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Abstract

In this thesis I will present a way of discretizing Lévy processes in space instead
of in time. The foundation is built on work done by Adalbjörnsson,Quiroz and
Wiktorsson, which shows how this is done for Brownian motions with constant
drift and volatility. I then start by extending the method to multidimensional
Brownian motions, which is then extended to multidimensional SDE:s by using
an Euler approximation. The method is then extended to Jump-Diffusions. I
also present an approximation method for approximating Infinite activity pro-
cesses with Jump-Diffusions, and as result the simulation method is extended
to Infinite activity processes. Since the method bounds process in space it’s
natural to consider path-dependent options. Case studies on Barrier options
are performed in order to show the convergence of the algorithm.
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Chapter 1

Introduction

1.1 Background
In Adalbjörnsson and Quiroz [1] a method for simulating exotic/path-dependent
options is presented. The method consists of simulating the time it takes for a
process to hit a space grid, i.e. instead of discretizing the process equidistantly
in time it’s discretized equidistantly in space. The purpose of this is that it
automatically bounds the process in space, this is something that extends to
path-dependent options, especially Barrier options, very naturally.

In Adalbjörnsson and Quiroz the method is, basically, only adapted to the
Black-Scholes model and in this thesis I will extend the results to more advanced
models. The models that will be considered are the Heston model, the Merton
model and the Variance Gamma model.

1.2 Purpose
The main purpose of this thesis is to construct a framework for pricing exotic
options, for stock models based on Lévy process, via a simulation method.
The method will be tested in four different stock models, representing four
different types of stock models. In each of the models it’s performance will be
investigated. It should be noted that the purpose is not to find the most efficient
method in each case but rather to find a, hopefully, robust method for pricing
exotic options.

1.3 Outline
The thesis is split into two main parts. Before that a brief mathematical back-
ground is presented. In the background some important stochastic processes are
introduced. The reader is expected to be familiar with Stochastic Differential
Equations (if not see Åberg [4]). The reader is also expected to be familiar with
concepts such as arbitrage pricing and risk-neutral valuation, all parameters in
this thesis will be considered to be risk neutral (for more on this see Björk [4],
for BMs, or Cont and Tankov [5], for Lévy processes). The thesis is split into

3



CHAPTER 1. INTRODUCTION 4

two parts, in part I the simulation method is presented for Brownian Motions,
firstly in the one-dimensional case (chapter 3) and the results are then extended
to the multi-dimensional case (chapter 4).

Part II deals with extending the simulation method to Lévy processes. Chapter
5 presents a theoretical walkthrough on Lévy processes. In chapter 6 the results
are from chapter 3 and 4 are extended to Jump-Diffusions. Chapter 7 presents
a way for simulating Infinite activity processes by approximating them with
Jump-Diffusions. In chapter 3, 4, 6 and 7 case studies are presented in order to
show the performance of the algorithm.



Chapter 2

Mathematical Background

In this section the stochastic processes used in the thesis are presented. It
starts by introducing Brownian Motions and presenting some useful properties
for them, then Poisson process is introduced and finally the gamma process is
defined.

2.1 Brownian Motion
One of the most widely used, especially in Financial modeling, stochastic process
is the Wiener process.

Definition 2.1. A Wiener process, W, is a stochastic process satisfying the
following conditions

1. W(0) = 0 (almost surely).

2. W has independent increments.

3. W (t+ h)−W (t) is normally distributed with mean 0 and variance h, for
h > 0.

4. W has continuous trajectories.

The Wiener process is also known as the Standard Brownian Motion (SBM).
The Wiener process is a building block in a lot of mathematical models, and
one of the most important is the Brownian Motion (BM).

Definition 2.2. A Brownian motion Xt, with drift (µ) and variance (σ2), de-
noted X ∈ BM [µ, σ2] is defined as

Xt = µt+ σWt

A useful property of a Brownian Motion is Brownian scaling

Lemma 2.1. If Wt is a SBM then 1
aWa2t is a SBM.

Proof. Follows from definition 2.1.

This also implies that Wa2t and aWt are equal in distribution, a result that will
prove to be very important in the scope of this thesis.
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2.2 The Poisson Process
Another very important process is the Poisson process. Variations of it is in-
cluded in a wide range of more advanced stock models and it’s one of the building
blocks for Lévy processes. It can be defined in a number of (equivalent) ways,
the following is taken from Cont and Tankov [5]. The reason for choosing this
definition is that a lot of the results regarding Lévy processes in this thesis is
based on Cont and Tankov .

Definition 2.3. (Poisson Process) Let (Ti)i≥1 be a sequence of independent
exponential random variables with mean 1/λ and Tn =

∑n
i=1 Ti. The process

(Nt, t ≥ 0) defined by

Nt =
∑
n≥1

1(t ≥ Tn)

is called a Poisson process with intensity λ.

What this means is that a Poisson process is a process that counts the number
of events over a time interval. The distribution of the Poisson process is given
by the following theorem.

Theorem 2.1. Let (Nt)t≥ be a Poisson process. Then, for any t > 0, Nt follows
a Poisson distribution with parameter λt:

∀n ∈ N,P(Nt = n) = e−λt
(λt)n

n!

Another important property of the Poisson process is the following.

Theorem 2.2. Let U1, U2, ... , Un be independent U(0,1)-distributed random
variables, and let U(1) ≤ U(2) ≤ ... ≤ U(n) be the ordered variables. Then(

(T1, T2, ..., Tn) |N1 = n
) d

=
(
U(1), U(2), ...,≤ U(n)

)
Proof. See Gut [6] p. 245.

The implication of this theorem is that, given that we know the number of events
on a time interval, the individual times of the events are uniformly distributed.
Thus in order to simulate a Poisson process we first draw the number of events
using the distribution above and then draw the individual times uniformly on
the time interval (and finally sort them). The final property of a the Poisson
process that will be presented is thinning.

Theorem 2.3. Let (Nt)t≥0 be a Poisson process with intensity λ. Define an-
other process (Mt)t≥0 by erasing the n:th event in Nt with probability 1 - q. This
is known as thinning and Mt is then another Poisson process with intensity λq.

2.2.1 The Compound Poisson Process
Even though the Poisson process is useful in many applications, it still has its
limitations, one of them being that all jumps are of the same size. So a natural
extension is to define a process which allows for jumps of different sizes. This
is called the Compound Poisson Process and is defined as below.
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Figure 2.1: Realization of a Compound Poisson Process

Definition 2.4. (Compound Poisson Process) A compound Poisson process
with intensity λ > 0 and jump size distribution f is a stochastic process Xt

defined as

Xt =

Nt∑
i=1

Yi

where jump sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process
with intensity λ, independent from (Yi)i≥1

Figure 2.1 shows a realization of a compound Poisson process with λ = 10,
t ∈ [0, T ] and N(0,1)-distributed jumps.

2.3 Gamma Process
The third, and final, stochastic process that will appear in this thesis (chapter
7) is the Gamma process.

Definition 2.5. A Gamma process, G(t;µ, v), is a stochastic process, satisfying
the following conditions

1. G(0;µ, v) = 0

2. G has independent increments

3. G(t+h;µ, v)−G(t;µ, v) is gamma distributed with mean µh and variance
vh, for h > 0
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It should be note that the Gamma process is a pure-jump process and that it’s
increasing. The gamma distribution is defined in the following way.

Definition 2.6. A stochastic variable is said to be Gamma(γ, λ)-distributed if
it has the following probability density function

f(x; γ, λ) =
1

Γ(γ)λγ
xγ−1e−

x
λ

with γ > 0 (shape) and λ > 0 (scale).

The gamma distribution has mean µ = γλ and variance v = γλ2, which is
equivalent to that γ = µ2/v and λ = v/µ.



Chapter 3

Exit Times - One-dimension

The purpose of this part is to introduce the simulation of exit times which is the
building block of all the simulation methods in this paper. Exit times are based
on the idea of simulating the time it takes for a stochastic process to reach a
certain level in space, instead of simulating it via fixed time increments.

This part will deal with the one-dimensional case, whereas the next one will
extend the results in this one to two or more dimensions. I will start by pre-
senting the thought behind the approach, followed by the theory behind it, a
presentation of the simulation algorithm and, finally, by applying the algorithm
for pricing a barrier option in the Black-Scholes model.

3.1 Theoretical Background
As mentioned before we are interested in pricing exotic derivatives. In contrast
to vanilla-options such as an ordinary (European) call-option, exotic options
may be path-dependent. One example are Up-and-Out Barrier-options, which
have the following payoff function:

φ(S) = φ̂(ST )1{MT < B}
MT = sup

0≤t≤T
St

where φ̂ is the payoff-function of an underlying derivative e.g. a European call-
option. One way of approaching this, as presented in Adalbjörnsson and Quiroz
[1], is to sample the process in space instead of, as the standard approach, in
time. This means, that, instead of getting a collection of points:

{(St, ti)}Ni=1 such that ti − ti−1 = ∆t

we get another collection of points

{(St, τi)}Ni=1 such that Sτi − Sτi−1 = |η|

The advantage of this is that we will know if the stock crossed the barrier or
not, in this specific time interval. In order to illustrate the difference between
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the two types of discretization, simulations are shown in figure 3.1.
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3.1.1 Problem statement
It can be shown that Sτi − Sτi−1

are i.i.d. ∀i and that (τi − τi−1) are i.i.d. ∀i
(see Adalbjörnsson and Quiroz [1] pp. 29-30). This means that we only have to
consider exit times as defined below.

Definition 3.1. Let Xs be a SDE of the following form:

dXs = µ(s,X)ds+ σ(s,X)dWs, X(0) = 0

then the exit time of X, τη(µ(s,X), σ(s,X)) is defined as

τη(µ(s,X), σ(s,X)) = inf{t > 0 : |Xt| ≥ η}

From now on the notation τη(µ(s,X), σ(s,X)) will always refer to the definition
above, unless otherwise mentioned. It’s worth noting that i have chosen the
grid to be equidistant, the reason for this is simplicity. In this paper I will only
consider the case when µ and σ are autonomous i.e. when:

dXs = µ(X)ds+ σ(X)dWs

In Milstein and Tretyakov [8] it’s shown that the distribution of τη(µ, σ) is
equivalent to the solution of a PDE. In order to keep this paper from getting
too technical/complex I will only present the results they present and use these
results to derive the distribution.
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Theorem 3.1. The distribution of τη(µ(X), σ(X)) is given by u(t, 0), where
u(t, x) is the solution to the following boundary value problem:

∂u

∂t
=
σ(x)2

2

∂2u

∂x2
+ µ(x)

∂u

∂x
t > 0, x ∈ (−η, η)

u(0, x) = 0, x ∈ [−η, η]

u(t,−η) = u(t, η) = 1, t > 0

Note that u(t, x) gives us the distribution of the exit time for

dX = µ(X)ds+ σ(X)dWs, X(0) = x

Because of the equidistant grid and the autonomy of the parameters this is a
problem that can be solved analytically relatively easy.

3.1.2 Exit Time for a SBM
But for now let’s start by looking at the simplest possible example, namely the
distribution of the time it takes for a SBM to exit a grid of size 1, i.e. we are
interested in finding the distribution of τ1(0, 1). The result is presented in the
following the theorem:

Lemma 3.1. The distribution of τ1(0, 1), i.e. P (τ1(0, 1) ≤ t), is given by one
of the following two expressions:

P1(t) = 1− 4
π

∑∞
k=0

(−1)k

(2k+1) exp (− 1
8π

2(2k + 1)2t), t > 0

P2(t) = 2
∑∞
k=0(−1)kerfc 2k+1√

2t
, t > 0

where
erfc(x) =

2√
π

∫ ∞
x

exp(−s2) ds

Proof. Inserting the values above into lemma 3.1 gives us the following system
of equations:

∂u

∂t
=

1

2

∂2u

∂x2
t > 0, x ∈ (−η, η)

u(0, x) = 0, x ∈ [−1, 1]

u(t,−1) = u(t, 1) = 1, t > 0

Solving this is done by first defining the function v(t, x) = u(t, x)− 1 and then
solving the corresponding system of equations. This is done by either;

1. Using the technique Separation of Variables. This will give us P1.

2. Extending/ Reflecting the problem to the whole axis and solving the ob-
tained problem. This will give us P2.

For details on solving PDE:s see e.g. Sparr and Sparr [11].
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At a first glance this might not look like a very interesting result since it only
deals with SBM for a specified grid, but by recalling the scaling property of
Brownian Motions one realizes that, given a grid, η, and a constant variance σ2.

σ

η
Wt

d
= Wσ2

η2
t

and thus:

τη(0, σ)
d
=
η2

σ2
τ1(0, 1)

i.e. if we want to simulate τη(0, σ) it’s sufficient to simulate τ1(0, 1) and multiply
it with η2

σ2 .

3.1.3 Exit Time for a BM with drift
We now have the distribution of the exit time for a SBM, but in order to be
able to use exit times in stock models we have to add drift. The distribution of
the exit time for a BM with drift, i.e. for µt+Wt, is found using Lemma 3.1.

Lemma 3.2. The distribution of τ1(µ, 1), P(t;µ) is given by one of the following
two expressions:

P1(t;µ) = 1− 2π exp (− 1
2µ

2t)(eµ + e−µ)

×
∑∞
k=0(−1)k (2k+1)

π2(2k+1)2+4µ2 exp (− 1
8π

2(2k + 1)2t)

P2(t;µ) = 1− 1
2

∑∞
k=0(−1)ke2µk(erfc 2k−1+µt√

2t
− erfc 2k+1+µt√

2t
)

− 1
2

∑∞
k=0(−1)ke−2µk(erfc 2k−1−µt√

2t
− erfc 2k+1−µt√

2t
)

Proof. The proof is very similar to that of lemma 3.1 and is therefore omitted.
For the full proof see Milstein and Tretyakov pp. 761-762 [8].

We now know the distribution of the exit time with drift, but in order to
make this really useful the ability to vary volatility and grid size is neces-
sary. We already know that τη(0, σ)

d
= η2

σ2 τ1(0, 1), but τη(µ, σ) is not equal
to η2

σ2 τ1(µ, 1). One solution to this, would be to find a new variable µ̂ such that

τη(µ, σ)
d
= η2

σ2 τ1(µ̂, 1). The transformation is presented in the following lemma.

Lemma 3.3. (Transformation Lemma) Given the two Brownian Motions

XT = µT + σWT

Yt = µ̂t+Wt

we get that the following two relations hold if if µ̂ = η
σ2µ.

1. XT
d
= ηYt, with T = η2

σ2 t

2. τη(µ, σ)
d
= η2

σ2 τ1(µ̂, 1)
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Proof. By using Y as the starting point we get

Yt = µ̂t+Wt = µ
σ2

η
t+Wt = µ

η

σ2

σ2

η2

η2

σ2
t+

σ

η
W η2

σ2
t

=
µ

η
T +

σ

η
WT =

1

η
XT

The first equality comes from the definition of Yt, the second from inserting the
expression for µ̂, the third from multiplying with η2

σ2
σ2

η2 = 1 everywhere and ex-
ploiting the scaling property of the Wiener process, and finally, the last equality
comes from replacing t with T.

Using this, we get that the time that it takes for 1
ηXT to exit a grid of size 1 is

equal to the time it takes Yt to exit a grid of size 1 times η2

σ2 and, this is then
obviously the same as the time it takes XT to exit a grid of size η.

Because of the results above we can conclude that in order to simulate exit times
and BMs we only need to consider BMs on the form

Xt = µt+Wt, X0 = 0

all others can be handled as transformations of this.

3.1.4 Distribution of Exit Points
We now have the distribution for the exit time of BM with drift from an equidis-
tant grid, and we are now interested in finding the probabilities that the BM
went up or down. Let’s denote all exit times by τ in this section. If µ = 0 then
obviously P("up") = P("down"), since the scaling property of a SBM implies
that

−σWτ
d
= σW 1

(−1)2
τ = σWτ

Adding drift renders the problem slightly more difficult, but with the help of
the following theorem we can deal with it.

Theorem 3.2. (Reuters Theorem) First, let Xt = µt+Wt with X0 = 0. Second,
let τ = inf{t > 0 : |Xt| ≥ 1}. Then Xτ and τ are independent.

Proof. See Rogers and Williams p. 84 [9].

We now have everything that is needed to find the probabilities, the results are
presented in the following theorem.

Theorem 3.3. First, let Xt = µt+Wt with X0 = 0. Second, let τ = inf{t > 0 :
|Xt| ≥ 1}. Then the probabilities that the BM went up or down are as follows.

P (Xτ = −1|τ = θ) =
1

e2µ + 1

P (Xτ = 1|τ = θ) =
e2µ

e2µ + 1
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Proof. Since the two events are complementary we only have to show one of the
cases e.g. the first one. Using theorem 3.2 we get that

P (Xτ = −1|τ = θ) = P (Xτ = −1)

We also know, by definition, that Xτ = |1| and thus we get

P (Xτ = −1) = P (Xt = −1|Xt = |1|) =
P (Xt = −1)

P (Xt = −1) + P (Xt = 1)

Inserting the distribution for a BM for an arbitrary time t gives us the results
of the theorem.

3.2 Simulation

3.2.1 One-Step Simulation
With all the probabilities in place we have everything needed to simulate a
stochastic time step for a BM. But before describing the simulation algorithm
let’s take some time to discuss the implementation.

Implementation

In order to simulate we need to draw samples from P(t;µ). One method of doing
this is through inversion sampling (see appendix A). Since the probabilities in
this case consists of infinite sums it is obviously impossible to find a analytical
expression for the inverse of P(t;µ). Thus we have to apply numerical methods
to obtain the inverse. On p.33 in Adalbjörnsson and Quiroz [1] it’s shown that
the density function of τη(µ, σ) can be written as (density functions will be
denoted as p̂).

p̂τ (t;µ, σ, η) =
1

2

(
exp(− µ2

2σ2
t)
(

exp(−µη
σ2

) + exp(
µη

σ2
)
))

p̂τ (t; 0, σ, η)

= exp(− µ2

2σ2
t) cosh(

µη

σ2
)p̂τ (t; 0, σ, η)

= exp(− µ2

2σ2
t)Cp̂τ (t; 0, σ, η)

Since exp(− µ2

2σ2 t) < 1 this is an excellent candidate for using acceptance-
rejection sampling, with p̂τ (t; 0, σ, η) as instrumental distribution. Thus we
only need to draw samples from p̂τ (t; 0, σ, η), but we have shown that τη(0, σ)

d
=

η2

σ2 τ1(0, 1) and thus we only have to sample from p̂τ (t; 0, 1, 1), i.e. from P(t). In
my implementation I have used a numerical approximation presented in Adalb-
jörnsson and Quiroz [1] in order to find the inverse of P.
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Euler Scheme

The way of simulating as described above is for the case when the drift and
volatility are constant. In some stock models it’s not possible to write the
model on such a form so we need a way of dealing with that. The solution is
the Euler scheme. The thought behind the Euler scheme is that, given that we
have a model on the following form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

we approximate it with the following

Xti+1
= Xti + µ(ti, Xti)(ti+1 − ti) + σ(ti, Xti)(Wti+1

−Wti)

= Xti + µ(ti, Xti)(ti+1 − ti) + σ(ti, Xti)
√
ti+1 − tiZ

Where Z is a standard normal variable. This means that the drift and volatility
are kept constant over an interval. It can be showed that the Euler scheme
converges both strongly and weakly, for more on this see Adalbjörnsson and
Quiroz p. 12 [1], i.e. the approximation gets better as ((ti+1 − ti) → 0. In [1]
it’s also shown that the mean number of steps, E[NT ] our algorithm takes for a
BM with drift can be approximated by the following expression.

E[Nt] ≈
σ2T

η2

This means that the mean step length, E[LT ], can be approximated by the
following

E[LT ] =
T

E[NT ]
≈ η2

σ2

Which implies that as σ goes down the algorithm will take longer steps (on
average). This imposes a problem when using the Euler scheme, if we lock the
volatility when it’s low, the algorithm will believe it can take long steps, but in
reality σ might change fast and thus bias is introduced.

Simulation Algorithm

The algorithm for simulating one step for a pair of points

{(Xτ , τ)} = {(Xt ± η, t+ τ)}

given {(Xt, t)} is the following
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Algorithm 1 DISCRETE SPACE ONE-STEP SIMULATION
1: repeat
2: τ ← sample from p̂(t; 0, 1, 1)

3: τ ← η2

σ2 τ
4: U ← sample from Uniform(0,1)-distribution
5: until U < exp(− µ2

2σ2 τ)
6: U ← sample from Uniform(0,1)-distribution
7: Y ← 1

exp(2µ)+1

8: if U < Y then
9: X ← X − η

10: else
11: X ← X + η
12: end if
13: return (τ ,X)

3.2.2 Simulation of a Path
We now have a way of simulating a collection of points. But since this only
gives us stochastic time points and a Barrier Option has a deterministic end
point, i.e. the Time To Maturity (TTM), we will need a way of dealing with
this. Throughout this section results will only be presented for BMs on the
form, Xt = µt + Wt, and grid sizes, η = 1, as showed in Lemma 3.3 all other
cases can be dealt with through transformations.

Theoretical Results

In order to cope with the final point let’s introduce the following stochastic
variable

τ̂ = min(τ, T − t) = min(τ, l)

where l denotes the time left until the TTM. Since l is deterministic this equals
a truncated version of τ i.e.

P (τ̂ ≤ t) =

{
P(t), if t ≤ l
1, if t > l

If τ̂ = l, this equals the event that the BM did not hit the grid in the specified
time. This can be described mathematically as

(τ̂ = l)⇔ (τ ≥ l)⇔ (|Xs| < η, 0 < s < l)

Since τ has a continuous distribution the probability that τ = l will be zero and
thus we must find the distribution of Xt given that it has not hit the barrier.
This a distribution that will be used throughout this thesis and because of that
let’s define it properly.

Definition 3.2. The distribution, L, is defined as follows

L(β; t, µ) := P (Xt < β|τ ≥ t) =
P (Xt < β, τ ≥ t)

P (τ ≥ t)
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Since we know the denominator the only thing we need to find is P (Xt < β, τ ≥
t). The first towards finding this is given in the following theorem.

Theorem 3.4. L(β; t, µ) is given as u(t, 0) where u(t, x) is the solution to the
following foundry value problem

∂u

∂t
=

1

2

∂2u

∂x2
+ µ

∂u

∂x
t > 0, x ∈ (−η, η)

u(0, x) = 0, x ∈ [−η, η]

u(t,−1) = u(t, 1) = 0, t > 0

Proof. See p. 764 in Milstein and Tretyakov 764 [8].

As a result of this theorem we now have a way of finding analytical expressions
for L(β; t, µ).

Theorem 3.5. L(β; t, µ) is given by one of the following two expressions.

L1(β; t, µ) =
4

1− P(t;µ)
exp(−µ2t/2)

∞∑
k=0

1

π2(2k + 1)2 + 4µ2

×
(

(−1)k
π(2k + 1)

2
exp(−µ)

+ exp(µβ)

[
µ cos

π(2k + 1)β

2
+
π(2k + 1)

2
sin

π(2k + 1)β

2

])
× exp

(
−1

8
π2(2k + 1)2t

)
L2(β; t, µ) =

1

2(1− P(t;µ))

×
∞∑
k=0

(
exp(4µk)

[
erfc

4k − β + µt√
2t

− erfc
4k + β + µt√

2t

])
[
erfc

4k + 3 + µt√
2t

− erfc
4k + 2− β + µt√

2t

]

3.2.3 Implementation
We now have all the probabilities that we need to implement the simulation of
one path for the BM Xt = µt+ σWt on the time interval t ∈ [0, T ]. In order to
simulate from L we will use inversion sampling. Unfortunately we, again, have
the problem that the distribution of L consists of infinite sums and we haven’t
been able to find an analytical inverse for it. In the case with P we managed to
deal with this with the help of acceptance-rejection sampling. In this case we
haven’t been able to find an instrumental distribution and the only option left
is to make the inversion numerically. As the method for doing this we have cho-
sen the binary search, for more information on the binary search see appendix A.

This method is obviously a lot slower than using an analytical expression, but
because terms in the sums in L tends to zero very fast we can truncate the sums,
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and thus make the algorithm a lot faster without losing much in accuracy. It’s
still a lot slower than the numerical approximation used for P. As will be
seen later in the thesis L can be used for more things than just simulating
the end points of a path, and P and L will prove to be the two main parts
which the simulation method is built around for Lévy processes. Therefore a
simulation study was performed, comparing the two distributions. The study
was performed by comparing the times it took to sample from the distributions
for different number of simulations. The results are shown below and as can be
seen L was about a hundred times slower than P. In matlab the symbols L and
P are not available, therefore, L means L and P means P in the plot.
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3.2.4 Simulation Algorithm
The resulting algorithm is the following.

Algorithm 2 DISCRETE SPACE SIMULATION
1: i← 1
2: while τi−1 < T do
3: (τi, Xτi)← simulate using Algorithm 1
4: if τi ≥ T − τi−1 then
5: τi ← T
6: Xτi ← sample from L
7: end if
8: i← i+ 1
9: end while

10: return (τ̄ ,X̄)
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3.2.5 Discrete Space Monte Carlo (DSMC)
Using the algorithm above we now have a way of simulating a path for Xt =
µt+Wt, t ∈ [0, T ] giving us a sequence of points

{(Xτi , τi)}Ni=1 such that St ∈ [Sτi−1
− η, Sτi−1

+ η], t ∈ [τi−1, τi]

Using this we will now implement the simulation algorithm to get Monte Carlo
estimates, in accordance with Adalbjörnsson and Quiroz [1] this will be called
Discrete Space Monte Carlo. The algorithm is the following

Algorithm 3 DISCRETE SPACE Monte Carlo
1: i← 1
2: for i = 1 : N do
3: (τi, Xτi)← simulate using Algorithm 2
4: φi ← φi(Xτi)
5: end for

6: φ̄← 1
N

N∑
k=0

φk

7: return (φ̄)

3.3 Case Study: Black-Scholes Model
With all the theory in place it’s now time to verify that the algorithm actually
works. In order to do this we will test it for different types of options in the
Black-Scholes model. The log-price in the B-S-model is given by the following
expression.

Zt = log(St) = (r − σ2

2
)t+ σWt, Z0 = log(S0)

Since this has constant drift and volatility we can simulate the exit times exactly,
regardless of the size of the grid. In order to show this we start by pricing a
Single Barrier Up-and-Out call option with the following set of parameters.
Since it’s possible to calculate the analytical price for Single Barrier call-options
in the B-S-model this has been used as reference.

Variables Abbreviation Value
Number of Simulations N 100000
Stock value today S0 50
Upper barrier U 60
Strike price K 50
Time to maturity T 1
Risk-free rate r 0.1
Volatility σ 0.1

The results are shown in Figure 3.1. As seen, the results are indifferent to the
size of the grid, thus when faced with a process constant drift and volatility we



CHAPTER 3. EXIT TIMES - ONE-DIMENSION 20

can set the grid equal to the distance to the barrier, without loss of precision.
In order to show how the Euler scheme effects the process we look at a Double
Barrier call-option with the same set of parameters and a lower barrier of 40
and price it using the ordinary Black-Scholes model. The Black-Scholes model
is given by the following expression.

dSt = rStdt+ σStdWt

Discretisizing this using the Euler scheme yields.

Sti+1 = Sti + rSti(ti+1 − ti) + σSti(Wti+1 −Wti)

= Sti + rSti(ti+1 − ti) + σSti
√
ti+1 − tiZ

A Double Barrier option has the following payoff function.

φ(S) = φ̂(ST )1{MT < BU}1{mT > BL}
MT = sup

0≤t≤T
St

mT = inf
0≤t≤T

St

Where BU denotes the upper barrier and BL the lower barrier. Figure 3.2 shows
the convergence of the price, as a reference point the same algorithm, but for the
log-price was used. We know that the expected number of steps is proportional
to η−2, see Figure 3.3 for a plot of the times for different η, which means that the
time our algorithm takes should also be proportional to η−2. It would therefore
be interesting to find a way to find a relation between η and the bias the Euler
discretization results in as a result of η. Unfortunately I haven’t been able to
work this out.
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Figure 3.1: Convergence of Single Barrier Option Price as a function of η
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Chapter 4

Multi-dimensional Exit Times

In the previous chapter we dealt with the pricing of Barrier Options in the Black-
Scholes model, in this chapter we will extend the results from the previous one
to the multidimensional case. This will allow us to price the options under more
complex, and useful, stock models such as the Heston Model. The chapter starts
with presenting the theory behind the multidimensional simulation method. The
method is then presented and finally a simulation study is performed.

4.1 Theory
Let’s start by restating the problem in the multidimensional case. We are dealing
with BMs on the form.

dX̄t = µdt+ σdWt, X(0) = 0

Where X̄ is a N-dimensional BM, µ is a N-dimensional column vector, σ is a
matrix of dimension N ×N and Wt is a N-dimensional SBM. Thus our problem
consists of finding the exit time, as given below.

τη(µ(s,X), σ(s,X)) = inf{t > 0 : |Xt| ≥ η̄}

Where η is also a N-dimensional column vector and |Xt| denotes the absolute
value of each element in Xt. This means that we are interested in finding the
first time that any of the processes in X exits it’s corresponding grid. In order
to do this we will first see how this is done in the case when all elements of X
are independent of each other and then use the results obtained there to extend
it to all cases.

4.2 Independent Case
In the independent case the sigma-matrix is obviously a diagonal matrix and
thus each element of X can be written in the following way

dX̄i
t = µidt+ σi,idWt, X

i(0) = 0

23
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Since all elements are independent that also means that they have individual
and independent exit times, i.e.

τ iηi(µ
i(s,X), σi,i(s,X)) = inf{t > 0 : |Xi

t | ≥ ηi}

This also tells us the following, with τ i = τ iηi(µ
i(s,X), σi,i(s,X)).

τ = min(τ1, τ2, . . . , τN−1, τN )

Thus in order to simulate τ we simulate each of the τ i independently and choose
the lowest one. If we know that one element has hit the grid we now only need to
know the probability of whether it went up or down, and this is obviously known
from the previous chapter. At time τ we also know that the other ones haven’t
hit the grid, we are interested in finding the distribution of their placement
given that they haven’t hit the grid, but this is the same as L, and thus we
have everything needed to simulate one step of the process. Extending this to a
whole path is done by adding an end time (i.e. Time to maturity) in the same
way as in the one-dimensional case.

4.2.1 Simulation Algorithm
Given the results above the simulation algorithm, for a process with N-elements,
is as follows

Algorithm 4 MULTI-DIMENSIONAL DISCRETE SPACE SIMULATION
1: i← 0
2: while τi < T do
3: i← i+ 1
4: for j = 1:N do
5: (tj , Xtj )← simulate using Algorithm 1
6: end for
7: τi ← take the minimum of t̄ and T − τi−1

8: for j = 1:N do
9: if tj ! = τi then

10: Xτi ← sample from L
11: end if
12: end for
13: end while
14: return (τ̄ , X̄)

4.3 Multidimensional Simulation
We now have an algorithm for simulating a path for the case when the elements
in X are independent, but in e.g. the Heston-model there is a dependence be-
tween the two processes and we are thus interested in finding a way of simulating
this.
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Figure 4.1: An illustration of the grids before and after the transformation

In this thesis the way of doing this will be to try to find a transformation such
that we get a process with independent elements and then use the algorithm
above to simulate our step before finally transforming it back.

Our original problem is to find the time such that

X̄t = µt+ ΣWt exits η

assuming that Σ is invertible, this is obviously the same as finding the time such
that

X̄t = ΣΣ−1µt+ ΣWt exits η

by setting U = Σ−1µ and multiplying with Σ−1 everywhere we get that this is
as the same as finding the time such that

Z̄t = Σ−1X̄t = Ut+Wt exits Σ−1η

But Zt obviously has independent elements and we thus know how to simulate
it’s exit times, as long as Σ−1η is equidistant in each dimension. Thus we set
η̄ = Σ−1η to be equidistant, this means that we will get the time it takes for X
to exit a transformed grid. Figure 4.1 shows an illustration of what this might
look like in two dimensions.

4.4 Case Study: Heston-model
With the algorithm in place we test it for a multidimensional stock model,
namely the Heston model. The Heston model is given by the following expres-
sions.
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dSt = rStdt+
√
vtStdW

1
t

dvt = κ(θ − vt)dt+ ξ
√
vt(ρdW

1
t +

√
1− ρ2dW 2

t )

where S denotes the stock price and v the volatility of the stock. In order to
simulate this, the process must be discretized. By once again using the Euler
discretization and using the log-transform on the stock process, in order to
remove bias in the stock price direction, we get

log(Sn+1) = log(Sn) + (r − vn
2

)∆t+
√
vnW

1
∆t

vn+1 = |vn + κ(θ − vn)∆t+ ξ
√
vn(ρW 1

∆t +
√

1− ρ2W 2
∆t)|

The absolute sign on the volatility process is there to keep the volatility process
from becoming negative. There are a number of ways of doing this and this has
been chosen because of the simplicity to implement it.

4.4.1 Double Barrier Option - Case I
In this section a Double Barrier call-option is priced using the algorithm. The
main object of this part is to test if the algorithm and how long it takes. As
a reference point a PDE-solver based on the Crank-Nicolson method was used.
The simulation was performed by setting η equal for the stock- and volatility-
process and then varying it. The parameters used were the following.

Variables Abbreviation Value
Number of Simulations N 100000
Stock value today S0 50
Volatility value today V0 0.16
Upper barrier U 60
Lower barrier L 40
Strike price K 50
Time to maturity T 1
Risk-free rate r 0.1
Volatility of volatility ξ 0.1
Mean reversion rate κ 1
Mean reversion level θ 0.1
BM correlation ρ -0.3

Figure 4.2 shows the results of the simulation, as seen the algorithm converges
to the right price. Another point of interest is how long the algorithm takes
for different η, this is shown in Figure 4.3, as a reference the PDE-solver took
22 seconds. The mean number of steps is, as we know, proportional against
1/η2 and at (almost) every step we have to sample from both L and P. Since
sampling from L is fairly slow it would be of interest to keep η as high as
possible.
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Figure 4.2: Convergence of Double Barrier Option Price as a function of η
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4.4.2 Double Barrier Option - Case II
For the Heston-model there exists something called the Feller condition, it states
that if the following inequality holds

2κθ ≥ ξ2

then the volatility process is always positive. If the condition doesn’t hold the
volatility can become zero. The implication of this in our model would be that
the process assumes that it can take very long steps and thus bias is introduced.
In order to see the effect of this a simulation with the following set of parameters
was performed.

Variables Abbreviation Value
Number of Simulations N 100000
Stock value today S0 100
Volatility value today V0 0.09
Upper barrier U 120
Lower barrier L 80
Strike price K 100
Time to maturity T 1
Risk-free rate r 0.05
Volatility of volatility ξ 1
Mean reversion rate κ 1
Mean reversion level θ 0.09
BM correlation ρ -0.3

The results are shown below. As seen the price did not converge for the grid
sizes considered. It could be argued that the prices seems to be converging to
the right value, but simulating for η = 0.002 took an unreasonable amount of
time (almost 40 minutes). As suggested above one reason for the slow conver-
gence rates might be that the process believes it can take very long steps, thus
introducing bias. I tried dealing with this limiting the length of the time steps
but it didn’t really help.
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Chapter 5

Lévy Processes

In this section Lévy processes are introduced. First the Lévy process is defined
and an explanation of the definition is provided. Then the Lévy-Itô decompo-
sition is introduced, it’s then explained how it can be used to characterize a
Lévy process. Finally some theorem, building on the Lévy-Itô decomposition
are presented .

5.1 Definition
Lévy processes are a type of stochastic processes used as building blocks in a
number of modern stock models. In order to define the Lévy process i will first
define the characteristics that make up it’s definition. The first one is that it
has independent increments.

Definition 5.1. (Independent Increments) A stochastic process is said to have
independent increments if: X(t0), X(t1) − X(t0), ... , X(tn) − X(tn−1) are
independent for every choice of times such that t0 ≤ t1 ≤ ... ≤ tn.

The second characteristic of the Lévy process is that it has stationary incre-
ments.

Definition 5.2. (Stationary Increments) A stochastic process is said to have
stationary increments if: the distribution of Xt+h −Xt doesn’t depend of t.

The third characteristic of the Lévy process is that it has stochastic continunity.

Definition 5.3. (Stochastic Continuity) A stochastic process is said to have
stochastic continuity if: ∀ε, lim

h→0
Pr(|Xt+h −Xt| ≥ ε) = 0.

Please note that this is not the same as continuous sample paths, the purpose
of the definition is to exclude jumps at fixed times. The fourth, and final, char-
acteristics of a Lévy process is that it’s cadlag.

30
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Definition 5.4. (Cadlag Function) A function f: [0, T ] → Rd is said to be
cadlag if: it’s right-contiuous with left limits, i.e. for each t ∈ [0, T ] the limits

f(t−) = lims←t,s<tf(s) f(t+) = lims←t,s>tf(s)

exist and f(t) = f(t+)

It’s worth noting here that all continuous functions are cadlag. With all defini-
tions in place I will now define the Lévy process.

Definition 5.5. (Lévy Process) A cadlag stochastic process (Xt)t≥0 on (ω,F , P )

with values in Rd, such that X0 = 0 (a.s.) is called a Lévy process if it has the
following properties:

1. Independent Increments

2. Stationary Increments

3. Stochastic Continuity

One example of a Lévy process is the Wiener Process, it has stationary and in-
dependent increments by definition and the fact that it has continuous sample
paths implies that it’s both cadlag and that it has stochastic continuity. Below
a realization of another Lévy process is shown.
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In this thesis the purpose of including Lévy processes is to use them to define
stock models. A lot of stock models are defined for the log-price of the stock
and they are thus defined on the following form

Xt = X0e
Zt
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This implies that in order to get a fair price we must be able to find the expo-
nential moments of the process. This is done using the following two theorem
from Cont and Tankov [5] (here, dots marks the inner product).

Theorem 5.1. (Characteristic function of a Lévy process) Let (Xt)t≥0 be a
Lévy process on Rd. There exist a continuous function ψ: Rd → R called the
characteristic exponent exponent of X, such that:

E[eiz.Xt ] = etψ, z ∈ Rd.

Theorem 5.2. (Exponential Moments of a Lévy process) Let (Xt)t≥0 be a Lévy
process on R with characteristic triplet (A, ν, γ) and let u ∈ R. The exponential
moment E[euXt ] = etψ(−iu) is finite for all t > 0 if and only if

∫
|x|≥1

euxν(dx) <

∞. In this case the exponential moment Λ(u) is given by the following relation

E[euXt ] = etψ(−iu) = etΛ(u)

where ψ is the characteristic exponent.

5.2 Characterisation of Lévy processes
We now have a definition of Lévy processes, but this definition is very wide and
perhaps a bit hard to grasp. In order to make things a bit clearer let’s start
by considering one of the most famous Lévy processes, namely the compound
Poisson Process.

As seen in chapter 2 the compound Poisson process is a generalization of the
Poisson process, where, instead of just having jumps of size 1, we have jumps
of different sizes. In the standard Poisson process the intensity is a measure of
how often jumps occur and it would be interesting to find an equivalent measure
for the compound process. The difference would of course be that this measure
should show us how often jumps of a certain size occur, instead of just how
often jumps occur. An alternate formulation would be that we are interested in
the average number of jumps, of a certain size, per time unit. Finding this is
something that is interesting for all Lévy process, not just for compound Poisson
processes, and it’s called the Lévy measure. The definition is found below.

Definition 5.6. (Lévy Measure) Let (Xt)t≥0 be a Lévy process defined on Rd.
The measure ν on Rd is defined as:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of X: ν(A) is the expected number, per unit time, of
jumps whose size belong to A.

B denotes the Borel σ-algebra, the important implication of this (for the scope
of this thesis) is that A can be any open or closed subset of Rd. For more details
on Borel σ-algebras, see Chapter 2 in Cont and Tankov . It turns out that the
Lévy measure is a crucial part in characterizing a Lévy process and the reason
why is given in the following theorem, called the Lévy-Itô decomposition.

Theorem 5.3. Let (Xt)t≥0 be a Lévy process defined on Rd and ν it’s Lévy
measure.
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• ν is a Radon measure on R {0} and verifies:∫
|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

• The jump measure of X, denoted by Jx, is a Poisson random measure on
[0,∞[×Rd with intensity measure ν(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion (Wt)t≥0 with
covariance matrix A such that

Xt = γt+Wt +X l
t + lim

ε↓0
X̃ε
t ,

X l
t =

∫
|x|≥1,s∈[0,t]

xJx(ds× dx)

X̃ε
t =

∫
ε≤|x|≤1,s∈[0,t]

x{Jx(ds× dx)− ν(dx)ds}

=

∫
ε≤|x|≤1,s∈[0,t]

x{J̃x(ds× dx)}

The terms in the first equality are independent and the convergence in the last
term is almost sure and uniform in t on [0, T ]

This theorem is Proposition 3.7 from Cont and Tankov . The interpretation of
Jx is that given a set B = ([t1, t2]×A) with A ⊂ R, Jx(B) counts the number of
jumps between t1 and t2 such that the jump size belongs to A. The reason for
subtracting ν in the integral in X̃ε

t is to make sure that the integral converges.
Below is a summary of some important implications of the decomposition.

• For every Lévy process there exist a triplet (A, ν, γ), called the Lévy triplet,
that uniquely determine it’s distribution.

• X l
t is a compound Poisson process

• X̃ε
t is an infinite sum of independent compensated compound Poisson pro-

cesses, were compensated means that a process is centered i.e. it has mean
zero.

All of this together implies that every Lévy process can be seen as combination
of a BM and an, possibly, infinite sum of compound Poisson processes. This
result allows us to split Lévy processes in to two categories: Jump-Diffusions
and Infinite Activity processes. Jump-Diffusions represent the processes with
finitely many jumps and equivalently Inifinite activity processes represent pro-
cesses with infinitely many jumps.

The Lévy-Itô decomposition also gives us the ability to calculate the mean and
the variance of a Lévy process as functions of it’s Lévy-triplet, by the following
theorem.

Theorem 5.4. Let (Xt)t≥0 be a Lévy process on R with Lévy triplet (A, ν, γ).
The n-th absolute moment of Xt, E[|Xt|n] is finite for every t > 0 if and only
if
∫
|x|≥1

|x|nν(dx) <∞. If this holds the mean and variance of Xt equals
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E[Xt] = t(γ +

∫
|x|≥1

xν(dx))

V ar[Xt] = t(A+

∫ ∞
−∞

x2ν(dx))

This is theorem is a rewritten version of proposition 3.13 in Cont and Tankov .
It also allows us to the characteristic exponent for compound Poisson processes
as function of it’s Lévy measure

Theorem 5.5. Let (Xt)t≥0 be a compound Poisson process on R. It’s charac-
teristic exponent is then given by the following expression

ψ(z) =

∫ ∞
−∞

(eizx − 1)ν(dx)∀z ∈ R



Chapter 6

Jump-Diffusions

In the last chapter a class of processes called Jump-Diffusions were introduced,
the purpose of this chapter is to extend our results regarding exit times from
BMs to Jump-Diffusions. We start by looking on some theoretical results needed
for this, then the simulation algorithm is presented and finally a simulation study
is presented.

6.1 Theoretical Results
The idea of this chapter is to fit Jump-Diffusion processes in to the framework
established in Chapter 2, i.e. we are interested in finding the times such that
our process hits a grid of size η. In this chapter only one-dimensional Jump-
Diffusions will be considered but the results are can easily be extended to the
multi-dimensional case. Recalling, Jump-Diffusions are processes on the follow-
ing form

Xt = Qt + Zt

Yt = γt+ σWt

Zt =

Nt∑
i=0

Yi

where Nt is a Poisson process, and thus, Xt is a sum of a BM with drift and a
compound Poisson process. As a result of the Lévy-Ito decomposition, we know
that the Qt and Zt are independent. We also know that Zt has finite activity,
i.e. it has a finite number of jumps. The original definition of an exit time was,
as follows

τη(X) = inf{t > 0 : |Xt| ≥ η}

The results of Chapter 3 were given for BMs with drift and obviously it would
be very hard to find a distribution for the exit time incorporating both the BM
and the compound Poisson process. Instead, because of the independence of Yt
and Zt, we can consider the following time

35
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τ̂η(X) = min(τη(Y ),T(Zt))

where τη(Yt) denotes the exit time for a BM defined as before and T(Zt) de-
notes the time to the next jump for the compound Poisson process. Because of
the independence we can simulate the two times independently and just take
the min. We obviously know how to simulate exit times for a BM and a walk-
through on simulating a compound Poisson process follows in the next section.
If τ̂η(X) = τη(Y ) we know that the process has hit the barrier, but also that a
jump has not occurred. On the other hand, if, τ̂η(X) = T(Zt) we know that Yt
has not hit the barrier, and we can simulate it’s position using L, and that a
jump has occurred.

6.2 Simulation

6.2.1 The compound Poisson process
In order to simulate our exit time all that’s left to work out is how to simu-
late a compound Poisson process (with finite activity). The compound Poisson
process is a Lévy process, and the results of this chapter will be based on the
assumption that it’s given by it’s characteristic triplet.

Since a compound Poisson process has no drift or BM-part the characteristic
triplet will be given by (A, ν, γ) = (0, ν, 0). From the Lévy-Ito decomposition
we know that a Lévy process is uniquely determined by it’s characteristic triplet
and this implies that a compound Poisson process is uniquely determined by it’s
Lévy measure. In order to relate our Lévy measure to the jump size distribution
f of the compound Poisson process we use the following theorem.

Theorem 6.1. Let (Xt)t≥0 be a compound Poisson process with intensity λ
and jump size distribution f. It’s jump measure JX is a Poisson measure on
Rd × [0,∞[ with intensity measure µ(dx× dt) = ν(dx)dt = λf(dx)dt.

The most important, in regards to this thesis, implication of this is that

ν(dx)dt = λf(dx)dt

If we now integrate over R w.r.t. x on both sides we get

(∫
ν(dx)

)
dt =

(∫
λf(dx)

)
dt = λdt

The second equality follows from the fact that f is a distribution. By dividing
the original expression with λ on both sides we get.

f(dx)dt =
ν(dx)

λ
dt =

ν(dx)∫
ν(dx)

dt

We now have everything needed to simulate a compound Poisson process. As a
result of theorem 2.1 the number of, simulated, jumps k on a time interval [0,t]
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is given by drawing from Po(λt). The time of the jumps are found by drawing
k-samples from the U(0,t)-distribution. Finally, the size of jump is given by
sampling from f(x), i.e. the jump size distribution. The simulation algorithm is
shown below.

Algorithm 5 Compound Poisson Process Simulation (CPPS)
1: k ← sample from Po(λt)
2: for i = 1 : k do
3: T ji ← draw sample from U(0, t)
4: end for
5: T̄ j ← sort T̄ j in growing order
6: for i = 1 : k do
7: Xj

i ← draw sample from f(x)
8: end for
9: return (T̄ j , X̄j)

The bar represents the whole vectors and the j is used to mark that we are
dealing with jumps.

6.2.2 Jump-Diffusions
Given the results above the simulation algorithm for a whole path of Jump-
Diffusion process is as follows.

Algorithm 6 DISCRETE SPACE SIMULATION FOR JUMP-DIFFUSIONS
1: (T̄ j , X̄j)← simulate using the CPPS algorithm
2: while τi−1 < T do
3: (τi, Xτi)← simulate using Algorithm 3.2.1
4: τi ← minimum of (τi, T, T

j
n)

5: if τi = T then
6: Xτi ← sample from L
7: else if τi = T jn then
8: Xτi ← sample from L
9: i← i+ 1

10: τi ← τi− 1
11: Xτi ← Xτi−1

+ X̄j
n

12: n← n+ 1
13: end if
14: i← i+ 1
15: end while
16: return (τ̄ ,X̄)

6.3 Case Study: Merton Model
In order to verify the simulation algorithm for Jump-Diffusions it will be applied
by pricing Barrier options for the Merton model. The log-price of the stock in
the Merton model is defined in the following way
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Xt = X0 exp{µBM t+ σBMWt +

Nt∑
i=1

Yi},

with Yi ∈ N(µj , σ
2
j ) and an intensity of jumps λj . It has the following Lévy

density and characteristic exponent

ν(x) =
λj

σj
√

2π
exp

{
− (x− µ)2

2σ2
j

}

ψ(u) = −σ
2
BMu

2

2
+ iµBMu+ λj{e−σ

2
ju

2/2+iµju − 1}

In Xt, µBM shall be chosen such that discounted value of the stock-price, i.e.
St = S0 exp(Xt), is martingale, or in particular such that E[ST ] = S0 exp(rT ) .
The following expression for µBM ensures that.

µBM = r − σ2
BM

2
− λ{eµj+σ

2
j/2 − 1}

The jump intensity and jump size distribution are as follows (in this case they
are actually given in the definition of the Merton model, but in order to show
how to calculate them they are still included here)

λ =

∫
ν(dx) =

∫
λj

σj
√

2π
exp

{
− (x− µ)2

2σ2
j

}
dx = λj

f(x) =
ν∫
ν

=
1

σj
√

2π
exp

{
− (x− µ)2

2σ2
j

}
Let’s start by pricing an Up-and-Out Barrier call option. Since the drift and
volatility are constant for the log-process the grid size, for the same reason as
in the Black and Scholes case, won’t impact the result of the simulation and
should be set high to get a fast algorithm. Thus, η = 0.5. Instead of a varying
grid size, let’s vary the intensity of the jumps. As the intensity gets higher the
probability of hitting the barrier gets higher and thus the price should get lower.
The rest of the parameters are given below.

Variables Abbreviation Value
Number of Simulations N 100000
Stock value today S0 50
Upper barrier U 60
Strike price K 50
Time to maturity T 1
Risk-free rate r 0.1
Volatility of BM σBM 0.1
Mean Jump Size µj -0.1
Jump Size Variance σj 0.09



CHAPTER 6. JUMP-DIFFUSIONS 39

The figure below shows the result of the simulation with the theoretical price
in the Black and Scholes model, i.e. λj = 0, as a reference point (unfortunately
I couldn’t find another simulation algorithm to use as reference). It shows that
the price gets lower as the intensity grows, almost exponentially.
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The figure below shows the result of the same set of parameters but for for a
Double Barrier option with upper barrier 60 and lower barrier 40. Once again
the price seems to be diminishing exponentially with the jump intensity.

The algorithm seems like a perfect match for Jump-Diffusions. Since Jump-
Diffusions have constant drift and volatility the grid only have to consider the
barriers, and the only times it has to stop is at the jump times. This means that,
especially for process with low intensity, that the algorithm will be fast. As an
example the algorithm took 42 seconds for λ = 2 in the Merton model. The
algorithm is also relatively simple to understand and implement, as a reference
Barrier options for Jump-Diffusions can be priced by solving something called
Partial Integro Differential Equations (PIDEs). PIDEs are like partial differen-
tial equations but with terms containing integrals and they are obviously more
challenging to solve. Thus, our method seems like a good alternative.
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Chapter 7

Infinite Activity Processes

The purpose of this chapter is to extend the results of chapter 3 to Infinite
Activity processes. An approximation is introduced that approximates Inifinite
Activity processes with Jump-Diffusions. The thought behind the approxima-
tion is to truncate all jumps smaller than a specified value, ε, and replace them
with a BM, cf. Asmussen and Rosinski [2]. At the end of the chapter a simula-
tion study, in where Barrier options are priced in the Variance Gamma model,
is performed.

7.1 Theoretical Results
As oppose to Jump-Diffusions, Inifinite Activity process have an infinite amount
of jumps, i.e. jumps occur infinitely often. This also mean that they do not have
to contain a BM-part and, therefore, we can’t directly apply the results from
our previous chapter to this one. But, recalling one of the results of the Lévy-Itô
decomposition we know that any Lévy process can be approximated arbitrarily
well by a Jump-Diffusion. Therefore, the idea as that we will simulate Inifinite
activity processes by first approximating them with a Jump-Diffusion and then
simulate them as in the previous chapter.

The Lévy-Itô decomposition told us that every Lévy process can be written on
the following form.

Xt = γt+Wt +X l
t + lim

ε↓0
X̃ε
t

Recalling, this is the sum of a BM (γt+Wt), a compound Poisson process (X l
t)

and a limit of compensated compound Poisson processes. The approximation
is done in two steps, first, all jumps smaller than a specified number, ε > 0, are
truncated, giving us the approximation process Y εt .

Y εt = γt+ σWt +X l
t + X̃ε

t

Since X̃ε
t have an finite amount of jumps it doesn’t need to be compensated

and thus we can define Jεt = X l
t + X̃ε

t , this is a compound Poisson process with

41
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jumps larger than ε. It’s now clear that Y εt is the sum of a BM and a compound
Poisson process, i.e. a Jump-Diffusion. The approximation error of this process,
Rεt , is given by the following expression.

Rεt = Xt − Y εt = −X̃ε
t + lim

ε↓0
X̃ε
t

This is obviously also a Lévy process, that consist of all compensated jumps
smaller than ε, with Lévy triplet (A,1{|x| ≤ ε}ν(dx), 0). The second part
of the approximation is to approximate this error with a BM and add it to
the approximation. The motivation behind this is that it can be shown that,
under certain conditions, Rεt converges to a BM (in distribution). The first step
towards proving this is to calculate the mean and variance of the R, this is done
using theorem 5.4.

E[Rεt ] = 0

V [Rεt ] = t

∫
|x|<ε

x2ν(dx)

We continue by defining σ2
ε =

∫
x2ν(dx) and Qεt = σ−1

ε Rεt . If we then assume
that the following condition is satisfied.

σε
ε
→∞ as ε→ 0

It means that, since the jumps of R are bounded by ε, that the jumps of Q
will be bounded by a number that tends to zero. This, means that Q will
tend towards a continuous Lévy process. This process will have mean zero and
variance t and thus Q tends towards a SBM. Because of this we replace R with
a BM with variance σ2

ε , σεQt.

Zεt = Y εt + σεQt

= γt+ σWt + Jεt + σεQt

SinceWt and Qt are obviously independent this can be rewritten in the following
way.

Zεt = γt+ (σ + σε)Wt + Jεt

This is a Jump-Diffusion and can thus be simulated the same way as in the
precious chapter. As a final note, convergence rates of this approximation are
of course interesting when simulating the process, and the following theorem in
Cont and Tankov [5] gives us a way of quantifying this

Theorem 7.1. Let f be a real-valued differentiable function such that |f ′(x)| <
C for some constant C. Then

|E[f(Xε
T +RεT ])− f(Xε

T + σεWT ])| ≤ Aρ(ε)Cσε,

where ρ(ε) ≡
∫ ε
−ε |x|

3ν(dx)

σ3
ε

and A is a constant satisfying A < 16.5.
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7.2 Case Study: Variance Gamma
Introduced in 1998 in Madan et al [7], the Variance Gamma model is an ex-
tension of the Black and Scholes model which replaced the deterministic time
with a random time change. Introducing a random time change is used in other
models too and it’s often thought of as representing important financial time
changes. The log-price in the Variance Gamma model is defined as follows

Xt = ωt+ θΓ(t; 1, v) + σW (Γ(t; 1, v))

i.e. the deterministic time changes are replaced with a Gamma process, as
defined in chapter 2. The process has three free parameters; θ, the drift of the
BM, σ, the volatility of the BM, and v the variance of the underlying Gamma
process. ω is there to ensure that the discounted stock-process is a martingale.
The Lévy measure for X is given by.

ν(x) =
1

v|x|
eAx−B|x|

A =
θ

σ2

B =

√
θ2 + 2σ2/v

σ2

7.2.1 Implementation
In order to simulate this we approximate the process with

Zεt = µBM t+ σBMWt + Jεt

We start by calculating σBM

σ2
BM =

∫
x2ν(dx) =

∫ ε

−ε
x2ν(dx) =

∫ 0

−ε
x2ν(dx) +

∫ ε

0

x2ν(dx)

= S1
ε + S2

ε

S1
ε =

∫ ε

0

x2ν(dx) =
1

v(A−B)

(
εe(A−B)ε − e(A−B)ε − 1

(A−B)

)
S2
ε =

∫ 0

−ε
x2ν(dx) = − 1

v(A+B)

(
εe−(A+B)ε +

e−(A+B)ε − 1

(A+B)

)
The second task is to calculate the intensity and jump size distribution of Jεt ,
but in order to simplify simulation we split Jεt into two parts, one for the posi-
tive jumps, Jε+t , and for the negative, Jε−t . These are also compound processes
with Lévy densities νε+(x) = ν(x)1{x > ε} and νε−(x) = ν(x)1{−ε > x}. The
idea is to simulate them one by one and then merge the resulting vectors. Let’s
start by finding a way to simulate the positive part.
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In order to simplify simulation even more, we see that

νε+(x) =
1

v|x|
e(A−B)x1{x > ε} ≤ 1

vε
e(A−B)x1{x > ε} ≡ gε+(x)

This means that Jε+t can be seen as a thinned version of another process with
Lévy density gε+(x). Recalling results from chapter 2, we then know that Jε+t
can be simulated by simulating from this other process and then discarding
jumps with probability νε+(x)/gε+(x). All that is left to do is to calculate the
intensity and jump size distribution for gε+(x).

λgε+ =

∫
gε+(dx) =

1

vε(B −A)
e(A−B)ε

fgε+(x) =
gε+(x)

λgε+
= (B −A)e−(B−A)ε1{x > ε}

We see that fgε+(x) has the same distribution as a shifted exponentially dis-
tributed variable and is thus very easy to simulate. Analogously the negative
jumps can be simulated using the following functions

gε−(x) =
1

vε
e−(A+B)x1{x < −ε}

λgε+ = =
1

vε(A+B)
e−(A+B)ε

fgε+(x) = (A+B)e−(A+B)ε1{x < −ε}

Finally, in order to in order to ensure that the discounted version of the approx-
imated process is still a martingale, we need to find the exponential moment of
Jεt . Since Jεt is a compound Poisson process it’s characteristic exponent can be
found using Theorem 5.5. This leads us to it’s exponential moment.

ψJ(z) =

∫
(eiux − 1)νε(dx) =

∫ ∞
ε

(eiux − 1)ν(dx) +

∫ ∞
ε

(eiux − 1)ν(dx)

ΛJ =

∫ ∞
ε

(ex − 1)ν(dx) +

∫ ∞
ε

(ex − 1) = ΛJ+ + ΛJ−

ΛJ+ =
1

ν

(∫ ∞
(A−B−1)ε

e−t

t
dt−

∫ ∞
(A−B)ε

e−t

t

)

ΛJ+ =
1

ν

(∫ ∞
(A+B+1)ε

e−t

t
dt−

∫ ∞
(A+B)ε

e−t

t

)

Integrals of the form
∫∞
x

e−t
t dt are known as exponential integrals and they can’t

be calculated analytically. In order to calculate them we need some numerical
tool, they are e.g. implemented in Matlab as the function "expint". So, µBM
must be given by the following expression.

µBM = r − σ2
BM

2
− ΛJ
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7.2.2 Results
In order to show how the price converges for different ε we start by pricing a
single barrier option, the results are then compared with a pricing algorithm
presented in Avramidis et al [3]. Since, the BM-part of the model has constant
drift and volatility, we know that the choice of η doesn’t change the convergence
rates. We only have to choose η such that the barrier is taken into consideration,
i.e. ηt = B − St.The parameters used in the simulation were the following.

Variables Abbreviation Value
Number of Simulations N 100000
Stock value today S0 50
Upper barrier U 60
Strike price K 30
Time to maturity T 1
Risk-free rate r 0.1
Drift of BM θ -0.31
Volatility of BM σ 0.17
Variance of Gamma process v 0.13

The results of the simulation are presented in figure 7.1, the straight line repre-
sents the other simulation algorithm. As seen in the Figure the price converges,
towards the same value as the other algorithm, as ε tends to zero. There is
one problem with our algorithm, as ε→ 0 the intensity of jumps increases, and
thus our process will get to jump times rather than exit times more and more
often. The problem with this is that we have to simulate from L instead of P,
it was showed in Chapter 3 that simulating from L is about 100 times slower
than simulating from P. It would thus be of interest to find a ε such that the
number of jumps doesn’t blow but still such that the bias is small. In this case
ε = 0.01 could be a good candidate, the time of the simulation hasn’t really
blown up yet and the price have converged fairly well (the confidence interval
covers the reference price). It should also be noted that the simulation of the
jumps also takes a lot of time.

Figure 7.2 shows how the time changed with ε for the realization in Figure 7.1.
As reference the reference algorithm took 120 seconds for the same number of
simulations.

A simulation on Double Barrier option, using the same parameters but with K =
50 and the addition of a lower barrier at 40, was also performed. Unfortunately
the reference algorithm wasn’t adapted to Double Barrier options and thus no
reference has been submitted. The results are shown in figure 7.3 and they are
in accordance with the results for the Single Barrier option (the time aren’t
shown because they were basically identical to the ones in the Single Barrier
case). The biggest difference is that the price didn’t converge as fast as for the
Single Barrier case, this seems to be due to the nature of the different contracts.
Once again ε = 0.01 seems to be a good level truncation level.
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Figure 7.1: Convergence of Single Barrier Option Price
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Figure 7.2: Simulation time as a function of the truncation level ε
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Figure 7.3: Convergence of Double Barrier Option Price



Chapter 8

Discussion

8.1 Summary
I started out by implementing a method for simulating a one-dimensional Brow-
nian Motion on a discrete space grid, described in Adalbjörnsson and Quiroz
. The algorithm was then extended to multi-dimensional Brownian Motions.
After that I presented some results on Lévy processes, which was split in to two
cases; Jump-Diffusions and Infinite activity processes. I continued by extending
the simulation method to Jump-Diffusions and then presented a way of approx-
imating Infinite activity processes with Jump-Diffusions and thus providing a
way of using the simulation algorithm for an arbitrary Lévy process. In each
case a case study was presented, in where I priced Barrier options under a given
stock model.

8.2 Conclusion
Extending the method to an arbitrary Lévy process proved to work fairly well.
The only real problem was in the Heston-model when the Feller condition was
not fulfilled, with extremely slow convergence rates as a result. One other prob-
lem with the model was speed. Simulating L takes a lot of time.

On the positive side is that it’s very easy to price path-dependent options in
the process, for processes both with and without jumps. Altering the method
to fit different models is very easy as opposed to most methods which are model
specific (or at least confined to a small number of models). If the process has
constant drift and volatility the method works very well since we can reduce the
simulation to a very small number of steps without loss of precision.

The approximation process presented in chapter 7 also proved to work well, the
price converged well before the number of jumps exploded.

48
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8.3 Further Development
• The biggest problem of the algorithm was obviously speed. One of the

main reasons for this was the fact that L was very slow to simulate. One
way of speeding up the calculations would be to try and find a numerical
approximation in the same way as for P. A first step towards this is that
it can be shown that:

L′(β; t, µ) =
1− P(t)

1− P(t;µ)
exp(−µt/2) exp(µβ)L′(β; t)

L′(β; t) =
1

1− P(t)

∞∑
k=0

cos
π(2k + 1)β

2
× exp{−1

8
π2(2k + 1)2t}

Where the derivatives are w.r.t. β. A result of this is the following in-
equality.

L′(β; t, µ) ≤ 1− P(t)

1− P(t;µ)
exp(−µt/2) exp(µ)L′(β; t)

This means that we can sample from L′(β; t, µ) using acceptance-rejection
sampling with L(β; t) as instrumental distribution. The thought is then
to numerically approximate L(β; t) with a polynomial, or some other rel-
atively simple analytical expression, and finding it’s inverse. We would
then have a much faster way of simulating L(β; t, µ).

Another approach could be to approximate L(β; t, µ) with the following
probability

L̂(β; t, µ) = P (Xt < β)1{−1 < β < 1}

• In chapter 7 a approximation method for approximating Infinite activity
processes with Jump-Diffusions was presented. In order to improve it’s
performance it would be a good idea to, in some way, try to find the per-
fect relationship between performance and speed. One idea would be to
keep the workload (K), i.e. basically the time, constant. Since simulating
from L is much slower than simulating from P, we define K as K ≡ NλTλ,
i.e. the number of simulations N times the intensity of the jumps times
the time each jump takes to simulate. We could then find some measure
of the error and minimize it given that K = NλTλ. One measure of the
error could be the squared bias plus the variance.

Or, formally, given that we view our simulation algorithm as an estimator,
δ of the price, θ of an option, we can define a loss function L(p, δ). δ is
then a function of λε and N. Let’s say we choose the estimator with the
lowest expected loss i.e. we’re interested in the following.
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arg min
δ∈∆

Eθ∈Θ[L(p, δ)]

With ∆ = {δ : NλεTλ = K} and L given by e.g. Eθ∈Θ[L(p, δ)] ≡
Bias2(ε) + V ariance(ε,N). The bias could be given by either the ex-
pected bias or some bound on the (expected) bias.

The same sort of reasoning could be applied to the choice of the grid size
η when the Euler approximation is needed but with η instead of ε.

• Instead of using Euler approximation one could try other approximation
routines such as e.g. the Milstein second order approximation.

• Extending the concept of exit times to other stochastic processes such as
the Gamma process.

• By using theorem 3.1 and solving the corresponding boundary value prob-
lem perhaps the distribution function of exit time for SDEs on the follow-
ing form (i.e. the Black-Scholes model) can be found.

dXt = µXtdt+ σXtdWt, X0 = 0

• Finding a way of getting better convergence rates for the Heston model
when the Feller condition is not fulfilled.

• Testing the method for other stock models.



Appendix A

Simulation Methods

A.1 Inversion Sampling
Let’s say we are interested in sampling from a distribution with cumulative dis-
tribution function F (x), let’s also assume that F (x) is continuous and increasing
and that we have a way of generating uniformly distributed on the interval [0, 1],
then Inversion Sampling provides a way of sampling from the distribution. If
we define the general inverse as.

F−1(x) = inf{x ∈ R;F (x) ≥ u}

Inversion sampling is then given by the following algorithm.

Algorithm 7 Inversion Sampling
1: u← sample from U(0,1)
2: X ← F−1(u)
3: return (X)

X is then has distributed according to F , for a proof on this see Sköld [10].

A.1.1 Binary Search
Sometimes a analytical for F−1 can’t be found and we’re then forced to use
numerical methods for finding F−1(u). If we start by defining a tolerance level
and assume that F−1(u) ∈ [a, b], with b > a, the binary search is given by the
following algorithm.
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Algorithm 8 Binary Search
1: u← sample from U(0,1)
2: A← F (a)
3: B ← F (b)
4: repeat
5: c← a+b

2
6: C ← F (C)
7: if C > u then
8: b← c
9: B ← F (b)

10: else
11: a← c
12: A← F (a)
13: end if
14: until |G− u| < tol
15: return (c)

C is then an approximation of F−1(u), the error |G − u| will be bounded by
2−n(b− a), where n denotes the number of iterations in the loop.

A.2 Acceptance-Rejection sampling
Let’s assume we are interested in sampling from a distribution f(x), defined on
R, but it’s very difficult to sample from. Let g be another distribution, also
defined on R, such that ∀x ∈ R, f(x) ≤ Kg(x), for some constant K < ∞. The
acceptance-rejection method is then given by the following.

Algorithm 9 Acceptance-Rejection samping
1: repeat
2: X ← sample from g
3: u← sample from U(0,1)
4: until u ≤ f(X)

Kg(X)

5: return (X)

X is then a sample from f, for proof a see Sköld [10]. g is called the instrumental
distribution in Acceptance-Rejection sampling.

A.3 Monte-Carlo simulation
Assume that we are interested in estimating the integral (or expected value).

τ = E[ψ(X)] =

∫
φ(x)f(x)dx

The (Basic) Monte-Carlo estimate of τ is then given by the following algorithm.
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Algorithm 10 Acceptance-Rejection samping
1: for i = 1:N do
2: Xi ← sample from f
3: end for
4: tN ← 1

N

∑N
i=1 φ(Xi)

5: return (tN )

tN is then a unbiased estimate of τ and it can be shown that
√
E[(tn − τ)2] =

O(n−1/2), for more on Monte-Carlo simulation see Sköld [10].
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