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Abstract

Low-dimensional systems of dipoles show many interesting features
in terms of both spectra and density distributions. Many external pa-
rameters of such a system can in fact be controlled in experiments, so
simulations are invaluable in order to investigate how properties depend
on such parameters. In particular the ideal dipole-dipole interaction in a
quasi one-dimensional system of particles is dependent on the angle of the
dipolar-moments relative to the alignment. In fact the inter-particle inter-
action can be tuned to become both attractive and repulsive by changing
this “dipole angle” via an external field, so it is especially interesting to
investigate how systems depend on this parameter.

In this project I perform simulations with a quasi one-dimensional har-
monic system of a few ideal dipoles. Calculations using exact diagonaliza-
tion are performed in order to find the energy-eigenvectors of systems with
various numbers of dipolar fermions or bosons. The parameters for both
the inter-particle dipole-dipole interaction and the transverse confinement
are then altered in order to investigate the systems.

Some analytical work is also done investigating the features of the
dipole-dipole interaction, which has been seen to give rise to ambiguities
even for the ideal-dipole model.

This project mainly deals with a few specific features of one-dimensional
systems of ideal dipoles. Among these features are separation, localiza-
tion and fermionization of bosons. Fermionization of bosons essentially
means that the repelling force between particles is so strong that they
never overlap. Therefore the Pauli principle becomes unimportant and
bosons and fermions show similar properties in a fermionized system. It
will be investigated how these features depend on the parameters of the
interaction, and how the they can be applied in order to improve models
and predict new results in related areas of research.
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Part I

Outline and Introduction
1 Introduction

Figure 1: Pictorial view of four dipoles, denoted by blue arrows, at dipole angle
θ = 90◦ in a one-dimensional harmonic trap. The critical angle θcrit ≈ 54.7◦ is
also shown.

In recent years the prospect of ultracold atoms and molecules with dipole mo-
ments has lead to many studies. Quantum-gases with pure dipole-dipole inter-
action have been realized experimentally using Feshbach resonances [40], and
many interesting effects of these systems have already been predicted [21] [41].
Exploiting the anisotropic nature of the dipole-dipole interaction a variety of
prospects are currently investigated for systems of cold atoms.

A system of a few dipoles in a quasi one-dimensional trap is depicted in
figure (1), where the dipole moments are denoted by the blue arrows. A specific
feature of the effective one-dimensional dipole-dipole interaction is the dipole
angle θ, which denotes the angle of the dipole moments relative to the spatial
alignment of the one-dimensional trap. Tuning this dipole angle it is possible
to change the interaction between particles so that for θ < θcrit the interaction
becomes attractive, and that for θ > θcrit the interaction become repulsive. At
the critical angle θcrit ≈ 54.7◦ the dipole-dipole interaction becomes zero.

4



Figure 2: density distribution of the ground state for four fermions in a quasi one-
dimensional harmonic trap with lp = 0.06 (Electric dipole interaction coefficient d2 =

1)

The anisotropy of the dipole-dipole interaction can give rise to interesting
effects in cold quantum-gases.

In figure (2) one can for example see how the dipole angle θ > θcrit ≈
0.304π ≈ 54.7◦ is successively tuned towards larger values, i.e. to larger re-
pulsive interaction, and causes particles in the four-fermion ground state to
separate.

The purpose of this project is to investigate the dipole-dipole interaction, both
from analytical results and from numerical studies of quasi one-dimensional
systems. The project should serve to highlight a few important features of the
dipole-dipole interaction. I will show some specific examples of how these fea-
tures give interesting results in the physical simulations.
Due to the increasing interest in dipolar systems I have in particular also in-
vestigated some of the difficult areas of mathematics which are associated with
ideal dipoles. This should be important since simulations often employ the
ideal-dipole model, and it will be seen that the details of this model in many
cases affect the results of the calculations. I shall both investigate the ideal-
dipole model in itself, but also discuss how it can be used to in order to model
systems of real dipoles. Contrary to ideal dipoles, which are point-like particles
with dipole moments, the real dipoles can be, for example, finite-sized atoms or
molecules which have charge-distributions that induce dipole moments.

In the case of low-dimensional systems an effective interaction expression is
often used in simulations, and I will therefore also discuss how a concept such
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as uniform convergence can complicate the setup of these models.

2 Outline

Theoretical background
The first sections in this report will be used to give some theoretical background
on topics relating to the project. I will briefly discuss some concepts in many-
particle theory, and also the configuration-interaction method.

In the later sections of part (3) I will in particular discuss the dipole-dipole
force. The systems which I investigate are modeled so that the only inter-particle
forces come from the dipole-dipole interaction, and it will therefore turn out to
be especially important to investigate the subtle details of this interaction. The
expressions for the dipole-dipole interaction will be derived and discussed, and
in particular the ideal-dipole model will be evaluated.

Results
In part (III) I will in particular discuss two different types of results.

General effects of the dipole-dipole interaction seen from different
observables

These results will be used to show how effects in the quasi one-dimensional
system of dipoles can be analyzed by studying different observables. I will show
that observables such as eigen energies and occupation-numbers can be used to
investigate how the dipole-dipole interaction affects a system of ideal dipoles,
and in particular how these observables can be used to evaluate the model itself.
I will discuss concepts such as separation, fermionization and localization and
show how these effects can be seen from different observables.

This part of the results is strongly connected to the theoretical discussion on
the dipole-dipole force, since many of these concepts and methods are essential
when evaluating the model for the interaction.

Details of the quasi one-dimensional system and suggested applica-
tions

Some details of the quasi one-dimensional system of dipoles will be discussed
among the general effects. These details will be highlighted since they might be
especially interesting or could be used for some possible application. Sections
which contain such discussions are section6.3,10 and12.3.
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Appendix
Some of the derivations will be put in the appendix of this report. In particular
some discussion on the generalized function will be found in this part.
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Part II

Theoretical background
3 Many-particle theory
This part will deal with some essential tools for describing many-particle sys-
tems. The main point will be a short summary on the theory of second quan-
tization. The formalism of second-quantization is often used to simplify the
treatment of systems with many particles, since the basic description of the
system can be used for any number of particles. This section is mainly based
on the proceedings in [10].

3.1 The many-particle wavefunction
The ket

∣∣Ψ(v1,..,vN )

〉
describes an N -particle quantum-state labeled Ψ(v1,...,vN ),

where the labels vi denote single-particle states.
The many-particle state lies in a Hilbert-space defined as a tensor-product

of one-particle Hilbert-spaces H1, ...,HN ;

H(N) = H1 ⊗H2 ⊗ ...HN (1)

The state
∣∣Ψ(v1,..,vN )

〉
∈ H⊗N has a wavefunction representation which can

be described in terms of products of single-particle wavefunctions ϕ
n
(xi). It is

implicit that these products represent tensor-products as in (1), but for simplic-
ity they are denoted as regular products between functions.

The wavefunction of a one-particle state is usually defined by the scalar
product of an eigen-bra 〈x′| of the position-operator, and the ket |ϕn〉 which
represents the state in question.

ϕn(x′) = 〈x′| ϕn〉

The representation of an individual one-particle wavefunction ϕn(xi) in-
cludes two labels;

• The orbital label n points to a specific state in the one-particle Hilbert-
space.

• The particle label xi denotes a specific particle with index 0 < i ≤ N .

3.2 The anti-symmetric wavefunction
Fermions are a categorization of spin- 1

2 particles among which we find electrons
and positrons. One distinguishing property of fermions is the fact that their
quantum-mechanical wavefunctions are anti-symmetric with respect to inter-
change of two identical particles.[10]

This can be written formally as
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PijΨ(v1,..,vN )(x1, .., xi, .., xj , .., xN ) = −Ψ(v1,..,vN )(x1, .., xj , .., xi, .., xN )

where Pij denotes an operator which interchanges two identical particles
denoted by i and j.

Because of the anti-symmetry requirement a simple product of one-particle
wavefunctions cannot represent a fermionic wavefunction.

An anti-symmetric wavefunction can instead be described in terms of one-
particle functions using a Slater-determinant;

1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . ϕN (x1)
ϕ1(x2) ϕ2(x2) . . ϕN (x2)

. . . . .

. . . . .
ϕ1(xN ) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
= Ψk

(v1,...,vN )(x1, ..., xN ) (2)

Note that exchanging two indices in the total wavefunction equals the in-
terchange of two columns in the Slater-determinant. By the general proper-
ties of determinants this will give a factor −1 in front of the wavefunction.
Any many-fermion state could be described as a linear combination of different
Slater-determinants, since they can be shown to form a basis in the N -fermion
Hilbert-space.[10]

Each different Slater-determinant is built from a different set of one-particle
orbitals. Such a set is know as a configuration, a word which is common in the
nomenclature of atomic physics.

One should mention that labeling a Slater-determinant in terms of the one-
particle states (v1, ..., vN ) is somewhat insufficient. This is due to the fact that
a Slater-determinant only is defined to within a sign for a specified set of states.

In the following sections this unambiguity will however be treated in a
black-box manner, so that Slater-determinants are labeled by the included
states (v1, ..., vN ). It is then assumed that the Slater-determinant labeled by
(v1, ..., vN ) has a positive sign and that interchanging two particles gives a minus
sign.

3.3 Second-quantization
As noted in the beginning, second quantization is a formalism which allows a
handy description of many-particle systems.

The name second-quantization comes from the fact that a “second quanti-
zation” is performed on the classical dynamical variables like pi and qi. This
essentially means that these variables are reinterpreted as operators which obey
specific commutation-relations, which in turn quantize other operators, as for
example the Hamiltonian, in such a description. [11]
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Ladder-operators
Annihilation and creation-operators are central concepts in the second-

quantization formalism. They can be described as operators which map between
Hilbert-spaces of different particle numbers N so that;[10]

ak : H(N) → H(N − 1)
a†k : H(N) → H(N + 1)

(3)

For a specific function-basis Φ(v1,..,vN ) (x1, ..., xN ) =
{

Ψk
(v1,..,vN ) (x1, ..., xN )

}
in an N -fermion Hilbert-space one could define the action of the annihilator op-
erator ak in (3) on this basis as[10];

akΦ(v1,..,vN ) (x1, ..., xN ) ≡ 0, if k /∈ {v1,..,vN}
a†kΦ(v1,..,vN ) (x1, ..., xN ) ≡ 0, if k ∈ {v1,..,vN}
akΦ(v1,..,vN ) (x1, ..., xN ) ≡ (−1)

j−1
Φ(v1,..,vj−1,vj+1,..,vN ) (x1, ..., xN−1) if k = vj

a†kΦ(v1,..,vj−1,vj+1,..,vN ) (x1, ..., xN−1) ≡ (−1)
j−1

Φ(c1,..,cN ) (x1, ..., xN ) if k = vj
(4)

It is important to note that it is the definition of the basis Φ that determines
the action of the ladder-operators (3).

The effect of operator ak is interpreted as “annihilating” a particle in state
vk, while a

†
k “creates” a particle in state ck.

The Fock space
The description of a general N -fermion system was discussed in earlier sec-

tions. While this procedure might be fruitful for a system with a fixed number
of particles, it is somewhat less efficient for a description of a system with an
arbitrary number of particles. For such a system one might know the Hamil-
tonian for any number of particles and it would therefore be tempting to use a
formalism where one operator easily could be used for any number of particles.
This is where the concept of second-quantization proves to become handy.

I shall begin the discussion by defining a new space called the Fock-space[17]

Fv(H) =
∞
⊕
n=0

SvH
⊗n = C ⊗H ⊕ (Sv(H ⊗H))⊕ (Sv(H ⊗H ⊗H))⊕ ... (5)

where C denotes a state of no particles.
The operator Sv has an important role in this expression, since it represents

symmetrization or anti-symmetrization of the space. This essentially means
that the elements in the Fock-space can either be symmetric or anti-symmetric
with respect to interchange of two particle-labels.

The appearance of ladder operators a†k and ak in the Fock-space (5) is espe-
cially interesting. Since the Fock-space is a space which describes any number
of particles the ladder operators are now mappings within the space, instead of
operators mapping between different spaces.
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A general state in the anti-symmetric Fock-space can be labeled with a set
of indicies {c}, denoting the one-particle states which are used in expansion of
the state, for example; {c} = ν1, ν3, ν4, ν10

The complete position-spin wavefunction is then given according to;

ΨF
{c} (x1, x2..., xN ) = 〈x1, x2, ...xN |{c}〉

The set of indicies {c} are associated with the states of individual particles
and one can formulate a representation of the Fock-state |{c}〉 in terms of oc-
cupation numbers nν1 , nν2 ,.. These numbers represent the numbers of particles
in each one-particle basis-state denoted by νk. The supscriptions ν1,ν2,... are
generally reduced to 1, 2, ... so that a general state |{c}〉 = |ν1, ν2, ν4〉 is written
in the occupation-number formalism according to, for example:

|{c}〉 = |ν1, ν2, ν4〉 ≡ |11, 12, 03, 14, ...〉 (6)

The formalism in (6) can be summarized as according to the simple rules

ni = 0 if i /∈ {c}
ni = 1 if i ∈ {c}

where the index i in the set {c} denotes the state νi so that for example:

{c} ≡ {1, 2, 4}

Note that size of the set of occupation numbers n1, n2...nS in theory is
determined by the size, S, of the one-particle basis.

It is clear that this procedure always needs a specified one-particle basis, so
that the states in the occupation-number representation always are well-defined.

Going back to the discussion on the ladder-operators a†k and ak it is clear
that the occupation-number representation of states is especially convenient
when using ladder operators.

The action of these operators in the anti-symmetric Fock-space is defined
by[10];

ak |n1, ..., 1k, ...〉 = (−1)

24 P
j<k

nj

35
|n1, ..., 0k, ...〉

ak |n1, ..., 0k, ...〉 = 0

a†k |n1, ..., 0k, ...〉 = (−1)

24 P
j<k

nj

35
|n1, ..., 1k, ...〉

a†k |n1, ..., 1k, ...〉 = 0

(7)

The last of these relations is a direct testament of the Pauli principle, stating
that two identical fermions can not occupy the same quantum state at one time.
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The commutation and anti-commutation relations of ladder operators
in the Fock-space
An important state in the Fock-space is the vacuum state |01, 02, ...., 0S〉,

which describes a state with no particles given in terms of a one-particle basis
of size S.

All possible N -fermion states can be obtained by applying ladder operators
to this state according to

|{c}〉 = a†c1a
†
c2 ..a

†
cN |01, 02, ..., 0S〉

The features of the fermionic ladder operators a†k and ak can be summarized
in the so-called anti-commutation relations [11];

{al, ak} = 0{
a†l , a

†
k

}
= 0{

a†l , ak

}
= δlk

(8)

These relations can be said to define the symmetry of the wavefunctions and
the discussion on bosons can now proceed from the relations (8).

Just as for fermions the Fock space is ideal in order to describe a many-
particle state of bosons, which is also clear from the fact that the expression (5)
for the Fock-space also includes the possibility of a totally symmetric space.

The symmetrization of a many-boson wavefunction can be performed by
summing over all permutations of the particle-indicies in a simple product-
function.

Ψsym
(v1,...,vN )(x1, ..., xN ) ∝ ϕ1(x1)ϕ2(x2)ϕ3(x3).....ϕN (xN )+

ϕ1(x2)ϕ2(x1)ϕ3(x3).....ϕN (xN ) + ϕ1(x1)ϕ2(x3)ϕ3(x2).....ϕN (xN ) + ...

This bosonic wavefunction is know as a “permanent” and fulfills the sym-
metric requirement for the boson wavefunctions.

Having discussed the second quantization formalism in terms of fermions,
I will now only state the counterpart of the anti-commutation relations (8) as
they appear for bosons[11];

[bl, bk] = 0[
b†l , b

†
k

]
= 0[

bl, b
†
k

]
= δlk

(9)

These commutation-relations are a summary of the features of bosons in
second quantization and they describe the properties which we associate with
bosons, for example the fact the a single-particle state can hold any number of
identical particles.
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Operators in second quantization
The second quantization representation of single-particle and local two-particle

operators are given by [10] as;

Hsingle =
∞∑

i,j=1

〈i|h |j〉 a†iaj

Vtwo = 1
2

∞∑
ijkl=1

〈ij| v |kl〉 a†ia
†
jalak

with;

〈i|h |j〉 =
´
φ∗i (x)h (x)φj (x) dx

〈ij| v |kl〉 =
´ ´

φ∗i (x)φ∗j (x′) v (x, x′)φk (x)φl (x′) dxdx′
(10)

These operators are defined for the symmetric or anti-symmetric Fock-states
in the occupation number representation (6), but their action on an arbitrary
many-particle state gives the same results as the first quantization operators.

When the integrals (10) are performed for a given one-particle basis the
operators are completely defined, and can be used in the same form independent
on the number of particles in the quantum-mechanical system.

3.4 The configuration interaction method
The configuration-interaction method is commonly used in quantum-mechanic
simulations in for example atomic or other many-body systems. The main
idea is to extend the description of a system by introducing a basis of different
configurations in terms of the one-particle wavefunctions, so that eigenstates
can be described as linear combinations of these configuration-states.

A system of two interacting particles is of course different from a system
of two non-interacting particles in the sense that the interaction perturbs the
system where the one-particle states are eigenstates. In the configuration inter-
action method (CI-method), the one-particle states are used as a starting point
for the description.

The basic task is to find eigenvalues b and eigenstates of some operator B̂:

B̂ |b〉 = b |b〉 (11)

The equation (11) can be rewritten using the completeness relation which
states that for any complete set of eigenstates |a〉, the unit operator 1̂ can be
given in the bracket notation as[12];

1̂ =
∑
a

|a〉 〈a| (12)

One could then put equation (11) on the form:∑
a′

∑
a

|a′〉 〈a′| B̂ |a〉 〈a| b〉 = b
∑
a′

|a′〉 〈a′| b〉 (13)
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Since {a′} and {a} are chosen as sets of eigenstates for the same operator,
one defines |a′i〉 = |ai〉 so that the scalars 〈a′i| b〉 and 〈ai| b〉 become equal and
relation (13) turns into a matrix-equation:


〈a′1| B̂ |a1〉 〈a′1| B̂ |a2〉 . .

〈a′2| B̂ |a1〉 .
. .
. .



〈a1| b〉
〈a2| b〉
.
.

 = b


〈a1| b〉
〈a2| b〉
.
.

↔ Bvb = bvb

(14)
Finding the eigenstates of B̂ in terms of the a-basis now reduces to diago-

nalizing the matrix in (14).
This matrix is in principle infinitely large since the complete basis {a} gen-

erally has infinitely many orthogonal states Truncation of the description is
therefore required.

A limited set of basis states will generally not describe the proper eigenstates
but depending on the chosen set it may be a good or a bad approximation.

In many cases the truncated basis set is chosen by applying the variational
method. The variational method rests upon the theorem〈

0̃
∣∣H ∣∣0̃〉〈
0̃
∣∣ 0̃
〉 ≥ E0 (15)

which states that for any arbitrary state
∣∣0̃〉, the normalized expectation

value of the Hamiltonian is always larger than the proper ground state |0〉[14].
Using the Hylleraas-Undheim theorem [18] the relation (15) can be general-

ized to excited states, so the variational method also can be applied for other
states than the ground state.

Expanding the state
∣∣0̃〉 in terms of basis states |a〉, one will get a lower

expectation value by including a larger basis set. Depending on the physical
quantities one wishes to asses, the convergence of eigen energies is often used to
determine the sufficient set of basis functions |a〉.

There are different ways of performing the truncation for a basis of many-
particle states, and one of the more common methods is the energy-cutoff. In
this approach the non-interacting many-body Fock-states are cut from the basis
depending on their energy, so that the high-energy Fock-states are not included
in the description of the low-energy perturbed states.

Another possibility is to truncate the basis depending on the energies of
the one-particle states, so that one cuts out all one-particle energy-states over
some specific energy. From the specified set of one-particle states all possible
many-body Fock-states are then retrieved and used as a basis. [14]
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4 Model-Hamiltonian for the quasi one-dimensional
harmonic system

In this project I will look at systems modeled by a three-dimensional harmonic
trap according to

Vtrap(r) =
m

2
[
ω²z² + ω2

⊥ (y² + x²)
]

(16)

where ω and ω⊥ are the trap frequencies in the “axial” z-direction and in the
“transeverse” xy-plane, respectively.

The basic Hamiltonian for kinetic and potential energy is then:

H =
p2
z

2m
+
p2
⊥

2m
+
m

2
[
ω²z² + ω2

⊥ (y² + x²)
]

(17)

The Schrödinger-equation for such a Hamiltonian is separable, so the energy-
eigenfunctions can be written a products of functions Ψz(x) and Ψ⊥(x, y). The
energy is then given as E = Ez +E⊥, and for the standard harmonic-oscillator
energy-eigenvalues this becomes:

E = ~ω
(

1
2

+ nz

)
+ ~ω⊥ (1 + n⊥) (18)

Choosing the trap-frequencies so that ω << ω⊥, the perpendicular directions
will have a much stronger confinement than the axial direction and the trap
become “cigar-shaped”.[21]

Transitions between “axial states” now happen on a different energy-scale
than transitions for the “perpendicular states”, and the system can therefore be
said to be quasi one-dimensional.

Assuming that the particle-energies are small one can assume that the per-
pendicular system always is in the ground state, so that small perturbations in
the system only cause mixing between axial states.

The low-energy wavefunctions of the total quasi one-dimensional system are
then written according to

Ψlow−E =
∑
nz

cnzΨ
nz
z (x)Ψgs

⊥ (y, x) (19)

where it is assumed that the excitations between the axial energy-eigenfunctions
Ψnz
z (z) involve much smaller energies than excitations from the perpendicular

ground state. [23]
The quasi-one-dimensional system can now be described by an effective one-

dimensional potential given according to

V 1d(z1−z2) =
ˆ
V 3d(r1−r2) (Ψgs

⊥ (y1, x1))2 (Ψgs
⊥ (y2, x2))2

dy1dy2dx1dx2 (20)

where implementation of the ground state of the two-dimensional harmonic-
oscillator Ψgs

⊥ (y, x) = 1
l⊥
√
π
e−(y²+x²)/(2l2⊥) gives the formula:

15



V (z)1d =
1

2l2⊥π

ˆ
V 3d(r)e−(y²+x²)/(2l2⊥)dydx (21)

with l⊥ =
√

~m/ω⊥.
Here the coordinates were transformed according to r1 = R − r/2 and

r2 = R + r/2 so that the integration first is performed over the centre-of-mass
coordinates Y and X.[21]

The interaction expression (21) is now given in relative coordinates, some-
thing that is especially suitable for interaction-potentials since the relative dis-
tance between particles determines the strength of the force.
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5 The electric dipole field
In this project I will in particular investigate quasi one-dimensional systems of
dipole-dipole interacting particles, and some discussion on this interaction is
needed.

The derivation of the classical electric-dipole field can be found in many
textbooks on fundamental electromagnetism and it is an important concept
for both applications and theoretical understanding of electrostatics. In this
derivation of the classical dipole field I have chosen to follow the route of [16],
and the figures which I use for explanations are similar to the ones found in this
book.

In this derivation I will not deal with the concept of the delta term which
in [1] appears as a “balancing” term in the dipole-field, added in order to get a
consistent answer from relations such as volume integrals over spheres without
internal dipoles. The delta term is said not to contribute to the field away from
the site of the dipole, and in this derivation I will therefore omit this discussion.
I will however return to the subject of the delta term at a later point in order
to discuss the topic in a more mathematical fashion.

The dipole field generally appears as an approximation of more complex
fields and it is often defined as the second term in the multipole expansion of a
field[1]. In most physical situations the dipole-field is indeed an approximation,
since the origin of a physical dipole-field generally is a set of point-particles. In
the case of an ideal dipole the point-particles can however, as will be described
in later sections, be thought of as infinitely close to each other, which intuitively
seems to make the approximation of the dipole-field valid at any finite distance
from the source.

The starting point of the dipole-field expression is depicted in figure (3)
where a system with two point-charges +q and −q is shown. The potential at
a point r is given as a superposition of the individual Coulomb-potentials from
the two point-charges:

Φ (r) =
q

4πε0 |r1|
− q

4πε0 |r2|
(22)

r1 and r2 can also be given in terms of r and d according to:

|r1| =
∣∣r − 1

2d
∣∣ =

√(
r2 + d

2

4 − d · r
)

= |r|

√(
1 + d

2

4r2
− |d||r| cosβ

)
|r2| =

∣∣r + 1
2d
∣∣ =

√(
r2 + d

2

4 + d · r
)

= |r|

√(
1 + d

2

4r2
+ |d||r| cosβ

)
For distances |r| >>

∣∣d∣∣ the expression for the dipole (22) can be approxi-
mated using Maclaurin-expansions for the fractions 1

r1
and 1

r2
[16].
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Figure 3: Sketch of a classical dipole as seen in [16]

(
1 + d

2

4r2
− |d||r| cosβ

)−1/2

≈ 1− d
2

8r2
+ |d|2|r|cosβ(

1 + d
2

4r2
+ |d||r| cosβ

)−1/2

≈ 1− d
2

8r2
− |d|2|r|cosβ

When inserting these approximations into the expression (22) the formula
reduces to:

Φ (r) =
q

4πε0 |r1|
− q

4πε0 |r2|
≈ q

4πε0 |r|

(∣∣d∣∣
|r|
cosβ

)
=

qd · r̂
4πε0 |r|2

A common definition is also the dipole moment p = qd. For a charge-
distribution ρ(x) instead of two point-particles, a more general definition of the
dipole moment is given as:

p =
ˆ
x′ρ(x′)d³x′ (23)

In [1] this quantity appears as a coefficient in the expansion of a potential
Φ(x) in terms of spherical harmonics, where (px− ipy) and pz are coefficients of
the spherical harmonics Y1 0(β, φ) and Y1 1(β, φ), respectively. In the same way
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the coefficient for Y0 0(β, φ) is given as
´
ρ(x)d³x, which can be interpreted as

the total charge q.
Using the dipole moment p, the potential of the dipole is then given as:

Φ (r) =
p · r̂

4πε0 |r|2
(24)

The dipole-field is now derived from the potential using the relation; E =
−∇Φ. This is most easily done by applying the spherical form of ∇

∇Φ =
(
∂Φ
∂r

,
1
r

∂Φ
∂β

,
1

rsinβ

∂Φ
∂φ

)
(25)

and the components of the dipole-field are then given as:

Er = 2|p|cosβ
4πεor³

Eβ = |p|sinβ
4πε0r3

Eφ = 0
(26)

This can be generalized for a dipole at any point of origin r0 and rewritten
using the vectors p and r̂, where r̂ is a unit vector in the direction from the
dipole at x0 to the point x. [1]

E(x− x0) =
3r̂ (p · r̂)− p

4πε0 |x− x0|3
(27)

5.1 Energy of a dipole in an external field
In order to evaluate the force acting on a dipole in an external field one can
follow the path taken in [1], where one first calculates the electrostatic energy
W of a localized charge distribution ρ(x) in a potential Φ(x).

W =
ˆ
ρ(x)Φ(x)d³x (28)

Providing the charge distribution ρ(x) extends over a small enough region, so
that the potential Φ(x) only varies slowly over it, one could expand the potential
around a point x0 according to

Φ(x) = Φ(x0) + x · ∇Φ(x0) + ...⇐⇒
Φ(x) = Φ(x0)− x · E(x0) + ...

(29)

(Here the relation E = ∇Φ was used.)
Inserting this into the energy expression (28) one gets:

W =
´
ρ(x)

(
Φ(x0)− x · E(x0) + ...

)
d³x

= Φ(x0)
´
ρ(x)d³x− E(x0) ·

´
x ρ(x)d³x+ ...

(30)

Using the definition of the dipole moment (23) and the expression for total
charge q, one can rewrite (30) as:
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W = qΦ(x0)− p · E(x0) + ... (31)

One could now imagine a system where the external potential Φ(x) can be
approximated by the first two terms of the expansion (29), and where the local
charge distribution ρ(x) gives zero net charge.

The electrostatic energy of such a system could then be given solely in terms
of the dipole energy according to:

W = −p · E(x0)

In the case of a quantum-mechanical system where the dipole moment is
represented by a quantum-mechanical object in a state Ψ, one naturally has to
find the expectation values of the energy by integrating over possible points of
origin x0 for the dipole;

Wexp =
ˆ

Ψ∗(x0)
(
−p · E(x0)

)
Ψ(x0)d³x0 (32)

It is important to note that the handling of the entire dipole as a particle with
a wavefunction Ψ is an approximation which assumes that the binding forces
within the dipole acts on a higher energy scale than the interaction between
the entire dipole and the external field. If this approximation was not valid the
charge distribution ρ(x) would need to be resolved into its constituent parts, so
that the quantum-mechanical system could describe the internal properties of
the “dipole” as well.

5.2 The ideal dipole
The followings sections contain discussions on dipole-dipole forces between ideal
dipoles and I firstly give some different reasons why this situation is especially
important.

• The features of ideal dipole-fields can in some cases be confusing, so a
summary on the mathematical theory might highlight the relevance of
certain properties of point-dipoles.

• It might be possible to create rewarding approximations for systems of
non-ideal dipoles by starting from expressions derived for ideal dipoles.

• The program used in all my results was set up for ideal dipoles, so the
calculations themselves are in all cases valid for particles which actually
are ideal dipoles. In such calculations the details of the dipole-dipole force
becomes very important in order to properly describe the physical system,
so an investigation of the interaction is necessary.

It should be noted that when simulating molecules and atoms the ideal dipole
model fails as an approximation for certain parameters of these simulations,
and it will be seen that the details of the dipole-dipole force therefore become
redundant in the actual simulations of such particles.
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Definitions of an ideal dipole tend to differ slightly between sources. One will
often find it described as a limit of two opposite point-charges moving infinitely
close to each other[16]. This is a fairly intuitive definition, but for our purposes
it is better to define the ideal dipole as the derivative of a point charge density
ρpoint.

This process is well-described in [5]. Using certain “generalized derivatives”
on limiting functions for the delta distribution δ3(r̄) it is possible to show that
the intuitive definition of a dipole in [16] can indeed be represented by a deriva-
tive. An ideal dipole taken in the z-direction can be properly described as
in (33), where p denotes the constant dipole moment and ∂

∂z is a generalized
derivative.

p̄dip(r̄) = −p∂δ
3(r̄)
∂z

(33)

In [5] T.B. Boykin also shows that this distribution, when properly applied
to Maxwell’s equations, gives back the field of a dipole as described in [1].

5.3 Discussion on the ideal model
When discussing charge distributions as in the previous sections, it is clear
that a system of two interacting dipoles has to be handled very carefully. The
approximations for both the dipole-potential and the energy of a dipole in an
electric field are heavily dependent on the assumption that the dipoles are “very
far” apart. The electric-field from a dipole is, as noted before, generally an
approximation which is valid at large distances. Also, the energy of a dipole
in an external field needs to be derived assuming that the field-strength varies
very slowly over the dipole.

Clearly the relevant length scales in these kinds of expressions are dependent
on the size of the dipoles themselves, and it is therefore important to investigate
how things look if the dipoles are expressed as points in space.

Assuming an infinitely small dipole as the source of an electric field, it is
clear that the ideal-dipole field can be used to describe the field-strength at all
distances 0 < |x| from the source.

One should however keep in mind that the infinitely small dipole is expressed
in terms of a limit, and that a field-strength evaluated infinitely close to the
source must also involve a limit for the distance. It should be remembered that
the limit for the size of the dipole always must be performed before the limit for
the distance |x|.

The ideal dipole model may be useful in approximation of physical situations,
but it also brings forward some mathematical ambiguities which have to be
investigated. One should take special care when discussing physical situations
in terms of the ideal-dipole model, since the ambiguities for the ideal dipole field
will not necessarily be relevant for physical situations. In later sections I will
however look at one example where the special features of the ideal dipole gives
a clear contribution to the physical quantities.
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5.4 Problems when handling point sources
Since the distribution of an ideal dipole is a delta distribution, the source of
a dipole field will be a single point in space, and one could therefore expect
spherical coordinates to be a good choice when describing the field.

Although spherical coordinates simplify the field expressions it is necessary
be careful when handling Maxwell’s equations for point sources in this manner
[4].

As an example one can look at the Laplace operator, ∇2, applied to the func-
tion 1

r , where r is a spherical coordinate. One can evaluate this by integrating
the expression over a sphere of radius R over the origin,

´
∇2
(

1
r

)
d3r̄ =

´
∇ ·
(
− r̄
r3

)
d3r̄

=
¸
S

(
− r̄
r3

)
· dS̄ = −4πR2

R2 = −4π (34)

where the divergence theorem has been used in the beginning of the second
line.

By the integral representation of the three-dimensional delta function δ3(r̄)
we therefore have;

∇2

(
1
r

)
= −4πδ3(r̄) (35)

One might raise the question if this result can be achieved by some other
procedure, not making use of the divergence theorem. In order to find an electric
field from Gauss’ law of electricity it is tempting to rewrite the nabla operator ∇
in spherical coordinates, so that one can use the spherical form of the Laplacian.
This is done in [4] where S.Blinder shows that the use of this type of Laplacian
in (35) does not give the expected delta function at the origin.

Since the spherical form of the Laplacian does not seem to give the proper
result in the Poisson equation (35), one might ask if electric and magnetic fields
derived in this manner are incorrect.

The answer to this question is generally yes, unless special care is taken in
order to obtain the behavior of the fields at the point of the source.

In the literature this problem is handled in many different ways; In [4]
S.Blinder modifies the radial potential by a sign function, giving an infinite
derivative at the origin so that the delta source is obtained from Poisson’s equa-
tion. In sources [7] and [8] Colombeau generalized functions are used to catch
the behavior of fields at the source-points, but for my discussion on ideal dipole
fields I have chosen to follow the procedure used in [6] where R. Skinner and
J. A.Weil use the concept of generalized functions. The concept of generalized
functions is discussed in the appendix (14).
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5.5 Derivation of the ideal-dipole field
A common expression for the potential for an ideal electric dipole is:

Φdipole(r̄) =
1

4πε0
· p̄dipole · r̄

r3
(36)

This potential is a classical function of position, so it is not suitable for
describing an ideal dipole potential.

A generalized potential is instead suggested by [6], defining the generalized
function gΦdipole from <g Φdipole | τ > for all smooth test functions τ . The
assignment of values for <g Φdipole | τ > is in this case defined as below, with
the dipole moment µ̄ chosen in the z-direction. The integrals in the definition are
volume integrals over the sphere S, where the test functions τ always disappear
outside S.

< gΦdipole | τ >≡
ˆ

S

p̄dipole · r̂
4πε0

τ dr dΩ =
| p̄dipole |

4πε0

ˆ

S

cosβ τ dr dΩ (37)

This is a solution to the generalized Maxwell’s equations for a point-dipole
source, and it can now be used to find the electric field.

The generalized electric field for the dipole is found from the equation:

<g Edipole | τ >= − < ∇ [gΦdipole] | τ > (38)

Using (67) this becomes;

<g Edipole | τ >=<g Φdipole | ∇[τ ] > (39)

The assigned values for <g Φdipole | τ > where defined through (37), and
since ∇[τ ] is still a smooth test function one can find the assigned values for
<g Edipole | τ >;

<g Edipole | τ >=
| p̄dipole |

4πε0

ˆ

S

cosθ∇[τ ] dr dΩ (40)

One can extend the concept of the test function by defining components τi,
and allowing a tensor-field (gEdipole)i. The scalar-product is then defined in the
usual way; gĒdipole · τ̄ = (gEdipole)iτi, where Einstein’s summation method is
implicit. This extension allows a discussion in more than one dimension, where
until now the ∇-operator has been defined in one dimension as; ∇ · F = d

dxF .
Now (40) can be extended to

〈
gĒdipole |·τ̄〉 =

| p̄dipole |
4πε0

ˆ

S

cosβ ∇̄ · τ̄ dr dΩ (41)

where the dot inside the braket indicates a scalar product between the vector-
field and the generalized vector-function τ̄ .
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Switching to spherical coordinates one obtains; (see [6] for details)

〈
gĒdipole |·τ̄〉 =
|p̄dipole|

4πε0

´
S

(
∂(τr cosβ sinβ)

∂r + 2 τrr cosβ sinβ + sin2β
r τβ

)
dr dβ dφ (42)

In this expression I have removed terms that amounts to zero after integra-
tion over all angles.

Now, the first of the three terms in (42) is the only one which could actually
be evaluated in the limit r → 0, and for this term we perform the integral in r
and then integrate over all angles. This is allowed since we know that ∇̄ · τ̄ is
continuous through the origin.

´
S

∂(τr cosβ sinβ)
∂r dr dβ dφ =

´
Ω

∞́

0

∂(τr cosβ sinβ)
∂r dr dΩ

=
´
Ω

cosβ sinβ [τr]
∞
0 dΩ =

´
Ω

cosβ sinβ
(
lim
r→0

τr

)
dΩ

(43)

Note that the value at r →∞ disappears since τ̄ is defined to vanish at this
limit.

Since the test-function τ̄ is continuous at the origin, one could rewrite the
limit in (43) as;

lim
r→0

τr = τx |r=0 sinβ cosφ+ τy |r=0 sinβ sinφ+ τz |r=0 cosβ

This limit is used since the component τr cannot be defined in the origin,
even though the value τ |r=0 is well-defined.

Inserting this into (43) and integrating over the sphere Ω gives;

π/2´
−π/2

2π́

0

cosβ sinβ (τx |r=0 sinβ cosφ+ τy |r=0 sinβ sinφ+ τz |r=0 cosβ) dφ dβ

= 2π
1́

−1

− τz |r=0 cos2β d(cosβ) = −4π
3 τz |r=0

(44)
The dipole moment p̄e was defined to lie along z, so one could simply rewrite

−4π
3
|p̄dipole|

4πε0
τz as;

p̄dipole · τ̄
−3ε0

(45)

By symmetry this will hold for any initial direction of the dipole, as one
always can define it to lie in the z-direction and choose to perform the integrals
in the way it is done in the above.

Now, the remaining parts of the integral (42) are not evaluated, but kept in-
side the integral. This integral has to be evaluated using a limit for r → 0, so this
condition is now implemented as a “rule” for assigning values to

〈
gĒdipole |·τ̄〉.
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This must be the case since the total integral used in the rule for (37) have been
split into terms for r = 0 and r > 0.

The total expression for
〈
gĒdipole |·τ̄〉 can now be written down as

〈
gĒdipole |·τ̄〉 = |p̄dipole|

4πε0

[´
S

1
r sinβ(2 τr cosβ + τβ sinβ) dr dβ dφ− p̂dipole · 4π

3 τ̄ |r̄=0

]

= 1
4πε0

[´
S

1
r3 (2cosβ | p̄dipole | τr + sinβ | p̄dipole | τβ) d3x− p̄dipole · 4π

3 τ̄ |r̄=0

]

= 1
4πε0

[´
S

1
r3

(
2
(
pdipole · r̂

)
r̂ + sinβ | p̄dipole | β̂

)
· τ̄ d3x− p̄dipole · 4π

3 τ̄ |r̄=0

]

= 1
4πε0

[´
S

1
r3 (2 (p̄dipole · r̂) r̂ − (p̄dipole − (p̄dipole · r̂) r̂)) · τ̄ d3x− p̄dipole · 4π

3 τ̄ |r̄=0

]

= p̄dipole
4πε0

[´
S

1
r3 (3r̂r̂ − 1) · τ̄ d3x− 4π

3 τ̄ |r̄=0

]
(46)

where some indermediate steps are added to the basic calculation performed
in [6].

Figure (4) can be used to explain the step between the third and fourth line
of the equation, by noting that β̂ is perpendicular to r̂.
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Figure 4: Relation between r̂perp(u sinβ) and u− u · r̂ (46)

The expression (47) is now a mathematically consistent expression for the
electric field of an ideal dipole. It should be remembered that the rule for
assigning values to <g Ēdipole | .τ̄ > also includes the condition that the integral
in the last line of (46) always has to be evaluated in the region ε < 0 and that
the limit ε→ 0 is then taken.
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〈
gĒdipole |·τ̄〉 =

p̄dipole
4πε0

ˆ
S

1
r3

(3r̂r̂ − 1) · τ̄ d3x− 4π
3
τ̄ |r̄=0

 (47)

The classical expression for the field of an ideal-dipole
In many sources on electromagnetism, for example [1], a symbolic expression

for the ideal dipole-field is used.
This symbolic expression can be obtained from the generalized field (47) by

molding it into a classical expression;

Edipole =
1

4πε0r3

[
(3r̂ (p̄dipole · r̂)− p̄dipole)−

4π
3
p̄dipoleδ

3(r̄)
]

(48)

The classical expression obscures the fact that the field is a generalized ex-
pression, and that there are requirements for the test-functions which are used.
It is however often handy to use this expression since it give a more intuitive
picture of the field, but also since it gives cleaner calculations when dealing with
simple problems. When using the expression in the limits r → 0, one should
however always keep in mind that it is a generalized function, and that proper
derivations of quantities related to the field must be calculated from the real
expression.

5.6 interaction energy between two point-distributions
Having obtained a mathematically consistent expression for the field strength
from an ideal dipole, one might wonder if it is possible to obtain an expression
for the interaction energy between two ideal dipoles.

This would require products between generalized functions, since both dis-
tributions are point like. Such products are unfortunately not possible to define
in a consistent manner [6], but the problem can still be dealt with by separating
the calculations into two different scenarios;

• The distributions are point like and separated.

• The distributions are not separated, but one of them is not point like.

An example of this method is given in [6], where the hyperfine interaction be-
tween a point electron and a point nucleus is calculated.

The interaction energy for a system with a magnetic field B(x) interacting
with a magnetization density M(x) is given by;

Wm = −
ˆ
B(x) ·M(x) d3x

Assuming the field B(x) has a point-source it must be described in terms of
a generalized function gB, so by using M(x) as a test function one can define
the energy through the number:
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Wm = −
〈
gB
∣∣ ·M〉 (49)

Now the problem with two point sources becomes apparent; since a test-
function has to be smooth one cannot chooseM to be a point distribution when
calculating values for Wm.

In [6] the problem is dealt with by letting an electron s-wave density distri-
bution |Ψs(x− xe)|2 describe the the magnetization-density M so that;

M(x− xe) ∝ |Ψ(x− xe)|2 =
α³
8π
e−α(x−xe)

Using generalized functions for the magnetic field B it can be shown that
the energy for the system has a mathematically consistent formulation, and the
energy for the hyperfine interaction between a point nucleus and a magnetization
density M ∝ α³

8π e
−α(x−xe) will be dependent on α.

Wm ∝ α4

ˆ
F (x, xe)e−αred3x (50)

Here F (x, xe) is a function dependent on the integration variable x and the
electron position xe, but also on the nuclear and electronic spin operators.

The main point of the relation (50) is however the dependence on α, since
this factor determines how the distribution M(x − xe) looks. The integral in
(50) is now only part of the expression for the energy, and the limit α → ∞
can therefore be taken inside the integral. This would not be allowed for the
quantity (49) since it would mean that M was not a valid test function, but
having obtained the expression for the energy with the condition that |re| > 0
it is now just a matter of handling the integral itself. [6]

The choice for the magnetization M(x− xe) ∝ |Ψ(x− xe)|2 = α³
8π e
−α(x−xe)

now seems very handy. The expression gives unity when integrating over all
space and for α → ∞ the expression vanishes at all points expect the origin.
These properties can be said to define a delta-function [7], so the integral is now
easily evaluated.

Evaluating the integral with α→∞ and|re| > 0 gives an energy expression
which is not proportional to α.

Wm, |re|>0 ∝
1
|r|3

(51)

This energy is in fact the common expression for the electric dipole interac-
tion between an electron and a nucleus at different positions.

In the case where the distance |re| between the electron and nucleus is equal
to zero the integral in (50) must be evaluated in a different manner. Having
both |re| = 0 and α → ∞ would give a divergent integral, so α must be kept
finite.

The energy-expression for |re| = 0 and finite α is now obtained by evaluating
the integral, and it turns out that it depends on α.
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Wm, |re|=0 ∝ α³

Now one is left with two expressions for the magnetic interaction energy of
the electron and nucleus, and the derivation should be performed in a similar
way for any situation involving the energy of two interacting point-like objects.
The weakness of this formalism is naturally that the calculations always must
be performed with a smooth test function, which will give a dependence on
parameters like α for the energy expression at certain points. It is however
satisfying that such derivations for the energy expression are mathematically
correct, and that ambiguous features of point particles are handled correctly.

Looking at the expressions for the interaction energy one could argue that
they behave like the symbolic expressions for the dipole field (48). Choosing
α→∞ for Wm, |re|=0 will naturally result in an expression which gives infinity
at just one point, but this is not enough to define a delta function. However,
the behavior itself suggests that the delta function which often appears in “bad”
derivations of interaction energies actually has some relevance. Therefore I will
use the classical expression in this “bad” manner, and find a simple expression
for the energy between two dipoles. It is however important to note that the
excistance of the delta function in the classical expression is only made plausible
by the derivations in the above, it is not actually proved!

Classical expression for the interaction energy between two ideal
dipoles with aligned dipole moments
Remembering the final words of the last section I use the dipole-field given by

[1], and apply it to the second term in the expression for the interaction energy
(31) according to:

W (x0) = −p2 ·E(x0) = −p2 ·

[3r̂ (p1 · r̂)− p1

4πε0 |x0|3

]
|x0|>0

− 1
3ε0

p1δ
(3)(x0)

 (52)

Assuming that p1 = p2 = p (aligned dipole moments) the expression reduces
to

W (x0) = −

[
d² (3cos²βrd − 1)

|x0|3

]
|x0|>0

+
4π
3
d²δ(3)(x0) (53)

where βrd denotes the angle between the vector r̂ and the dipole moment p,
and the interaction coefficient d is defined through; d² = |p|²

4πε0
.

This expression for the energy will now be used in the following, but the
ambiguity of the delta term must always be remembered.
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5.7 The quasi one-dimensional electric dipole-dipole in-
teraction

Having highlighted the analytic problems the expression (48), it is still valuable
to use it as a starting point when discussing dipole-dipole interaction in one
dimension.

Section (5.6) ended with a somewhat sloppy expression for the interaction
energy of two ideal dipoles with their dipole moments aligned, but I will use
this as a starting point for the dipole interaction in one-dimensional systems.
Such a system is pictured in figure (5) where it is understood that the z-axis is
parallel to the axial direction of the trap.

V 3D
DDI(r̄) =

[
d2

r3

(
1− 3cos2βrd

)]
r>0

+
4π
3
d2δ(3)(r̄) (54)

(As discussed before the function is in itself incorrect, but it can still be used
in physical simulation.) The ambiguity of this expression lies in the second term,
which only gives a contribution at |r| = 0. For physical models involving spin-
polarized fermions this term will therefore not have an effect due to the Pauli
principle which states that two spin-polarized fermions with the same quantum
numbers cannot be found at the same place. For bosons one can use both terms
to perform calculations, but it is important to remember that the results which
show strong influence by the second term will indeed be based on an ambigous
expression for the dipole force.

The second term of the equation will be referenced as the dipole delta in this
project, and its existence has been discussed in the previous sections. The first
term is defined, in the relative coordinates, everywhere outside the origin and
could in principle be used without any problems. Some ambiguity can however
be found when using this expression in order to look at low-dimensional systems,
and I will therefore go through the calculation of the quasi one-dimensional force
obtained from (54).

The first term is defined for all r ≥ 0 but it is important to note that it will
not give uniform convergence for the limiting function f(x, y) = lim

n→∞
fn(x, y)

with fn(x, y) = V 3D
DDI(x, y, z = 1

n ). This fact is a clear weakness of the formula
and will be seen to give rise to ambiguities when discussing one-dimensional
systems.
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Figure 5: Sketch of two aligned dipoles in three-dimensional space

Parts of the following derivation was also performed in [21],[39] and [38].

As was shown in section (4), one could for circularly symmetric harmonic-
trap use the Riemann-integral to obtain an effective one-dimensional potential
for the transverse ground state.

Using cylindrical coordinates r = (%cosϕ, %sinϕ, z) the integral in (21) can
be transformed into

V1D(z) =
1

2πl2⊥

2π̂

0

dϕ

∞̂

0

d%% V 3D
DDI(%cosϕ, %sinϕ, z) e

−%2/(2l2⊥) (55)

where the dipole angle θ is the angle between the axial direction of the
one-dimensional system, the z-axis, and the dipole moments of the particles.

Evaluating the first term, V 3DT1, of the expression V 3D
DDI(%cosϕ, %sinϕ, z)

one finds. (See appendix for details)

V T1
1D (z) =

d2

4l3⊥
(1 + 3cos2θ)

∞̂

0

dww
w2 − 2z2

(w2 + z2)5/2
e−w

2/2 (56)

Using Matematica the primitive of the integrand in (56) is found and the
expression for V T1

1D (z) becomes;
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V T1
1D (z)/D(θ) =

−2
[

e−
w2
2

2(z2+w2)3/2

(√
2π
(
−
(
z2 + 1

) (
z2 + w2

)3/2)
e

1
2 (z2+w2)erfc

(√
z2+w2

2

))
−2 e−

w2
2

2(z2+w2)3/2

(
z4 + z2w2 + w2

)]
where D(θ) = − d2

8l3⊥
(1 + 3cos2θ). Taking the limits for the primitive func-

tion, P , one finds:

V T1
1D (z)
D(θ) = −2

[
lim
w→∞

P − lim
w→0

P
]

= −2
(√

2π(−(z2+1))e
1
2 z

2

2 erfc
(
z√
2

)
− 2z

)
+ 0

⇐⇒ V T1
1D (z)
D(θ) =

(√
2π
(
z2 + 1

)
e

1
2 z

2
erfc

(
z√
2

)
− 2z

)
(57)

Now, the dipole delta-term, V 3DT2, in (54) should also be integrated to find
the total effective one-dimensional interaction. The calculation is performed in
the appendix so only the result is given here.

V T2
1D (z1 − z2) =

2d2

3l2⊥
δ (z1 − z2)

The total effective one-dimensional electric dipole-dipole interaction V1D =
V T1

1D + V T2
1D can now be written according to;

V1D(z) = D(θ)
(√

2π
(
z2 + 1

)
e

1
2 z

2
erfc

(
z√
2

)
− 2z

)
+

2d2

3l2⊥
δ (z) (58)

with z = z1 − z2.

Possible pitfalls during the calculation
Having found an expression for V T1

1D (z) using Matematica it is now time to
discuss how the integral (56) should be handled in general. In the beginning
of section (5.7) I noted that the limiting function f(x, y) = lim

n→∞
fn(x, y) with

fn(x, y) = V 3D
DDI(x, y, z = 1

n ) was not uniformly convergent. This in an impor-
tant fact when it comes to evaluating the integral (56), since one needs to think
about in what order one is to take the limits. In order to solve the improper
integral (56) one could for example define

f(w, z, ε) =

∞̂

0

dww
w2 − 2z2

(w2 + z2 + ε2)5/2
e−w

2/2 (59)

and argue that lim
ε→0

f(w, z, ε) =
∞́

0

dww w2−2z2

(w2+z2)5/2
e−w

2/2. Now lim
ε→0

f(w, z, ε)

describes an integral which is only improper for the limit w → ∞, and by
rearranging one gets;
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f(w, z, ε) =

∞̂

0

dww
w2 − 2

(
z2 + ε2

)
(w2 + z2 + ε2)5/2

e−w
2/2 + 2ε2

∞̂

0

dww
e−w

2/2

(w2 + z2 + ε2)5/2

(60)
Now, evaluating the first term and taking the limit ε → 0 gives the same

answer as the integral (57). The primitive function of the second term, fT2, is
found using Matematica so the integral of this term becomes;

IT2(z, ε) =
e−

w2
2

6(z2+w2+ε2)3/2

(√
2π
(
z2 + ε2 + w2

)3/2
e

1
2 (z2+ε2+w2)erfc

(√
z2+ε2+w2

2

))
+2
(
w2 + z2 + ε2 − 1

)]∞
0

Now we want to look at the behavior of the second term in (60) when z
becomes very small, so we naively choose z2 = ε2 and let both variables go to
zero. The upper limit of the primitive function will amount to zero, but for
w = 0 the second term gives;

IT2(ε2 = z2) =
1

12ε3

(√
2π2ε3eε

2
erfc (ε) + 2(2ε2 − 1)

)
(61)

Taking the limit lim
ε→0

2ε2IT2 we get;

lim
ε→0

IT2 = lim
ε→0

ε2

3ε3

(√
2πε3 + (2ε2 − 1)

)
= lim
ε→0
− 1

3ε
= −∞

so that;
lim
ε→0

I = −lim
ε→0

IT2 =∞

Clearly this is a problem, since the first calculation gave a different result.
This behavior can itself be understood by noting that when changing the con-
dition z2 = ε2 to z =

√
ε the second term becomes zero:

lim
ε→0

IT2 = lim
ε→0

ε1/2

6
(2ε2 − 1) = 0

In this case it is clear that in the limit ε→ 0 the z-variable is chosen so that
it goes to zero infinitely much slower than ε, since

√
ε >> ε for small values of

ε.
Due to the uniform-convergence issue discussed earlier, one gets different

results depending on in what order one chooses the terms to go to zero. Letting
the variable z go to zero before ε gives very different results than the reverse,
and in this way it is possible to perform derivations which actually give a delta
function for z, so that the result (57) is modified by a angular-dependent delta
term.

Such a term can be shown to have large effects on the results of simulations
with one-dimensional dipole-dipole interaction, so it is important to establish
how one should deal with the problem.
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There are a few basic reasons on why one should not expect an angular
dependent delta term for the one-dimensional dipole-dipole interaction:

• The expression V 3DT1
DDI (r̄) =

[
d2

r3

(
1− 3cos2βrd

)]
r>0

is not defined at zero,
so it does not make sense that this expression contributes with a delta
term at zero for the effective potential.

• When defining the effective potential one wants an expression which is
dependent on the distance z, and before looking at any limits of this
expression one should make sure that it indeed is the expression we want.
If the expression itself is defined through a limit, one should of course
perform this limit before using the expression. One has to decide whether
to choose a value for z and then finding the energy of the system, or to
find an expression depending on z which is evaluated at a later point. One
should of course expect infinite energy when one is deciding that z = 0 and
that the two dipoles lie in the harmonic ground state in the perpendicular
directions, but this fact cannot be used in an expression for z. Taking the
limits of the transverse integral inside the limit of z is therefore very bad
practice, and finding an angular-dependent delta term is a consequence of
this.

5.8 Asymptotic expansion of effective dipole-dipole inter-
action in one dimension

This last point in the discussion of the dipole-dipole interaction is the fact
that the long-range behavior might give rise to numerical difficulties. The far-
distance limit of the one-dimensional dipole-dipole interaction will therefore be
approximated for the simulations in this project. In order to increase the speed
of calculations the complementary error function in the expression 73 will be
expanded in polynomials according to: (See appendix for details.)

V 1DT1
DDI (z) /D(θ) ≈ 4

z3
− 24
z5

+
180
z7
− 210

z9
(62)
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Part III

Results and discussion
Realization of systems with pure dipole interaction
It has been seen that the concept of Feshbach resonances can be used to signif-
icantly alter the scattering length of atoms in optical traps[24].

With tunable magnetic fields it is possible to create a system where the scat-
tering length is increased by more than a factor of ten. This would allow for
systems where the inter-particle interaction solely is governed by the compara-
tively weak dipole-dipole interaction. Using a static or induced dipole moment
the properties of a system of electric or magnetic dipoles can be controlled by
the alignment of the objects, but also by the size of the dipole moment itself
[29].

In this project I have investigated systems of a few electric dipoles in one-
dimensional harmonic confinement by tuning the parameters of the effective
dipole-dipole interaction.

The quasi one-dimensional system of dipoles and the
confinement parameter lp
Before I present any results I will give a short summary on the essential units
and expressions which are used in this part.

In the quasi one-dimensional system the particles are trapped in an anisotropic
harmonic trap, giving an effective one-dimensional dipole-dipole interaction ac-
cording to

V1D(z) = D(θ, d)
(√

2π
(
z2 + 1

)
e

1
2 z

2
erfc

(
z√
2

)
− 2z

)
+

2d2

3l2⊥p
δ (z)

where erfc(z/
√

2) is the complementary error-function and
D(θ, d) = − d2

8l3p
(1 + 3cos2θ).

The dipole moments of the particles gives an electric coupling strength d2 =(
D̃
)2

/(4πε0) where D̃ is given in units of Debye.

In the following, the energies from the calculations are given in terms of the
trap-frequency ω of the one-dimensional trap.

The value of ω~ is set to unity, and the trap anisotropy is described in terms
of the parameter λ[21].

λ =
lp
l

=

√
~/(mωp)√
~/(mω)

(63)
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When going to stronger transverse confinement, which equals going to lower
values of lp, the system can be interpreted as elongated in the one-dimensional
direction, since we discuss lengths in terms of u =| z | /lp .

This elongation will be seen when comparing the energy spectra for different
lp, with the energies given in terms of ~ω. Because of the elongation the particles
have a larger separation in u for small lp compared to larger lp, so the effect of
interaction between particles will be different for different lp.

The quasi-potential approximation requires ω⊥ >> ω, so one must use small
values λ . 0.1.

When using different values of lp in the simulations, it is also important to
note that the absolute energy of the total system will change, since the ground
state energy of the transverse system scales with ~ωp = ~2

ml2p
.

The energies for the one-dimensional system will always be given in terms
of ω~ relative to the ground state of the transverse system, so directly com-
paring energies for different values of lp is meaningless. Excitation energies will
however still be a useful measure when comparing internal properties of the one-
dimensional systems at different lp . Keeping the transverse confinement fixed
one can also directly compare the absolute energies of different three-dimensional
systems.

Other effects of the confinement can be discussed with an example:
Look at a harmonic system in one dimension with a Hamiltonian

H = − ~2

2m
d2

dx2
+

1
2
mλω2

px
2 + C

1√
x2 + c2

where ω2 = λω2
p.

One could transform this system introducing the coordinate x = ξ · lp, with
lp =

√
~

mωp
so that;

H = − ~2

2m
d2

d(ξlp)2
+ 1

2mλ
(

~
ml2p

)2

(ξlp)
2 + C 1√

(ξlp)2+c2

= ~2

ml2p

[
− 1

2
d2

dξ2 + λ
2 ξ

2 + Cmlp
~2

1√
(ξ)2+(c/lp)2

]
From this transformation it is apparent that the elongation of the system,

which is represented by λω2
p , determines the relative strength of the interaction

term. The shape of the confining potential will determine the relative strength
of the interaction, so when using different values of lp for the three-dimensional
harmonic oscillator, the systems “response” to the interaction will differ.
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In this project the length scale u = |z|
lp

is chosen for the one-dimensional
potential, so the interaction is given according to;

V1D(u) = D(θ, d)
(√

2π
(
u2 + 1

)
e

1
2u

2
erfc

(
u√
2

)
− 2u

)
+

2d2

3l2⊥p
δ (u) (64)

The behavior of V1D(|z| /lp)/D(θ, d) can be seen in figure(6). For smaller
values of lp the expression decays faster with |z|, resulting in a more “local”
force.
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Figure 6: Dimensionless dipole-dipole potential V1D(|z| /lp)

As a starting point of the discussion on my results I will first show a figure
published by F.Deuretzbacher et. al. in [21]. Here a general comparison between
the energy contributions to the ground state in a system of four particles was
shown, and the plot predicts some of the behavior of dipolar particles in a quasi
one-dimensional trap. The idea of plotting system properties as functions of the
dipole-dipole interaction strength will be widely used in this project, and figure
(7) is an example of how such plots can give insight into the system.

The shaded region in this figure shows the so called Tonks-Giradeau regime,
where the repulsive dipole-dipole interaction becomes so strong that the overlap
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between the interacting bosons is lost. At even higher repulsive interaction this
effect causes bosons to somewhat mimic the behavior of fermions, a process
known as fermionization [35]. These are some of the effects which can be seen
from figure (7), and I shall use this approach to investigate properties of other
system.

Figure 7: Contributions to the total energy of four particles as a function of the
repulsive interactions Usr and Ulr obtained for a trap anisotropy of λ = 50. (From
Ref. (63)) [22]. Note that the lost overlap between bosons reduces the interaction
energy for 8 . Usr . 80.
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In the following sections of this chapter I will discuss some features of the
spectra of fermions in a quasi-one-dimensional trap. For clarity some key notions
are first stated.

• For the fermion results all calculations are performed with spin-polarized
fermions, so that the overlap-dependent delta term of the dipole-dipole
force is irrelevant. (See the theory part of the project for details.)

• The factor D(θ, d) in the dipole-dipole interaction expression (64) is fac-
torized according to: D(θ, d) = d2 ·Ang(θ) · 1

8l3p

• The angular factor Ang(θ) = − (1 + 3cos2θ) in D(θ, d) only depends on
the dipole angle θ.

• Due to the angular factor Ang(θ) in the dipole-dipole force, some dipole
angles cause the total expression for the interaction (64) to become zero.
The critical angle for which the expression amounts to zero is calculated
from Ang(θ) according to:

θcrit = arccos(1/
√

3) ≈ 0.304π ≈ 54.7◦ (65)

• For dipole angles θ > θcrit ⇒ Ang(θ) > 0 the mutual interaction term
V1D(x) becomes positive, so that the interaction between two dipoles be-
comes repulsive.

• For dipole angles θ < θcrit ⇒ Ang(θ) < 0 the mutual interaction term
V1D(x) becomes negative, so that the interaction between two dipoles
becomes attractive.

A sketch of a one-dimensional system of dipoles is seen in figure (8), where the
critical angle θcrit also is shown.

Figure 8: Pictorial view of four dipoles, denoted by blue arrows, at dipole angle
θ = 90◦ in a one-dimensional harmonic trap. The critical angle θcrit ≈ 54.7◦ is
also shown.
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Spectra and density distributions shown in the following sections will be
results from calculations performed for dipole angles 0◦ ≤ θ ≤ 90◦. This set of
angles is enough to give all possible values of the factor Ang(θ) where

• Ang(θ = 0◦) = −4 gives the maximum attractive interaction for a given
interaction coefficient d2.

• Ang(θ = 90◦) = 2 gives the maximum repulsive interaction for a given
interaction coefficient d2.

In figure (9) Ang(θ) is plotted for the dipole angle interval 0.2π ≤ θ ≤ 0.5π.
Note that Ang(θ) can be approximated to depend linearly on θ for dipole angles
0.2π . θ . 0.4π. In the following sections some results will be plotted directly
against the dipole angle, since it for 0.2π . θ . 0.4π roughly represents a linear
change in the interaction strength.
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Figure 9: Plot of the angular factor Ang(θ) which appears in the interaction expres-
sion.
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In general, a change in the strength of the interaction between two par-
ticles changes the energy spectra. The factor D(θ) in the expression for the
one-dimensional dipole-dipole force (64) is dependent on both the interaction
coefficient d2 and the dipole angle θ. The parameters d and θ can therefore
be used to alter the spectra of one-dimensional systems of dipoles.

As noted before, it is possible to do experiments where the interaction is
controlled via dipole angle θ, and it should also be possible to tune the interac-
tion via the interaction coefficient d2 by changing the induced dipole moment
[31]. It should therefore be beneficial to investigate properties of the spectra as
functions of these parameters.

Work has already been done investigating the ground state properties for
quasi-one-dimensional systems of dipoles [29],[21]. Investigating the ground
state of such systems has led to a deeper understanding of the effects of dipole-
dipole interaction in such systems. In the following I give a few reasons why
also analyzing the low-lying energy spectra and the excited states would be
beneficial.

• I believe that more insight into the interaction and the system itself can
be gained by investigating the low-lying spectra at different values of the
dipole interaction. In both atomic and nuclear physics the effects of in-
troducing an interaction into a system are often discussed in terms of,
for example, the splitting of degenerate levels, and also in terms of mix-
ing between energy eigenstates. One example is the Zeeman splitting of
spin-degenerate energy levels in atoms as a result of a magnetic field. The
splitting can be interpreted in terms of the polarization states of the mag-
netic field[18], showing that specific features of the interaction between
the magnetic field and the atom are highlighted when looking at degener-
ate states. Another example is the Stark effect which gives more insight
into the atomic systems themselves, but is also used in techniques which
exploit transitions in atoms [33]. I have seen that observables such as the
eigen energies are especially useful in order to find different regimes of
the dipole-dipole interaction strength, since it often is easier to find clear
“signatures” of the different regimes in the spectra than in, for example,
the density distributions.

• Some algorithms which are used to find eigenvalues of hermitian matrices
can be made more efficient if the eigenvectors themselves are not com-
puted. Algorithms which reduce hermitian matrices to Hessenberg (Tridi-
agonal) forms can be used in order to solve eigenvalue problems. Such
algorithms can be made faster if only eigenvalues are computed, compar-
ing this to calculations where the eigenvectors are also found[36]. It can
therefore be beneficial to analyze systems only by looking at the energy
spectra and not the eigenvectors.

• For future purposes it might be of interest to look at excited states of a
quasi one-dimensional system of dipoles. This might be valuable in order
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to investigate transitions between energy levels within the system. When
simulating tunneling transport through quasi one-dimensional systems of
dipoles the excited states of the systems become important for the de-
scriptions [28], so it should be beneficial to investigate how the excited
states dependend on the dipole-dipole interaction.

• It might be possible to create devices which directly exploit the properties
of the excited states. The density distributions of particles are interesting
for any state of the dipole-system since they can be directly changed by
varying, for example, the dipole angle θ. For the numbers of particles I
have investigated, N < 5, the density distribution for the ground state
of a one-dimensional system changes smoothly as a function of increasing
dipole-repulsion due to the separation of particles. The density distribu-
tions of the excited states can however change rapidly between two dipole
angles due to the fact that two levels might cross. The fact that the dipole
angle can be tuned in experiments could therefore give interesting results
if it is possible to use excited states.

6 Two fermions in a quasi-one-dimensional har-
monic trap with weak, d2 = 1, dipole-dipole
interaction

The first results in this section will show how some general effects of the dipole-
dipole interaction can be discussed in terms of the spectra of the quasi-one-
dimensional harmonic system. In particular I will look at the concept of sepa-
ration, which will be described later in this chapter. Separation is one of the
key topics in this project, especially since the validity of simulations for bosonic
systems relies on this concept. I will investigate how separation can be implied
from different results and for different systems of particles. I will begin by dis-
cussing separation for fermions, but in later section the techniques for detecting
separation will be employed when performing simulations of bosonic systems.

The energy spectrum for two fermions at successively stronger repulsive in-
teraction is shown in figure (10). Stronger interaction is achieved for a fixed
d by increasing the dipole angle θ from θ = θcrit ≈ 0.304π to the maximum
repulsion angle θ = 0.5π = 90◦.

42



0 0.5 1 1.5 2
1

2

3

4

5

6

7

Ang(θ)

E
ne

rg
y 

/ω
(h

/2
π)

0.3 0.4 0.5
1

2

3

4

5

6

7

θ/π

E
ne

rg
y 

/ω
(h

/2
π)

Ang(θ
crit

)

Figure 10: Left: Energy spectrum for two fermions in a pseudo one-dimensional
harmonic trap with lp = 0.1 as a function of the angular factor Ang(θ). (Electric
dipole interaction coefficient d2 = 1) Right: Energy spectrum for two fermions in a
pseudo one-dimensional harmonic trap with lp = 0.1 as a function of the electric dipole
angle θ. (Electric dipole interaction coefficient d2 = 1)

I will in the following discuss a few key results that can be seen from the
figure (10):

1. The energies increase as a function of a linearly increasing interaction
strength. The energies also grow more slowly, for linearly increasing in-
teraction strength, for Ang(θ) & 1.5 than for Ang(θ) . 0.5.

2. There are degeneracies in the one-dimensional harmonic spectrum which
are lost when introducing the dipole interaction.

3. At the critical angle θcrit ≈ 0.304π → Ang(θcrit) = 0 the energies of
the system are those of two non-interacting particles in one-dimensional
harmonic oscillator. This is seen directly from the energies at Ang(θ) = 0
in figure (10). At smaller angles θ < θcrit the degeneracies will be seen
to split due to attractive interaction, and at larger angles θ > θcrit the
degeneracies are also lost due to repulsive interaction.
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6.1 Separation of two fermions seen from the energy
spectrum at successively higher interaction

The increase in the energies as functions of the dipole angle in figure (10) shows
a specific feature of the dipole interaction. In this figure all the plotted states
show the same increase in energy as a function of the angular factor when
Ang(θ) & 1.5.

One can draw the conclusion that forAng(θ) & 1.5 the effect of the increasing
dipole interaction is basically the same for all the plotted states. This feature
is also seen when freezing the dipole angle at the maximum-repulsion angle
θ = 0.5π and varying the interaction coefficient d2 as in figure (11).
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Figure 11: Energy levels 1 to 9 for two fermions in a quasi one-dimensional harmonic
trap with lp = 0.1 (Electric dipole angle θ = π

2
⇒ Ang(θ) = 2)
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Figure (11) shows that for interaction coefficients d2 & 1.5 the plotted
energy-states all have a similar change in energy for a linear increase in the
interaction strength.

The fact that the energy levels all have the same general dependency on the
interaction for d2 & 1.5 shows that the effect of dipole interaction in this way is
similar to the effect of an external potential. For example, adding an external
potential V to a Hamiltonian according to H(x) = H0(x)+V would in the same
way raise the energy of all the excited states of H0 with V .

This behavior is an indication of the separation of the states in the system.

Separation
It has been seen that the repulsive short range interaction part of the dipole-

dipole force causes dipolar bosons in the ground state of a quasi-one-dimensional
harmonic traps to separate[21]. A consequence of this separation is that an
increase in interaction energy of the separated ground state, as a result of in-
creasing interaction strength, mainly comes from the long-range dipole-dipole
interaction. The separation happens when the short range dipole-dipole interac-
tion becomes so large that the particles separate from each other and therefore
feel less of the short range interaction. In figure (12) one can see that the in-
teraction energy relative to the interaction strength of the two-fermion ground
state rapidly decays with the interaction coefficient when d2 . 1, and that it
begins to saturate for d2 & 1. This is caused by the successive separation of the
particles in the ground state at d2 . 1. The saturation occurs since the long-
range interaction in the separated state is much weaker than the short range
interaction, so for a state with long-range interaction the quantity Eint/d2 will
be comparatively small. For few-fermion systems, N < 5, the separation of
the ground states be seen directly from the ground state density distributions.
The density distribution of an N -fermion ground state generally has N regions
of high density which can be interpreted as particles. For increasing repulsive
interaction the overlap between these regions is reduced and the repulsion suc-
cessively causes the regions to separate from each other. For excited states it
is not so straightforward to make such interpretations by looking at the density
distributions. These states do not generally show N distinct regions of high
density which could be interpreted as particles. It is however possible to look
at other properties which indicate separation in these states, and I will discuss
this in the following sections. I will also make a distinction between separation
and other effects, such as localization and high-harmonic-mixing which will be
seen in later sections. The separation occurs when there is a clear change in the
low-harmonic expansion, n < 10, of the wavefunctions, so that the basic shape
of the density distribution of particles is altered in order to reduce the short
range interaction between particles.
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Figure 12: Ground state interaction energy scaled with the interaction coefficient d2

for two fermions in a quasi one-dimensional harmonic trap with lp = 0.1 (Electric
dipole angle θ = π
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→ Ang(θ) = 2)
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Figure 13: Interaction-energies of the second and third excited state of two fermions
in a quasi one-dimensional harmonic trap with lp = 0.1 (Electric dipole angle θ =
π
2
→ Ang(θ) = 2)
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As noted before, all the states in figure (11) seem to increase linearly with
the interaction coefficient d2 for d2 & 1. For d2 & 1 all the plotted states also
scale with roughly the same factor. So in this interaction regime this means that
if the strength of the interaction is increased, all the plotted energy levels are
equally affected by the change. This indicates that the increase in interaction
energy for the plotted states mainly comes from the long-range dipole-dipole
interaction. In figure (13) expectation-values, 〈Ψ2nd exc |Hint|Ψ2nd exc〉 and
〈Ψ3rd exc |Hint|Ψ3rd exc〉, of the interaction energy in the second and third ex-
cited state are shown. The results support the notion that particles in these
states have become separated at d2 ≈ 1.5. The interaction energy increases
more slowly as a function of the interaction strength for d2 & 1 than for d2 . 1,
which suggests that the increase in energy comes from the weaker long-range
interaction. Comparing the two different states it is also evident that the differ-
ence in interaction energy saturates for d2 ≈ 1. This saturation indicates that
both states have become separated. How can these statements be explained?

One explanation can be found when looking at the some pair-correlated
densities of different excited states for a system with two weakly interacting
fermions. A few pair-correlated densities are shown in figure (14) and one can
see that the plots differ between the various excited states.

For example, when the reference particle is placed in the center of the trap
there is a higher probability of finding two fermions within a “small distance”
(u4 . 0.5) from each other for the second excited state than for the third excited
state.

Looking at the dipole-dipole potential in figure (6) one can see that such
differences should be important in terms of the energy from the short range
interaction. The potential of the dipole-dipole interaction has large variations
for small distances comparing to large distances. If the probability of finding two
particles “close” to each other differs between the states the interaction energy
should therefore not be the same when perturbing the system with dipole-dipole
interaction.

For the long-range interaction the distance between particles is less impor-
tant in terms of the interaction energy. This can again be seen from the dipole-
dipole potential plotted in figure (6). In the region where the dipoles are “far
apart”, |z|l & 1.5, it is clear that a small difference in distance would only make
a small difference in terms of the interaction energy.

Now, the states in figure (11) all depend on the interaction strength in the
same way, so the different density distributions of these states do not seem to
make much difference in terms of the interaction energy. This indicates that
there is only a small probability of finding the two dipoles “close” to each other
in any of the plotted states, and that the interaction energy mainly comes from
the long-range interaction.
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Figure 14: Pair-correlated density distributions for two fermions in a quasi one-
dimensional harmonic trap with lp = 0.1 (Dipole angle θ = π

2
→ Ang(θ) = 2 and

interaction coefficient d2 = 0.01)

Separation in the two-fermion ground state is also indicated when looking
directly at the density distribution in figure (15). One can see that the density
distribution change when linearly increasing the repulsive interaction. In this
figure the interaction is increased by successively changing the dipole angle θ
from the critical-angle θcrit ≈ 0.304π to θ = 0.4π which, as discussed before,
roughly represents a linear increase in the interaction strength.

From the density distribution of the ground state it is intuitive to interpret
the redistribution of matter as separation between two particles; the two regions
of high density are pushed apart for successively higher interaction.

The separation of the second and third excited states can also be seen from
their pair-correlated particle densities at successively larger repulsion, which
both are shown in figure (16). It is clear that for stronger repulsion it is less likely
to find two particles close to each other in the center of the trap. The saturation
of the energy splitting between these two levels can then be understood from
the fact that they are separated and both depend similarly on the long-range
interaction.
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Figure 15: Density distribution for the ground state of two fermions in a quasi one-
dimensional harmonic trap with lp = 0.1 (Electric dipole interaction coefficient d2 = 1)

Figure 16: Pair-correlated density distributions for the second and third excited state
of two fermions in a quasi one-dimensional harmonic trap with lp = 0.1 (Electric dipole
interaction coefficient d2 = 1)
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The separation in the excited states can also be seen when comparing results
at different transverse confinements lp, as is done in figure (17). As discussed
in section (III) the total energy for states in the three-dimensional system is
dependent on the transverse confinement lp. The energies in figure (17) are
therefore given relative to different transverse ground state energies, but can
still be used to compare the intrinsic properties of different one-dimensional
systems.
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Figure 17: Energy levels 1 and 2 for two fermions in a quasi one-dimensional harmonic
trap at different transversely confinements lp (Electric dipole interaction coefficient
d2 = 1) Note that the energies for different transversal confinements are given relative
different transverse ground state-energies.
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Looking at the potential in figure (6) it is clear that the transversal con-
finement parameter lp affects the interaction between two dipoles differently
depending on the distance between the dipoles. At “small” distances ( |z|l . 0.5)
the potential is more affected by a change in the transverse confinement than at
“large” distances |z|l & 1.5. From this one might therefore expect the energy of a
separated one-dimensional state to be less dependent on the transverse confine-
ment than a state which depends on the short range dipole-dipole interaction.
Figure (17) shows that this indeed is the case for a system with two fermions.
In previous results it was seen that the ground state and first excited state of
the two-fermion system became separated for d2 ≈ 1 and Ang(θ) & 1.5. Further
indications of this separation can now also be seen from figure (17) by noting
that the transversal confinement affects the energies, (relative to the transverse
ground state), less for Ang(θ) & 1.5 than for Ang(θ) . 1.5.

6.2 Separation and confinement-dependence seen from the
splitting of degenerate energy levels

The energy spectrum of two non-interacting fermions in a one-dimensional har-
monic trap have degeneracies for all levels above the first excited state. The
introduction of the dipole-dipole interaction between particles will cause these
degenerate energy-states to split. How could the system of dipolar fermions be
analyzed in terms of this splitting?

In figure (18) the energy spectrum for two fermions in shown relative to the
ground state energy. Again it is clear that all levels show a similar dependence
on the interaction strength for Ang(θ) & 1.5. What can be seen from the
splitting itself?

• The splitting again indicates separation for the excited states in the
two-fermion system, which essentially was explained in relation to the
previous results. Looking at the right part in figure (18) one can see that
the energy levels 7, 8 and 9 are degenerate at the critical dipole angle.
For larger angles levels 8 and 9 increase in energy relative to level 7, so
the degenerate “bundle” of levels is split by the repulsive dipole-dipole
interaction. One can also see that the splitting begins to saturate for
Ang(θ) & 1. This saturation is an indication of the separation between
particles as discussed in the previous section. Again the two different
states now begin to depend similarly on the dipole-force for Ang(θ) & 1.5.

• The splitting between, for example, levels 7 and 9 in the one-dimensional
system can be used to show the effect of the transverse confinement lp. In
figure (19) the splitting between these two levels is shown as a function
of the angular factor Ang(θ). As seen in figure (18), the levels 7, 8 and
9 are degenerate at the critical dipole angle θcrit = 0.305π ⇒ Ang(θ) =
0, but are split due to the dipole interaction for larger angles. In the
following I will call these three levels a “bundle” since they lie close in
to each other in terms of energy in all my simulations. Comparing the
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splitting at different transverse confinements in figure (19) it is clear that
lower values of lp (stronger transverse confinement) causes the splitting
to saturate at weaker repulsive interaction than for larger values of lp.
One can explain this by looking at the plot of the potential (6). For
lp = 0.02 the comparatively large potential of the short range interaction
falls away when the dipoles are further apart than |x|l = u & 0.1. For
lp = 0.1 the short range interaction falls away at larger distances. For
strong transversal confinement particles will therefore feel a strong short
range interaction-potential which quickly falls off if the particles separate.
This effect can be seen directly from the splitting of energy levels for two
fermions in figure (19). The strong confinement causes the particles in the
excited states to separate already for weak interaction, and the increase in
energy of these states comes mainly from the long-range part of the dipole-
force. When the states are separated the energies are therefore similarly
dependent on the long-range interaction strength, and the energy splitting
saturates. The splitting is in this way a clear indication of the effect of
the transverse confinement of the system, and shows how properties in
general can be expected to vary as functions of the confinement. For
example it should be clear that a strong confinement causes separation to
occur at smaller values of d2 and θ then for weak confinement. This is
not unexpected since the interaction factor D(θ, d) = − d2

8l3p
(1 + 3cos2θ)

scales with the inverse of l3p. It was however seen in section (III) that
other observables of the system might also be dependent on lp, so the
simulations should be valuable in order to establish the effects of lp. The
most important result seen in figure 19 is the fact that stronger transverse
confinement causes a “sharper” transition into the separated state. This
is important since such sharp transitions makes it easier to categorize a
state as separated or not separated. In order to simulate realistic systems
of dipoles a separated state is generally required in order for the dipole
approximations to be valid, as will be discussed further in later sections.
This makes it important to be able to categorize states as separated or
non-separated, so a sharp transition between the two might be beneficial.
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Figure 18: Excitation energies relative the ground state for two fermions in a pseudo
one-dimensional harmonic trap with lp = 0.06 (Electric dipole interaction coefficient
d2 = 1) Note that in each bundle of energy levels, one level depends on the increasing
interaction strength similarly to the ground state. This feature might suggest that
these states are collective excitations in terms of the center-of-mass motion [34]. If
these states came from such excitations the inter-particle interaction would be similar
for all such states, since the states would not differ in terms of the relative distances
between particles. I have not seen any evidence that these states indeed come from
collective excitations in terms of center-of-mass motion. Investigating these excited
states is a possible continuation of this project.
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Figure 19: Energy difference between levels 7 and 9 for two fermions in a pseudo
one-dimensional harmonic trap with different transversely confinements lp (Electric
dipole interaction coefficient d2 = 1)

54



6.3 Special features of excited energy levels at the critical
dipole angle θcrit

The fact that some energy levels become degenerate at the critical angle θcrit
might be important for various reasons.

• The critical angle θcrit can be directly observed from the energy spectra. If
it was possible to see the excited states in experiments one could therefore
expect that the degeneracy at θ = θcrit also can be seen. This fact could
possibly be used in order to calibrate the dipole angle θ in experiments.
This is however only a suggestion for a possible application of the critical
angle, and at this point it is not possible to measure excited states. For this
purpose it could also be interesting to see how the transverse confinement
lp affects the point where the energy levels cross. In particular it should be
of interest to see if different confinements could make the crossings more
pronounced and possibly easier to detect. In figure (19) of the previous
section we saw that the successive splitting at θ > θcrit between some of
the crossing energy levels was steeper for strong transverse confinement.
For a steeper crossing between the levels, one could in theory except to
make better measurements of the critical angle from the spectra.

• The degeneracy at θcrit has in the case of two fermions been seen to give
sharp transitions in density distributions of energy levels when passing the
critical angle θcrit. For example one can look at the second excited level for
the two-fermion system. For dipole angles θ = θcrit − ε ,where ε is small,
this level has an energy of about 2 ~ω. For dipole angles θ = θcrit + ε the
second excited level has roughly the same energy. The density distribution
of the second excited level is however different for these two dipole angles.
This can be seen from figure (20) where the density distributions of the
second and third excited levels are plotted. The fact that some levels cross
at θcrit is interesting. For example, the transport properties of the quasi-
one-dimensional system are dependent on the density distribution of the
states [37], so one would need to be careful when looking at excited states
in such simulations. Results for tunneling transport at a specific “energy
windows” of an excited state should because of the crossing at θcrit be
very sensitive to values of θ. This can be explained by looking at figure
(21). Depending on the value for dipole angles close to the critical angle
the transport properties might be very different depending on the density
distribution of the “accessed” state.
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Figure 21: Sketch of two states crossing at the critical angle θcrit. Depending on
the value of the dipole angle θ the level in the “energy window” has different density
distributions, as seen in figure (20). If the energy window represents a level which
is “accessed” in a tunneling transport simulation, the value of θ should be important
for the results since the different density distributions in principle would give different
transport properties.

Figure 20: Density distribution of the second (left) and third (right) excited state of
two fermions in a quasi one-dimensional harmonic trap with lp = 0.1 (Electric dipole
interaction coefficient d2 = 0.0625)
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• The way different density distributions are affected by the dipole-dipole
interaction is by their behavior around the critical angle θcrit. In figure
(22) the energy levels 7, 8 and 9 are shown for a number of different dipole
angles θ. For angles θ < θcrit the dipole-dipole interaction between the
two fermions is attractive. The change from repulsive to attractive inter-
action can be seen directly from the crossing energy levels in figure (22).
In this figure I define the states g,h and i. As noted before, these states
could possibly be labeled in terms of some conserved quantum number,
but for this discussion it is only necessary to distinguish between them in
terms of their different density distributions. The density distributions do
not change much for the weak interaction, d2 = 0.0625, used to obtain the
results shown in figures (22) and (23). I will therefore discuss these distri-
butions in terms of states which become perturbed by weak dipole-dipole
interaction. In figure (22) the states labeled h and i increase in energy
relative state g for successively larger angles θ > θcrit, i.e. for linearly
increasing repulsion. The states h and i are therefore more affected by the
short range repulsive interaction than the state g. These density distribu-
tions should therefore also be more affected by the attractive interaction,
since the particles in general are found closer to each other in these states.
The expression for the attractive potential is the same as for the repulsive
potential, only with a different sign. For attractive interaction the states
h and i will therefore have lower energies than the state g. The density
distributions of energy levels 7 and 8 are compared in figure (23). Note
that the crossing of states g and i can directly be seen in the density dis-
tribution of the sixth excited level. An important result seen from figure
(22) is that the confinement parameter lp affects states differently. It has
already been seen that level g is less dependent on the strength of the
interaction than levels i and h. This also causes level g to be less affected
by a change in the confinement than levels h and i, which can be seen by
the fact that the energies of states h and i change more relative to the
ground state when changing the confinement lp.
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Figure 22: excitation energies for levels g,h and i, (levels 7,8,9 in the repulsive region)
for two fermions in a quasi-one-dimensional harmonic trap with lp = 0.1 (red) and
lp = 0.08 (blue), (Electric dipole interaction coefficient d2 = 0.0625)

Figure 23: density distribution of the sixth (left) and seventh (right) excited state of
two fermions in a quasi one-dimensional harmonic trap with lp = 0.1 (Electric dipole
interaction coefficient d2 = 0.0625)
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7 Three fermions in a quasi-one-dimensional har-
monic trap with weak, d2 = 1, dipole-dipole in-
teraction

In the following some of the simulations which were performed for two fermions
will be done for three fermions. In my simulations it has in general been harder
to reach convergence for three particles than for two particles. Because of this
issue I have not performed simulations with attractive interaction for more than
two particles, so the discussion regarding crossing energy levels is in this project
limited to two particles.

As in the beginning of section (6) I will first outline the key results seen
from the three-fermion energy spectrum at different dipole angles in figure (24).
These results are published in order to show that what was seen for two particles
also can be seen for higher numbers of particles.

1. The plotted energies increase as a function of a successively larger
interaction strength. The energy also grows more slowly for Ang(θ) & 1.5
than for Ang(θ) . 0.5.

2. There are degeneracies in the one-dimensional harmonic spectrum which
are lost when introducing the the dipole interaction.

0 0.5 1 1.5 2
4

5

6

7

8

9

10

Ang(θ)

E
ne

rg
y 

/ θ
(h

/2
π)

θ=0.33πθ=0.304π θ=0.407π θ=0.5π

Figure 24: Energy spectrum for three fermions in a quasi one-dimensional harmonic
trap with lp = 0.1(Electric dipole interaction coefficient d2 = 1)
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7.1 Separation of three fermions seen from the energy
spectrum at successively higher interaction

For two particles it was seen that repulsive dipole-dipole interaction caused the
energy-eigenstates of the quasi-one-dimensional system to separate.

In figure (24) all the plotted states show the same increase in energy as
functions of the linearly increasing interaction strength when Ang(θ) & 1.5.

In section (6.1) this behavior was related to the separation of the energy
eigenstates. Using the same reasoning as in section (6.1) it seems like the states
in the low-lying spectra of three fermions also become separated.

The separation can also be seen directly from the density distribution of the
ground state in figure (25). For d2 = 1 one can see that there is a change in the
ground state density distribution when increasing the dipole angle from θcrit,
and that the three regions of high density become pushed apart for successively
higher dipole-dipole repulsion. The density distributions of a few excited states
are also shown in the same figure. As noted in section (6.1) the interpretation
of these density distributions in terms of separation of particles is less intuitive
than for the ground state. However, one can see that the density distributions
change in the plots, and since the energy spectrum indicates separation also for
these states one can draw the conclusion that the redistribution of matter serves
to decrease the short range interaction between the particles.

7.2 Separation seen from the splitting of degenerate en-
ergy levels

In figure (26) the excitation energies relative to the ground state are plotted for
a system with three dipolar fermions at different dipole angles θ > θcrit. One
can see that the splitting begins to saturate for Ang(θ) & 1. This behavior was
also seen for a system with two fermions where it was related to the separation
on the energy eigenstates of the quasi-one-dimensional system. The discussion
in section (6) can also be used to interpret the results for three particles since
the reasoning in section (6.1) is not limited to a system of two particles.
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Figure 25: Upper: Density distribution of the ground state (left) and first excited
state (right) for three fermions in a quasi one-dimensional harmonic trap with lp = 0.1

(Electric dipole interaction coefficient d2 = 1) Lower: Density distribution of the

second excited state (left) and third excited state (right) for three fermions in a quasi
one-dimensional harmonic trap with lp = 0.1 (Electric dipole interaction coefficient
d2 = 1)
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Figure 26: Excitation energies relative to the ground state for three fermions in a quasi
one-dimensional harmonic-trap with lp = 0.1. (Electric dipole interaction coefficient
d2 = 1) Again note that some states have similar short range interaction dependence
as the ground state. This was also seen for two fermions and was briefly discussed in
relation to figure (18).

8 Four fermions in a quasi-one-dimensional har-
monic trap with weak, d2 ≈ 1, dipole-dipole
interaction

8.1 Separation of four fermions seen from the energy spec-
trum at successively higher interaction.

The low-lying energy spectrum of four fermions for different angular factors
Ang(θ) ≥ 0 is shown in figure (27). One can again see that that all the plotted
states show the same general increase in energy as a function of the dipole angle
when Ang(θ) & 1.5.

In figure (28) one can, for d2 = 1, see how the density distribution of the
ground state separates for successively larger dipole angles θ.

62



0 0.5 1 1.5 2
4

6

8

10

12

14

Ang(θ)

E
ne

rg
y 

/ ω
(h

/2
π)

Figure 27: Energy levels 1 to 7 for three (blue lines) and four (red lines) particles
in a quasi-one-dimensional harmonic trap with lP = 0.06 (Electric dipole interaction
coefficient d2 = 1)

Figure 28: Density distribution of the ground state for four fermions in a quasi
one-dimensional harmonic trap with lp = 0.06 (Electric dipole interaction coefficient
d2 = 1)
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8.2 Separation seen from the splitting of degenerate en-
ergy levels

Figure (29) shows that the splitting saturates for sufficiently large repulsive
dipole-dipole interaction.

As was the case for two and three particles one can again argue that this is
an effect of the separation in the states of the low-lying spectra.
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Figure 29: Excitation energies relative to the ground state for three fermions in a quasi
one-dimensional harmonic-trap with lp = 0.02. (Electric dipole interaction coefficient
d2 = 1)

9 Localization of fermions in a quasi-one-dimensional
harmonic trap with strong, d2 → 100, dipole-
dipole interaction

In the previous sections it has been seen that for weak, d2 ≈ 1, repulsive dipole-
dipole interaction the the low-lying energy-eigenstates for N < 5 fermions be-
come separated. The separation serves to reduce the short range interaction
energy between particles in the states, which for two fermions was discussed in
some detail in section (6.1). It was seen that for two, three and four fermions the
splitting of degenerate energy-eigenstates can indicate separation of the particles
also in the excited states. Figure (24) showed that the splitting of the degen-
erate energy levels for three fermions began to saturate at weak dipole-dipole
repulsion. What happens at higher repulsive interaction?
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The splitting of degenerate states at stronger repulsive interaction is shown
in figure (30). According to this figure the splitting does not saturate entirely,
but continues to grow for a successively larger interaction coefficient d2. This
behavior is caused by the long-range dipole-dipole interaction in the states of
the quasi-one-dimensional system. The particles in these states were pushed
apart already for weak interaction, so at these interaction strengths there is
very little short range interaction between particles. There is however still long-
range interaction between particles in the states. Compared to the short range
interaction the long-range part of the dipole-dipole force affects the different
states similarly, so the splitting grows more slowly in the long-range interaction
regime.

Because of the long-range interaction the density distributions continue to
change with the interaction after the particles have become separated, something
that can be seen directly for three particles in figure (31). For the ground state
and the third excited state one can see that the particles are separated into three
regions which are pushed further and further apart for stronger interaction. In a
system of four bosons it has been seen that for increasing long-range interaction
these density-regions also become more and more “localized” at their respective
positions. In this way the long-range interaction energy was reduced, since the
particles were localized as far from each other as possible. The localization is
a special feature of the long-range interaction, since the initial separation has
greatly reduced the short range dipole-dipole force in this regime.

At interaction coefficients d2 & 50 the first excited state also begins to
become separated into three regions of higher density, and for d2 & 100 this
also seems to be the case for the second excited state. The figures indicate that
for a sufficiently strong repulsive dipole-dipole interaction, the particles in these
states will become separated into three regions which are pushed further and
further apart for successively higher interaction.
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Figure 30: Excitation energies relative to the ground state for three fermions in a quasi
one-dimensional harmonic trap with lp = 0.1. (Dipole angle θ = 0.5π → Ang(θ) = 2)
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Figure 31: Images of the density distributions of three fermions in a quasi-one-
dimensional harmonic oscillator with lp = 0.1 (Dipole angle θ = 0.5π → Ang(θ) = 2)
Each color scale is normalized separately, so the absolute values for the particle den-
sities cannot be compared in this figure.

10 Outlook for tunneling transport of fermions
through quasi one-dimensional harmonic traps

In this last section on dipolar fermions in quasi one-dimensional traps I will
investigate features in the spectra possibly could be used in order to find inter-
esting results in terms of tunneling transport.

Choosing one value for lp it is possible to directly compare the spectra of the
different numbers of particles. When discussing transport in terms of tunneling
through the system, this is an interesting aspect. The appearance of transport
Coulomb diamonds is dependent on the spectra of different particle numbers of
the transporting system [28], so one might expect that when altering the spectra,
the transport properties will also be changed. The experimental realization
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of systems with only dipole-dipole interaction rests heavily upon the concept
of Feshbach resonances, which allows the experimentalist to cancel collision
scattering of two particles. It is important to note that the parameters which
allow such a system do not depend on the particle number, so it is not irrelevant
to compare energies of pure dipole interaction systems with different numbers
of particles. [24]

From figure (32) it can be seen that energy levels for different numbers of
particles intersect at some dipole angles.

These intersections might be interesting when discussing tunneling transport
through the system. In particular it should be investigated if these interactions
mean that resonant tunneling channels are open for two different particle num-
bers.
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Figure 32: Energy levels 1 to 30 for three (blue lines) and four (red lines) fermions
in a quasi one-dimensional harmonic trap with lp = 0.06 (electric dipole interaction
coefficient d2 = 1)
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Each specific intersection-point between two levels, from different particle
numbers N , appear at different angles depending on the interaction coefficient
d2 and transverse confinement lp. If the tunneling transport properties could
be found to depend on these intersection this could allow a certain control over
the transport properties of a harmonic quasi one-dimensional system of dipoles.
Since the interaction strength between dipoles in actually can be tuned via the
dipole angle θ or the interaction coefficient d2, this could allow experimentalists
to also tune the transport properties. This is one of the most interesting proper-
ties of the quasi one-dimensional system of dipoles, and it should be investigated
if the possibility to tune the interaction could allow realization of new transport
features.

For example it is in principle possible find specific angle in order to intersect
two bundles of closely spaced energy levels. It might then be possible to open
a large transport-channel for some “energy window” at specific angles for the
aligned dipoles. More channels generally give higher transport, so these results
may be beneficial when building tunneling transport devices which use one-
dimensional structures.

These result could be even more interesting in the case of weak attractive
dipole-dipole interaction. The attractive force is harder to deal with in the
numerical sense, meaning that the calculations do not easily converge. However,
when discussing the possibilities of transport by “modifying” the energy spectra
the attractive interaction is particularly interesting, which will be discussed in
the following.

The results in this project have indicated that the relative contribution from
the interaction energy to the total energy of the ground state increases with the
number of particles.

In the spectra of three and four dipoles in figure (27) one can see that the
successively increasing repulsion causes all the plotted energy levels to increase
in energy. It is clear that the energies of the four-particle states increase more
due to the interaction than the energies of the three-particle states. This fact be-
comes interesting when one wants to intersect energy levels for different particle
numbers.

In figure (34) the lowest few energy levels of one, two and three particles
are plotted for both attractive, θ . 0.304π, and repulsive, θ & 0.304π, dipole
angles.

The results in figure (34) clearly demonstrate the fact that any one-particle
level will intersect levels for two particles for a strong attractive potential. One
should expect that for strong attraction, the binding energy of two particles in
the ground state will be larger that the kinetic and potential energy contribu-
tions associated with introducing a second particle in the trap. In this case the
ground state of the two-fermion system will have lower energy than the one-
particle ground state. In the same way the three-particle ground state will end
up lower than both the one- and two-particle ground states for a sufficiently
strong attractive potential. In figure (32) one can see that the four-particle
ground state is more affected by the repulsive-interaction than the three-particle
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ground state, and this was also seen to be the case for the attractive interaction.
Therefore ground state of four particles should have lower energy than the three-
particle ground state at strong attraction, but higher energy for strong repulsive
interaction. From this fact one can draw the conclusion that the two ground
states must intersect at some interaction strength. This can be explained by
figure (33).

Figure 33: Sketch of ground states for three and four dipoles. The ground state of
four dipoles has the lowest energy for strong attractive interaction, and highest for
strong repulsive interaction. Somewhere between these two interaction regions the
energy levels will intersect.

As seen in section (6), the dependence on the dipole angle θ and the interac-
tion coefficient d2 of two-fermion energy-states was dependent on the parameter
lp. (This was also seen for N = 3 and N = 4, but these results are not shown.)
Depending on the number of particles, the energies depend differently on lp.
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Using this fact one might argue that it could be possible to control at what en-
ergies these crossings occur. In principle one could possibly find parameters so
that the ground states for one, two and three particles cross at the same energy.

The great challenge of finding these parameters is the fact that convergence is
very hard to reach for the strong attractive interaction in simulations. For strong
attractive interaction the harmonic-oscillator basis seems to be a bad choice,
since the energies of the ground states do not converge even for large numbers,
n ≈ 45, of oscillator-orbitals. One could however examine the properties of
weakly attractive systems in order to show how the energy levels are affected
by the choice of lp and d. In this way one can show that it in principle should
be possible to cross the ground states of many different numbers of particles.

In figure (35) one can see that the change in energy of the ground state
for successively higher attraction is larger for three than two particles. One can
also see that the ground state energy of three particles is more dependent on the
transverse confinement lp. This fact is encouraging since it could allow control
over the crossing of energy levels from different numbers of particles.

As will be discussed later, the system may collapse at strong attractive in-
teraction. In the case of a collapsed system the crossings of ground states would
not realizable, and that the discussion therefore becomes somewhat esoteric.
Luckily a total collapse is impossible for a system of spin-polarized fermions
due to the Pauli principle, but for strong attraction I have not yet been able to
reach convergence in the calculations.
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Figure 34: Energy levels of one (red lines), two (blue lines) and three (green lines)
fermions in a quasi one-dimensional harmonic trap with lp = 0.08. (electric dipole
interaction coefficient d2 = 0.0625)
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Figure 35: Ground state energies of two and three fermions in a quasi one-dimensional
harmonic trap with different transverse confinements lp (Electric dipole interaction
coefficient d2 = 0.0625)

10.1 Collapse of the system
The problem with convergence in the previous section appears to be related
to the problem of dipolar collapse of the system. A collapse essentially means
that the particle density collapses into a “lump” at the center due to attraction
[25]. As noted before this collapse cannot happen for a system of spin-polarized
fermions with the same quantum numbers since the Pauli principle prevents
them from overlapping, but there are still problems for attraction. At d2 ≈ 0.01
and Ang(θ = 0) = −4 the particles in the few-fermion ground states are tightly
bound to each other and when successively expanding the harmonic basis the
density distribution of the ground state becomes more and more peaked in the
center of the trap. This behavior can be seen in figure (36). The basis-set
needed for convergence in both energy and density distribution becomes very
large, n & 40, already for two fermions, so this situation is evidently difficult to
handle also for fermionic systems.
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A collapse for bosons can be counteracted in many ways, for example by
introducing a repulsive contact-delta interaction between particles.

In the results of this project I have naturally only included converged results,
so there will be no need to worry about a collapse. The main point of this section
is however that harmonic systems with attractive inter-particle interaction are
difficult to simulate, and that only weak attraction, d2 ≈ 0.06 and Ang(θ ≈
0.2π) ≈ −2, has been used in this project.

11 Failure of the dipole approximation
At this point one should mention another caveat to the results; The calcula-
tions for attractive potentials are dependent on the close-range behavior of the
dipole-dipole interaction. In this limit there is some ambiguity in terms of the
interaction, since the dipole approximation is invalid at very short distances.
In the theory part of this project it was seen that, for real dipoles, the expres-
sion for the dipole-dipole interaction was built upon an approximation which is
only valid at “large” distances between the interacting particles. It was noted
that if particles came too close their mutual interaction should be “resolved”,
meaning that the interaction should be described in terms of Coulomb inter-
acting charge-distributions and not by interacting dipoles. The approximation
would fail if the particles came within “small” distances from each other. What
these “small” distances might be, and for which limits the calculations can be
performed, varies for different particle types. It is important to note that this
ambiguity causes problems for both spin-polarized fermions and bosons, even
though two spin-polarized fermions with identical quantum numbers are never
found at the same position. As noted before, the separation of particles is im-
portant in order to find systems where this problem is reduced, so the results
in the previous sections should be important when discussing these situations.

One could of course discuss the concept of interaction between actual ideal
dipoles, but at this point it would not describe any physical situation of interest.

A possible continuation of this project would be to perform more elaborate
simulations where the dipoles are resolved. In this project it has been seen that
the eigen energies of different states can indicate features of the systems which
are hard to see from, for example, the density distributions of the states, so the
energy spectra should in particular be a good way of comparing these models.
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10 single−particle harmonic basis−functions
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Figure 36: Density distribution of the ground state for two fermions in a quasi one-
dimensional harmonic trap with lp = 0.06 (electric dipole interaction coefficient d2 =

0.015 and θ = 0 ⇒ Ang(θ) = −4)

12 Simulations of N < 5 bosons in quasi one-
dimensional harmonic traps

Due to the ambiguity of the dipole-dipole interaction between two particles at
the same position, special care has to be taken when performing calculations
involving bosons. The Pauli principle forbids two spin-polarized fermions with
the same quantum numbers to be at the same place. A delta interaction term
will therefore have no effect on a system only populated by such particles. In
the previous section I mentioned that it is generally best to stay away from
systems which allow particles to come “too” close, but this is especially true for
bosons. The Pauli principle does not apply for bosons so there is no rule which
prevents two spin-polarized bosons with the same set of quantum numbers to
be found at the same position in space.

This fact causes ambiguities in terms of the dipole interaction even for a
system of ideal dipoles. For ideal dipoles the interaction expression derived in
the theory part of this project is well-defined if the particles are separated by
any finite distance. For two particles at the same position the expression is
however ambiguous, which also was discussed in the theory part.

Depending on the parameters of the quasi one-dimensional system and the
inter-particle interaction some calculations may be dependent on the existence,
or non-existence, of a delta term in the interaction expression. For other pa-
rameters the delta term might however not make a difference for the results,

75



since particles can become separated in the states. A separation of particles like
what was seen in the states of the low-lying spectra of N < 5 fermions would in
the case of bosons in fact be necessary for the calculations involving these states
to be correct. The separation will be seen to give states where the dipole delta
interaction between dipoles is suppressed.

In order to examine which system parameters to avoid for bosons, one could
simply perform the calculations for systems with a delta term and then compare
them to calculations without the delta interaction. This investigation should be
performed in each individual case so that one is certain that the ambiguous
delta term has no effect on the relevant results.

In the case of N < 5 fermions, separation could be seen when analyzing
the spectra. This might also be the case for bosons, and it could therefore be
possible to find “safe” parameters by looking directly at the energy spectra of
the boson systems.

It should also be mentioned that when discussing short range interaction for
bosons, one can see a stronger interaction than for fermions. The bosons can
come “very close” to each other compared to spin-polarized fermions and some
interesting effects can be seen from this “very short range” interaction.

Many of the results presented in this section are continuations on the paper
[21], where occupation-numbers and density distributions where shown for the
ground state of a system with four bosons in an quasi one-dimensional harmonic
trap. In my simulations I have investigated similar systems with repulsive long-
range interaction up to Ulr = d²λ3

l3p
∼ 10 ~ω, including also excited states of the

system.
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Figure 37: Energy levels 1-7 for four bosons with (red) and without (blue) dipole
delta interaction in a quasi one-dimensional harmonic trap with lp = 0.1. (Repulsive
dipole angle θ = π

2
⇒ Ang(θ) = 2)

In figure (37) the energy spectrum of the four bosons is dependent on the
delta term for interaction coefficients d2 . 0.1.

Looking at the boson spectrum for different angular factors Ang(θ) in figure
(38) one can see that the delta term has a clear stabilizing effect for Ang(θ) .
0.5. Since the dipole delta-term is independent on the angular factor, Ang(θ),
of the dipole-dipole interaction it will always act as a repulsive force between
particles. The delta term scales with the interaction parameter d squared, just as
the rest of the interaction, so performing simulations with a changing interaction
parameter d is different from simulations where the dipole angle is changed. This
can also be seen from figure (38), where it is clear that the energies obtained
with and without a delta term differ. Changing the dipole angle in simulations
is a fruitful approach when it comes to comparing simulations with experiments.
In the following I will however perform most simulations for bosons by changing
the interaction parameter d . This ensures that the dipole delta scales as the
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Figure 38: Energy levels 1-9 for four bosons in a quasi one-dimensional harmonic trap
with lp = 0.1 (Electric dipole interaction coefficient d2 = 1). Results are shown for
simulations with dipole delta (red) and without dipole delta (blue). Also note that
the dipole delta-term is non-zero at the critical angle θ = θcrit → Ang(θ) = 0 since it
does not depend on the angular factor Ang(θ). The excited states are therefore split
at θ = θcrit due to the delta interaction.

rest of the dipole-dipole interaction, and therefore makes it easier to find regions
where results can be trusted, i.e where the delta term does make a difference
for the results.

12.1 Separation and fermionization of four bosons in a
quasi one-dimensional harmonic trap.

For repulsive dipole-dipole interaction it has been seen that the ground state of
a quasi one-dimensional system of bosons tends to fermionize, resulting in the
fact that the occupation-number distribution of this state becomes the same as
for the corresponding fermion-system[21].

The fermionization happens as the mutual repulsion of the bosons pushes
them so far apart that the overlap between the particles is lost. If particles do
not overlap the exchange symmetry of identical particles makes less difference
between bosonic and fermionic systems. Indications of this fermionization for
the four-bosons ground state can be seen from figures (39) and (40) where the
energies of four fermions and four bosons are shown relative the four-fermion
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ground state. For successively larger repulsive interaction one can see that
the eigen energies of the fermionic and bosonic systems converge onto the same
values, so fermionization is indicated for all the states in the low-lying spectrum.

The largest difference between bosons and fermions lies, as expected, in the
interaction region d2 . 1 where the particles are not separated. As mentioned
before one has to make sure that results in this region do not depend to much on
the ambiguous delta term of the dipole-dipole interaction, so all results should
include both dipole delta interacting bosons and bosons interacting without the
dipole delta.
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Figure 39: Eigen energies of four particles relative the four-fermion ground state in
a quasi one-dimensional harmonic trap with lp = 0.04 ( dipole angle θ = π

2
). Results

are shown for simulations with four fermions (green), four bosons with dipole delta
(red), and four bosons without dipole delta (blue). The energies are plotted against
the parameter d. Previous results have been plotted against the interaction coefficient
d2 which scales linearly with the interaction strength. In order to see the behavior in
the very short range interaction regime it is however better to plot the results against
d.

Comparing the simulations for fermions and bosons in figures (39) and (40)
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one can see that in the interaction regime for which the energies differ there is no
“conclusive” difference between the particle types. Depending on the strength of
the interaction, fermions or bosons have the larger ground state energy. How-
ever, that difference is similar for all the states in the low-lying spectra, so this
must be an effect which is only dependent on the particle type, and not the
individual wavefunctions. It is interesting that the exchange symmetry of the
wavefunctions in this way determines some collective property of all the states
in the low-lying spectra, and that this can be seen directly from the energies.
This has also been seen for different numbers of particles, N < 5, but these
results are not shown here.

For the bosons, separation can be seen in terms of the splitting of the
degenerate energy levels in figure (40). Comparing the differently scaled figures
(39) and (40) one can see that the influence of the delta term is lost for d ≈
0.7 → d2 ≈ 0.5 and that the splitting between boson energy levels begins
to saturate at d2 ≈ 2. One can see that there is some initial separation of
bosons which reduces the delta dependence, but that there is another “phase”
of separation, seen from the saturation of the energy increase, which occurs at
stronger repulsive interaction. These “phases” of separation for bosons will be
discussed in more detail in the following sections.
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Figure 40: Eigen energies of four particles relative the four-fermion ground state in
a quasi one-dimensional harmonic trap with lp = 0.04. ( dipole angle θ = π

2
) Results

are shown for simulations with four fermions (green), four bosons with dipole delta
(red), and four bosons without dipole delta (blue).
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12.2 interaction regimes of the four-boson ground state
In order to investigate the different interaction regimes of the four-boson ground
state I will look at the occupations of single-particle harmonic levels in the
quasi one-dimensional system. Just as for all properties of bosons one needs to
establish the effect of the ambiguous delta term in of the dipole-dipole force, so
all results should as before include a comparison between calculations performed
with and without a delta term in the dipole interaction.

In figure (50) the occupation numbers for the ground state of four dipolar
bosons are shown.

Note that for parameters d . 1.2, the interaction causes the ground state
to mix with higher configurations. The separation however reduces the mixing
with these configurations to a minimum at d ≈ 1.2.

In the interaction region d . 1.2 the description of the ground state in-
clude many high harmonic states due to the influence of the “very short range”
dipole-dipole interaction, which will be explained later in this section. At higher
repulsive interaction the bosons begin to become pushed apart by the interac-
tion, which also can be seen in figure (41) by noting that the effect of the delta
term vanishes for these higher interaction strengths.
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Figure 41: Difference in occupation between simulations performed with and without
the dipole delta-term for a system of four bosons in a quasi one-dimensional harmonic
trap with lp = 0.04 (Dipole angle θ = π

2
→ Ang(θ) = 2)
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Figure 42: Occupation of single-particle states for the ground state of four dipolar
bosons in a quasi one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ =
π
2
→ Ang(θ) = 2 and electric dipole delta-term)
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Looking at the density distribution of the four-boson ground state in figure
(44) one can directly see that the bosons become separated at larger interaction
strengths, something which also was seen in [21].

The density distributions at d = 0.4 and d = 1.3 are directly compared in
figure (45). One can clearly see the separation at d = 1.3 compared to the
density distribution at d = 0.4.

In the regime d & 1.3 the repulsive interaction is so strong that the particles
begin to become influenced by the long-range dipole-dipole interaction. This is
also indicated in figure (7) where the contribution from the interaction energy
to the total energy of the ground state starts to increase with the long-range
interaction at d2 ≈ 1 → Ulr ≈ 1 ~ω. This causes the ground state to mix with
higher orbitals again, which is a sign of the localization of particles due to the
long-range interaction.

In figure (46) the sum of the occupation densities for the lower harmonic
levels are shown as a function of the interaction coefficient d for a system of four
bosons.

This figure can be discussed in terms of different “regions” of repulsive inter-
action seen in the ground state:

1. Large overlap between particles for d . 0.12 and only little “high-
harmonic” mixing. From figure (48) on can see that the interaction energy
in this region is large compared to d & 0.12, and figure (47) shows that
the delta dependence is at its largest in this region. In the following I will
call the region d . 0.12 the “very short range” interaction region.

2. High-harmonic mixing strongly reduces the “very short range”
interaction at d ≈ 0.12. This can be seen from figure (48) where the
interaction energy reaches a minimum. Note that the high-harmonic mix-
ing supresses the “very-short range” interaction but not the “short range”
interaction, since the high-harmonic mixing only changes the inter-particle
correlations on a very small length scale. Since the number of nodes in the
harmonic oscillator states increase with the oscillator-number n ( see figure
(43)), it is clear that mixing with higher harmonic states can change the
behavior of particles at smaller length scales compared to lower harmonic
states.

3. For stronger interaction 0.12 . d . 1 the short range interaction be-
comes so strong that the ground state begins to separate. In the following
I will call the region 0.12 . d . 1 the “short range” interaction region.

4. High-harmonic mixing at minimum for d ≈ 1.2. At this repulsive
interaction strength the ground state has become separated by mixing
with “lower”, n . 10, harmonic states and the interaction energy therefore
show less contribution from the short range interaction. Since the parti-
cles become separated the mixing with high orbitals is successively lost
when increasing the interaction for d & 0.1. The separation have pushed
particles apart so the “very-short range” interaction is also reduced, which
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can be seen from the fact that the high-harmonic mixing, which supressed
the “very-short range” interaction in the non-separated region, is reduced.

5. High-harmonic mixing due to long-range interaction for d & 1.3.
The ground state begins to localize through mixing with higher harmonic
states. In the following I will call this the ”long range” interaction region.
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Figure 43: Density distributions of single-particle harmonic levels for a quasi one-
dimensional harmonic trap with lp = 0.1
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Figure 44: Upper: Density distribution for the ground state of four bosons in a quasi
one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2
→ Ang(θ) =

2 and electric dipole delta-term) Lower: Difference in density distribution between
simulations performed with or without dipole delta-term.
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Figure 45: Density distribution for the ground state of four bosons in a quasi one-
dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2 → Ang(θ) = 2
and electric dipole delta-term)
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Figure 46: Summed occupation numbers for the ground state of four bosons in a quasi
one-dimensional harmonic trap with lp = 0.04. (Dipole angle θ = π

2
→ Ang(θ) = 2

amd the lines are interpolations between data points indicated by the markings.) An
indication of the rate of convergence for the results are shown in figure (61)
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Figure 47: Difference in ground state energy between calculations with and without
the dipole delta-term for a quasi one-dimensional harmonic oscillator with lp = 0.04

(Dipole angle θ = π
2
→ Ang(θ) = 2) (The lines are interpolations between data points

indicated by the markings.) Left: Four bosons Right: Two bosons
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Figure 48: Interaction energy for the ground state of four bosons in a quasi one-
dimensional harmonic trap with lp = 0.04. (Dipole angle θ = π

2
→ Ang(θ) = 2 and

the lines are interpolations between data points indicated by the markings.)

The different interaction regions of systems are interesting since the validity
of the dipole approximation in particular depends the distance between the
dipoles. One should expect the dipole-dipole approximation to fail for real
dipoles in the “very short range” region, since the particles come within very
small distances compared to the other regions of repulsive interaction. Since
the high-harmonic mixing reduces the very-short range interaction, it is however
still possible that the short range interaction region actually can be simulated
for real dipoles.
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Figure 49: Summed occupation numbers for the ground state of two bosons in a quasi
one-dimensional harmonic trap with lp = 0.04. (Dipole angle θ = π

2
→ Ang(θ) = 2

and the lines are interpolations between data points indicated by the markings.) An
indication of the rate of convergence for the results are shown in figure (64)

Results for N < 4 bosons

In the same way as for the four-boson case the short range dipole-dipole interac-
tion causes a mixing with higher harmonic levels for the ground state of systems
with lower numbers of bosons, which can be seen in figure (49). (This has also
been seen for systems with three bosons, but the results are not shown here.)

Interaction regimes of the four-fermion ground state

The occupation densities of the four-fermion ground state, which are seen in
figure (50), show that the mixing with high harmonic levels for the fermion
ground state is at its largest at around d ≈ 0.8. Since the fermions have anti-
symmetric wavefunctions, they are naturally further apart than the bosons.
Therefore the “very short range” interaction will not have have as much effect
on the fermions at d ≈ 0.1, since they cannot overlap like bosons. At higher
interaction strengths, d ≈ 0.5, the fermions will however also feel a strong and
quickly decaying dipole-dipole force which causes high-harmonic mixing. For
stronger interaction strengths, d ≈ 1, the short range interaction then leads to
separation of the ground state.
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Figure 50: Occupation numbers of single-particle states for the ground state of four
dipolar fermions in a quasi one-dimensional harmonic trap with lp = 0.04 (Dipole
angle θ = π

2
→ Ang(θ) = 2)
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12.3 Excited states in the spectra of bosons - The “very
weak” repulsive interaction regime d . 0.12

The difference between bosons and fermions at very weak, d . 0.12, repulsive
dipole-dipole interaction can be analyzed in terms of the low-lying energy spec-
tra. For d . 0.12 the interaction between particles is mainly governed by the
“very short range” dipole-dipole interaction and in this section I will discuss a
clear difference between bosons and fermions in this interaction regime. I have
only seen this effect for excited states in the boson spectra, and in particular
when comparing states which are degenerate for d = 0. From the results in
this section it will again be shown that a system of interacting particles can be
analyzed in terms of the energy spectra, and that the features of the density
distributions of energy-eigenstates are correlated with the features seen in the
spectra.

In figure (51) the density distribution of the four bosons in the third excited
state is plotted. Like for the ground state the density distribution of the third
excited state begins to change into a “separated” distribution for d & 0.12. For

d . 0.3 the distribution shows dependence on the ambiguous dipole delta-term,
which can be seen in the lowest part of the same figure, but the important
results are similar for both simulations.
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Figure 51: Density distribution of the third excited state for four bosons in a quasi
one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2
Ang(θ) = 2 and

electric dipole delta-term) Upper: Simulation with dipole delta. Middle: Simulation
without dipole delta. Lower: Difference between simulations with and without dipole
delta. 92



For interaction parameters d ≈ 0.15 the density distribution of the third
excited level clearly differs from the density distribution at d & 0.3. The distri-
bution seems to change its basic shape in the region d ≈ 0.15, from a structure
of six points of higher density to a structure with four points of higher density.
I have not seen this behavior for interaction d . 1 in any of the density distri-
butions in the fermionic system, so one might ask if this behavior is specific for
bosons.

There is an explanation for the changing density distribution in the energy
spectrum of the four-boson system. In figure (52) the four-boson energy levels
3 and 4 are plotted for against the interaction parameter d. The results unfor-
tunately depend on the dipole delta but it is plausible that there is an avoided
crossing of two states at d ≈ 0.15. (Both simulations with and without dipole
delta show the same behavior.)

This avoided crossing would explain the change in density which can be seen
for the density distribution of level 4.
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Figure 52: Excitation energies relative the ground state for energy levels 3 and 4

in a system of four bosons in a quasi one-dimensional harmonic trap with lp = 0.04.
(Dipole angle θ = π

2
→ Ang(θ) = 2 and electric dipole delta-term and the lines are

interpolations between data points indicated by the markings.)An indication of the
rate of convergence for the results is shown in figure (63).

93



0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

Interaction−parameter d

E
xc

ita
tio

n−
en

er
gy

 ω
(h

/2
π)

 

 

Figure 53: Excitation energies relative the ground state for energy levels 1 to 7 in
a system of four bosons in a quasi one-dimensional harmonic trap with lp = 0.04.
(Dipole angle θ = π

2
→ Ang(θ) = 2) Results are shown for simulations with dipole

delta (red) and without dipole delta (blue). (The lines are interpolations between data
points indicated by the markings on the second line.)

In figure (54) one can see that the transition in density around d ≈ 0.15 is
present also for the second excited level, which lies in the same bundle as the
third excited level. In this small region of values for d, the density distribution
of the second excited level shows a clear structure of four regions of high density.
For larger values of d the density distribution changes and has five regions of
higher density. Comparing the density distributions of the second and third
excited state one can see that there is a mixing of the two distributions at
d ≈ 0.15. The density distribution of the second excited level has four regions
of high density for d . 0.15, and for d & 0.15 the third excited energy-level has
a density distribution with four regions of higher density. This again suggests
that for d ≈ 0.15 there is an avoided crossing of two states with different basic
density distributions.
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Figure 54: Density distribution of the second excited state for four bosons in a quasi
one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2
→ Ang(θ) = 2)

Upper: Simulation with dipole delta. Middle: Simulation without dipole delta-term.
Lower: Difference between simulations with and without dipole delta-term.
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Figure 55: Occupation numbers of single-particle states for the second excited state
of four dipole bosons in a quasi one-dimensional harmonic trap with lp = 0.04. (Dipole
angle θ = π

2
→ Ang(θ) = 2 and no electric dipole delta-term) For the lower figure

an indication of the rate of convergence for the results are shown in figure (62). (The
lines are interpolations between data points indicated by the markings.)
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In the energy spectrum of four bosons with d . 0.3, it is clear that all plotted
levels show these avoided crossings within the bundles. In figure (55) the avoided
crossing is also seen from the occupations of the second excited level. Note that
the single-particle levels h1,h2,h3,h4, h6 and h7 all make “jumps” in occupation
at d ≈ 0.15, which is further evidence for the mixing of two many-particle states
due to the avoided crossing. Looking at the spectrum of two bosons in figure
(59) one can see that avoided crossings also appear here, so that this might be
a feature of bosons in general. The density distribution of the second excited
level for two bosons is also shown in figure (60). In the lower part of figure (59)
one can see that the “sharp” change in the density distribution again seems to
be an effect of the avoided crossing.

The fermion spectrum in figure (29) shows that no crossings appear for a
system with four fermions and d . 0.3. This is also evident in the density plot
in figure (58) where there is no “sharp” change like what was seen for the bosons.

The reason for the behavior of the boson-levels at low interaction strengths
is associated with the “very short range” dipole-dipole interaction. All the states
are dependent on this force in the “very weak” interaction region d . 0.12, where
it causes a splitting of the degenerate levels. The avoided crossing of states at
d ≈ 0.15 is interesting since it indicates that there is a difference between the
“very short range” interaction region d . 0.12 and the short range interaction
region 0.12 . d . 1.2 for bosons. Some states are more dependent on the “very
short range” interaction compared to the short range interaction. An avoided
crossing could therefore occur between a state which is more dependent on the
very short range interaction than the short range interaction, and a state which
is less dependent on the very short range interaction compared to the short
range interaction.

The effect of the “very short range” interaction in the ground state was
reduced by mixing with high harmonic levels at d ≈ 0.12, which was discussed
in the previous section. In figure (56) one can see that this is the case also for
the second excited state, and that this state has the largest mixing with high-
harmonic levels at around d ≈ 0.15. The mixing causes the interaction energy in
the excited states to become reduced, and the splitting of the degenerate states
will therefore also be reduced.

In figure (56) one can also see that the high-harmonic mixing in the second
excited state becomes reduced for successively higher interaction and reaches a
minimum at d ≈ 1. As was noted before, this is an effect of the separation in
the state.

One might also wonder why the splitting causes levels to decrease in energy
relative the ground state, since this is opposite to the case for the short range
interaction region d & 0.15.

It seems as the ground state of the bosonic system in general is more affected
by the repulsive “very short range” dipole-dipole interaction than any of the
other states in the lower spectra. This is interesting since it is a clear distinction
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between the effects at d . 1.2 and d & 1.5, but also between bosons and
fermions.

The reason for this behavior is the fact that the one-particle harmonic-
oscillator ground state is a Gaussian peaked in the center of the trap[12], so
the “very weak” interacting many-boson state will have a large overlap between
all particles. The excited states in the harmonic spectra have less overlap be-
tween particles than the ground state, so for the “very short range” interaction
the excited many-boson states will be less dependent on the inter-particle inter-
action.
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Figure 56: Summed occupation numbers for the second excited state of four bosons
in a quasi one-dimensional harmonic trap with lp = 0.04. (Dipole angle θ = π

2
→

Ang(θ) = 2)
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Figure 57: Excitation energies relative the ground state for energy levels 1 to 7 in
a system of four fermions in a quasi one-dimensional harmonic trap with lp = 0.04.
(Dipole angle θ = π

2
→ Ang(θ) = 2) (The lines are interpolations between data points

indicated by the markings on the second line.)
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Figure 58: Density distribution of the third excited state for four fermions in a quasi
one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2
→ Ang(θ) = 2)
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Figure 59: Excitetion energies relative the ground state for energy levels in a system
of two bosons with (red) and without (blue) dipole delta in a quasi one-dimensional
harmonic trap with lp = 0.04. (Dipole angle θ = π

2
→ Ang(θ) = 2 and the lines are

interpolations between data points indicated by the markings.) Upper: energy levels
1 to 9 Lower: energy levels 3 to 4
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Figure 60: Density distribution of the second excited state for two bosons in a quasi
one-dimensional harmonic trap with lp = 0.04 (Dipole angle θ = π

2
→ Ang(θ) = 2)

It should finally be noted once again that the results in this section are seen
on the cusp of region where the dipole interaction becomes a bad approximation.
It is however still interesting to note that the four-boson systems show such a
specific feature as the avoided crossings. This behavior is clearly an effect of
the “very short range” part of the dipole-dipole interaction, and the question
remains if this can be seen for more realistic models.
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Part IV

Conclusions and Appendix
13 Conclusions and Outlook
Systems of ultracold molecules and atoms with permanent dipole moments have
been discussed in many publications.

In this project I have studied quasi one-dimensional systems of a few ideal
dipoles in harmonic traps. The aim of the project has been to investigate the
effects and prospects of the dipole-dipole interaction in such systems, both from
analytical and numerical calculations.

The possibilities of dipoles in low-dimensional systems are especially inter-
esting since the mutual interaction between dipoles can be modified externally
via the alignment of the dipole moments. The interaction can be tuned to be-
come either attractive or repulsive using an external electric field with a specified
inclination-angle θ, given relative to the linear alignment of the dipoles in the
one-dimensional trap. Depending on the strength and nature of the interac-
tion, particles in such traps can become pushed apart or drawn together by the
dipole-dipole force. The effective one-dimensional dipole-dipole force is there-
fore often discussed in terms of the long-range or short range interaction, so
that systems are affected by different parts of the dipole-dipole force depending
on the expected distances between particles.

In particular the long-range interaction regime of the dipole-force has at-
tracted much interest, but in recent years the effects of the short range regime
of the dipole-dipole force have also been investigated, particularly in connection
with the experimental possibilities of Feshbach resonances. In this regime the
details of the short range dipole-dipole interaction have been seen to play an
important role for the properties of quasi one-dimensional systems, and such
details have therefore been investigated with special care in this project.

Investigations showed that for two ideal dipoles there are strong indications
of an inherent delta term in the energy-expression for the three-dimensional
dipole-dipole interaction. The existence of this delta term was however a difficult
analytical question which left inconclusive answers, even after applying more
advanced mathematical methods such as generalized functions.

For certain parameters of the quasi one-dimensional harmonic system of
dipoles the delta term has been seen to significantly alter the results of density
distributions, occupation numbers and energy eigenvalues.

The delta term indeed plays a large role even though the other terms of
the three-dimensional dipole-dipole interaction approach infinity for successively
smaller distances between the dipoles.

It has therefore suggested that all calculations involving ideal dipoles should
include a comparison between results obtained with and without the ambiguous
delta term, and that interaction regimes which showed dependence on this term
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should be avoided.

In the quasi one-dimensional system the dipoles are situated in an anisotropic
harmonic trap which enables the effective dipole-dipole interaction between par-
ticles to be tuned repulsive or attractive via an external electric field. It was
seen that the repulsive interaction in general caused systems of both dipolar
bosons and fermions to separate, meaning that particles became pushed apart
by the repulsive dipole-dipole interaction.

The concept of separation should be important when simulating systems
of real dipoles, since the dipole approximation in general fails for “small” dis-
tances between the particles. It was seen that the energy spectra of the quasi
one-dimensional systems in general showed many distinctive features which al-
lowed categorization of states as “separated”. The detection of the separated
regime, where particles are pushed apart, should be important since this regime
represents a system where real dipoles are well-approximated by ideal dipoles.

By investigating quasi one-dimensional systems of bosons I have also seen
some interesting effects of the “very short range” dipole-dipole interaction. In
this project I have chosen to divide the interaction into different parts, depending
on the distance between the dipoles. The interaction between two dipoles at
the same place, or very close to each other, is called the “very short range”
interaction. For larger distances between the dipoles the interaction is discussed
in terms of the “short range” and the “long-range” interaction, where the long-
range interaction governs the interaction between dipoles separated by a large
distance and can be approximated according to V1D(z) ≈ 4

z3 . The short range
interaction denotes the region between the “very short range” and long-range
interaction.

The “very short range” interaction is large compared to the short range and
long-range interaction and decays quickly and almost linearly for increasing dis-
tance between the dipoles, which can be seen from the potential plots in figure
(6).

The Pauli principle prevents spin-polarized fermions with the same quantum
numbers from overlapping, so the “very-short range” regime of the dipole-dipole
interaction has been investigated by simulating a system of bosons.
It was seen that the transition from the “very short range” interaction regime to
the short range interaction regime was clearly manifested in the energy spectra
in terms of avoided crossings between excited states when changing the interac-
tion strength.

The transition was also indicated by the fact that the many-particle states
mixed with high harmonic one-particle states, n & 12, in the “very short range”
regime. This mixing was lost when states started to become separated on larger
length scales, so the occupation-numbers again manifested a transition from a
system governed by the “very short range” interaction into a system governed
by the short range interaction.
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These characteristics could become important since this transition indicates
a change from a system where particles come close, into a system where particles
become pushed apart on relatively large length scales.

It is possible that this transition denotes a change into a system where dipolar
bosons separate sufficiently for the ideal dipole approximation to be valid for
real dipoles, and the avoided crossings could then be viewed as indications of
an interaction regime which lies on the limit of the dipole approximation. A
possible continuation of this project is therefore to search for avoided crossings
in boson spectra calculated from models of real dipoles.

In relation to the general features of the fermion-spectra it was also discussed
how the crossings of energy levels for different particle numbers could lead to
interesting prospects for tunneling transport through quasi one-dimensional sys-
tems of dipoles. Tuning the parameters of the interaction and the total system
it turned out that it was possible to intersect the ground state-energies of two
(or possibly more) different numbers of particles. These intersections could pos-
sibly be used to modify the tunneling transport through such systems at these
given energies, and this prospect should therefore be an interesting continuation
of this project.
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14 Appendix

14.1 Generalized functions
In order to describe physics involving point-sources it is often useful to under-
stand the concept of generalized functions. It is tempting to describe a point
charge in three-dimensional space mathematically as a classical function δ(r̄) of
position.

This interpretation may however land you in trouble since the concept of a
delta-function as a classical function is incorrect.

The “delta-function” δ(r̄) is actually not a function in the classical sense,
since it cannot be defined by its value at every r̄. [6]

In order to be correct we must define δ as a generalized function, i.e a distri-
bution, by using a set of test functions τ(r̄), which themselves are real-valued
and smooth classical functions of position.

All test functions are also defined to be zero outside any finite region so that
products of them can be integrated over the entire space.

A proper definition of the generalized Dirac function δ is given by [6-1] ;

The Dirac δ function δ(x) is a function of test functions τ(x), i.e.,
a functional.

It is defined by a set of numbers, one for each τ in the space of the
test functions; the number associated with τ(x)

is denoted by < δ | τ > , and it is defined to be τ |x=0.

It should also be noted that the number < δ | τ > is linear in the test functions.
Integrals involving products of the function δ could now be defined as[6];

∞̂

−∞

δ(x)τ(x) dx ≡< δ | τ > (66)

These definitions can be used for any generalized function gF , so that there
is one assigned number <g F | τ > for each test function τ .

For an arbitrary function gF the rule for assigning a value to <g F | τ >
must not be as for the Dirac delta function δ, as we will see for the generalized
electrical field from an ideal dipole.

The defining property of a generalized derivative D is given according to [9]:

< D [gF ] | τ >≡ − <g F | D [τ ] > (67)

The relation (67) must hold for any test-function and is the fundamental
requirement in order to define a meaningful derivative.

The main point of generalized functions is that they can allow a mathemati-
cally consistent definition of physical concepts such as point-charges, and could
therefore possibly be used in derivations of their physical properties. The re-
maining question is now if the formulations of the physical laws describing the
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“implications” of charge can be applied to these definitions and, more impor-
tantly, if the new definitions can allow mathematically consistent derivations of
physical effects originating from point-like objects.

Generalized functions in physics

In order to apply generalized functions to electrostatics one needs a new form
of the Maxwell’s equations. The form itself must of course make all the phys-
ical predictions that Maxwell’s classical equations does, so that form is a new
representation of the equations. A generalized form of Maxwell’s equations can
be found using limits of smooth sources.[6]

Generalizations of this type was performed by G. Temple in 1955, and using
this method will give Maxwell’s equations as relations between numbers like
<g F | τ > and < ∇gF | τ >, where ∇ is a generalized derivative.

For example one could look at the generalized form of the Poisson equation
∇²Φ = −ρ/ε0, which can be generalized to [6];

< ∇²[gΦ] | τ >= − <g ρ/ε0 | τ >
which by (67) is equivalent to;

<g Φ | ∇²[τ ] >= − <g ρ/ε0 | τ > (68)

This is the Poisson equation for generalized functions gΦ and gρ, and it
makes the same predictions as its classical counterpart.

All of Maxwell’s equations can be put into generalized form[6], so that gen-
eralized fields can be derived from point-sources.

14.2 Derivation of V T1
1D (z)

Separating V 3D
DDI(%cosϕ, %sinϕ, z) into two terms we first perform the integra-

tion for the first term, remembering that we must invoke the rules of integration
which apply to the total function.

For the first term we use the improper integral;

V T1
1D (z) =

d2

2πl2⊥

2π̂

0

dϕ

∞̂

0

d%%

(
1− 3cos2βrd

)
(z2 + %2)3/2

e−%
2/(2l2⊥) (69)

where cosβrd can be expressed in cylindrical coordinates according to, (see
figure (5)):

cosβrd =
r · p
|r| |p|

=
%cosϕsinθ + zcosθ√

%2 + z2

One could now rewrite V 3D
DDI(%cosϕ, %sinϕ, z) according to;

V 3D
DDI =

d2

(z2 + %2)3/2

(
1− 3

(%cosϕsinθ + zcosθ)
2

%2 + z2

)
(70)
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The integral (69) can now be computed:

V T1
1D (z) = d2

2πl2⊥

2π́

0

dϕ
∞́

0

d%%
(z2+%2−3(%cosϕsinθ+zcosθ)2)

(z2+%2)5/2
e−%

2/(2l2⊥)

= d2

2πl2⊥

∞́

0

d% %e
−%2/(2l2⊥)

(z2+%2)5/2

2π́

0

dϕ
(
z2+

%2 − 3
(
%2cos2ϕsin2θ + 2%zcosϕcosθsinθ + z2cos2θ

))
= d2

2πl2⊥

∞́

0

d% %e
−%2/(2l2⊥)

(z2+%2)5/2

(
2π
[
z2 + %2 − 3z2cos2θ − 3

2%
2sin2θ

])
Using the trigonometrical identities sin2θ = 1

2−
1
2cos2θ and sin

2θ+cos2θ = 1
one could rewrite the expression within the square-brackets:

[
z2 + %2 − 3z2cos2θ − 3

2%
2sin2θ

]
⇐⇒

[
(z2 + %2 − 3z2(1− ( 1

2 −
1
2cos2θ))−

3
2%

2
(

1
2 −

1
2cos2θ

)]
⇐⇒

[
(z2 + %2 − 1

2z
2(3 + 3cos2θ)− 1

4%
2 (3− 3cos2θ)

]
⇐⇒

[
(− 1

2z
2(1 + 3cos2θ) + 1

4%
2 (1 + 3cos2θ))

]
⇐⇒ (1 + 3cos2θ)

[
(− 1

2z
2 + 1

4%
2)
]

= 1
4 (1 + 3cos2θ)

[
(%2 − 2z2)

]
The one-dimensional potential V T1

1D (z) is now given by the improper integral;

V T1
1D (z) =

d2(1 + 3cos2θ)
4l2⊥

∞̂

0

d%%
%2 − 2z2

(%2 + z2)5/2
e−%

2/(2l2⊥)

Transforming coordinates w = %/l⊥ and z = z puts the integral on a more
convenient form:

V T1
1D (z) =

d2(1 + 3cos2θ)
4l3⊥

∞̂

0

dww
w2 − 2z2

(w2 + z2)5/2
e−w

2/2 (71)

14.3 Derivation of V T2
1D (z)

The integral defining V T2
1D (z) can be written according to:

V T2
1D (z) =

(
d2

π2l4⊥

´ 4πδ(3)(r̄1−r2)
3 ∗

e−(x2
1+x2

2)/(2l2⊥)e−(y2
1+y2

2)/(2l2⊥)e−(x2
1−x

2
2)/(2l2⊥)e−(y2

1−y
2
2)/(2l2⊥)dx1dx2dy1dy2

)
(72)

Switching to relative coordinates X = x1 + x2,Y = y1 + y2, x = x1− x2 and
y = y1 − y2 this becomes:

4d2

3πl4⊥

´
1
4δ

(3)(x, y, z1 − z2)e−(X2+Y 2)/(2l2⊥)e−(y²+x²)/(2l2⊥)dXdY dydx

= d2

3πl4⊥

´
δ(x)δ (y) δ (z1 − z2) e−(X2+Y 2)/(2l2⊥)e−(y²+x²)/(2l2⊥)dXdY dydx

= d2

3πl4⊥

´
e−(X2+Y 2)/(2l2⊥)δ (z1 − z2) dXdY
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Using cylindrical coordinates the last line can be rewritten as;

d2

3πl4⊥

´
%e−%

2/(2l2⊥)δ (z1 − z2) d%dϕ = d2

3πl4⊥
δ (z1 − z2) 2π

[
−l2⊥e−%

2/(2l2⊥)
]∞

0

= 2d2

3l2⊥
δ (z1 − z2)

The total effective one-dimensional electric dipole-dipole interaction can now
be written

V1D(z) = D(θ)
(√

2π
(
z2 + 1

)
e

1
2 z

2
erfc

(
z√
2

)
− 2z

)
+

2d2

3l2⊥
δ (z) (73)

with z = z1 − z2.

14.4 Asymptotic expansion of effective dipole-dipole in-
teraction in one dimension

An asymptotic expansion of the complementary error-function erfc is [15]

erfc
(
x/
√

2
)

=
e−

x2
2

x
√

π
2

∞∑
n=0

(−1)n
(2n− 1)!!

(x2)n

so that:

V 1DT1
DDI (z) = −2z +

√
2π(1+z2)√

π
2 z

e−
z2
2 e

z2
2

∞∑
n=0

(−1)n (2n−1)!!
(z2)n

= −2z + 2(1+z2)
z

∞∑
n=0

(−1)n (2n−1)!!
(z2)n

Taking the first five terms in the expansion

T1 = (−1)!!

(z2)0
= 1

T2 = −1 · (−1)!!

(z2)1
= − 1

z2

T3 = 3
z4

T4 = − 15
z6

T5 = 3·35
z8

gives:

V 1DT1
DDI (z) /D(θ)

≈ −2 +
2(1+z2)

z − 2(1+z2)
z3 +

2·3(1+z2)
z5 − 2·15(1+z2)

z7 +
2·105(1+z2)

z9

= 4
z3 −

24
z5 + 180

z7 −
210
z9

(74)
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14.5 Convergence-plots
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Figure 61: Rate of convergence pictured for figure (46)(The different lines of the
same color show results obtained with 21,22,23 and 24 harmonic basis-functions re-
spectively.)
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Figure 62: Rate of convergence pictured for figure (55)(The different lines of the
same color show results obtained with 31,32,33, 34 and 35 harmonic basis-functions
respectively.)
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Figure 63: Rate of convergence pictured for figure (52)(The different lines of the
same color show results obtained with 31,32,33 and 34 harmonic basis-functions re-
spectively.)
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Figure 64: Rate of convergence pictured for figure (49)(The different lines of the same
color show results obtained with 24,25,26,27,28,29 and 30 harmonic basis-functions
respectively.)
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