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Abstract

This thesis handles time frequency analysis of EEG signals measured
on participants performing the so-called �anker task. The analysis is
done mainly using multitapering techniques on the quadratic class. Using
multiple orthonormal windows when estimating the spectra of a process,
one lowers the variance of estimate.

A class of locally stationary processes (LSP) is presented to use as
a model of EEG which can then be used to evaluate the di�erent time-
frequency methods that are presented. This LSP contains only one com-
ponent is used to model only one part of the EEG signal. When analyzing
the set of EEG signals of this thesis one is most interested in the so-called
N2 event and the model is therefore applied to this event. Having this
model one can then �nd the optimal multitapers in the mean square error
sense.

Di�erent sets of multitapers are used to analyze the time-frequency
representation of the EEG-signals. These are evaluated on LSPs where
the true spectra are known.

Spectra are then estimated for the EEG-signals. As there are multi-
ple channels and di�erent methods are used, only a selected set of these
spectra are presented here.
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1 Introduction

1.1 Purpose

The main focus of this thesis is to investigate and implement di�erent time-
frequency analysis methods and applying them to grand averaged EEG signals.
Multitaper methods are used to estimate the time-frequency representation.
As the tapers are orthonormal they generate uncorrelated estimations and one
therefore lowers the variance of the estimate. The purpose is to evaluate the
results of di�erent windows.

1.2 EEG

The brain is a very complex structure that we still today lack the full under-
standing of and we are still locking into good ways to interpret the signals from
the brain. The brain is built up of neurons that communicate via electric im-
pulses; measuring these individual impulses would give us a quite clear picture
of what is going on, but of course this is (today) impossible. However when mil-
lions of neurons communicate at the same time they give rise to an electric �eld
that is even measurable from the scalp. By applying multiple electrodes around
the scalp, one can measure the activity at di�erent locations of the brain which
will give a rough picture of what parts of the brain that are momentarily more or
less active. This is called the EEG signal, or Electroencephalogram. Generally
the signals are rhythmic and one categorizes them depending on at what fre-
quency they are oscillating and their relative amplitude. Theses classi�cations
can be found in table 1.

The EEG is a cheap and non-invasive method that renders a high time-
resolution, which makes it a popular method of measuring the brain activity.
However, as relatively few electrodes can be �tted onto the scalp one gets a
quite poor spatial resolution. Two adjacent electrode will even record much of
the same information. Additionally, one can not tell from what depth of the
brain the signal is coming from.[11]
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Rhythm Frequencies A coarse explanation of when rhythms occur.

Typically occurs during sleep and is generally
Delta rhythm <4 Hz correlated with a high amplitude.

Occurs when a person is drowsy, going to sleep or
Theta rhythm 4-8 Hz waking up.

When a person is relaxed or re�ecting, the
Alpha rhythm 8-13 Hz alpha rhythm arises and is most prominent at

the posterior parts of the scalp.
Occurs when a person is awake and alert and is

Beta rhythm 13-30 Hz correlated with a low amplitude. Generally observed
in frontal and central regions of the scalp.
This rhythm is observed when a person is processing

Gamma rhythm >30 Hz information from the cortex which is involved
in the more complex functions of the brain.

Table 1: Rhythm classi�cations

1.2.1 Evoked potentials, grand averages and di�erence curves.

The EEG signal is due to its poor spatial resolution very noisy and hard to
interpret. A popular method to increase the signal-to-noise ratio is to use evoked
potentials. The idea is that one performs the same task repeatedly, with a
waiting time between every repetition. Assuming that the brain responds in
the same way each time one can form the average which will then reduce the
noise levels greatly. The waiting time between each task performance can be
varied to make the test less predictable for the participants. This will make
the experiment more robust as patterns become less prominent and therefore
the experiments e�ects in the brain become more clear. The grand average is
calculated as a point-wise mean of all signals. Assume K evoked potentials,
X1(n), X2(n) . . . XN (n), are measured at N points. The grand average signal,
XGA, is then found as

XGA(n) =
1

K

K∑
k=1

Xk(n) for n = 0, 1, . . . , N − 1.

In the test analyzed in this thesis, one is interested in the di�erence in brain
responses triggered by two di�erent tasks. To compare how the responses di�er,
one may look at two di�erent methods. The �rst method is to perform frequency
analysis on the two signals and compare the di�erence in frequency responses.
The second is to compute the di�erence curve, i.e. compute the di�erence
between the grand average responses of the two tasks. This method retains the
phase of the two signals, which also may contain valuable information.
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1.3 The �anker task

The experiment, that was performed by Gerd Waldhauser, PhD, who then was
with the Department of Psychology at Lund University, is a version of the so-
called �anker task [2]. Participants are asked to identify the middle letter of a
�ve letter string, shown on a screen. Only the letters H or S are used and there
are four di�erent strings available. Either the string is congruent, i.e. all the
�ve letters are the same (HHHHH or SSSSS), or the string is incongruent, i.e.
the middle letter is di�erent from the surrounding letters (HHSHH or SSHSS).
Subjects identify the middle letter by pushing an H or S button. The letters may
also be shown on the left, middle or right part of the screen. The point of interest
in this experiment is the so-called N2 response, or second brain response. This
usually occurs somewhere between 200 and 500 ms after the stimulus. The
hypothesis is that there will be a di�erence in the brain responses at N2 on
the posterior part at the opposite side of where the strings are shown. In other
words, if a participant is shown one congruent and one incongruent string on
the right side of the screen, a di�erence in brain response is expected to be seen
on the posterior left side.

There were 27 participants in the experiment but the results where only used
from 22 of them. The EEG signals are measured using 38 electrodes, where 36
electrodes measures EEG and two measures the eye movement. A rough image
of the electrode setup can be seen in �gure 1.1.

The signals were sampled at 500 Hz.
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Figure 1.1: Map of locations of the electrodes placed on the scalp. The 39:th
electrode is just a reference electrode.
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Figure 2.1: The eye-movement is shown in the two lower plots. Clear blinking-
and eye-movement artifacts are seen in the EEG signal (top plot).

2 Theoretical Concepts and methods

2.1 Removing eye movement artifacts

One of the more prominent artifacts in the EEG signals derives from eye move-
ments; both from moving the eyes themselves and from blinking. To remove
this information, which is unwanted, from the EEG signal, one usually mea-
sures both of these kinds of eye movements using two additional electrodes.
The �rst, called HEOG (Horizontal ElectroOculuGram), measures the horizon-
tal eye movement and the second, VEOG, measures the vertical eye movement.
An example of how these eye movement artifacts a�ect the EEG can be seen
in �gure 2.1. The data is taken from the tutorial of the EEG analysis soft-
ware eeglab [10] and shows the EEG from a frontocentral electrode of a subject
performing a visual attention experiment. Hence there are quite a lot of eye
movements and therefore artifacts in the EEG.

There are many ways to remove these eye movement artifacts from the EEG.
The method chosen here is a recursive least square �lter proposed by He, P. et
al. [4].

An example of the result of the algorithm can be seen in �gure 2.2. The
peaks correlated to blinking are gone but one can also see that the power of the
EEG signal is slightly lowered due to the noise correlation in all three signals.

The EEG signals acquired from the experiment in this thesis however, are
already EOG-�ltered using standard methods, but there still seems to be some
correlation between frontal EEG and EOG-signals. Running the proposed re-
cursive least square �lter on these signals removes some baseline wander that is
seen simultaneously in EEG and EOG and I therefore chose to �lter all EEG
signals.
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Figure 2.2: The prominent blinking artifacts that are seen in the top plot are
removed after EOG-�ltering is done.

2.2 Locally Stationary Process

To evaluate methods and investigate how they perform when analyzing EEG
signals, a model has to be made. One can then simulate signals from this model
and test the performances of the di�erent methods.

One proposition is that EEG can be modeled as a locally stationary process
(LSP). There are a few di�erent de�nitions of a locally stationary process but
the one used in this thesis is the one de�ned by Silverman in 1957 [9]. It may
not be a very accurate model but a decent model to test the performance of
di�erent analysis methods.

De�nition 1. A zero-mean random process x(t) is called a Locally Station-

ary Process (in the wide sense) if its covariance function can be written on
the form

rx(s, t) = q

(
t+ s

2

)
· r (t− s) . (2.1)

The function r(τ) must ful�ll the criteria of a covariance function and q(τ)
may be any function. In the model used in this thesis, the functions q and r are
chosen as {

q(τ) = a · e−τ2/2,

r(τ) = e−cτ
2/8.

(2.2)

The variable c re�ects how stationary the process is. As c→∞, the process
becomes a stationary process. A restriction on c is that c ≥ 1, for r(τ) to
be a covariance function. The parameter a is the amplitude of the covariance
function. In the simulations this will be chosen as a = 1. Some realizations of
LSPs, with di�erent values of c, can be seen in �gure 2.3.

Note that the variables in eq. 2.1 are in t and s, two time variables. One
may want the covariance expressed in the variables t and τ , time and time-lag.
This is achieved by rotating the coordinate system 45 degrees which is done
using the coordinate change
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Figure 2.3: Realizations of LSPs for di�erent values of c

{
t = t+s√

2

τ = t−s√
2

.

This gives the LSP covariance function to be

rx(t, τ) = q

(
t√
2

)
· r
(
τ
√

2
)
.

One downside with this model is that all frequencies are concentrated around
origo. This is a problem when modeling EEG, as components of the real signal
may be concentrated around a frequency, f0, separated from 0Hz. Assuming
this frequency f0 is constant, one can model this as an oscillation of the signal.
The real EEG signal may also have its center of mass at time 0. This however
is easily �xed by estimating the time mass center and shifting the time-scale.

2.2.1 Estimating parameters

If one wants to model the EEG signals as LSP one needs to know the parameters
in the model. There are 6 parameters that need to be estimated;

• c - The parameter re�ecting how stationary the signal is.

• F1 - Scaling frequency. This is used to scale the windows that eventually
are used.

• f0 - The oscillating frequency. This must be done as the LSP only contain
frequencies close to 0. If one wants to model a signal with frequencies
with a frequency mass center, this will be modeled as a sinusoidal signal
multiplied with the LSP.

• a - The amplitude of the covariance function.

• σ2 - Assuming the signal is observed under white noise, one will also want
to estimate the variance of this noise. Assuming only white noise however
is a very strong assumption which may not really be accurate; especially
when analyzing EEG signals where the sources of noise are multiple.
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When �tting a model, the estimation of these parameters will be performed in
four main steps.

1. First one must estimate the covariance matrix of the signal. To get a
good estimation, one needs multiple realizations, especially if the signal
is observed under noise. Then �nd the center of mass of the covariance
function. Assuming the signal is a LSP, due to symmetry it will be su�-
cient to �nd the center of mass of the diagonal of the covariance matrix.
This makes computations easier since the problem then is 2-dimensional.
Lastly move the process in time so that the center of mass is at time 0.

2. Estimation of the Wigner-Ville distribution of the Hilbert-transformed
signal. This will return an image of how frequencies change over time. As
one expects the signal to have one main component, cross-terms are not
expected to be a problem (see section 2.4.4 for more on this). The most
powerful frequency will be taken as an initial estimation of the oscillating
frequency f0.

3. Now assume that the signals has a covariance that can be written on the
form of eq. 2.1 & 2.2. On the diagonal t = s, the r(t−s) term will then be
identical to 1 and therefore one will only observe the q(τ)-term. Assuming
the noise is white this diagonal will have the base at σ2. The estimations
of F1, σ2 and a will then be the numerical least square optimal �t to the
the theoretical curve of q(τ) as in eq. 2.2. An analytic expression that
could be minimized would be preferable but in this thesis the numerical
solution given by the built-in function fminsearch in MATLAB will su�ce.
The σ2 parameter will, if indeed the noise is white, be estimated quite
accurately as it will only raise the diagonal base level from 0 to σ2.

4. Lastly, look at the anti-diagonal t = −s. By the same arguments as in step
3, the q( t+s2 ) will be identical to 1 and one therefore only observes the
r(τ)-term. fminsearch can then again be used to estimate the remaining
parameter, c.

This multi-step estimation of the parameters is of course not optimal but will
return a descent estimation, given that the model assumption is correct.

2.3 Frequency analysis

By assuming that the signal one wants to analyze is oscillating one can estimate
with what frequency or frequencies this is occurring. There are two main group
of estimation techniques, parametric and non-parametric models. In this the-
sis, only non-parametric models will be used. The result of a non-parametric
technique will be a spectrum or power spectral density (PSD) .

2.3.1 Fourier-transform and spectrum

The most fundamental tool used in frequency analysis is the Fourier transform
which transforms the signal into the frequency domain.
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X(f) =

ˆ ∞
−∞

x(t)e−i2πftdt. (2.3)

The Fourier transform is designated as{
X(f) = F (x(t))

x(t) = F−1 (X(f)) .

The spectrum φ(f) can then be found in two ways. Either as the squared
absolute value of the Fourier transformed signal or from the Fourier transformed
auto-covariance function, r(τ), of the signal.

Sx(f) =

∣∣∣∣ˆ ∞
−∞

x(t)e−i2πftdt

∣∣∣∣2
=

ˆ ∞
−∞

r(τ)e−i2πfτdτ. (2.4)

2.3.2 Periodogram

As one is usually studying real data which at some point has to be sampled,
the discrete Fourier transform is of more interest. Assume one has N samples
of the signal x(n), where 0 ≤ n ≤ N − 1. The discrete Fourier transform is then
found as

X(f) =

N−1∑
n=0

x(n)e−i2πfn. (2.5)

The periodogram was the one of the �rst methods to estimate periodicities,
or frequencies, in a signal. It is simply the squared absolute value of the discrete
Fourier transformed signal.

De�nition 2. The periodogram is found as

Ŝx(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−i2πfn

∣∣∣∣∣
2

, (2.6)

where N is the length of the signal which also determines the resolution of
the frequency estimate.

If one wants higher resolution, ie. estimate the frequency on a larger grid,
this can be achieved by so-called zero-padding. By adding zeros to the sig-
nal one does not add any information but the frequency grid is made larger.
Another bene�t of zero padding is that the discrete Fourier transform, that is
implemented in MATLAB, is optimized in computational time if the signal has
a length of a power of two. Therefore it is preferable to zero pad up to 2k for
some integer k.
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Figure 2.4: The signals x1(t) and x2(t) have the same two components, one
faster and one slower sinusoidal signal. Even though they come in di�erent
order the two signals have the same spectral density.

Sx is a periodic function with the period of 1 in the normalized frequency,
and one can therefore �nd all information in the interval f ∈ [− 1

2 ,
1
2 ]. For the

periodogram it holds that Sx(f) ≥ 0, which is reasonable as one estimates the
density of frequencies; a quantity that can not be negative.

To use the periodogram one must assume the signal to be stationary, ie.
that the signal has the same mean value throughout the signal and that the
covariance function of the signal only depends on τ , the distance in time between
two points. One then estimates what frequencies can be found in the signal.
If the signal is non-stationary, and therefore changes over time, it will not be
re�ected in the periodogram. An example of this is seen in �gure 2.4.

2.3.3 Windowed periodogram

One big problem with the periodogram is the so called spectral leakage. An
example of this phenomenon can be seen in �gure 2.5 where the periodogram is
estimated for a pure sinusoidal signal with a normalized frequency of 0.25 Hz.
The expected result is then a spike at frequency 0.25 Hz and 0 otherwise but as
can be seen in the �gure, there are multiple spikes propagating from the main
peak.

Another problem with the periodogram is the large variance of the estimates.
Both these problem, the bias in the form of spectral leakage and the variance,
may be reduced by introducing the windowed periodogram,

Ŝx(f) =

∣∣∣∣∣
N−1∑
n=0

w(n)x(n)e−i2πfn

∣∣∣∣∣
2

, (2.7)
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Figure 2.5: The power spectral density of sinusoidal signal with frequency 0.25
Hz. One can see the main lobe at this frequency but in this log scale one can
also see the heavy spectral leakage.

where w(n) is a so-called window or taper. A desirable window has a spec-
trum with a narrow main lobe and low power side lobes. The main lobe needs
to be narrow for good resolution of peaks. For example, if there are two adja-
cent frequencies current in a signal, a broad main lobe may cause them to be
perceived as one single component.

There are many di�erent windows proposed that may be advantageous in
di�erent applications. Some of the more common ones are presented in �gure
2.6 together with their spectra.

2.3.4 Cross spectrum and Coherence

When analyzing two signals and want to know how similar they are and how
they are related, the cross spectrum and the coherence are two valuable tools.

De�nition 3. The cross spectrum is a spectrum showing simultaneous frequen-
cies in the signals x(t) and y(t) and can be found as

Sxy(f) = X(f)∗Y (f), (2.8)

where X(f) = F (x(t)) and Y (f) = F (y(t)) .

Note that, where the auto spectrum is always real valued as X(f)∗X(f) =

|X(f)|2, this is not the case of the cross spectrum. When analyzing the cross
spectrum one may therefore look at the absolute value of the cross spectrum.

The coherence Cxy is the the same as the Cross spectrum but normalized
with the spectrums of the two signals. The Cauchy-Schwartz inequality then
gives coherence the property that 0 ≤ Cxy(f) ≤ 1.

De�nition 4. The Magnitude squared Coherence is de�ned as

C2
xy(f) =

|Sxy(f)|2

Sx(f)Sy(f)
(2.9)

where Sxy(f) is the cross spectrum of the two signals x(t) and y(t). Sx(f)
and Sy(f) are their respective auto-spectrums.
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Figure 2.6: Six commonly used windows in the right column plots with their
respective spectrums in the left column. As mentioned, a good window has a
narrow spectral main lobe and low power side lobes.
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Whereas the cross spectrum shows where both signals have high power the
coherence will show how frequencies are related between two signals. If a fre-
quency has the same power in the two analyzed signals, this frequency will have
a coherence of 1, regardless of if the power is high or low.

One can see an example of coherence in �gure 2.7. The left column represents
three di�erent �lters. By passing a white noise signal through one of these
�lters and then computing the coherence between the original white noise and
the �ltered noise one gets an idea of how the �lter works. The coherence is
estimated using the Thomson multitapers (see section 2.5.3).

2.3.5 Dual frequency coherence

The dual frequency coherence is closely related to the cross spectrum but will
show more clearly how two frequencies in two signals are correlated in amplitude
and phase. As the cross spectrum only gives the absolute amplitudes it will
be hard to detect correlations in less powerful frequencies. Therefore it is a
good idea to normalize the cross spectrum with the spectra for each signal, and
hence estimate the coherence instead. This method was originally presented by
Mellors, R.J. et al. [7].

To estimate the dual-frequency coherence, the Thomson spectral estimates
will be used here (see section 2.5.3). When a bandwidth NW is chosen I pick
the K = 2NW − 1, �rst windows to estimate the spectrum. As the eigenvalues
of the last few windows may di�er a bit from one, each window will be weighted
with its eigenvalue.

Begin by calculating the discrete Fourier transform of each windowed signal

yk(f) =

N−1∑
n=0

hk(n)x(n)e−i2πfn, (2.10)

where hk is the k:th Thomson window.
Then estimate the cross-spectra between each frequency of the two signals

yi and yj are de�ned as

Ŝij(f1, f2) =
W

K

K∑
k=1

λky
i
k(f1)∗yjk(f2), (2.11)

where λk is the eigenvalue corresponding to the k : th window and W is the
sum of inverted eigenvalues to normalize the e�ect of the weights.

W =

K∑
k=1

1

λk
. (2.12)

Calculate the dual frequency coherence by normalizing with the cross-spectra
for the two signals. The cross-spectra is calculated as

Ŝij(f) =
W

K

K∑
k=1

λky
i
k(f)∗yjk(f), (2.13)
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Figure 2.7: White noise signals are �ltered through 3 �lters, one low-pass, one
high-pass and one band-stop �lter. The coherence is then calculated between
the original signals and the one passed through a �lter. One can see that the
coherence is closely related to the corresponding �lter magnitude.

14



i.e. the same as the cross-spectra between frequencies as in eq. 2.11, but here
the cross-spectra is only calculated between each frequency and it self.

The cross-spectra may be complex valued and one therefore looks at the
squared absolute values of the cross-spectra.

γij(f1, f2) =

√
|Sij(f1, f2)|2
Sii(f1)Sjj(f2)

(2.14)

The normalization with the cross-spectra for the two signals will show us
correlations between frequencies even if they are of low power which may be
advantageous. However if the power of a frequency is approaching zero, high
values will be seen in the dual frequency coherency plot even though the fre-
quency is non-existing. One may therefore want to add white noise to a signal
so that there are some power at each frequency to avoid zero divisions.

This method has proven valuable when one wants to �nd dispersive frequen-
cies that are coherent in time. For example, the method is very e�ective when
looking at two chirp signals with di�erent accelerations.

x(t) = 100sin(2πt2 · 0.075/600) + e1(t) t ∈ [0, 600],

y(t) = 100sin(2πt2 · 0.050/600) + e2(t) t ∈ [0, 600],

where ei(t) is white noise with standard deviation σ = 0.1. The dual-
frequency coherence can be seen in �gure 2.8, where the frequencies of the two
signals are on the two axis. An o�-centered line can be seen for the frequencies
that are coherent. As the SNR is very high, the noise makes no apparent e�ect
on the frequencies represented in the signal. However; as soon as the coherence
is estimated for frequencies that are non-existing in the signal, the estimate is
much more noisy.
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Figure 2.8: Dual-frequency coherence for two chirp signals with di�erent accel-
eration. The o�-center line marks the frequencies that are coherent between the
two signals. As one chirp accelerates faster than the other the line has an angle
lower than π/4.

An additional approach may be to divide the signal into short time sequences
and calculate the dual-frequency coherence for each section. This however adds
a third dimension which makes the result hard to present and interpret.

2.4 Time-Frequency analysis

When the signal one wants to analyze is non-stationary the spectrum is of little
use. One therefore have to add a time-dimension and estimate the frequencies
in the signal at each time.

2.4.1 Spectrogram

The Spectrogram is used to estimate frequencies in a signal that is non-stationary
by introducing a time dimension in the frequency analysis. The methods divides
the signal into short time segments and assumes that the signal is stationary
within each segment. One then computes the periodogram for each segment.
The Fourier transform of short time segments is called the Short Time Fourier
Transform (STFT). This can be found as

Sx(t, f) =

ˆ ∞
−∞

x(t1)h∗(t1 − t)e−i2πft1dt1, (2.15)

where h(t) is a window in time. Similarly to the periodogram case, one then
�nds the spectrogram as Sx(t, f) = |X(t, f)|2.
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Figure 2.9: Spectrograms of a signal containing three Gaussian components. In
the left most spectrogram a time window of length 32 has been used, window
length 64 in the middle and in the right spectrogram a window of length 128.
One can see that when a longer window is used a better resolution in frequency
is received but at the same time a worse resolution in time.

As usual, the signals investigated are sampled and one therefore needs the
discrete version of the STFT.

Ŝx(t, f) =

∣∣∣∣∣
N−1∑
t1=0

x(t1)h∗(t1 − t)e−i2πft1
∣∣∣∣∣
2

. (2.16)

The main problem with this method is the tradeo� in resolution between
time and frequency. To achieve a good resolution in time one needs to choose a
time window, h(t), that is narrow. This however will return a poor frequency res-
olution. Vice versa, a long time window will give a good resolution in frequency
and poor resolution in time (see �gure 2.9). This is a problem, for example, if a
signal containing two components with very similar frequency which may then
be perceived as one single component.

2.4.2 The Quadratic class

The Quadratic class is a set of time-frequency estimators that can be written
on the form

Qz(t, f) =

ˆ ∞
−∞

ˆ ∞
−∞

Az(ν, τ)Φ(ν, τ)ei2π(νt−τf)dνdτ, (2.17)

where Az is the Ambiguity function (see section 2.4.5) of the analytic signal
z and Φ is a kernel .

2.4.3 Analytic signals and the Hilbert transform

De�nition 5. A signal is analytic if X(f) = 0 for f < 0 where X = F (x(t)).
In other words, the signal only contains positive frequencies.

When looking at real valued signals the spectral density of the negative
frequencies is a mirror image of the spectral density of the positive frequencies,
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X(f) = X(−f). The analytic signal can then be found by taking the Hilbert
transform of the signal.

De�nition 6. The Hilbert transform of a signal is de�ned as

H (x(t)) = F−1 {(−i · sign(f)) F (x(t))} , (2.18)

where the sign function is de�ned as

sign(f) =


1 if f > 0

0 if f = 0

−1 if f < 0

.

2.4.4 The Wigner-Ville distribution

As previously mentioned, the main problem with the STFT is the bad resolution.
To get better resolution than the spectrogram one can use the Wigner-Ville
distribution, which is a member of the quadratic class.

De�nition 7. The Wigner-Ville distribution is de�ned as

Wz(t, f) =

ˆ ∞
−∞

z(t+
τ

2
)z∗(t− τ

2
)e−i2πfτdτ (2.19)

where z(t) is the analytic signal acquired by Hilbert transforming the signal.

For a deterministic signal with a single component the Wigner distribution
will give the instantaneous frequency. However there is one huge downside with
the Wigner-Ville distribution. Assume that one has a two component signal,
z(t) = z1(t) + z(t), and then calculate the Wigner-Ville distribution.

Wz(t, f) =

ˆ ∞
−∞

(
z1(t+

τ

2
) + z2(t+

τ

2
)
)(

z1(t− τ

2
) + z2(t− τ

2
)
)∗
e−i2πfτdτ

=

ˆ ∞
−∞

z1(t+
τ

2
)z∗1(t− τ

2
)e−i2πfτdτ +

ˆ ∞
−∞

z2(t+
τ

2
)z∗2(t− τ

2
)e−i2πfτdτ

+

ˆ ∞
−∞

z1(t+
τ

2
)z∗2(t− τ

2
)e−i2πfτdτ +

ˆ ∞
−∞

z2(t+
τ

2
)z∗1(t− τ

2
)e−i2πfτdτ

= Wx1(t, f) +Wx2(t, f) + 2 · < (Wx1,x2(t, f)) .

The �rst two terms in the last row are called the auto terms and the last
term is called the cross term. This cross term will appear in the middle between
every pair of components in the signal. The cross terms will also oscillate per-
pendicular to the line connecting the two true terms. A signal containing many
components or a low SNR is then hard to estimate due to the high number of
cross terms.
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Figure 2.10: Wigner-Ville distribution of signal containing three Gaussian com-
ponents (t, f) = (150 , 0.1), (t, f) = (350 , 0.1) and (t, f) = (350 , 0.2). The
oscillating cross terms can be seen in the middle between every pair of compo-
nents.

There are a few advantages of using the analytic signal when estimating the
time-frequency spectrum. By removing all negative frequencies one gets rid of
all cross term that would otherwise emerge between every mirror image couple
of X(f) = X(−f).

When estimating the Wigner-Ville distribution of a discrete-time signal one
can not get values that are shorter apart than the unit distance. To get a value
of z(t + τ

2 ) in eq. (2.19) one therefore has to down sample the signal by a
factor 2. One can then only estimate frequencies in the range f ∈ [− 1

4 ,
1
4 ].

When estimating the frequencies higher than 1
4 an aliasing e�ect will occur. For

example, calculating the WVD for a signal containing the frequency 0.3Hz , an
estimation will appear at frequency −0.2Hz. But knowing the signal is analytic
one can then sample up after the estimation and fold the negative frequencies
back into the positive plane.

2.4.5 The ambiguity domain

The ambiguity domain is another member of the quadratic class, related to
the Wigner-Ville distribution by a 2-dimensional Fourier transform, F−1f→τ and
Ft→ν . The variable ν can be interpreted as frequency-lag (called Doppler-
frequency) and τ as time-lag. The ambiguity function can also be found by

Az(ν, τ) =

ˆ ∞
−∞

z(t+
τ

2
)z∗(t− τ

2
)e−i2πνtdt. (2.20)

The ambiguity function still su�ers from cross terms, although these show up
in a favorable way. As there is no time- or frequency lag between a component
and itself in a signal, all true terms will end up together in origo. Cross terms
however will end up peripherally. Utilizing this feature of the ambiguity domain
has been shown to be a good way of reducing cross terms. By applying an
ambiguity kernel that only preserves the components close to origo and then
transform back the time-frequency domain one erases much of the cross terms.

When looking at real life signals however, they seldom contain true instan-
taneous sinusoids. There will then be some time and frequency lag within each
component. These will then stretch outside origo. One must therefore �nd a
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(a) (b)

Figure 2.11: (a) Cross-terms show up between every pair of components in the
Wigner-Ville distribution
(b) In the ambiguity domain the cross terms show up outside origo. Each cross
term from the Wigner-Ville distribution show up twice in the ambiguity domain.
Once for positive lags and once for negative lags.

kernel which will reduce cross terms but still retain the signal. The size and
shape of an optimal Ambiguity kernel will therefore di�er between every signal.
The kernel can either be multiplied to the Ambiguity function or applied by
convolving the 2-dimenional Fourier transformed kernel in the time-frequency
domain.

2.4.6 Some noteworthy distributions and kernels

One of the most commonly used kernels is the Choi-Williams kernel.

ΦCW (ν, τ) = e−α(ντ)
2

. (2.21)

It has the feature to pass any cross terms which have only time-lag OR
frequency lag. This means that sinusoids or Dirac-functions would still remain
intact, something eg. a Gaussian kernel would �lter out. The Choi-Williams
kernel can be seen in �gure 2.12a, where α = 1.

Another important distribution is the Rihaczek distribution (RD) which
is de�ned as

Rz(t, f) = z(t)Z∗(f)e−i2πft. (2.22)

The distribution can be interpreted as the complex-valued energy density
of the signal. RD do su�er from some cross term as well. Terms will show up
whenever both the time representation and frequency representation di�er from
zero. Assume there are Gaussian components at (t, f) = (10, 1) and (t, f) =
(20,−1). RD will then both show these two components, but also two additional
cross terms at (t, f) = (10,−1) and (t, f) = (20, 1) as both signal itself and the
frequency representation of the signal di�er from zero at these points. The
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(a) The Choi-Williams Kernel (b) The Rihaczek kernel (abso-
lute value)

(c) The Levin kernel

Figure 2.12: Three of the more commonly used ambiguity kernels.

Ambiguity kernel can be seen in �gure 2.12b, but is hard to interpret visually
as it is complex valued.

One large downside with RD is that it is complex valued. Something the
Levin distribution takes care of by simply taking the real part of RD

Lz(t, f) = Re
{
z(t)Z∗(f)ei2πft

}
. (2.23)

The Levin kernel is seen in �gure 2.12c.

2.4.7 Time-frequency coherence

The time-frequency coherence is analogous to the 2 dimensional case of fre-
quency coherence. As the cross-spectra may be complex valued one usually
looks at the Magnitude squared coherence.

C2
xy(t, f) =

|Sxy(t, f)|2

Sx(t, f) · Sy(t, f)
. (2.24)

There are many papers handling the case of time-frequency coherence anal-
ysis of EEG signals, among others [5, 14]. One may use any of the above
mentioned methods to estimate the cross-spectra and auto-spectra in equation
2.24. Using STFT or Welch method are two possibilities. Using a member of
quadratic class however may give better resolution in both time and frequency.
An upside with STFT and Welch is that they ensure the spectra to always be
positive; a property the quadratic class unfortunately lacks. Where negative
values turn up, numerical errors may occur that causes the time-frequency co-
herence to attain values outside the range 0 ≤ C2

xy(t, f) ≤ 1. One must therefore
con�ne the coherence estimate to the time-frequency region where Sx(t, f) > 0
and Sy(t, f) > 0.
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2.5 Multitaper estimators

2.5.1 Welch's Method

Welch introduced a method to reduce variance and bias. Instead of estimating
the power spectral density of the entire set of samples, one divides the signal
into smaller subsets. The subsets may overlap and a common choice is that each
subset overlaps 50% with the previous one. One can then estimate the PSD on
each of the segments and then get the �nal estimation of the spectrum as the
mean of all subsets. This can be viewed as a window, moving in time. One may
also use windows when estimating the PSD for each segment to reduce variance
even more.

Welch's method may also be used to estimate time-frequency spectras. This
is done by choosing a window length N and then dividing this time-window into
smaller sub-windows of length dN . One can then estimate the spectra of these
sub-windows. The average of the sub-spectras are then used as the estimate of
the spectrum of the larger time-window.

Welch's method is still commonly used when estimating spectra and I will
therefore use it as a reference method.

2.5.2 Multitapering theory

The main idea of multitapers is that by using several periodograms and averag-
ing over these, a reduction in variance is obtained. To obtain this reduction in
variance, the periodograms have to be uncorrelated. In the Welch method the
same window is used but these are applied on time-shifted versions of the data,
which results in uncorrelated periodograms. In 1982, David Thomson wrote a
paper on a method using the whole data sequence for all periodograms [12]. By
using orthogonal windows the periodograms could still be uncorrelated. It has
been shown that the Thomson method outperforms the Welch method in terms
of leakage, resolution and variance for many di�erent spectra. When producing
multitaper estimates of a spectrum from N samples of a discrete-time random
process x(n) one averages over K spectrograms.

Ŝ(f) =

K∑
k=1

αkŜk(f), (2.25)

where αk is a weighting factor and

Ŝk(f) = |
N−1∑
n=0

x(n)hk(n)e−i2πfn|2 (2.26)

Equation 2.26 is a windowed periodogram obtained by using the data window
hk = [hk(0)...hk(N −1)]T . The multitaper estimate in eq. 2.25 is then obtained
by weighting over K periodograms.

If one considers the multitaper estimation method as a �ltering procedure
in a �lter bank of FIR-�lters, the impulse responses of the sub �lters are hk
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and the corresponding frequency functions are Hk(f) = hTk ·a(f) where a is the
discrete Fourier vector. Given the input signal x(n), the power of the output
signal is

PB =

ˆ W

−W
|Hk(f)|2S(f)df

= hTk

ˆ W

−W
a(f)Sx(f)aH(f)dfhk

= hTk

ˆ 1/2

−1/2
a(f)SW (f)aH(f)dfhk

= hTkRWhk, (2.27)

where SW (f) is equal to Sx(f) in the band (−W , W ) and zero for all other
frequencies. The covariance matrix RW has a Toeplitz structure with elements

rW (l) = rx(l) ? 2Wsinc(2πW · l), 0 ≤ |l| ≤ N − 1, (2.28)

where rx(l) is the covariance function of x(n), sinc(n) = sin(n)
n and ? denotes

convolution. The sinc-function is the Fourier transform of the box function in
the frequency domain that sets the band (−W , W ).

One wants to choose K window functions which maximize the output power
PB . This optimization is performed with total power of a window equal to one,
i.e.,

Ptot =

ˆ 1/2

−1/2
|Hk(f)|2df = hTk hk = 1 (2.29)

The solution with respect to hk is the set of eigenvectors of the eigenvalue
problem

RW qk = λkqk, k = 1...N. (2.30)

These eigenvectors are then used as windows, or multitapers, to estimate a
spectrum.

A few multitapers that are expected to be useful in this thesis are presented
below.

2.5.3 The Thomson multitapers

The Thomson multitapers assumes the analyzed spectrum is white, i.e.

rx(l) =

{
1 l = 0

0 l 6= 0
,

in eq. (2.28). The windows generated as a solution to eq. 2.30 are the
Thomson multitapers but they are also known as Discrete Prolate Spheroidal
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Sequences (DPSS) or Slepian windows. The eigenvectors corresponding to eigen-
values close to one have amplitude close to zero at the edges of the window and
are appropriate to use as windows. These are the windows used for Thomson
estimation. The Thomson multitaper can be found in MATLAB using the function
[h,V]=dpss(N,NW), which gives the 2 ·NW �rst windows of sample length N in
h and their respective concentrations (in V) in the frequency band |ω| ≤ 2πW
where W is the half-bandwidth and ω is in radians/sample.

Realizations of Slepian windows can be seen in �gure 2.13.
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Figure 2.13: The nine �rst slepian windows when N = 512 and NW = 5 in the
left plot and the sum of the squared absolute value of their Fourier transforms
in the right plot.

2.5.4 The Hermitian multitapers

The Hermitian multitapers are somewhat related to the Thomson windows in
that they both assume the analyzed spectrum will be white. The di�erence
is that the Thomson multitaper �nds the eigenvectors in the rectangle area
f ∈ [−W , W ], where the Hermitian multitapers instead will �nd the optimal
multitapers, in the mean square error sense, for a white spectrum in the area
t2 + f2 ≤ R2, ie. a circle with radius R. This is proved by Daubechies in 1988
[1]. The k : th order Hermite functions is de�ned by

hk(t) = π−1/4
√

2k(k − 1)!

(
t− d

dt

)k−1
e−t

2/2 k = 0, 1, 2... (2.31)

This form however is unpractical due to the nested derivatives. The recursive
form of the functions is therefore easier to use.

h0(t) = et
2/2e−t

2

h1(t) = 2tet
2/2e−t

2

hk(t) = 2t · hk−1 − 2(k − 2) · hk−2 k = 2, 3, 4, ... (2.32)
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These windows then have to be normalized to have unit energy. Depending
on the radius R, the eigenvalues of these tapers can be found as

λk(R) = 1− eR
2/2

k∑
p=0

1

p!
2−pR2p. (2.33)

As with the Thomson multitapers, one wants to use the tapers with eigen-
values as close to 1 as possible.

It has been shown that the Hermitian gives the best performance for white
noise spectra in the time-frequency domain in terms of locality and orthonor-
mality of the windows in the mean square error sense..
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Figure 2.14: The nine �rst Hermitian windows when N = 512 and R = 5 in the
left plot and the sum of the squared absolute value of their Fourier transforms
in the right plot.

2.5.5 Peak matched multitapers

When estimating a PSD where peaks exists the Peak matched multiple windows
(PMMW) have been shown to perform well [3]. The main idea of the PMMW is a
combination of the Thomson windows and peak matching. Where the Thomson
multitapers assumes a white spectrum (φx(f) = 1, f ∈ [−B/2 , B/2]), the
PMMW adds a peak shape to expected spectrum.

Sx(f) =

{
e

−2C|f|
10B·log10(e) |f | ≤W

0 |f | > W
. (2.34)

A penalty function is also added to suppress leakage,

SG(f) =

{
G |f | ≤W
1 |f | > W

, (2.35)

where G is chosen to get a satisfactory result. Setting G = 1000, giving a
penalty function of 30 dB has proven to be a good choice. The corresponding
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Toeplitz covariance matrix is named RG and will be added to the eigenvalue
problem in eq (2.30) as

RBqk = λkRGqk, k = 1...N. (2.36)

Solving this generalized eigenvalue problem will generate the PMMW.
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Figure 2.15: The 7 �rst PMMW with N=512 and a penalty function of 30 dB.

2.5.6 LSP optimal windows

Knowing that the spectrum one wants to �nd belongs to a locally stationary
process, one can �nd the optimal windows in the mean square error sense. These
are derived in [8] and [13]. This is done by setting up the integration of expected
error of the spectrum in the ambiguity domain

J(φ) =

ˆ ˆ
E
{
Âz(ν, τ)φ(ν, τ)− E

{
Âz(ν, τ)

}}2

dνdτ. (2.37)

Minimization of the error function J(φ) then gives the optimal ambiguity
kernel as

φopt(ν, τ) =
E
{
Âz(ν, τ)

}2

E
{
Â2
z(ν, τ)

} . (2.38)

Assuming we know the parameters of the LSP one can then �nd the optimal
ambiguity kernel which can be transformed into desired quadratic domain.

The resulting windows turn out to be closely related to the Hermite multi-
tapers but where each window has an optimized weighting factor that represent
how much of the frequencies represented by each window is expected to be seen
in the signal.
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2.5.7 Time-frequency multitapering

The windows that are derived above are eigenvectors and hence one-dimensional.
One can therefore use them, as they are, when estimating spectra or spectro-
grams. However one can also use them as kernels in the quadratic class by
rotating them into a 2-dimensional structure.
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3 Evaluation of methods on simulated signals

3.1 LSP modelling

To evaluate the scheme to estimate the parameters of an LSP, presented in
section 2.2.1, I generated 20 realizations with c = 9, scaling frequency F1 = 50,
an oscillating frequency of 0.125 and a signal length N = 802. White noise
was added with variance σ2 = 1. The 20 realizations war used to estimate the
covariance matrix. Estimations are then made of the parameters c, F1, f0, a
and σ2.

This was then repeated 100 times to see how accurate the scheme is. The
results are evaluated using root mean square error (RMSE). For example the
RMSE of the estimation ĉ of c is calculated as

RMSE(ĉ) =

√√√√ 1

100

100∑
k=1

(ĉk − c)2.

The results can be seen in table 2. As can be seen in the same table the
estimations of f0 and σ2 are quite accurate. However, the estimations of the
parameters c and F1 have large variations and seem to be biased. This is most
likely due too the fact that numerical optimizations of multiple parameters are
made simultaneously which may give rise to large errors. The parameter a was
estimated too low due to the same reason.

Parameter True value Mean of estimations RMSE

c 9 9.9642 3.5057
F1 50 60.9887 12.1036
f0 0.125 0.1249 8.14 · 10−4

a 1 0.4974 0.5097
σ2 1 0.9997 0.0100

Table 2: RMSE of the estimated parameters in the LSP model.

When one has an estimation of the LSP parameters one can then �nd the
optimal multitapers to estimate the spectrum of the process. However, as these
estimates seem to have a relatively high variation, one may want to investigate
how sensitive the optimal multitapers are to variations of these parameters. The
estimations of the parameters maybe so bad that the corresponding optimal
multitapers may perform worse than a more general method.

3.2 Time-frequency estimations

To evaluate the methods presented in section 2, simulations will be made using
LSP. Realizations will be generated using speci�ed parameters c and F0. As
the covariance function of LSP is known one can �nd the true spectrum using
equation 2.4.
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S(t, f) =

ˆ ∞
−∞

r(t, τ)e−i2πfτdτ

=

ˆ ∞
−∞

e−t
2/4e−c/4·τ

2

e−i2πfτdτ

= e−t
2/4

√
4π

c
· e−(πf)

24/c.

Knowing this is the true spectrum, one can now estimate the spectrum using
the di�erent methods and measure the root mean square error (RMSE). I will
here use the formula

RMSE =

√
1

N

1

M

∑
t

∑
f

(Ŝ(t, f)− S(t, f))2 (3.1)

where N is the number of samples in the signal and M is the number of
points onto which the discrete Fourier transform is calculated.

Evaluations will be made on the Thomson multitapers, the Hermitian mul-
titapers, Peak Matched multiple windows and the LSP optimal multitapers but
also the Welch method as it is a commonly used method within the �eld and
therefore a good reference result to compare the other methods with.

The main idea was to model the EEG signals as a LSP and estimate the
parameters. As the optimization scheme used in this thesis did not �nd any
good results (see section 4.3) I manually choose parameters that seemed to
coincide with the EEG spectra. The parameters that where chosen were c = 5
and F1 = 12.

Each method will estimate the spectra of 100 realizations. The RMSE will
then be calculated on all the 100 spectra and then averaged but I will also calcu-
late the RMSE of the mean spectrum. When evaluating the di�erent methods I
manually found parameters that gave low RMSE, by simply testing values of the
parameters and choosing those that gave the lowest RMSE. Optimization could
of course in some sense be made but as the model itself needs improvement I
felt this was not necessary. Instead trial and error methods were used to see
what parameters generated good results.

Evaluations were made of the LSP optimal windows using both the true
parameters and estimated parameters using the scheme from section 2.2.1. The
estimation of the parameters was done using all 100 realizations at once to
estimate the covariance matrix.

The parameters that where chosen for the di�erent windows were:

• LSP - c = 5 and F1 = 12 as these were the parameters in the model.

• LSP est - c = 6.0877 and 13.5617

• Thomson MT - NW = 4, N = 120 and K = 3.

• Hermite - R = 16, N = 110 and K = 4.
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• PMMW - N = 100 and K = 9.

• Welch - N = 100, dN = 50 and 50% overlap.

The frequency will only be estimated up to Fs/4; this could have been chosen
even lower as the frequencies are concentrated around 0 Hz.

As the methods are not optimized to estimate the frequencies of a LSP they
may estimate the power wrong. Assuming this power is the same in the entire
time-frequency plane a scaling factor is also estimated for every method. This
scaling factor is optimized using mean square error.

min
a

∑
t

∑
f

(a · Ŝ(t, f)− S(t, f))2

The RMSE results are presented in table 3 and the estimated spectra can be
seen in �gure 3.1. One can there see that Thomson and the Hermite multitapers
generate similar results. The Thomson tapers perform slightly worse though
and the expected square shape of the Thomson spectrum �ts the the true LSP
spectrum worse as well. I will therefore not use these tapers in further analysis
of the EEG signals. The LSP optimal tapers naturally gave the best RMSE as
they are optimal in shape and weighting in the mean square error sense.

Method Mean RMSE of 100 spectra RMSE of mean spectrum

LSP optimal 0.0557 0.0105
LSP est 0.0753 0.0234

Thomson MT 0.0731 0.0429
Hermite 0.0675 0.0263
PMMW 0.0970 0.0691
Welch 0.0892 0.0539

Table 3: RMSE of spectra estimated with di�erent methods.

4 Results

4.1 Pre-processing of data

The signals where initially stored in EEGlab �les. Here, a low pass �lter at
200 Hz and a high pass �lter at 0.03 Hz where applied and the signals where
EOG artifact corrected. After converting them to MATLAB �les a script was
constructed that retrieved the required set of responses. The di�erent responses
where sorted in channels and visual �eld sets i.e. the responses from di�erent
locations of the scalp depending on where the string of letters where shown.
The possible channels are shown in �gure (1.1) and the possible visual �elds are
the left visual �eld (lvf ), the center visual �eld (cvf ) and the right visual �eld
(rvf ).
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Figure 3.1: Estimated spectra of the LSPs using four di�erent methods. The
true spectrum calculated analytically can be seen in the top plot.
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Figure 4.1: Grand averages from the PO4 channel when the strings of letters
where shown in the three di�erent visual �elds. (Note that grand averages are
usually plotted with inverted y-axis)
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Figure 4.2: Average responses from two di�erent participants taken from the
same channel in response of stimuli from the right visual �eld.

The signals contained noise and oscillations that are of no interests in this
thesis, eg. the classic 50 Hz main electricity frequency. An additional low-pass
FIR �lter with a 20 Hz cut o� frequency was therefore applied. As the set of
signals was so large, this �lter was applied on the grand averages. The signals
were also Hilbert-transformed.

4.2 Grand Average and di�erence curves

Computing the grand average of the signals when sorted into congruent and
incongruent sets and then into visual-�eld-subsets gives some immediate visual
hints of the �nal results. As mentioned in section 1.3 the main interest lies in
the N2 event which here seems to occur around 300 ms. In �gure 4.1 grand-
averages from the PO4 channel can be seen. As PO4 is a channel placed on the
posterior right part of the scalp, and the biggest di�erence is then expected to
be seen when the string is shown in lvf and less di�erence when shown in cvf
or rvf.

The variance of the averages between each participant is pretty high. One
should therefore note that it is a very strong assumption to make; that every
persons brain response is the same. As an example see �gure 4.2 where the
average of responses from participant 2 and 3 are shown separately. The averages
are formed from the same channel and in response to the same stimuli but one
can still see that their EEG responses are very di�erent.
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Figure 4.3: Di�erence curves from channel PO4. The biggest di�erence is seen
when strings are shown in the left visual �eld which coincides with the hypothesis
as PO4 is a channel on posterior right part of the scalp.

An example of the di�erence curves can be seen in �gure 4.3, where the three
curves are the di�erence in responses of the three visual �elds measured at the
PO4 channel.

4.3 LSP modelling of EEG

The scheme was not so successful on real EEG data. Primarily the brain re-
sponses were much too complex to be modeled as a single LSP. An example of
this is seen in �gure 4.4. As the diagonal of the covariance matrix seen in �gure
4.4b contains multiple components, trying to �t one single Gaussian function
will then return bad results.

Some of the channels had potential to be modeled well as a LSP process, An
example of this is shown in �gure 4.5. However the scheme still performed bad
and the LSP model that is �tted in the �gure is therefore �tted manually. Again,
that the scheme fails was probably due to the fact that multiple parameters
where being optimized simultaneously in separate steps. Another problem was
that the solution found often resulted in that the parameter ĉ was set to a value
less than 1. As c ≥ 1 was a requirement, a simple function was added to the
anti-diagonal that penalized c-values under one. This however only resulted in
ĉ = 1.

The solutions I used for this problem was to manually �t the parameters
to �t the N1 and N2 events as it was here that the point of interest lies. The
parameters I ended up using was F1 = 12 and c = 5.
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Figure 4.4: (a) Cross covariance matrix of channel P7, where to stimuli is con-
gruent and in the lvf.
(b) Diagonal of the covariance matrix to the left.
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Figure 4.5: Cross covariance matrix of channel FT9, where to stimuli is congru-
ent and in the lvf.
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4.4 Time-frequency analysis

As there are 36 channels to be analyzed, three possible visual �elds where the
strings can be shown and a set of di�erent analysis methods to be used, this
result section consists of a large set of plots. I have chosen four of the channels
to present in the report: PO3 (left posterior channel), PO4 (right posterior
channel), CZ (middle center) and FZ (center anterior). In this section however
only the plots for the channel PO4 will be shown. The rest of the plots can
be found in Appendix A. All plots are zoomed in to show frequencies between
0 and 20 Hz and the time span −100 and 900 ms in comparison to when the
letters show up on the screen. The color scaling of the plots is the same for each
pair of channel and method.

The parameters used in the di�erent methods are the ones presented in
section 2, where the parameters are set to �t the LSP model.

4.4.1 Welch's method

Even though the Welch's method performed well on the LSP it did not perform
as well on the EEG-signals. Even though a shorter time-window was used com-
pered to the other multitaper methods a worse frequency resolution is acquired.
In �gure 4.6 one can see the spectra of channel PO4 for congruent and incongru-
ent stimuli from the left visual �eld. Each time window was chosen to N = 100
samples and the inner windows to Nd = 50 samples where each sub-window
overlaps 50 %.

Figure 4.6: Welch's method used to estimate the spectra of channel PO4 for
stimuli from the left visual �eld.
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4.4.2 LSP optimal multitapers

The LSP optimal multitapers give descent results around time 0− 400ms, but
there seem to be some oscillating e�ects after that. During the time span 0 −
400 ms this method returns the best results in terms of locality.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: PO4 - LSPopt
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4.4.3 The Hermite windows

Of the more general methods the Hermite windows returns the best results in
terms of concentration.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: PO4 - Hermite
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4.4.4 Peak matched multitapers

The PMMW returns very similar results compared to the Hermite windows.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: PO4 - PMMW

4.4.5 Interpretation of time-frequency representations

Interpreting the result plots from a psychological point of view may be better
done by someone trained in the �eld.

However just looking at the plots for PO3 and PO4, both seem to follow
the hypothesis.

The spectral di�erence plots of PO3 (appendix A.0.1) shows a bigger di�er-
ence at the right side of the scalp. The di�erence seem to be the lowest on the
right part of the brain at time 300 ms, where as clear frequency di�erences are
seen for lvf and cvf .

38



Comparing the spectra for PO4 (appendix A.0.2) visually would support
the hypothesis, where a more powerful response is seen for congruent lvf than
incongruent. A much stronger di�erence is seen with a mass center around 350
ms.

Looking at the N2 events of FZ the results are quite inconclusive. A stronger
response is seen for congruent stimuli on lvf. A stronger response for incongruent
stimuli on cvf and about the same response for both stimuli on rvf .

CZ (appendix A.0.3 and A.0.4) seem to get a more bilateral di�erence be-
tween congruent and incongruent stimuli, where the same response was given
whether the stimuli was from lvf or rvf . A stronger response is seen for the
incongruent stimuli at both these visual �elds.
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Figure 4.10: Coherence between brain responses to congruent stimuli and in-
congruent stimuli.

4.5 Coherence

4.5.1 Frequency coherence

An attempt at frequency coherence was made to analyze the signals without
using a time dimension. This however gave no good results as the signals are
not stationary enough. When looking at the whole signals they seem to have
roughly the same frequency content. The coherence between congruent stimuli
and incongruent stimuli from channel PO4 can be seen in �gure 4.10. One can
notice that the biggest dips are seen are seen roughly at the same frequencies
for all visual �elds, ie. ∼ 1 Hz and ∼ 4 Hz. As they are same for the three visual
�elds they can most likely be derived from the later brain responses (400−1000
ms) where the responses always seem to di�er, more or less, between congruent
and incongruent stimuli.

4.5.2 Time-frequency coherence

When calculating the time-frequency coherence, I used the same multitaper-
ing methods as for the time-frequency spectra. However some of the methods
generated negative values within the region of analysis and one could therefore
not compute the coherence. The peak-matched multitapers proved to be must
robust in this part and I therefore only present the results using this method.
Again I did the analysis on the channels PO3, PO4, FZ and CZ with only
PO4 presented here and the rest in Appendix B.

When looking at the coherence plots for PO3 and PO4 they coincide with
the hypothesis. Lower coherence is seen around 300 ms contra-lateral to the
stimuli.

The results for CZ and FZ are rather inconclusive. CZ have high coherence
at all frequencies and for all visual �elds. FZ have lower coherence for lvf
stimuli and roughly the same for cvf and rvf .
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(a) (b) (c)

Figure 4.11: Time-frequency coherence of PO4.

4.5.3 Dual-Frequency coherence

The plots in �gure 4.12 show the dual-frequency-plots for the two electrodes
P3 and P4, that are positioned at the back of the head . The strings are
shown in the right visual �eld and we can therefore see clear di�erences between
the congruent and the incongruent auto-dual-frequency plots at P3, i.e. the
left side of the brain, which was expected. At P4 one can see that the plots
are similar. However it is very hard to interpret the dual-frequency coherence
between the signals as all plots are very noisy, and the signals are built up of
multiple components where many of them seem to be coherent and it is therefore
unclear what one is really looking for. The signals are clearly similar with much
coherence in the frequency band < 15 Hz.

41



Figure 4.12: Dual-frequency coherence of EEG-signals. The top three plots a
measured from the left posterior part of the brain and the bottom three plots
from the right posterior of the brain. In this case the letters were shown in the
right visual �eld and one can therefore expect di�erences in the left posterior
part.

The time-dual-frequency coherence was also implemented and tested but
generated no satisfactory results as they where too noisy and hard to interpret
due to the four dimensionality. Therefore these results will not be presented
here.
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5 Discussion and comments

5.1 Pre-processing of data

This is a section where much more could have been done. Assumptions were
now made that all subjects reacted the same every time to a certain stimuli. One
could look at how responses di�er between subjects. How long was the mean
reaction time of each participant. Do participant react the same to stimuli
throughout the experiment or do they respond di�erently when they are more
familiar with the possible stimuli.

5.2 LSP modelling of EEG

I must �rst mention that LSP modelling worked quite well when used on chan-
nels that gave less powerful responses on the stimuli. The LSP model did not
turn out very well when looking at more active EEG signals. One main prob-
lem is that a LSP only contains one component, centered around time 0. As
most EEG evoked potentials consist of multiple component, that all occur after
time 0, the model has to be altered. One solution to this might be to consider
the signals as sums of LSPs with di�erent center times. The question is then
how complicated one should make the model? As the brain may respond very
di�erently to other performed task, should one try to �t a model to each task
and channel or are the responses similar enough to make one descent model?

Another problem is the optimization of parameters in the model; the scheme
used in his thesis has to be improved. Best case scenario would be to �nd
an analytic expression for this estimation, instead of the now used numerical
solution. If an analytic expression can not be found, one would at least like to
�nd the parameters in one step, instead of four.

5.3 Time-frequency analysis

Multiple methods where used and evaluated on the model. To evaluate the
methods I tested them on simulated LSP. One might want to try them out on
many di�erent LSPs to give a more wide result instead of just a single one as
in this thesis.

Choosing a way to present the results of the analysis on the EEG signals
was also a problem. Having multiple channels and analysis methods generated
an abundance of plots that would more than double the number of pages in
this thesis if presented. As the main concern of this thesis was to implement
and evaluate the multitaper methods I felt that I wanted to keep the number of
plots low enough to be able to take them all in but high enough to get an idea
of the results.

Something that was also tested in this thesis was to estimate a spectrum of
every individual's result and then average over all subjects. As every persons
brain response di�ered this only gave a quite smudged result that was hard to
interpret.
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A Time Frequency plots

Here are the spectrum plots for the channels PO3, PO4, FZ and CZ. As there
are multiple plot there are no captions on the images. Instead they all follow the
same pattern as presented in table 4. The di�erent channels are presented in
their own subsection and each method of analysis on its own page. As mentioned
previously the color scaling is the same for each pair of channel and methods.
Hence the same color scale is for plots on the same page.

Time-frequency Time-frequency Time-frequency
Congruent Congruent Congruent

Left Visual Field Central Visual Field Right Visual Field

Time-frequency Time-frequency Time-frequency
Incongruent Incongruent Incongruent

Left Visual Field Central Visual Field Right Visual Field

Time-frequency Time-frequency Time-frequency
Di�erence in frequency power Di�erence in frequency power Di�erence in frequency power

Left Visual Field Central Visual Field Right Visual Field

Table 4: Table showing how plot are presented.
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A.0.1 PO3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: PO3 - LSPopt
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: PO3 - Hermite
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: PO3 - PMMW
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A.0.2 PO4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: PO4 - LSPopt
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.5: PO4 - Hermite
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.6: PO4 - PMMW
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A.0.3 FZ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7: FZ - LSPopt
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.8: FZ - Hermite
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.9: FZ - PMMW
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A.0.4 CZ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.10: CZ - LSPopt
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.11: CZ - Hermite
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.12: CZ - PMMW
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B Time Coherence plots

B.0.5 PO3

(a) (b) (c)

Figure B.1: Time-frequency coherence of PO3.

B.0.6 PO4

(a) (b) (c)

Figure B.2: Time-frequency coherence of PO4.

B.0.7 FZ

(a) (b) (c)

Figure B.3: Time-frequency coherence of FZ.
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B.0.8 CZ

(a) (b) (c)

Figure B.4: Time-frequency coherence of CZ.
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