of crops. The objective function in (2.3) tries to minimise the cost.
The first constraints is a limit for total available land followed by constraints for
the minimum required crops the farmer needs to have left after harvesting and any
purchases or selling of crops.

min 150x1 + 230x2 + 238y1 + 210y2 − 170w1 − 150w2

s.t. x1 + x2 ≤ 500,

2.5x1 + y1 − w1 ≥ 200, (2.3)

3x2 + y2 − w2 ≥ 240,

x, y, w ≥ 0.

In stochastic programming, initial decisions that is taken without full information are
called first-stage decisions. Decisions made later, when full information is available,
are called second-stage decisions [Smith and Taşkin, 2007]. For the farmer land
allocation in springtime is first-stage decisions, and buying or selling of crops come
autumn is second-stage decisions.

Assuming the random variables affecting the crop yields are correlated, then the
farmer can try to maximise the expected profit of his first-stage decision by intro-
ducing scenarios for the low and high crop yields listed in Table 2.1. The LP model
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from (2.3) can now be expanded to consider first and second-stage decisions with
two scenarios of equal probability. In (2.4) this is done by splitting the crop’s yield
variables y and the purchased amount variables w into one set of variables for each
scenario and then add them to the objective function according to the probability
of the scenarios. The high and low yields from Table 2.1 are the new coefficients in
front of the x variables in the constraints.

Min 150x1 + 230x2 +
1

2
(238y11 + 210y21 − 170w11 − 150w21)

+
1

2
(238y12 + 210y22− 170w12 − 150w22)

s.t. x1 + x2 ≤ 500, (2.4)

3x1 + y11 − w11 ≥ 200,

2x1 + y12 − w12 ≥ 200

4x2 + y21 − w21 ≥ 240,

2x2 + y22 − w22 ≥ 240,

x, y, w ≥ 0.

General Formulation

A general formulation of a two-stage stochastic program can be expressed as in
(2.5). Eξ is mathematical expectancy with respect to the scenario vector ξ where
coefficients that are changed with the scenarios is stored. The optimal second-stage
decisions are represented by Q(x, ξ) [Smith and Taşkin, 2007].

min cTx+ EξQ(x, ξ) subject to

{
Ax = b
x ≥ 0

(2.5)

2.6 Time Representation

For the basic case, the objective is evaluated over just one period of time during
which only one decision is necessary. However, it might be of interest to take different
actions depending on fluctuations of model properties and constraints over time.
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Therefore, a discrete time representation is introduced as in [Kondili et al., 1993], by
which the period of interest is divided into several intervals of equal length. Changes
to the model, and actions upon any decision variable are only allowed to take place
between the intervals t = t1, t2, t3, ..., tH . Note that tn is a referral to the discrete
time interval from tn to the beginning of the next discrete time interval tn+1.

The length of the intervals depends on what properties that are being investigated.
How many periods to be used is not only determined by the properties of the system
that is investigated, but also by how computational intense each evaluation of an
interval is.
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3

MILP Model for Area Networks

This chapter builds on the mathematical formulation for short-term scheduling of
batch operations presented in [Kondili et al., 1993]. The original MILP problem
introduced in Subsection 2.4 is adapted to fit area networks affected by utility dis-
turbances.

The model suggested in this chapter can be illustrated as in Figure 3.1. Input to
the MILP model are vectors X(t0) and U(t), where X(t0) defines the initial states
of the model and U(t) describes the production capacity of the utilities at each t.
The result from the optimisation, X∗(t), is the optimal states for each t, and fX∗ is
the result given by the objective function as in (2.1) such that fX∗ = cTX∗.

Figure 3.1: Input output representation of the MILP model

3.1 Constraints

For the model to be in the form of (2.1), constraints from [Kondili et al., 1993] are
adapted to represent physical limitations of the actual system. Simplifications have
to be made, and it is assumed areas furthest upstream in the network have unlimited
supply of raw material, and that the site is not market limited. It is necessary to
have an upper limit for the amount of product each area can produce, the amount of
available utilities, and how much the buffer tanks can hold at any given period. As
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discussed in Section 2.2, most areas can only operate at a minimum speed or they
have to be shut down. This has to be represented in the model as well.

In order to represent the capacity limitations, and the option to stop an area, the
following parameters are introduced:

qi(t) = Production rate for area i in period t;
qmaxi = Production capacity for area i;
qmini = Production rate under which area i has to be stopped;
Wi(t) = Binary parameter that is 1 if area i is running at t, else it is 0.

The parameter Wi(t) was used in [Kondili et al., 1993] to handle allocation con-
straints, and here it will be used to handle stops and start-ups.

If area i is not run at period t then Wi(t) = 0 and no material can be processed by
the area, which means the amount of material that starts being processed at area i
at period t is constrained by (3.1).

Wi(t)q
min
i ≤ qi(t) ≤Wi(t)q

max
i (3.1)

Next constraint connects the areas and buffer tanks by defining the material balances
and uses the parameters:

Pi(t) = Amount of product i being sold at period t;
Ii(t) = Amount of material held in buffer tank i at period t;
Imaxi = Maximum volume that buffer tank i can hold;
Imini = Minimum allowed volume in buffer tank i.

If Ci is a set of the areas that feed buffer tank i, and C̄i is a set of areas which
receives material directly from the buffer tank, and Pi is the flow of the product
from the buffer tank to the market, then the material balance of the system for each
t has to satisfy:

Ii(t) = Ii(t− 1) +
∑
k∈Ci

qk(t)−
∑
k∈C̄i

qk(t)− Pi(t) (3.2)

Imini ≤ Ii(t) ≤ Imaxi (3.3)

There are several ways to represent how utilities affect the production for areas. A
general formulation used in [Kondili et al., 1993] requires the parameters:

25



βpi = Utility p required for each output from area i;
up(t) = Total demand for utility p at period t;
umaxp = Production capacity for utility p;

Up(t) = Availability for utility p at period t;

Some utilities can be seen as production units that produce a product or service
that some areas are dependent on. Then βpi can be used to have areas more or less
dependent on utility p. The parameter umaxp allows Up(t) to be between 0 and 1.
Let Cp be a set of the areas that uses utility p. Then the limitations for utility p are
given by:

up(t) =
∑
k∈Cp

βpiqk(t) (3.4)

0 ≤ up(t) ≤ Up(t)umaxp (3.5)

This means that there is a linear relation between utility assignment to an area, βpi,
and the production in the area, qi(t).

If any area is stopped and then restarted, a start-up cost should be imposed on the
objective function. Therefore, a constraint is needed, stating that if t1 < t2 and:

(i) No task is performed at area i at t1 and;

(ii) Any task is to be performed there at t2

then a start-up has to be made. To represent this, an additional parameter and
constraint is needed:

Si(t) is an integer that is 1 if Wi(t2) = 1 and Wi(t1) = 0, else it is 0.

With the constraint expressed as:

Wi(t2)−Wi(t1) ≤ Si(t1) ≤ 1 , where t1 < t2 (3.6)

This constraint limits Si(t1) in such a way that it must be 1 if Wi(t1) = 0 and
Wi(t2) = 1. Therefore, a stop cost for area i, signalled by the parameter Si(t1)
taking the value 1, will only be imposed if area i has been stopped at period t1, and
then started at any later period t2. For practical reasons, a start-up cost will also
be imposed if a stopped area remains stopped at the final period of the evaluation.
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3.2 Objective Function

Next step in the model formulation is to define the objective function, that will be
maximised or minimised. Here a revenue maximising objective function will be used,
but other functions could just as readily be used with the same constraints. Param-
eters needed to express this objective function are:

mi = Contribution margin for product i;
sj = Start-up cost for area j;
hk = Holding cost per time unit for buffer tank k;
H = Number of periods in the evaluation.

With decision parameters taken from the constraints the objective function can be
expressed as:

Max
H∑
t=1

(∑
i

miPi(t)−
∑
j

sjSj(t)−
∑
k

hkIk(t)

)
(3.7)

Equation (3.7) states that for every sold quantity of product i, we earn its margin
mi. The profit is then decreased by any costs from start-ups that might have been
necessary, and the holding cost for buffer tanks Ik also decreases the profit.

3.3 Implementation

A MILP model can be implemented directly in Matlab by extending the inherit func-
tion called ’linprog’ with the use of the branch-and-bound algorithm, or a dedicated
MILP solver software can be used. In this study, the model was implemented in
Matlab. But for solving the optimisation problem, an external open source solver
package called LPSolve was used [Thorncraft et al., 2006]. This solver was called
from within the Matlab environment by the use of a plug-in which guaranteed effi-
cient transfer of information between the programs.
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4

Stochastic Programming MILP
Model for Area Networks

In this chapter, the MILP model for area networks is expanded so it can be used
with scenarios, as in Section 2.5. Scenarios is a way to make the model factor in
uncertainty when searching for an optimal solution. This expanded model is here
called a Stochastic Programming MILP (SP-MILP) model.

The major changes from the MILP model are that the SP-MILP model has the
additional inputs M(t) and P (M), as seen in Figure 4.1. The M(t) vector con-
tains estimations or guesses of future utility availabilities, here called scenarios. The
estimated probabilities for each of the scenarios to be realised is found in P (M).
The other inputs X(t0) and U(t) stays the same as in Chapter 3. Output from the
SP-MILP model will as before be X∗(t) and fX∗ .

Figure 4.1: Input output representation of the SP-MILP model

4.1 Scenarios

The scenario-vector M(t) = [M1(t),M2(t),M3(t), ...,Mq(t)] contains one vector, of
same length as t, for each of the q scenarios. M(t) could just as well be expressed
as a matrix, but in this study they are implemented as a row vectors, and therefore
described as such.
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Each of the scenarios also have a probability for being realised, which are found in the
probability vector P (M) = [P (M1), P (M2), P (M3), ..., P (Mq)]. Since the scenarios
are mutually exclusive,

∑
P (M) has to be 1. In this study the SP-MILP model only

allows scenarios for one property, which here will be a utility. If scenarios for more
properties are to be included M(t) should be expanded.

It will not be possible to revise the scenarios while running the model. This is notable
because it would be a better representation of the real system if the scenarios could
be updated, e.g. representing an operator that receives additional information about
the disturbance as time progresses, and takes actions accordingly.

Later it will be shown that it would be simple to amend the system to take into
account scenario updates, but scenario gathering and handling is not the focus of
this study, and it is sufficient to demonstrate that scenarios may be used to mitigate
uncertainty.

4.2 First and Second-stage Decisions

First and second-stage decisions, introduced in Section 2.5, are used here to tie the
model to the actual limits caused by a disturbance.

Because of the discrete time representation, our first-stage decisions are said to be
the decision variables for the nearest time period, that is between t0 and t1. From
that follows the condition that we must have full information from t0 to t1.

The second stage decisions will be divided into a number of scenarios, M1, M2, ... ,Mq,
with known probabilities, P (M1), P (M2), ... , P (Mq). In the current model, the
scenarios are expected future trajectories, and may not be changed during the opti-
misation.

4.3 Revised Constraints

Since utilities are of interest here, the changes needed in the constraints to include the
scenarios will only affect the utility constraints. With scenarios the utility constraints
from (3.5) now has the form:
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0 ≤ up(t0) ≤ Up(t0)umaxp

and,

0 ≤ up1(t) ≤M1(t)umaxp

0 ≤ up2(t) ≤M2(t)umaxp

0 ≤ up3(t) ≤M3(t)umaxp

...

0 ≤ upq(t) ≤Mq(t)u
max
p

(4.1)

It is necessary to use one constraint for the first-stage decision, at t0, and q constraints
(one for each scenario) when t > t0.

4.4 Revised Objective Function

The objective function (3.7) must be expanded to accommodate the scenarios. This
will be done by removing the time steps following t0 from the part of the objective
function representing the first-stage decision, that is the first row in (4.2). Following
the first row in (4.2) is the objective functions for the scenarios evaluated over the
subsequent time periods t > t0.

Max

h∑
i=1

miPi(t0)−
n∑
j=1

sjSj(t0)−
n∑
k=1

hkIk(t0)

+P (M1)

H∑
t=t0+1

( h∑
i=1

mi,1Pi,1(t)−
n∑
j=1

sj,1Sj,1(t)−
n∑
k=1

hk,1Ik,1(t)

)

+P (M2)

H∑
t=t0+1

( h∑
i=1

mi,2Pi,2(t)−
n∑
j=1

sj,2Sj,2(t)−
n∑
k=1

hk,2Ik,2(t)

)
...

+P (Mq)

H∑
t=t0+1

( h∑
i=1

mi,qPi,q(t)−
n∑
j=1

sj,qSj,q(t)−
n∑
k=1

hk,qIk,q(t)

)
(4.2)
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Now (4.2) will make sure that the first-stage decisions will not be too costly when
considering the possible future scenarios. Because decisions taken now for a small
gain, that may cause big losses in one of the scenarios, will be less profitable.

4.5 Implementation

If the SP-MILP model is run incrementally with a fixed H, then at each time interval
tn a first stage decision will be taken based on future scenarios. Practically this can
be done in a for-loop, with the result and the decisions for each time step saved in a
vector. This differ from only running the SP-MILP model once from t0 to tH , which
assumes our scenarios are the exact future trajectories for the utility availabilities.
Since that is not equivalent to a solution with full information of U(t), it might lead
to situations where the suggested solution is infeasible because the availability U(t)
is only considered in t0. Instead, the first stage decisions at t0 will be taken with full
information but these decisions will be limited by the actual capacity of the utilities
since U(t) will be known for the next time step.

To summarise, solving of the SP-MILP model when t = tn follows a simple heuristic
rule:

(i) Solve the model for tn with regards to U(tn), which is known, and the future
scenarios where t > tn and U(t) unknown;

(ii) Apply the decisions for the interval tn to tn+1, suggested by (i);

(iii) Let time propagate from tn to tn+1 where U(tn+1) is known;

(iv) Start from (i) with tn+1 instead of tn.
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5

Example Model

5.1 Flowchart

In order to demonstrate how a site within the process industry can be represented
by a SP-MILP model, a part of the Stenungsund site is modelled. A flowchart of the
Stenungsund site, with the smaller example highlighted, is displayed in Figure 5.1.
A smaller system is chosen in order to limit the number of variables, and keep the
results easy to grasp.

The example site consists of three areas combined in a network, where the product
from area one (A1) is delivered to area two (A2) and area three (A3). The output
from A1 could also be stored in the buffer tank (I), or sold as product 1 (P1).
Production in A2 and A3 are equivalent with the delivered amount of products (P2

and P3). Also note that the example site is not market limited.

5.2 Time Representation

A discrete time representation will be used within the model. The length of each
step ti for this model is five minutes. The model will be evaluated in 12 steps making
the length of the simulation 60 minutes.

Past time will be shown in the graphs as negative time just to give a reference of
what has preceded the disturbance. The model starts evaluating from t = 0, so the
past time reference points is added only in the plots.
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Figure 5.1: Flowchart of the example model in relation to the Stenungsund site

5.3 Utilities

Only one utility (U), steam, will be modelled in this example. The production rate
of the areas A1 and A2 are affected by U .

5.4 Disturbances

If the historical disturbance data for steam are analysed, some typical disturbances
might be found. However in this study the focus is not to find accurate represen-
tations for different disturbance types but to exemplify how disturbances can be
introduced into the model. For that purpose it is enough to arbitrarily choose two
types of somewhat random disturbances affecting the availability:

(i) Short disturbance: Affects the availability more but during a shorter time;

(ii) Long disturbance: Affect the availability less but are more prolonged;

The short and long disturbances have the property that they are uniformly random
within an interval of 25% (availability percent) from their respective scenarios, which
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are introduced later. For the example model, the disturbances are assumed to be
equally likely to occur, and it is known that no other disturbances will occur in the
system at the same time. This is important when later the probabilities for the
scenarios are to be defined.
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Figure 5.2: Availability for steam during the short disturbance

The disturbances are displayed in Figures 5.2 and 5.3. In these plots, the respective
scenarios is plotted as black dashed lines, and an example of a disturbance (one for
each type) as blue lines. For both types of disturbances, the current status at time
t = 0 is that the availability has dropped to 50%. As discussed before, the next
period must also be known, which in the figures is the line between the two circular
markers. After this, the availability of U(t) follows a trajectory that is random
within the limits defined by the two disturbance types. The red line from t = −5 to
t = 0 show the availability that has preceded the disturbance.
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Figure 5.3: Availability for steam during the long disturbance

5.5 Scenarios

Since only two disturbances may occur it is possible to introduce two scenarios and
optimise over those as in Section 2.5. The two scenarios used (M1 and M2) will be
estimates or guesses how a disturbance will behave. The two scenarios are:

(i) Short scenario where the availability is expected to drop more but regain
faster than for the;

(ii) Long scenario which is expected to last longer but have less effect on U ’s
availability.

The scenarios are plotted as black dashed lines in Figures 5.2 and 5.3.

Assuming probabilities for the disturbances are equal, then the probability vector
becomes P (M) = [1/2, 1/2]. This means each of the two scenarios will be equally
likely to describe a disturbance well (but not exactly because of the randomness in
the disturbances).
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5.6 Decision Variables

For this example site, four decision variables can be identified which are:

q1(t) = Production rate for A1 in period t;
q2(t) = Production rate for A2 in period t;
q3(t) = Production rate for A3 in period t;
P1(t) = Amount of P1 being sold in period t.

How much the buffer tank I contains is decided by the production in A1 and the
outflows from I to P1, A2 or A3.

5.7 Parameters

Before describing the constraints, some parameters have to be defined for this ex-
ample:

Imax = Maximum volume allowed in the buffer tank;
h = Holding cost per time unit for the buffer tank;

umax = Production capacity for U ;
β1 = Utility required for each output from area A1;
β2 = Utility required for each output from area A2;

m1 = Contribution margin for P1;
m2 = Contribution margin for P2;
m3 = Contribution margin for P3;

s1 = Start-up cost for A1;
s2 = Start-up cost for A2;
s3 = Start-up cost for A3;

qmax1 = Production capacity for A1;
qmax2 = Production capacity for A2;
qmax3 = Production capacity for A3;

qmin1 = Production rate under which A1 has to be stopped;
qmin2 = Production rate under which A2 has to be stopped;
qmin3 = Production rate under which A3 has to be stopped;

Values of the parameters are shown in Table 5.1. Note that these values are only
chosen to demonstrate the model.
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Imax = 100 m1 = 2 qmax1 = 30
h = 1 m2 = 4 qmax2 = 15

m3 = 6 qmax3 = 10

umax = 100 s1 = 100 qmin1 = 10
β1 = 3 s2 = 200 qmin2 = 5
β2 = 2 s3 = 300 qmin3 = 5

Table 5.1: The parameter values

5.8 Initial States

Aside from the parameters the model needs some initial states for the variables:
I(t0), W1(t0), W2(t0), W3(t0) and U(t0). Being able to alter the initial values for
these parameters gives the option to, for example, have an area stopped before the
optimisation starts. In this example all areas will be running i.e. Wi(t0) = 1, the
utility will be at 50%, U(t0) = 0.5 and the initial buffer tank level, I(t0), will be 5.

5.9 Constraints

The constraints from the general SP-MILP formulation are adapted to the example
system. Some of these constraints are shown here for the example system. Most
important is the mass balance of the example, stated as:

I(t) = I(t− 1) + q1(t)− q2(t)− q3(t)− P1(t) (5.1)

0 ≤ I(t) ≤ Imax (5.2)

which states that the volume in I at time t is dependent on how much it contained
at time t− 1, and on the production in the areas and sold P1 at time t.

The utility constraint for u(t) becomes:

u(t) = β1q1(t) + β2q2(t) (5.3)

0 ≤ u(t) ≤ U(t)umax (5.4)

Where the availability U(t) is an input to the model (see Figure 4.1) and umax is a
parameter.
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5.10 Objective Function

If the objective function (3.7) from the general MILP formulation is used here, with-
out considering scenarios, it becomes:

Max
H∑
t=1

(
m1P1(t)+m2P2(t)+m3P3(t)−s1S1(t)−s2S2(t)−s3S3(t)−hI(t)

)
(5.5)

In (5.5), no scenarios are considered, and note that the summation is for the complete
time period from 1 to H. If the two scenarios are used then the full SP-MILP
objective function (4.2) adapted to this example will have the form:

Max m1P1(t0) +m2P2(t0) +m3P3(t0)
−s1S1(t0)− s2S2(t0)− s3S3(t0)− hI(t0)

+P (M1)
∑H

t=t0

(
m1P1(t) +m2P2(t) +m3P3(t)

−s1S1(t)− s2S2(t)− s3S3(t)− hI(t)

)

+P (M2)
∑H

t=t0

(
m1P1(t) +m2P2(t) +m3P3(t)

−s1S1(t)− s2S2(t)− s3S3(t)− hI(t)

)

(5.6)

In (5.6) the objective function for t > t0 is split into a part for each scenario M1 and
M2. The weight of the scenarios in (5.6) will depend on their probabilities P (M1)
and P (M2).

5.11 Operating Strategies

First the model will be run with no disturbance to give a reference point. Then
the model is run with full information about how the disturbance affects the future
availability for the utility. If a disturbance’s future behaviour is unknown a guess can
be made about which scenario that fits the disturbance best. Therefore at each run
the result from guessing the right and wrong disturbance will be shown. Another
alternative is to use both scenarios with their (known) probabilities, which might
give a better overall result.

These strategies will be tested for six short disturbances, six long disturbances and
the results are presented in the next chapter.
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6

Results from Example Model

In this chapter the results from running the example model in Chapter 5 is presented
for three cases. The first case shows how the model operates when there are no
disturbances, which means the utility availability U(t) is 100%. Case two will display
how the strategies affect the profit when the disturbance is of the short type. Finally
in the third case the profit from the strategies will be shown for when the disturbance
is of the long type.

6.1 Plot Preliminary

Each of the following plot figures are divided into five sub-plots. All of the plots
have time on the x-axis from past-time t = −5 to the end time t = 60.

The Utility plot displays the availability of U over time as the thick blue line. When
applicable this plot will also show one or both of the scenarios as: dotted green line
for the short scenario M1, and dashed red line for the long scenario M2.

Next plot displays the production rate q1(t) for A1 as the thick blue line. The
minimum production rate qmin1 is graphed as a dashed black line. Since production
rate in A1 is not equivalent to sold P1 this is also plotted here as the thin red line
with its y-label to the right in red.

The third and fourth plots display the production rate for the areas as the thick blue
lines. The minimum production rate is also plotted as a dashed black line but since
P2 and P3 are equivalent to the respective area’s production they are not plotted.

The last plot displays the level of the buffer tank I.
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6.2 Case One - No disturbance

This case could be called the steady state of the system, with the exception of the
emptying of the buffer tank at t = 0. The model choose to empty the tank since no
disturbance will occur, and there is a holding cost for keeping material in the buffer
tank. As expected A3 is prioritised over A2, which in turn is prioritised over A1.
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Figure 6.1: Optimal solution for the example model when no disturbances occur
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6.3 Case Two - Short Disturbance

Short Disturbance with Full Information

Since the disturbance trajectory is known in advance, the model adds fifteen volume
units to the initial buffer in the first time period (t = 0 to t = 5). This material is
then used during the simulation to keep A3 running as much as possible. At t = 20
the model choose to shut down A1 and accept a start-up cost for that area.
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Figure 6.2: Optimal solution for the example model during a short disturbance with
full information
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Short Disturbance with Short Disturbance Scenario

The model now anticipates the disturbance to follow the green dotted line in Figure
6.3 below. In the same way as with full information this makes the model saving up
buffer in the beginning of the simulation which then is used to prioritise A3.
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Figure 6.3: Optimal solution for the example model during a short disturbance when
using the short disturbance scenario
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Short Disturbance with Long Disturbance Scenario

In this simulation the model anticipates a long disturbance trajectory, which is plot-
ted in Figure 6.4 as the red dashed line. This makes the model believe the utility
availability will jump back up to 75% after t = 5 and the result are an unwillingness
to keep material in the buffer tank. With no excess buffer the production in both
A3 and A2 falls notably lower than before.
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Figure 6.4: Optimal solution for the example model during a short disturbance when
using the long disturbance scenario
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Short Disturbance with Both Disturbance Scenarios

Here the full objective function (5.6) are used, which means the model anticipates
that the disturbance could just as likely be of any type. In response to this the
model choose to keep material in the buffer because the cost of having to slow down
A3 outweighs the cost of holding material in the buffer tank. Also note that after
t = 24 the model still anticipates that the availability might drop in accordance with
the long disturbance as indicated by the red dashed line. This uncertainty might be
the reason for why A2 is not started and P1 sold instead.
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Figure 6.5: Optimal solution for the example model during a short disturbance when
using both disturbance scenarios
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6.4 Case Three - Long Disturbance

Long Disturbance with Full Information

Figure 6.6 indicates that even though the system is experiencing a disturbance the
optimal response is running A3 at its maximum capacity and not holding any buffer.
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Figure 6.6: Optimal solution for the example model during a long disturbance with
full information
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Long Disturbance with Short Disturbance Scenario

Believing the disturbance is of the short type makes the model store material in the
buffer tank in the beginning of the simulation. But as time progresses the buffer
tank is emptied.
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Figure 6.7: Optimal solution for the example model during a long disturbance when
using the short disturbance scenario
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Long Disturbance with Long Disturbance Scenario

In this case the areas are run almost identical as when the model had full information.
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Figure 6.8: Optimal solution for the example model during a long disturbance when
using the long disturbance scenario
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Long Disturbance with Both Disturbance Scenarios

When using both disturbance scenarios the model uses the buffer tank to make sure
no area has to be stopped due to shortage of material. This has been done before
when anticipating only the short disturbance. The model behaves like this even
though the model does not know which type of disturbance that are acting on the
system.
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Figure 6.9: Optimal solution for the example model during a long disturbance when
using both disturbance scenarios
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6.5 Objective Function Values

Figure 6.10 and Figure 6.11 shows the result from running the model for six different
disturbances of each type. The hight of the bars show the expected profit from the
four different strategies. The first strategy is estimating that the disturbance is of
the long type from Section 5.4. The second strategy is formed by estimating the
disturbance is of the short type. In the third strategy no guess is made but instead
two scenarios is used as in (5.6). Finally the expected profit from full knowledge of
the disturbances is indicated by the last bars in Figure 6.10 and Figure 6.11.

Table 6.1 and Table 6.2 shows the objective function’s values (rounded of to the
nearest integer) that are graphed in Figure 6.10 and Figure 6.11. The tables also
includes the averages for the different strategies for comparison.
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Figure 6.10: Graphed results from six optimisations using long disturbances as model
inputs
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Long Disturbance

Long Short Using Full info
disturbance disturbance scenarios

estimate estimate

Run one 1396 1330 1333 1398
Run two 1394 1320 1328 1394
Run three 1349 1272 1284 1353
Run four 1365 1286 1299 1365
Run five 1380 1306 1314 1384
Run six 1458 1382 1388 1458

Average 1390 1316 1324 1392

Table 6.1: Detailed results showing the objective function value from six optimisa-
tions using long disturbances as model inputs
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Figure 6.11: Graphed results from six optimisations using short disturbances as
model inputs
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Short Disturbance

Long Short Using Full info
disturbance disturbance scenarios

estimate estimate

Run one 709 1146 1146 1146
Run two 694 929 840 1010
Run three 1146 1103 1029 1182
Run four 728 1155 1155 1155
Run five 741 1210 1167 1250
Run six 1170 1133 1032 1206

Average 865 1113 1061 1158

Table 6.2: Detailed results showing the objective function value from six optimisa-
tions using short disturbances as model inputs
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7

Discussion of Results from
Example Model

The results from the example model gave some expected answers and some surprises.
Expected behaviour was the unwillingness to shut down areas because of the start-up
cost. But it was also expected that the model would prioritise the most profitable
area in this case, A3.

Because of the low buffer holding cost h, the model could be expected to use the
buffer tank strategically. Good examples of this are when area two is stopped. In
this case, it is a good idea to keep it stopped and fill up the buffer tank instead.
Later the stopped area can, when started, ”catch up” by using the buffer tank during
the final phase of the simulation. Having material in the buffer tank also reduces
the risk that A2 or A3 have to be stopped later in the simulation.

The high value of the objective function in run three and six (see Table 6.2), when
using a short disturbance estimate for a long disturbance, was a surprise. Using both
scenarios was only slightly better than guessing all disturbances are of the short type.
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8

Conclusions and Future Work

8.1 Conclusions

In this study a general method for modelling of product-related disturbances within
process industry manufacturing plants has been introduced.

First, a mixed integer linear programming (MILP) model for area networks was con-
structed. The model aimed to maximise the simulated plant’s profit for a period of
time. In this model a site was represented by linked areas with defined properties,
such as production capacity. A key property of the model was that the production
capacity could be affected by the availability of services known as utilities. The areas
could also be separated by intermediate buffer tanks, which would allow indepen-
dent operation of otherwise dependent areas. By allowing the use of integers in the
constraints, it was possible to model costs for stopping areas which is an issue for
process industry manufacturing sites.

A limitation of the MILP model was that any utility disturbance trajectory had to
be known in advance. To remedy this stochastical programming (SP) was used to
introduce uncertainty. This extended, so called SP-MILP model, was able to optimise
over a number of scenarios, which represented guesses as to how a disturbance would
unfold.

Constraints and objective functions for both models were implemented in Matlab,
and solved by using an open source software called LPSolve which communicated
with Matlab.

To exemplify the SP-MILP model a part of the Perstorp AB Stenungsund site was
modelled. This example consisted of a small network of three areas, a buffer tank
and one utility affecting two of the areas. For this example, the objective was to
maximise profit. Two disturbances with some variation in its trajectories was used
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with corresponding scenarios to simulate uncertainty. The profit from running the
model with one or two scenarios was compared to the optimal way of running the
model, that is with full information about the disturbance trajectory.

From running the example model it could be concluded that initial parameters play
a key role in the model’s behaviour and result. For example see the results from run
three and six in Table 6.2. In these two cases the profit for using the long disturbance
estimate for a short disturbance was higher than correctly predict and use a short
disturbance estimate for a short disturbance. This is surprising, and the reason for
this could be that the interplay between parameters makes the wrong strategy pay
off in these cases.

8.2 Future Work

The project demonstrates a method that can be used to simulate different distur-
bance management scenarios of a production site. The method is based on Stochastic
Programming Mixed-integer Linear programming (SP-MILP). Only some properties
that are found in industrial sites have been modelled in the general SP-MILP model,
introduced in this study. More properties or better representation of already mod-
elled properties could be included in future models. For the result to be useful the
parameters used in the models needs to be taken from an industrial site, and then
the models need to be validated.

When experimenting with early versions of the model it was found that if a future
disturbance was known, the optimisation suggested that storing material in the buffer
tank early would be profitable. This is not surprising, but it gives an indication that
a MILP model might also be used to shed some light over safety stock levels in the
buffer tanks.
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svensk processindustri”. Alfa Print AB.

Kondili, E., C.C. Pantelides and R.W.H Sargent (1994): ”A General Algorithm for
Short-Term Scheduling of Batch Operations - 1. MILP Formulation”. Computers
and Chemical Engineering, 17:2, pp 211-227.

Lindholm, A. (2011): ”Utility Disturbance Management in the Process Industry”.
Licentiate thesis. Lund University.

55



Perstorp Annual & Sustainability Report (2010): ”Chemistry makes the world go
round”.
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