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Abstract

This paper investigates the possible gains from implementing an alternative stu-
dent assignment mechanism in Malmö stad. The analysis is based on the school
choice literature and data from Malmö stad. The overall result tells us that the
current system for assigning students in Malmö stad is associated with problems. A
Gale-Shapley Student Optimal Mechanism customized for Malmö stad would be the
appropriate alternative for solving these problems. This further implies that Malmö
stad and similar Municipalities in Sweden ought to revise their current student as-
signment systems and consider an alternative mechanism.

Kewords: School choice, Student assignment mechanisms, Malmö stad

1



Contents

1 Introduction 3

2 Theoretical Overview 4
2.1 A School Choice Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Two Student Assignment Mechanisms . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The Gale-Shapley Student Optimal Mechanism . . . . . . . . . . . 6
2.2.2 The Top Trading Cycles Mechanism . . . . . . . . . . . . . . . . . 8

2.3 Controlled Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 The Gale-Shapley Student Optimal Mechanism with Controlled Choice 10
2.3.2 The Top Trading Cycles Mechanism with Controlled Choice . . . . 12

2.4 Two implemented Gale-Shapley Student Optimal Mechanisms . . . . . . . 13
2.4.1 The Gale-Shapley Student Optimal Mechanism in NYC . . . . . . . 13
2.4.2 The Gale-Shapley Student Optimal Mechanism in Boston . . . . . . 15

2.5 Theoretical developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Random tie-breaking in the Gale-Shapley student optimal mechanism 17
2.5.2 Strategy proofness in large markets . . . . . . . . . . . . . . . . . . 21

3 School choice in Malmö stad 22
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1 Introduction

The possibility for a student to freely choose which school he/she wishes to attend has
been a possibility in Swedish elementary schools since the late 1980s (Dahlstedt, 2007,
p. 24). Today are numerous municipalities in Sweden taking students’ preferences into
account when assigning them to schools. The free choice of school has been criticized by,
amongst others, Skolverket who believes that the free choice is correlated with segregation.
Moreover, Skolverket suggests that the free choice widens the gap between the well and
the badly performing schools (Skolverket, 2012).

Despite the wide implementation of a free elementary school choice in Swedish
municipalities, has there been little discussion in Sweden, regarding how to effectively
assign students to schools. The main issue in school choice is how to assign students
to schools given the students’ preferences, the schools’ rankings of the students and the
schools’ capacities. Abdulkadiroğlu & Sönmez (2003) were the first to address the school
choice problem, with focus on how to find a good student-school match using a student
assignment mechanism.

There are three properties which are desired for school assignment mechanisms,
these are efficiency, stability and strategy-proofness. A student assignment mechanism
which is efficient selects a matching which cannot be pareto improved upon, from the view
point of the students. A stable matching is a matching where no student prefers another
school to the one which he/she is currently matched with and that school prefers to assign
the student a seat. Finally, a strategy-proof mechanism, is a mechanism which makes it a
weakly dominant strategy for students to represent their true preferences.

Abdulkadiroğlu & Sönmez (2003) propose two student assignment mechanisms,
the Gale-Shapley Student Optimal Mechanism and the Top Trading Cycles Mechanism, in
order to solve a school choice problem. Both these two mechanisms are strategy-proof but
while the Gale-Shapley Student Optimal Mechanism selects a stable matching will the Top
Trading Cycles Mechanism select an efficient matching.

These theoretical results have had impact on how students are assigned to schools,
since they are practically implementable. In New York City and Boston are currently two
different versions of the Gale-Shapley Student Optimal Mechanism in use.

The main purpose of this thesis is to evaluate what effects a practical implementa-
tion of a student assignment mechanism would have in Malmö stad. Malmö stad has been
chosen since it is Sweden’s third largest municipality with 27078 students currently study-
ing in elementary school and because the system is associated with problems regarding the
student-school assignment. The thesis will focus on the school choice problem for students
in elementary schools which includes students in grades 1 to 9. In order to conduct the
evaluation will the thesis concentrate on the following three questions:

1. Are there any problems associated with the current system used in Malmö stad?

2. Can a student assignment mechanism solve these problems?

3. Which student assignment mechanism would be appropriate for Malmö stad?
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The main finding in this thesis is that the system in Malmö stad is associated with problems
regarding transparency, efficiency, stability and segregation. The optimal choice of mech-
anism, for solving these problems would be a Gale-Shapley Student Optimal Mechanism
accompanied by adequate information. Furthermore, controlled choice could be incorpo-
rated into the mechanism in order to reduce segregation across schools. A limitation of the
analysis is that data is scarce in some important aspects, however is this not affecting the
theoretical results by much.

The thesis is organized in the following way: Section 2 gives a theoretical overview
on school choice as well as presenting the two implemented mechanisms in New York City
and Boston. Section 3 presents the current system in Malmö stad. Problems with the
current system and solutions to these are discussed in section 4. Finally, is a conclusion
presented in section 5.

2 Theoretical Overview

2.1 A School Choice Problem

According to Abdulkadiroğlu & Sönmez (2003, p.733) is a school choice problem consisting
of:

A number of students, each of whom should be assigned a seat at one of a
number of schools. Each school has a maximum capacity but there is no short-
age of the total seats. Each student has strict preferences over all schools, and
each school has a strict priority ordering of all students. Here priorities do not
represent preferences but they are imposed by state or local law.

Formally, a school choice problem consists of the following (Pathak & Sönmez, 2008, p.
1638):

• A finite set of students I = {i1, . . . , in}

• A finite set of schools S = {s1, . . . , sn}

• A capacity vector q = (qs1 , . . . , qsn)

• A list of strict student preferences PI = (Pi1 , . . . , Pin)

• A list of strict school priorities π = (πs1 , . . . , πsm)

It is assumed that qs ≥ 1 ∀s ∈ S (Erdil & Ergin, 2008, p. 674) and that the list of
students’ preferences as well as the list of schools’ priorities are complete, transitive and
antisymmetric relations (Kesten, 2010, p. 1305). For any student i ∈ I, Pi is a strict
preference relation over S ∪ {i}, where snPii means that school n is acceptable for
student i, which is equivalent to that student i strictly prefers school n rather than not
being assigned a seat at any school at all (Pathak & Sönmez, 2008, p. 1638)
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(Abdulkadiroğlu et al., 2009, p. 1957). Furthermore, let s1Ris2 denote that either s1Pis2
or s1 = s2 (Abdulkadiroğlu et al., 2009, p. 1957), which hence is the analogous ”at least
as good as” relation from Pi (Pathak & Sönmez, 2008, p. 1638). For any school s ∈ S, πs
is a mapping from {1, . . . , n} −→ {i1, . . . , in}, which generates a list of priorities for
school s of students where πs(1) is the student with the highest priority, πs(2) is the
student with the second highest priority etc (Pathak & Sönmez, 2008, p. 1638).

The outcome of a school choice problem is called a matching which is a
correspondence µ : I ∪ S −→ S ∪ I, such that:

• µ(i) ∈ S ∪ {i}, ∀i ∈ I, and

• | µ−1(s) |≤ qs, ∀s ∈ S.

Where µ(i) is the assignment of agent i under matching µ. The interpretation of these
criteria is that each student is either assigned a seat at a school or remains unassigned,
and that the number of students matched to a certain school cannot exceed the number
of seats available at the school (Pathak & Sönmez, 2008, p. 1639), (Abdulkadiroğlu et al.,
2009, p. 1957).

A matching µ Pareto dominates another matching υ if: µ(i)Riυ(i),∀i ∈ I, and
µ(i)Piυ(i), for some i ∈ I. A matching is efficient if it is not Pareto dominated by any
other matching. Moreover, an individual rational matching is µ such that it matches all
x ∈ I ∪ S with a student/school acceptable to x. If, sPiµ(i), is a matching µ said to be
blocked by the student-school pair (i,s) if either: [| µ(s) |< qs and i �s s], or [i �s i′ for
some i′ ∈ µ(s)]. Hence, given that student i prefer school s to the school he/she is
currently matched with under µ(i), will the matching µ(i) be blocked by school s if: There
are either still unfilled seats at school s and s prefers to assign a seat to student i rather
than leaving it unfilled, or if school s prefers student i to another student i’ with whom
school s is currently matched with (Abdulkadiroğlu et al., 2009, p. 1957). Restated,
would a matching like µ(i) give rise to justified envy (Abdulkadiroğlu & Sönmez, 2003, p.
735). Lastly, a matching µ is known to be stable if it is individual rational and is not
blocked by any student-school pair (i,s) (Abdulkadiroğlu et al., 2009, p. 1957).

In order to solve a school choice problem is a student assignment mechanism
implemented which systematically selects a matching for a given problem. A mechanism
which is designed in such a way that students have to reveal their preferences and selects
a matching based on these preferences and schools’ priorities is a direct mechanism
(Abdulkadiroğlu & Sönmez, 2003, p. 733). Formally, a direct mechanism ϕ is a mapping
from every (PI , π) −→ µ (Abdulkadiroğlu et al., 2009, p. 1957). Furthermore, is a
Pareto-efficient student assignment mechanism, a mechanism which selects a
Pareto-efficient matching (Abdulkadiroğlu & Sönmez, 2003, p. 733).

Another desirable property of student assignment mechanisms is
strategy-proofness. A student assignment mechanism is strategy-proof if no student can
stand to gain from misrepresenting his/her true preferences (Abdulkadiroğlu & Sönmez,
2003, p. 733). Under a strategy-proof student assignment mechanism, revealing their true
preferences will be a dominant strategy for all students . Formally, a mechanism ϕ is
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dominant strategy incentive compatible for i ∈ I if for every (PI , π) and every P ′i :
ϕi(PI ; π)Riϕi(P

′
i , P−i; π). Hence, let Pi ∈ PI be agent i’s true preferences, and P ′i be

agent i’s preferences when misrepresenting. Given that all other students and schools do
not misrepresent their preferences/priorities will the mechanism ϕ make student i weakly
better off representing his/her true preferences compared to if he/she would misrepresent.
Finally, a student assignment mechanism is strategy-proof if it is dominant strategy
incentive compatible ∀i ∈ I (Abdulkadiroğlu et al., 2009, 1957-1958).

2.2 Two Student Assignment Mechanisms

Abdulkadiroğlu & Sönmez (2003) propose two mechanisms for solving a school choice
problem: The Gale-Shapley Student Optimal Mechanism and the Top Trading Cycles
Mechanism. These two mechanism will select different matchings for a given school choice
problem. Generally, The Gale-Shapley Student Optimal Mechanism focuses on stability
while the Top Trading Cycles Mechanism gives priority to efficiency. The following two
sections will give a thorough review of these two mechanisms.

2.2.1 The Gale-Shapley Student Optimal Mechanism

A school choice problem has striking resemblance to the college admissions problem first
considered by Gale & Shapley (1962). The major difference between the two problems is
that colleges themselves have preferences over students, whereas schools are viewed as
only to be consumed by students (Abdulkadiroğlu & Sönmez, 2003, p. 733). This is
reflected by schools having ”priorities” rather than ”preferences”. Abdulkadiroğlu &
Sönmez (2003, p. 735) suggest that schools’ priorities are to be interpreted as preferences,
which allows for the use of the Deferred Acceptance Algorithm which was proposed by
Gale & Shapley (1962) as a mechanism for solving the college admissions problem, in
order to solve a school choice problem. The algorithm works in the following way:

Algorithm 1. The Deferred Acceptance Algorithm

Step 1: Students propose to their most preferred school. Students are then, one at a
time, assigned seats in accordance with the schools’ lists of priorities. Students who are
not assigned a seat are rejected.

Step k: In general, each student that was rejected in the previous step, proposes to the
school which is next on his/her list of preferences. The schools will then choose which
students to assign a seat, taking the new proposers together with the proposers which they
have already given seats in the previous steps. The schools do so by once again assigning
seats to the proposers, one at a time, following their list of priorities. Any rejected
proposer is left unassigned.
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The algorithm stops when no proposers are rejected and each student is assigned his/her
final assignment (Abdulkadiroğlu & Sönmez, 2003, p. 735).

Gale and Shapley (Gale & Shapley, 1962, p. 14) have proved the following appealing
property

Proposition 1. The unique stable matching selected by the deferred acceptance algorithm
Pareto dominates any other stable matching, from the viewpoint of the proposers.

The core of the proof lies in that the algorithm will reject students from a seat at a school
if the seat is not possible for the students. A seat is possible for a student if the
assignment is stable, which is connected to justified envy and that schools will block any
unstable matching. Consider students i2, . . . , in ∈ I who have higher priorities at a school
s than i1. The algorithm will then reject i1 from a seat at s and it must hence be proven
that s is impossible for i1. Consider the opposite, that i1 is assigned a seat at school s.
This would mean that at least one of the students i2, . . . , in, say i2 will be given a seat at
another school at which he/she is worse off. This however, will be an unstable matching
since school s prefers i2 to i1 and i2 prefers school s to his/her current matching. Hence
will i2 suffer from justified envy and the matching will be blocked by school s. School s is
thereby impossible for i1 and the algorithm will reject any student a seat at a school
which is not possible for the student in any stable matching. The matching selected by
the Deferred Acceptance Algorithm will hence pareto dominate any other stable
matching (Gale & Shapley, 1962, p. 14).

Proposition 1 holds true when preferences and priorities are strict. The unique
stable matching which is selected by the Deferred Acceptance Algorithm, when students
are proposing is known as the student optimal stable matching and the mechanism
generating this matching is called the student optimal stable mechanism (SOSM) (Erdil
& Ergin, 2008, p. 670)

Later, the following property of the Deferred Acceptance Algorithm was proven:
(Roth, 1982, p. 623):

Proposition 2. The Gale-Shapley student optimal stable mechanism is strategy-proof.

In order to see that this holds true consider if student i1 misrepresents his preferences by
P ′i1 where P ′i1 6= Pi1 and Pi1 is student i1’s true preferences. The matching ϕi(PI ; π), when
i1 reveals Pi1 is called x and the matching ϕi(P

′
i1
, P−i1 ; π), when i1 misrepresents by P ′i1 is

called y. Roth (1982, p. 624-626) shows that no misrepresentation by i1 can make him
better off, but in fact a misrepresentation leads simply to that x = y. Consider first the
case where i1 reports P1 and makes a match at step t giving x. Now consider in ∈ I\{i1}
who also makes a match at step t in x, it must then be that in is matched with the same
school under the different matchings, xin = yin . This holds true since say in was matched
with s1 in x, this would then mean that in was the only one proposing to s1 at step t. At
matching y no student is worse off than at matching x, since every other student except
i1 truthfully reports their preferences. This implies that either did i1 propose to s1 in x
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and was rejected in which case s1 prefer in to i1, or does i1 prefer the school with which
he/she is match to in x to s1 in which case he/she is worse off by misrepresenting. This
will hence lead to that i1 has no incentives to misrepresent and x = y. By the same
reasoning Roth shows that x = y holds ∀i ∈ I that are matched at any step prior to step
t and the Deferred Acceptance Algorithm is strategy-proof (Roth, 1982, p. 624-626).

In spite of these attracting features, is there one short coming with the SOSM.
There is a trade-off between stability and Pareto efficiency when using the SOSM
(Abdulkadiroğlu & Sönmez, 2003, p. 736). A Pareto efficient matching does not have to
be stable and since proposition 1 only refers to stable matchings does not the optimal
stable matching necessarily coincide with the Pareto efficient matching. Hence, the
complete elimination of justified envy, which is part of what defines a stable matching,
may yield a matching which is not Pareto efficient (Abdulkadiroğlu & Sönmez, 2003, p.
736).

2.2.2 The Top Trading Cycles Mechanism

If efficiency is of higher priority than stability, ought another mechanism called the Top
Trading Cycles Mechanism (TTC), be used to solve a school problem. Implementing the
TTC requires a different interpretation of school priorities. Assume that i1 = πs(1) and
i2 = πs(2), using the SOSM will this be interpreted as i1 being assigned a seat at school s
before i2. When using the TTC on the other hand, will i1 not automatically be assigned
a seat before i2, instead does this represent that i1 has a better opportunity of getting in
to school s than i2 (Abdulkadiroğlu & Sönmez, 2003, p. 736). The SOSM gives high
importance to that students are given seats based on the schools’ priority orderings.
While the TTC gives the students the opportunity to trade priorities among themselves
in order to get a seat which they prefer. Priorities, in this case, are merely seen as a way
to distribute the students among the vacant seats (Abdulkadiroğlu et al., 2006, p. 10).
The TTC is Pareto efficient, however, does it not completely eliminate justified envy
(Abdulkadiroğlu & Sönmez, 2003, p. 736).

The TTC mechanism is a direct mechanism and the algorithm finds a matching
in the following way (Abdulkadiroğlu & Sönmez, 2003, p. 736-737):

Algorithm 2. The Top Trading Cycles Algorithm

Step 1: First, a counter is to be assigned to every school which makes it possible to keep
track of how many remaining seats there are at the different schools. In step 1, the
counters equals the capacities of the school. Second, every student points at their most
preferred school and every school points at the student with the highest priority at that
school. A cycle is then formed of the students and schools who are pointing at each other
in a way such that if students trade priorities pareto improvements will occur. The cycle
(s1, i1, s2, . . . , sk, ik) would be interpreted as s1 pointing to i1, i1 pointing to s2,. . . , sk
pointing to ik and ik pointing to s1. Since the number of students and schools are finite,
this procedure will result in at least one cycle, but each student and each school can only
be part of one cycle. After the cycle(s) has been determined every student that belongs to
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a cycle is assigned a seat at the school which he/she is pointing to and is then removed.
Finally, the counter of each school in a cycle is reduced by one and if there are no
remaining seats, the school is removed as well. The counters for all other schools are left
unchanged.

Step k: In general, every remaining student points at his/her most preferred school of
those still remaining, and each school points towards the student with the highest priority
of the students still remaining. At least one cycle is formed. The students who forms part
of a cycle are assigned a seat at the school they are pointing at and are removed. Each
school who belongs to a cycle has its counter reduced by one and if there are no remaining
seats, the school is removed as well. The counters for all other schools are left unchanged.

The algorithm stops when all students have been assigned a seat at a school.
It has been proven that the TTC is efficient (Abdulkadiroğlu & Sönmez, 2003, p. 737):

Proposition 3. The Top Trading Cycles mechanism is efficient.

This holds true since if a student i1 is removed at step 1, he/she is given his most
preferred choice and cannot be better off. If a student i2 is removed at step 2 he/she has
been given his/her most preferred choice out of those still remaining. Since preferences
are assumed to be strict can only i2 be better off by making someone who was removed at
step 1 worse off by taking his/her place. The TTC is hence pareto efficient since a
student cannot, at any step, be better off without making anyone else who was removed
at an earlier stage worse off (Abdulkadiroğlu & Sönmez, 2003, p. 744). The TTC is also
strategy-proof (Abdulkadiroğlu & Sönmez, 2003, p. 738).

Proposition 4. The Top Trading Cycles mechanism is strategy-proof.

Strategy proofness can be seen since if a student i is removed at step k the student would
like to misrepresent in order to be removed prior to step k. But the cycles in the steps
prior to k are independent of what preferences the student reports. This is so since the
other students and schools are reporting the same preferences/priorities as before and
there is hence no school in the cycles which is pointing at student i. This leads to that
the cycles are the same as before. Henceforth, the same students will be assigned seats as
before and there is no way that misrepresentation leads to a better outcome for the
student. It can only lead to that the student is worse off than under truthful preference
revelation (Abdulkadiroğlu & Sönmez, 2003, p. 738).

While the SOSM selects a unique stable matching which pareto dominates all
other stable matchings. The TTC selects the pareto efficient matching. Since both are
strategy-proof, truthful revelation of preferences will be a dominant strategy for all
students.
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2.3 Controlled Choice

Since the 1960s has the positive correlation between a student’s family’s socioeconomic
status (SES)1 and the student’s achievement in school been known (Caldas & Bankston
III, 1997, p. 269). This has been confirmed for Swedish students as well by Skolverket
which in a recent study concludes that parent’s level of education and the child’s social
background influences the child’s results in school (Skolverket, 2009, p. 112). Caldas &
Bankston III (1997, p. 275) further confirms that a student’s achievement in school tends
to increase, when the student is attending a school where the other children come from a
high SES background.

A contemporary study on the situation in Malmö stad concludes that SES
measured as parents’ level of education highly influences the students’ scores. Bunar
(2012, p. 21-22) shows that the students in Västra Innerstaden have the highest academic
achievement while the students in Roseng̊ard have the lowest. Furthermore is the parents’
level of education highest in Västra Innerstaden and lowest in Roseng̊ard. Moreover are
20 % of the children immigrants in Västra Innerstaden while 91 % are immigrants in
Roseng̊ard (Bunar, 2012, p. 25).

If decision makers in Malmö stad would want to make schools more equal, while
at the same time allowing parents to choose at which school their child will attend, an
ethnic balance could be incorporated into the SOSM or TTC. Different quotas for
different groups could be incorporated in the mechanism allowing for e. g. 20 % (or
whichever share the decision makers feel is appropriate) of the seats at schools in Malmö
stad to be reserved for immigrants . In the school choice literature this is known as
controlled choice

2.3.1 The Gale-Shapley Student Optimal Mechanism with Controlled Choice

Controlled choice is rather easily incorporated into the SOSM. Every student now belongs
to a certain type and there are at least two different kind of types. Furthermore is every
school given type-specific quotas (Abdulkadiroğlu & Sönmez, 2003, p. 739). To the formal
definition of a school choice problem discussed on page 4 we can now add the following:

• A type space T = {τ1, . . . , τk}

• A type function τ : I −→ T

• A vector of type specific quotas for every school s, qTs = (qτ1s , . . . , q
τk
s )

Such that: qτs ≤ qs, ∀s ∈ S and ∀τ ∈ T and
∑

τ∈T q
τ
s ≥ qs.

These constraints are known as the controlled choice constraints
(Abdulkadiroğlu, 2005, p. 543).

1Measures of SES are usually education, income, occupation or a combination of the three (Winkleby
et al., 1992, p. 816)
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These constraints imply that at every school, the quota of a certain type at one
school has to be less or equal to the total quota at that school. And that the sum of all
quotas at one school has to be larger or equal than the total quota at the school. When
these constraints are perfectly rigid the SOSM can simply be applied separately to each
type in order to assign the available seats for the students of each type. If the constraints
are flexible, the following algorithm is to be used:

Algorithm 3. The Gale-Shapley Student Optimal Algorithm with Controlled Choice

Step 1: Every student proposes to his/her most preferred school. Students are then, one
at a time, assigned seats according to the schools’ lists of priorities. Once a type-specific
quota is filled are all remaining students of that type rejected and the algorithm continues
only with the students of the remaining types. Any student not assigned a seat is rejected.

Step k: In general, each student that was rejected in the previous step proposes to the
school which is next on his/her list of preferences. The schools will then choose which
students to assign a seat, taking the new proposers together with the proposers which they
have assigned seats to in the previous steps. When a type-specific quota is filled all
remaining students of that type are rejected and the algorithm continues with the students
of the remaining types. Any student not assigned a seat is rejected.

The algorithm stops when all students have been assigned a seat a school
(Abdulkadiroğlu & Sönmez, 2003, p. 739).

The modified mechanism satisfies weak stability (Abdulkadiroğlu, 2005, p. 10).
A matching µ is weakly stable if it does not violate the type-specific quotas and there
exists no student-school pair (i, s) such that, sPiµ(i) and either:

1. | {i ∈ I : τ(i) = τ1} |< qτ1s and | µ(s) |< qs or

2. | {i ∈ I : τ(i) = τ1} |< qτ1s and i �s i′ for some i′ ∈ µ(s)

3. | {i ∈ I : τ(i) = τ1} |= qτ1s and i �s i′ for some i′ ∈ µ(s) : τ(i) = τ(i′) = τ1

A matching µ is hence weakly stable if: There does not exist a student i who prefer
school s to his/her current matching and either: (1) The type-specific quota for student i
is not filled at school s and there are still available seats at school s. (2) If the
type-specific quota is not filled at school s and school s prefers student i to student i′

with whom it is currently matched (regardless of student i′s type). Lastly, (3) if the
type-specific quota for student i is filled and school s prefers student i to student i′ with
whom it is currently matched and the two students belong to the same type (Ergin &
Sönmez, 2006, p. 229). This is the analogous definition for a matching to be blocked as
discussed for the original case at page 5. Since this is satisfied, the Gale-Shapley Student
Optimal Mechanism with Controlled Choice completely eliminates justified envy between
students of the same type. Moreover is the Gale-Shapley Student Optimal Mechanism
with Controlled Choice strategy-proof (Abdulkadiroğlu, 2005, p. 544).
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Proposition 5. The Gale-Shapley Student Optimal Mechanism with Controlled Choice is
strategy-proof.

If this version of the SOSM would be implemented in Malmö stad students would
probably only be divided into two different kind of types, these could for example be:
Immigrants (I) and non-immigrants (NI). If only two types of students are to be
considered the following version of the SOSM can be used:

Consider a school s with quotas qIs and qNIs where q ≥ qIs , q ≥ qNIs and
qIs + qNIs ≥ q, s is then seen as three different schools, s1, s2 and s3. Where s1 has q − qNI
seats reserved for type I students, s2 has q − qI seats reserved for type IN students and s3

has q − qI − qIN reserved seats for students regardless of type. The priority list for s1 is
simply constructed as for the original case with the difference that type NI-students are
removed from the list. The NI-students are hence unacceptable at school s1. The priority
list or s2 is constructed in the same way as for s1 with the difference that the I-students
are not acceptable. Finally is the priority list for s3 the same as in the original case for s
(Abdulkadiroğlu & Sönmez, 2003, p. 740).

This mechanism does the following:

1. s = s1 + s2 + s3, ∀s ∈ S as explained above.

2. s1 �i s2 �i s3, ∀i ∈ I and ∀s ∈ S

3. if s �i t then s1 �i s2 �i s3 �i t1 �i t2 �i t3

4. Selects the student optimal stable matching (Abdulkadiroğlu & Sönmez, 2003, p.
740)

2.3.2 The Top Trading Cycles Mechanism with Controlled Choice

Incorporating controlled choice into the TTC is neither very difficult nor changes the
algorithm by much. When the controlled choice constraints are flexible each school are
given one more counter for each type of student and the following version of the TTC is
run:

Algorithm 4. The Top Trading Cycles Algorithm with Controlled Choice

Step 1: Each type-specific counter is set equal to the given quota of that type and each
school specific counter is set to the capacity of the school. Each student points to their
most preferred school and each school points to the student with highest priority. A cycle
of students and schools are formed such that students can change seats in order to pareto
improve their outcome. Each counter is reduced by one and each of the type-specific
counters are reduced by one for those students who are given a seat. The other counters
remain unchanged and if a school specific counter equals zero, the associated school is
removed. If there are unassigned students the algorithm continues with the next step.
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Step k: In general, Students point to their most preferred school of those who remain
and has at least one vacant seat for the students’ type. Schools then point at the students
who have highest priority and at least one cycle is formed this way. The students can
then change seats in order to pareto improve their outcome. Each counter is reduced by
one and each of the type-specific counters are reduced by one for those students who are
given a seat. The other counters remain unchanged and if a school specific counter equals
zero, the associated school is removed. If there are unassigned students the algorithm will
continue with the next step.

Due to that the TTC with controlled choice has to meet the controlled choice constraints
is it constrained efficient. This implies that the TTC with type-specific quotas is less
efficient than the TTC without type-specific quotas.

Proposition 6. The Top Trading Cycles Mechanism with Type-specific Quotas is
constrained efficient.

Moreover is the TTC with type-specific quotas strategy-proof (Abdulkadiroğlu &
Sönmez, 2003, p. 740-741).

Proposition 7. The Top Trading Cycles Mechanism with Type-specific Quotas is
strategy-proof.

Implementing one of these two mechanisms could have impact in making schools in
Malmö stad more equal and could be a tool for making immigrants in Malmö stad more
integrated.

2.4 Two implemented Gale-Shapley Student Optimal
Mechanisms

Between the years 2003-2004 was a Gale-Shapley student optimal mechanism designed for
solving the school choice problem in New York City (NYC) (Abdulkadiroğlu et al., 2005b,
p. 364). One year later in July 2005 another version of the SOSM was implemented in
Boston (Abdulkadiroğlu et al., 2006, p. 2). In this section is a review given of the two
mechanisms highlighting the main reasons for their implementation.

2.4.1 The Gale-Shapley Student Optimal Mechanism in NYC

A SOSM was designed for matching over 90 000 entering students to high school each year
in NYC. The mechanism showed positive results in the first year it was used. Only 3000
students were matched with a school which was not stated on their list of preferences,
compared to the 30 000 students the year before (Abdulkadiroğlu et al., 2005b, p. 364).

In the old system, students applying for high school programs were given the
opportunity to make a preference list of five programs (only a bit more than 50 % of the
students listed five programs). This preference list was then sent to the schools stated on
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the list and the schools proceeded differently depending on the type of school.
Unscreened schools assigned their seats by lottery, whereas screened schools could make
individual evaluations of all students. Zoned schools gave priority to students who lived
close to the school and Educational option could make individual evaluations of students
for half of their seats. In addition to this, seven schools known as specialized schools used
entrance exams in order to assign seats at their schools (Abdulkadiroğlu et al., 2005b, p.
364). Once the above was taken into account by the different types of schools could the
schools accept, reject or put applicants on a waiting list. Students were then given
decisions from the different schools, to which they could accept only one offer and be put
on a waiting list for one other school. Once the students had responded were new offers
made from schools which still had vacant seats. This procedure was repeated three times
and if a student was not assigned a school in these three steps he/she was usually
matched with the appropriate zoned school (Abdulkadiroğlu et al., 2005b, p. 365).

There were three major problems associated with the old mechanism. First of
all, was it suffering from congestion since the market did not clear and 30 000 students
were assigned a school to which they had not stated any preference for. Secondly, had the
parents (and students) to think strategically when stating their list of preferences. Third,
schools were also strategic in such a way that they were not reporting their true total
capacity of available seats to the central administration (Abdulkadiroğlu et al., 2005b, p.
365). The old mechanism did hence not seem to be strategy-proof.

When the new mechanism was designed, the NYC school market was seen as
two-sided. The reason for this was that schools also acted strategically and that some
schools had different preferences over students with low scores. Since the market was
assumed to be two-sided was a Gale-Shapley Deferred Acceptance Algorithm
implemented in order to get a stable assignment as described at page 6. Since the
students’ welfare was of priority, was the mechanism chosen to be student-proposing
rather than school-proposing. Furthermore, it would give incentives for students to
represent their true preferences (Abdulkadiroğlu et al., 2005b, p. 365-366).

For unscreened schools, list of priorities were generated randomly whereas each
half of the educational option programs were divided into three different programs and
priorities were based on the 16/68/162 reading score distribution.

There were two aspects of the mechanism that gave incentives for students to
misrepresent. First did the educational option programmes automatically assign seats to
the students with the top 2% reading scores if they listed the school as their top choice.
Secondly was the list of preferences limited to a number of 12 schools (Abdulkadiroğlu
et al., 2005b, p. 366). Furthermore, one aspect of the new design could make the
matching unstable. The decision makers in NYC wanted students that were admitted to
specialized schools also to be given an offer from a nonspecialized school. Due to this, a
first round of the algorithm was run with all the students which gave the students who

2The Educational option programs had to admit half of their students based on the results of a stan-
dardized English Language Arts exam. 16 % of the seats were to be assigned to the top performers, 68 %
to middle performers and 16 % to low performers (Abdulkadiroğlu et al., 2005b, p. 364)
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were given a seat at a specialized school the choice between that school and a
non-specialized school. After these students had chosen which school to attend, they were
removed and the algorithm ran a second round. In this round the remaining students
were given information about their assignment. Separating the mechanism into two
rounds could make some students suffer from justified envy. If a student i has the
following preferences: snonspecialized school 1 �i sspecialized school �i snonspecialized school 2

Then if i is given a choice in the first round of choosing between sspecialized school and
snonspecialized school 2 (since he is ranked low at snonspecialized school 1) he/she will accept a
seat at sspecialized school and be removed. This would create instability if a sufficient
number of students in the first round rejected the offer from snonspecialized school 1 such that
i could actually have been given a seat at snonspecialized school 1.This would require the
algorithm to only run one round such that i would not be removed. This problem is
however limited if all students given an offer from a specialized school are ranked high at
all schools’ list of priorities (Abdulkadiroğlu et al., 2005b, p. 366).

Finally, the students who had not been given a seat at any school after the
second round were asked to make a new preference list of 12 schools, choosing between
the ones who had yet empty seats. School priorities were not updated and students were
given the a random priority, which applied at all schools. After the third round, the
remaining students were assigned seats at different schools administratively
(Abdulkadiroğlu et al., 2005b, p. 366).

Despite some problems of information and implementation was the new
mechanism in NYC a success. The number of unassigned students was 10 % compared to
the year before. 20 000 more students were given a choice from their first list of
preferences and 3000 more students were assigned a seat at a school which was top-five at
their list of preferences. Furthermore, an additional 7600 students were assigned a seat
based on the students’ list of preferences, with the old mechanism, these students were
unmatched. Much of these positive results were due to that students now ranked 12
schools instead of five and that students did not receive several offers from different
schools (Abdulkadiroğlu et al., 2005b, p. 366-367). Furthermore, in the years 2004-2007
more students have been given their first, second or third choice respectively than in the
old mechanism in 2003 (Abdulkadiroğlu et al., 2009, p. 1967).

The mechanism seems to work better each passing year and there may be
several reasons for this. First of all do the schools’ incentives to not report their true
capacity, seem to have vanished with the new mechanism (which was expected by
theory). Over the years school have capacities increased in total and especially the
popular schools have been reporting higher capacities than before. Secondly, the schools
have ranked many more students over the years. Prior to the new mechanism did many
schools only rank the students who listed their school as their most preferred alternative.
Since the information about the students’ preference lists are not available to the schools
under the new mechanism they have to rank many more students in order to not have
any vacant seats after the algorithm has run. Moreover, the informational aspects have
been highlighted. Many high school fairs have been arranged in NYC since the new
mechanism has been in use and student guidance counselors now have more knowledge on
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how the new system works (Abdulkadiroğlu et al., 2009, p. 1968).

2.4.2 The Gale-Shapley Student Optimal Mechanism in Boston

In Boston the school choice problem consisted of matching students to four different
entry grades: Kindergarten, 1, 6 and 9. In 2004 were there approximately: 4800 students
entering kindergarten, 4000 first grade, 4300 grade three and 4000 grade 9. Parents were
asked to make a list of preferences of at least three (but no more than five
(Abdulkadiroğlu et al., 2006, p. 4)) schools and depending on which entry grade the
student was at, the school options differed. For students applying for schools at grade 1
and 6, could only schools in their resident zone be applied for plus five other schools which
were open to all students independent of where they lived. The students applying for high
schools could choose between 18 unscreened schools, 13 screened schools and 5 schools
which were not part of the centralized system (Abdulkadiroğlu et al., 2005a, p. 368).

In Boston are the schools divided in three different zones and priorities to half of
the students at most schools are determined in the following way:

1. Guaranteed priority: If the student is already studying at the school (in a lower
grade) he/she is guaranteed a seat at the school.

2. Sibling-walk priority: If the Student is living within the walk zone of the school and
has a sibling studying at the school.

3. Sibling priority: If the Student has a sibling studying at the school and is living
outside of the walk zone of the school.

4. Walk zone priority: If the Student is living within the walk zone of the school.

5. Other students living within the walk zone.

6. Ties within each category are broken by a random lottery.

The other half of the students are assigned regardless of where in Boston they are living
following: 1) Guaranteed priority 2) Sibling priority 3) Random lottery for ties
(Abdulkadiroğlu et al., 2006, p. 4).

The mechanism used in Boston prior to 2005 is known in the school choice
literature as the Boston mechanism (Abdulkadiroğlu et al., 2006, p. 2). The Boston
mechanism is a priority matching mechanism in the sense that it tries to give all the
students their first choice (Abdulkadiroğlu et al., 2005a, p. 368). The Boston algorithm
resembles to algorithm 1 on page 6 with the difference that students who are given a seat
at a step say k is not considered together with the new proposers at the steps following k
(Abdulkadiroğlu et al., 2005a, p. 370). Hence, once a student is assigned a seat a school
he/she keeps it even though there might be students with higher priority proposing to the
school at a later step. This leads to that students have to act strategically when stating
their preferences. Consider a student i who states his/her true preferences which are:
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Pi = s1 �i s2 if student i is not admitted to s1 in step 1, then once proposing to s2 this
school might not have any vacant seats left. Even if student i has the highest priority
among all students in Boston at s2 i. e πs2(1) = i he/she does not get a seat at the
school. This will lead to that student i will be assigned a seat at a school which is less
preferred to both s1 and s2. It would hence be better for i to misrepresent his preferences
by: P ′i = s2 �i s1 in order to be better off (i. e. at least get a seat at s2). The Boston
mechanism is hence not strategy proof (Abdulkadiroğlu et al., 2006, p. 6).

The Boston school committee voted in July 2005 to replace the Boston
mechanism with a mechanism which did not require families to game the system (Pathak
& Sönmez, 2008, p. 1636). The main problem identified by the Boston school committee
was that families who had time and resources to learn the system could game the system
and by doing so they hurt families who did not game the system. The Boston school
committee wanted the new mechanism to be strategy proof and they identified further
arguments for implementing such a mechanism. First of all would the new system be
transparent since the incentives to misrepresent preferences would disappear. Second
would the new mechanism probably yield a more efficient match than the Boston
mechanism. Third, by true preference revelation the Boston school committee could
distinguish the popular schools and would be able to measure the effects of policy
changes more accurately (Abdulkadiroğlu et al., 2006, p. 24).

One of the main differences between the system in Boston and the one in NYC
was the way school priorities were determined. In NYC the schools themselves made lists
of priorities for the students. In Boston on the other hand the priorities were determined
by the local laws discussed at page 15. The incentives for schools to game the system
which existed in NYC did hence not seem to be present in Boston (Abdulkadiroğlu et al.,
2005a, p. 370).

The Boston school Committee considered replacing the Boston mechanism with
either the SOSM or the TTC (since both are strategy proof). The final choice fell on
implementing the SOSM. The arguments were that some priorities such as sibling priority
were of higher importance than efficiency and was not something which was ought to be
traded between students. Moreover did the Boston school committee regard the TTC as
more complicated to explain to the parents which could make it less transparent and the
trading feature could be a way for parents to game the system (Abdulkadiroğlu et al.,
2006, p. 25-26). Once the SOSM was implemented, families were urged to list as many
schools as possible or at least six, in order to be assigned a seat at a school on their list of
preferences (Abdulkadiroğlu et al., 2006, p. 27).

A number of papers have been written analysing the positive effects that stem
from a change in student assignment mechanism from the Boston mechanism to the
SOSM (or the TTC) by characterizing behavior in the different Nash equilibria (see Ergin
& Sönmez, 2006; Pathak & Sönmez, 2008; Chen & Sömnez, 2006).

Chen & Sömnez (2006) construct a designed and a random school environment
in order to test what the outcomes of a change from the Boston mechanism to the SOSM
or TTC would be. They find first of all, that the SOSM and TTC make more students
state their true preferences (Chen & Sömnez, 2006, p. 212). This experimental result is
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also theoretically confirmed by Pathak & Sönmez (2008) who concludes that students
who game the system (sophisticated players) are better off at the expense of students
who state their preferences truthfully under the Boston mechanism. Furthermore,
sophisticated players have to coordinate their actions in order to reach the pareto
dominant Nash equilibria in the Boston mechanism (Pathak & Sönmez, 2008,
p.1642-1643). There are hence incentives for students to become sophisticated. Moreover,
are students better off if they game the system compared to if they state their true
preferences in the Boston mechanism (Pathak & Sönmez, 2008, p.1646). Hence, by
replacing a priority mechanism such as the Boston mechanism with the SOSM or TTC
will students be given incentives to state their preferences truthfully. Another important
result, confirmed both experimentally and theoretically is that the SOSM and TTC both
produces more efficient outcomes than the Boston mechanism (Ergin & Sönmez, 2006, p.
235), (Chen & Sömnez, 2006, p. 216).

Following these results, the Boston School Committee seem to have made a
correct choice by replacing the Boston mechanism with the SOSM since many problems
have been solved.

2.5 Theoretical developments

Since Abdulkadiroǧlu and Sönmez published their paper in 2003, some aspects of the
mechanisms have been discussed. This section will highlight two aspects, random
tie-breaking and incentives in large markets.

2.5.1 Random tie-breaking in the Gale-Shapley student optimal mechanism

The general problem with tie-breaking is that schools seem to have strict priorities over
students for which they actually are indifferent, and this might lead to that an inefficient
matching is selected. When schools are indifferent between students the tie is usually
broken by a random lottery, which has been the case in both NYC and Boston. The
SOSM will then find a stable matching based on student preferences and school priorities.
Since some priorities are determined randomly will this stability be artificial
(Abdulkadiroğlu et al., 2009, p 1956). In order to improve efficiency when random
tie-breaking is used Erdil & Ergin (2008) have developed the stable improvement cycles
mechanism. The general idea of the stable improvements cycle is similar to the TTC
since students are allowed to change seats in order to make pareto improvements. The
main difference is that the stable improvement cycles mechanism preserves stability. The
following example might clarify the difference:

Consider four students {i1, i2, i3, i4} ∈ I and three schools {sA, sB, sC} ∈ S.
Suppose the TTC is run and a cycle is formed in step 1 such that: {sA, i1, sB, i2, sC , i3}
then students would trade schools and i1 would be matched with sB. Consider however if
i4 ranks sB as his/her top choice and has the priority πsB(1) = i4, then justified envy
arises and the matching is not stable. This instability stems from that i4 does not have
top priority at school sA and does hence not form part of the cycle. The stable
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improvement cycles solves this by requiring that in order to be part of a cycle must a
student i have the top priority of all students desiring the school s. In this example i4
would belong to the cycle rather than i1 since he/she has higher priority at school sB
(Erdil & Ergin, 2008, p. 672).

For the formal definition let sPiµ(i) mean that student i desires school s to the
school with which he/she is currently matched with. Moreover, Ds denotes the set of
students which desires school s and have top priorities at school s. Furthermore, let
µ(in+1) denote the school which is most preferred by student in. A stable improvements
cycle can then be defined as the following:

Definition 1. Stable improvements cycle

In a stable improvements cycle there exists a set of students: {i1, . . . , in} = Ic ⊆ I such
that:

1. µ(in) ∈ S,

2. µ(in+1)Pinµ(in) and

3. in ∈ Dµ(in+1)

4. The above holds for all in ∈ Ic
The interpretation of this is first of all that every student should be given a seat at a
school. Secondly, every student should desire another school compared to the one they
are currently matched with. Finally, all students should belong to the list of top-priorities
issued by the school they prefer. If this is satisfied, a stable improvements cycle can be
created and a new matching µ′ can be defined as:

µ′(j) =

{
µ(j) if j /∈ Ic,

µ(in+1) if j = in.

The interpretation of µ′(j) is that students are matched with the same school as before if
they are not in the stable improvements cycle and if they are, they will be matched with
a, for them, more preferred school which hence makes them better off. Important features
of the matching µ′ is that it will still be stable and it will also pareto dominate the
matching µ (Erdil & Ergin, 2008, p. 675). Furthermore, the following proposition has
been proven:

Proposition 8. If PI and π are fixed and µ is a stable matching. A stable improvements
cycle is then allowed if ϕ is any other stable matching that pareto dominates µ.

The interesting with this proposition is that in order to know if pareto improvements are
possible for a stable matching is it sufficient to find a stable improvements cycle (Erdil &
Ergin, 2008, p. 675-676).

Based on this result can an additional feature be added to the Deferred
Acceptance Algorithm in the following way.
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Algorithm 5. The Stable Improvements Cycles Algorithm

Step 1: The deferred acceptance algorithm is run and a matching µ1 is selected. Ties
that occur, based on the schools’ list of priorities, are broken in the way decision makers
see fit.

Step k:

1. Given the matching µk−1, if a student i is matched to s1 i. e µk−1(i) = s1 and
i ∈ Ds2, let school s1 point to school s2.

2. If there exists any cycles i. e s1 and s2 are both pointing at each other, choose one
cycle. Next is a student chosen such that µk−1(i) = s1 and i ∈ Ds2, and a stable
improvements cycle is conducted allowing for µk to be selected. Once this is done
the algorithm continues at step k+1(1). If no cycle is found µk−1 will be the selected
matching.

In the stable improvements algorithm are, the tie-breaking rule in step 1, the cycles and
the students in step k, to be chosen by the decision makers. Furthermore, the stable
improvements cycles algorithm is computationally easy to carry out which is an
advantage. An option for using the stable improvements cycles algorithm would be to run
the Deferred Acceptance Algorithm for every possible tie-breaking procedure. This would
however, require a lot of time (Erdil & Ergin, 2008, p. 676). Erdil and Ergin confirms
that pareto improving upon a matching selected by the SOSM might harm strategy
proofness (Erdil & Ergin, 2008, p. 683).

How efficiency gains might affect strategy proofness is something that has been
further explored by Abdulkadiroğlu et al. (2009), who apply different tie-breaking
procedures to the NYC school high school match. When designing the NYC high school
match there was a discussion on how to break ties in order for the outcome to be fair.
Decision makers in NYC preferred a multiple tie breaking rule (MTR) which was to base
schools’ list of priorities on a random number generated for each student at each different
program. A single tie breaking rule (STR), which assigns a random number to each
student which is to be used at every program, was suggested since students are usually
better off when such a tie-breaker is applied. The final decision fell however on the
multiple tie-breaker (Abdulkadiroğlu et al., 2009, p. 1961).

Abdulkadiroğlu et al. (2009) have compared the performance of the Deferred
Acceptance Algorithm using a STR, a MTR and the stable improvements cycles
algorithm applied to the matching first selected by the STR. For the STR they apply 250
tie breaking rules, which are uniformly drawn, to the preferences submitted by the NYC
students in the year 2006-2007. These numbers are then compared with the case of the
MTR, where 250 tie breaking rules that are specific to the different schools, are uniformly
drawn and applied to the students’ preferences. From these simulations a STR clearly
outperforms a MTR since more students are given their top choice. Furthermore do the
simulations from the STR with the stable improvements cycles algorithm suggest that
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even more students would be given their first choice than if the stable improvements
cycles were not performed. These facts made the decision makers in NYC to change the
MTR to a STR (Abdulkadiroğlu et al., 2009, p. 1961-1962).

One provided result is that a matching cannot be a student optimal stable
matching if the matching is generated using a MTR and the same matching cannot be
generated using a STR. More importantly is the following proposed (Abdulkadiroğlu
et al., 2009, p. 1962):

Proposition 9. For a matching µ which is selected using any tie-breaking rule and the
deferred acceptance algorithm, there does not exist any other matching ϕ that pareto
dominates µ and is still strategy-proof.

To see this it is is important to first establish that the same set of students will be
matched in the two different matchings i. e | ϕ(S) |=| µ(S) | Consider the matching ϕ
which pareto dominates µ. A student which is matched in µ will then also be matched in
ϕ , | ϕ(S) |≥| µ(S) |. If this was not true µ would not be individual rational since a
student matched in µ but not in ϕ would have the preferences: ϕ(i) = iPiµ(i). This
would imply that µ assigns i to a school, which is not acceptable for him/her, this in
turn, is a contradiction.

If there are more students matched in ϕ than in µ, i. e | ϕ(S) |>| µ(S) |, µ
would not be stable. This is due to that there would exist a school s ∈ S and a student
i ∈ I such that ϕ(i) = s 6= µ(i) which implies that in the matching µ a seat is left open
even though i is acceptable for s. Moreover, since ϕ dominates µ is student i preferring to
be assigned to s rather than to remain unassigned, this would hence make µ unstable. All
this brought together implies that all students that are assigned a seat in µ are also
assigned a seat in ϕ, | ϕ(S) |=| µ(S) |.

Now to see that ϕ is not strategy-proof we call xi = µ(PI , π) the assignment
given to i in µ and yi = ϕ(PI , π) the assignment given to i in ϕ. Since ϕ pareto
dominates µ is yiPixi. Consider the case where i misrepresent his/her preferences by
P ′I = (P ′i , P−i), where yi is the only school on the list. Since µ is strategy proof, will i be
worse off misrepresenting and will hence not be assigned a seat at any school, i. e
µ(P ′I , RS) = i. Since | ϕ(S) |=| µ(S) |, will student i also be unassigned in the matching
ϕ, i. e ϕ(P ′I , π) = i. Suppose now that P ′I are student i′s true preferences, i could then
misrepresent by submitting PI in order to be better off such that: ϕ(PI , π) = yi instead of
being unassigned. Since yiPii, will pareto improving a strategy-proof mechanism give
incentives for students to misrepresent and the associated pareto improved matching is
hence not strategy-proof (Abdulkadiroğlu et al., 2009, p. 1963).

Proposition 9 states clearly that there is a trade-off between efficiency and
strategy-proofness. Furthermore, it implies that the TTC cannot pareto dominate the
SOSM with a STR, since it is strategy-proof, in fact neither one dominates the other
(Abdulkadiroğlu et al., 2009, p. 1963). When tie-breaking is present is it best to use a
STR and as shown above, the inefficiency from random tie-breaking can only be improved
by not making the mechanism strategy-proof. In the case when random tie-breaking is a
severe problem a thorough examination of the consequences of pareto improving the
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matching should be made. When designing a new mechanism strategy-proofness and the
transparency that comes with it are usually of high importance. This suggests that the
inefficiency associated with random tie-breaking is a cost that might be worth to pay.

2.5.2 Strategy proofness in large markets

From proposition 2 it is known that the SOSM is strategy proof from the viewpoint of
the proposers. Since the mechanisms that have been implemented in NYC and Boston
are student proposing, have students had no incentives to misrepresent their preferences.
The schools on the other hand can successfully manipulate the SOSM, but this seems
rarely to be the case. Kojima & Pathak (2009) have investigated why the SOSM seem to
work well in practice even though theory suggests it might not. There are generally two
ways a school can manipulate the SOSM, first by misrepresenting its priorities and
secondly by withholding capacity (Kojima & Pathak, 2009, p. 613). As discussed on
page 13, did both these problems exist prior to that the SOSM was implemented in NYC.
These problems did however vanish when the SOSM was implemented.

Kojima and Pathak construct random markets by randomly generating
preferences for each student. A random market is formally: Γ̃ = (S, I, πs, k,D), where D
is a probability distribution on S and k is a positive integer which denotes the length of
the students’ preference lists. Moreover is a sequence of random markets defined as
(Γ̃1, Γ̃2, . . .) where (Sn, In, πsn , k

n, Dn) would be a random market and | Sn |= n the
number of schools in the market. A sequence of random markets is assumed to be regular
if there exists two positive integers k and q̄ such that:

1. kn = k, ∀n,

2. qs ≤ q̄ for s ∈ Sn and ∀n,

3. | In |≤ q̄n, ∀n and

4. ∀n and s ∈ Sn, every i ∈ I is acceptable to s.

First (1) assumes that the length of students’ preference lists is constant, regardless of
how many schools are in the market. Second, (2) says that the quotas at each school have
to be bounded. Third, (3) requires the number of seats at schools to grow at least as fast
as the number of students in the market. Finally (4) states that every student is
acceptable to every school (Kojima & Pathak, 2009, p. 615-616).

Now let α(n) be the expected number of schools who can manipulate the SOSM
when the other schools act truthful. The following result will then hold true in markets of
complete information where a sequence of random markets is regular:

Proposition 10. The proportion of schools who can manipulate the SOSM, α(n)/n goes
to zero as the number of schools goes to infinity.

When the number of schools in the market is large it becomes less profitable for schools
to manipulate the SOSM (Kojima & Pathak, 2009, p. 616). Furthermore, a useful
definition of thickness is provided:
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Definition 2. A sequence of random markets is sufficiently thick if there exists a T ∈ R
such that:

E[| VT (n) |]→∞
as n→∞

VT (n) is a set where schools belong who are popular enough and have vacant seats.
Formally,

VT (n) = {s ∈ Sn | max
s′∈S
{P n

s′}/P n
s ≤ T, ]{s ∈ Sn | sPii} < qs}

The ratio {P n
s′}/P n

s is a ratio of popularity between two schools. The condition
{P n

s′}/P n
s ≤ T ensures that when a market grows larger, the ratio of popularity will not

grow without bound, this implies that there are many schools in the market who are
popular. Hence, a market which is sufficiently thick is a market which, as it grows larger,
the number of popular vacant seats also grows larger. In other words will unmatched
students in a sufficiently thick market find a seat at another school acceptable for them.
Having defined thickness, another interesting proposition can be presented:

Proposition 11. If a random sequence of markets is regular and sufficiently thick. For
ε > 0 and n0, telling the truth will be a ε-Nash equilibrium for the schools in any market
with more schools than n0 and that belongs to the sequence .

What these two propositions imply is that schools will not misrepresent their priorities
nor withhold school capacities in large markets who are sufficiently thick (Kojima &
Pathak, 2009, p. 620-622). These results add more reasons to adopt a SOSM since it
gives conditions where the SOSM does not give incentives for the schools as well as for
the students to game the system.

3 School choice in Malmö stad

In Malmö stad are there 98 elementary schools divided in 10 different zones. Out of these
98 schools are 70 public, 23 private and 5 specialized for children with special needs
(Malmö stad, n.d.b). Furthermore, there were 27078 students studying in Malmö stad in
September 2011 (see table 1).

The main difference between the private and the public schools, in a school
choice perspective, is how they rank students. Hence, the list of priorities looks different
for public schools compared to private. For public schools, according to Swedish law3,
should a student be given a seat at the school he/she wishes to attend. However, If giving
the student a seat at a school causes another student to be left with no seat at the school
closest to his/her home, the wish of the first student should be ignored. Moreover, the
municipality, in this case Malmö stad may disregard a student’s wish if:

1. The student’s wish imposes organizational and economic difficulties for the
municipality, or if

3Skollagen, Chapter 10, 30§
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2. it is necessary regarding other students’ safety and their study environment
(Sveriges Riksdag, n.d., p. 42-43).

The central idea is that a student living close to a school has higher priority at that
school than a student living further away. Furthermore, (1) could be used in order to
deny a student’s request if the seats at a school are filled. In Malmö stad public schools
gives priority to students in the following way:

1. To the students living closest to the school

2. To the students who applied first to the school

Moreover, the system is decentralized in the sense that all school manages their queue by
themselves (Wramell, 2012). For private schools, the rule is different and Swedish law4

states that if there are not enough seats for all students applying, should the selection be
based in a way that is approved by Statens skolinspektion (Sveriges Riksdag, n.d., p. 44).
This gives the schools more freedom when selecting their students compared to the public
schools. The customary priority ordering approved by Statens skolinspektion is the
following:

1. The date when the student applied for the school

2. If the student has any siblings currently attending the school.

3. If the student is already studying at the school (in a lower grade) he/she is given
priority at the school when applying for a seat in a higher grade.

This may however vary depending on the school (Skolverket, n.d.). As public schools, are
the private schools managing their own queues (Malmö stad, n.d.c).

One year prior to that students are enrolled in school, are they sent a letter
stating which public school they have been assigned to. This assignment is based on in
which of the 10 zones the student lives in and which school within the zone, that is
closest to the students’ home. If the students want to change to another public school are
they required to return a letter stating which schools they wish to attend. In this letter
the students can state as many schools as they wish and once having applied will
students be put in a queue as described above. If a student wish to attend a private
school, must he/she apply to the school separately. Students must however obtain
information about which schools that have vacant seats by themselves. Furthermore, the
information given by Malmö stad about the different schools regarding quality etc. is
very limited which further complicates the students’ choices.

The private schools assign students to seats according to their list of priorities
and students who are not given a seat have to look elsewhere for a vacant seat. For public
schools an administrative process tries to assign every student to his/her most preferred
choice without causing another student to be left without a seat at the school close to

4Skollagen, Chapter 10, 36§
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his/her home. This gives first of all rise to an interchange of students amongst the schools
within the same zone (since these students by law have priority at the schools). Secondly,
students from other zones are given seats based on the list of priorities discussed above.
The administrative process requires a lot of working hours and since the system is
decentralized and the schools do not know how the students rank their school can the
process be very time consuming. Due to the lengthy process are students sometimes
given their assignment in late May (Johansson, 2012). This seems natural however since
the schools do not want to assign seats to too many nor too few students at their schools.

Malmö stad does not collect data on which schools are the most popular nor the
flow of students within the different zones. There does however exist data on the flow of
students between the different zones and how many students from each zone that attend
private schools. This data is presented in table 1 in the appendix. It can first of all be
noted that 1603 students or 5.6 % of the students in Malmö stad choose to study in
another municipality. Furthermore, are 4111 students or 14,4 % studying at a private
school. In total have 8913 students or 31.3 % chosen a school in a zone where they are
not living. From this data a total of 13024 students or 45.7 % have chosen either a
private school or a school outside of the zone which they are living in. Either way are
these students not happy with the school they have been assigned to by Malmö stad. As
mentioned above does this data not include the number of students who prefers another
school within their zone, nor the number of students who are denied a seat at a school.
The actual number of students preferring another school than the one they are being
assigned to by Malmö stad is hence higher than 13024.

It is however possible, from available data, to determine which of the zones that
are the most popular. According to table 2 is Västra Innerstaden the most popular zone
with 598 students followed by Centrum, 234 students and Husie, with 191 students. The
least popular zones are Roseng̊ard with a negative flow of 660 students, Hyllie with 215
students and Södra Innerstaden with 168 students.

As discussed on page 9 is Västra Innerstaden the zone which has the highest
academic performance. This would explain why Västra Innerstaden has the most popular
and Roseng̊ard the least popular schools in Malmö stad. It is however interesting to note
that most students living elsewhere but studying in Västra Innerstaden are from
Limhamn-Bunkeflo which is another area with high SES and is the second best
performing zone in Malmö stad, while only a few students from Roseng̊ard are studying
in Västra Innerstaden. The reason for this can of course depend on factors such as
distance to school. However do these facts seem to suggest that the school choice system
used in Malmö stad further deepens the problem of segregation.

The main conclusion that can be drawn from this data is that the willingness,
by students, to change school requires a well-functioning system for assigning the
students to the vacant seats at the schools in Malmö stad. This is mainly important for
the reason that students should be assigned the best school possible given their
preferences and school capacities.

By comparing the system in Malmö stad to the mechanisms used in NYC and
Boston prior to the implementation of the SOSM, some differences and similarities can be
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seen. First of all, the system in Boston was centralized since regardless of which zone the
student was living in the assignment of seats were handled by a centralized mechanism,
which is not the case in Malmö stad. Secondly, students in both NYC and Boston were
required to present a list of strict preferences (true or not true) in order for the
mechanisms to work. In Malmö stad, no students are submitting a ranking of the schools
they would like to attend. The students who prefer other schools compared to the one
they have been assigned to by Malmö stad can however express this preference. The lists
of preferences for students are hence not complete nor does Malmö stad collect this vital
information, which is a foundation for a well functioning system. Third, the list of
priorities for schools in Malmö stad is most similar to the one used in Boston since
students are given priorities to schools depending on where they live, which is determined
by law. Furthermore, even though parents in Malmö stad cannot game the system as in
Boston seems there to be a similar problem with well-informed (sophisticated) parents
and less informed parents.

Regarding tie-breaking, ought the system in Malmö stad to not yield major
problems since schools’ list of priorities are determined by date of application. The risk of
two (or more) students applying at the same date for the same school ought to be low.
This could however lead to a problem since the well informed parents will apply for
popular schools when their children are very young. Thus will parents who are less
informed or who have recently moved to Malmö stad suffer since they will not apply for
their desired school in time to get a high priority.

Schools misrepresenting their preferences or withholding capacities ought not be
a problem in Malmö stad for two reasons. First of all are the schools, both public and
private, managing their own queues and second are the priorities at schools determined
by law or approved by Skolinspektionen. Moreover, schools in Malmö stad cannot screen
students as was the case for some programs in NYC. There seems hence not be any
incentives for schools to game the system, and if they would, they would be breaking the
law. However, the notion of thickness is important for a well-functioning school market in
Malmö stad. Malmö stad is a municipality with a growing population and the need for
more seats in schools has become a problem. The most urgent problem at the moment is
for children who are to attend kindergarten. Between the year 2010 and 2011 did the
number of children in ages 1-5 grow by 6 % and there has been reports on long queues
and the need for more seats in the kindergarten (Malmö stad, 2011, p. 7), (Sk̊anska
Dagbladet, 2010), (Metro, 2011). Furthermore, the number of students attending school
rose by 27 % in the years 1996 - 2010 and Malmö stad is investigating the possibility of a
reorganization to meet the future needs (Malmö stad, n.d.a). Not only does a sufficiently
thick school market in Malmö stad require more seats to meet the needs of the growing
population. It also requires the seats and hence the schools to be popular enough in order
for students to be content with their assignment. If this problem is not solved will the
current system probably further limit the free choice of school. This stems from that
there will be many students applying for and living close to the limited number of
popular schools. This could lead to that the popular schools become overcrowded and
there will be few seats left for students actively applying for the popular schools.
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However, if the public schools will fail to satisfy the need for popular seats could private
schools probably fill this void.

4 A Student Assignment Mechanism for Malmö stad

If a student assignment mechanism was to be designed for Malmö stad would it be
important to look at the problems which are existing in the current system and see how a
new mechanism might be able to solve these problems. The system used in Malmö stad is
associated with a number of problems.

A basis for a well-functioning school choice market is that every agent knows
how the system works, key to this is of course available information. The system in
Malmö stad seems however to be complicated and not very transparent, especially for the
students and parents. The decentralized system with schools managing their own queues
instead of Malmö stad managing them all together gives rise to a lot of uncertainty for
the students and parents. Since the students are assigned administratively at every
school, is there a possibility that a student will be offered a seat at all schools he/she has
stated on his/her list but at different times. This in turn implies that parents have to be
in constant contact with the schools to know where in the process the different schools
are. Moreover, the risk for someone in this extensive process to commit an error ought to
be higher than for a computerized algorithm.

The system requires parents to find information themselves of which schools are
popular and which priority the child has. This might be a time consuming process,
especially if the student is applying to many schools and could lead to an informational
disadvantage for the parents who has not got the time for doing all the required research.
The information about the schools is also very limited especially when it comes to
comparing the performance or other measures of qualities for the schools. This is a
crucial short coming of the current system since parents and students cannot base their
choices on solid information. An easy solution would be to gather all the information in a
web portal available for the parents and students. Furthermore, school fairs could be
arranged to further inform the parents and students about their different options.

The major problem with the system in Malmö stad is similar to one of the
problems in NYC where a lot of students were assigned a school for which they had not
stated any preference. An appealing aspect of the mechanisms discussed in section 2 is
that they are direct mechanisms. The mechanisms require students to reveal their
preferences which is the basis for selecting a student optimal matching. The system used
by Malmö stad does not urge all students to reveal their preferences which makes the
matching process harder and this information could be used in making more accurate
policy decisions. There will hence be a high risk that the current system assigns a student
to a seat which he/she has not stated any preference for.

This is connected to the important properties of stability and efficiency. Since
the system in Malmö stad is decentralized and does not base the matching on all
students’ submitted list of preferences, is the risk that the matching will not be stable nor
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efficient high. If a student for example applies to two public schools and is accepted to
both of them will it be important that both schools communicate this to the student in
time, and to each other. Consider a student: i ∈ I and two schools: s1, s2 ∈ S who has
the following preferences s1Pis2 where s2 accepts i in January whereas s1 accepts i in
May. Since i does not know that he/she will be accepted to s1 later on he/she might
accept s2:s offer which would lead to an unstable matching.

Most importantly will the matching probably not be stable nor efficient since no
student is submitting a strict list of preferences. Since the matching selected by the
current system does not take all students’ preferences into account will a stable or
efficient matching be almost impossible to select. Since the system in Malmö stad does
not extract nor uses this vital information, will a lot of students be given an assignment
which they have not stated any preference for. Moreover, since no student reveals a strict
list of preferences can the system in Malmö stad not be said to be strategy-proof. For a
mechanism to be strategy proof has there to be no gain from misrepresenting your
preferences. Since the students in Malmö stad do not reveal any preferences in the first
place can not strategy-proofness be determined.

In the current system, many students are not revealing any preferences.
However, since parents and students do not apply to other schools than the one they have
been assigned to does not mean that there are no other schools in Malmö stad which they
prefer to their assignment. There can be a number of reasons why parents/students do
not express preferences for other schools where information about the system, the schools
and school choice in general might be one.

An aspect of the current system worth discussing is if the list of priorities for the
schools should be based on date of application and where you live. While date of
application almost eliminates the problems associated with random tie-breaking, is it a
feature which gives well informed parents an advantage over less informed parents. If
parents knows how the system works, is the optimal strategy (given that moving is not an
option) to apply the day their child is born, to every school which they prefer to the one
which their child will be assigned to, once entering school. This will hence negatively
affect the parents who do not know the system or who have recently moved to Malmö
stad. If all (or a sufficient amount of) parents knows how the system works and uses this
strategy will the list of priorities be based on the date when the children were born,
which does not seem very fair. If the possible future problem of a not sufficiently thick
market is added to this, parents would probably be applying for schools at an early stage.
Furthermore, priorities based on where you live seem to worsen the segregation across
schools. Rich families (i. e with high SES) will be able to afford to move to the zones
where the well-performing and popular schools are, where they would get a high priority
at these schools. Families from a low SES background will however not have this
opportunity and their children will hence get a lower priority simply because they do not
have the means to move to the popular areas. This does not seem fair nor gives an
opportunity for everybody to choose their school freely. One solution to this is of course
to redefine the list of priorities another would be to incorporate a controlled choice
version of the mechanism. Controlled choice would give students from lower SES
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backgrounds a higher chance of being assigned a seat at a popular school.
Available data does not show how comprising the school choice problem is in

Malmö stad. This is due to that students are not submitting a strict list of preferences
nor is data collected on how many students which are denied a seat at a school to which
they apply. However, the large number of students who actively apply for other schools
than the one they have been assigned to, suggest that a well-functioning system is needed.

If a new mechanism would be designed for Malmö stad would it first of all
centralize the system. Instead of the queues being managed by the separate schools
would Malmö stad handle all students and schools together. Furthermore, the mechanism
should assign students to both private and public schools in the same step, in order to
avoid problems with unstable matchings similar to the ones discussed for the NYC high
school match. This change would further not be compatible with date of application as
one of the basis for schools’ list of priorities since parents would apply for schools at the
same time and to Malmö stad, not to the schools separately. Hence, the schools’ list of
priorities would have to be based on other criteria which the decision makers in Malmö
stad believe are appropriate, where looking at for example Boston could be of help. If a
random tie-breaker has to be used should it be a single tie-breaking rule applied for all
schools.

Strategy proofness is an important property when designing a new mechanism.
The main reason for this is that a strategy-proof mechanism makes the school choice very
simple for families and schools. If a strategy proof mechanism would be implemented in
Malmö stad such as the SOSM or the TTC would students only be required to submit a
strict list of preferences over all schools. Since the mechanisms are strategy proof is this
exactly what they will do. Parents will hence save a lot of time and would be less
uncertain regarding how the assignment process works, given that Malmö stad will
provide all the necessary information. Furthermore, communicating this information
would reduce the gap between well and less informed parents. Moreover, the students’ list
of preferences ought to contain as many schools as possible for the market to clear when
using the mechanism. By demanding students to submit a long list of preferences, Malmö
stad will obtain very important information which it does not have today. From this
information it would be possible to see which are the most/least popular schools and
effects of policy decisions could easily be measured. Furthermore, this information does
seem vital in satisfying the future need for popular vacant seats in Malmö stad in order
to assure that the school market is sufficiently thick.

When choosing between the two strategy-proof mechanisms, SOSM and TTC is
it a question of if stability or efficiency should be given priority. Since it is imposed by
Swedish law that children who live close to a school should be given priority at that
school, does it seem safe to assume that this priority ought not be traded between
students. This would hence suggest that the SOSM is the optimal choice of mechanism
for Malmö stad. In addition to the positive aspects discussed above would the SOSM
generate a student optimal stable matching where no student would suffer from justified
envy.

Implementing the SOSM will not only make school choice simpler for families, it
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will also make it simpler for Malmö stad. Since the deferred acceptance algorithm is
computerized and computationally easy to carry out will the process of matching all
students with all schools probably not take more than a couple of hours. This would
hence save Malmö stad a lot of time and money since the problem does not need to be
solved administratively at each school. Furthermore, families will be sent a letter with
their final assignment which cannot be improved upon. There is hence no student who
will receive his/her assignment in May, and the associated problems with justified envy
and the risk of schools assigning too few/many students vanishes.

5 Conclusion

Looking at students’ choices of elementary schools confirms that a well-functioning
student assignment mechanism is required for assuring that students are given a good
student-school match. The current system in Malmö stad does not yield an optimal
match however and is unnecessarily complicated for the agents acting within it. Families
are suffering due to the lack of transparency and information which creates uncertainty
and obligates them to spend too much time learning how the system works. Schools are
managing their own queues which makes the assignment process complicated and requires
time and money. Furthermore, the current system is not designed to be a direct
mechanism and the associated information which is not obtained makes an efficient or
stable matching almost impossible. Moreover, segregation across schools is a problem
with the current system and the basis for the schools’ list of priorities does not seem fair
in all aspects.

The current situation in Malmö stad suggests that a Gale-Shapley Student
Optimal Mechanism would solve many of the current problems. In addition to change the
system is information key for a well-functioning mechanism and controlled choice is an
option for making schools less segregated.

These findings suggest that Malmö stad and similar municipalities in Sweden
ought to revise their student assignment systems in order to assure that students are
given a, which they consider, good match. Furthermore, more resources ought to be spent
on spreading information of the schools and on how the system works.

For further research would it be important to determine how comprising the
efficiency/stability problem is in Malmö stad. This would however require that data is
collected on how many children are applying to all the different schools in Malmö stad
and how many students are denied a seat at their preferred school(s). More interestingly
would research be, estimating the effects of a possible implementation of the SOSM in
Malmö stad. This would however in addition require the students’ list of strict
preferences over schools, which most easily is extracted using a strategy-proof mechanism.
While writing this thesis, is Malmö stad undergoing a reorganization of the educational
organization. Once the reorganization is realized would perhaps this analysis have to be
revised if any important aspects of the school choice assignment system have been
changed.
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6 Appendix

Table 1: Flow of students between zones in Malmö stad.

Zones CE SI VI LB HY FO OX RO HU KI OM U Prod

CE 1684 197 42 9 17 40 3 107 14 69 16 1 2199

SI 81 1286 6 6 25 47 2 120 13 14 11 0 1611

VI 51 31 1290 318 248 36 2 18 3 5 5 1 2008

LB 13 16 27 3920 179 25 8 20 5 3 14 12 4242

HY 15 52 15 33 1834 183 10 12 22 9 51 1 2237

FO 48 144 11 11 75 3384 22 184 15 6 28 3 3931

OX 4 4 2 7 2 11 1321 18 5 0 14 4 1392

RO 5 12 2 1 7 17 4 2085 5 9 3 3 2153

HU 21 7 4 1 4 23 5 215 1713 6 6 0 2005

KI 26 19 5 7 9 25 7 28 13 1040 10 0 1189

PS 319 330 329 828 497 432 62 562 497 227 18 10 4111

OM 122 180 108 174 188 300 67 335 34 95 1603

TOT 2389 2278 1841 5315 3085 4523 1513 3704 2339 1483 176 35 28470

Read horizontally are the students divided into the zone they are living in, vertically in
the zone they are studying in. CE stands for Centrum, SI = Södra Innerstaden, VI =
Västra Innerstaden, LB = Limhamn-Bunkeflo, HY = Hyllie, FO = Fosie, OX = Oxie,
RO = Roseng̊ard, HU = Husie, KI = Kirseberg, OM = Other Municipality, U =
Unspecified, Prod = Total number of students studying in the zone, PS = Private School,
TOT = Total number of students living in the zone.
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Table 2: Net flow of students between zones in Malmö stad.

Zones CE SI VI LB HY FO OX RO HU KI

CE -116 9 4 -2 8 1 -102 7 -43

SI 116 25 10 27 97 2 -108 -6 5

VI -9 -25 -291 -233 -25 0 -16 1 0

LB -4 -10 291 -146 -14 -1 -19 -4 4

HY 2 -27 233 146 -108 -8 -5 -18 0

FO -8 -97 25 14 108 -11 -167 8 19

OX -1 -2 0 1 8 11 -14 0 7

RO 102 108 16 19 5 167 14 210 19

HU -7 6 -1 4 18 -8 0 -210 7

KI 43 -5 0 -4 0 -19 -7 -19 -7

TOT 234 -168 598 -97 -215 109 -10 -660 191 18
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Abdulkadiroğlu, Atila, Pathak, Parag A., Roth, Alvin E., & Sönmez, Tayfun. 2005a. The
Boston Public School Match. The American Economic Review, 95(2), 368–371.
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Abdulkadiroğlu, Atila, Pathak, Parag A., Roth, Alvin E., & Sönmez, Tayfun. 2006.
Changing the Boston School Choice Mechanism. NBER Working paper No. 11965.
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