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1. Introduction 

Abstract 

Digital 3D city models are used in many GIS applications. Manual digitization of 3D 
buildings is rather tedious, hence automated approaches are much preferred. In this 
study, a pipeline for automated extraction and estimation of building roof facets from 
LIDAR data are devised based on available methods and ideas, which is part of the 
entire frame work of automatic creating of 3D city models. 

In this pipeline, the ground and non-ground points are separated using a graph cuts 
based method combined with EM algorithm only from elevation data. The tree points 
and other undesirable clutters are further excluded using the criteria derived from 
principle component analysis. Finally, the model parameters of roof facets are esti-
mated with a RANSAC based method. 

Extensive experiments have been conducted in the different steps of the pipeline. The 
splitting of data into subtiles of 25m by 25m can effectively reduce the influence of 
slightly varied topography of the test region. With a tuned spatial regularization pa-
rameter, graph cuts method can result in a more smooth classification, with some cars 
and low shrubs separated from buildings. The quality of extraction of roof points de-
pends on both size of the neighboring radius and the choice of the threshold for the 
criteria. The kD-tree structure is used for searching neighboring points more effi-
ciently. For the linear threshold classifier, 1m is an ideal radius size for filtering off 
non-plane points yet preventing the missing of smaller roof facets. In contrast, when 
applying graph cuts based classifier in detecting planes, even 2m radius does not re-
sult in missing points on the joint part between roof facets. The modified RANSAC 
algorithm can estimate each planar roof facet model from the data containing many 
potential models robustly and efficiently, however it cannot separate the facets that 
are fully coplanar. In this method, LIDAR data is the only necessary input. It does not 
need any other geographical data such as vector data or DEM.  

 

Keywords: Geomatics; Geography; Physical Geography; LIDAR; Pattern recognition; 
Classification; 3D city modeling; Graph cuts; EM algorithm; kD tree; RANSAC 
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Abbreviations and glossary 

ALS Airborne Laser Scanning 

ASCII American Standard Code for Information Interchange II 

DEM Digital Elevation Model 

DGPS Differential Global Positioning System 

DLT Direct Linear Transformation 

DSM Digital Surface Model 

DTM Digital Terrain Model 

GIS Geographical Information System 

GML Geography Markup Language 

IMU Inertial Measurement Unit 

kD k dimensional 

LIDAR Light Detection and Ranging 

LADAR Laser Detection and Ranging 

LOD Level of Detail 

NaN Not a Number 

NDVI Normalized Difference Vegetation Index 

MAP Maximum A Posteriori 

PCA Principle Component Analysis 

RANSAC Random Sample Consensus 

SVD Singular Value Decomposition 

TIN Triangulated Irregular Network 

XML Extensible Markup Language 
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1. INTRODUCTION 

Geographic information system (GIS) is a computer aided system that captures, 
stores, analyzes, manages and presents various types of geographical data (Worboys, 
2004). Compared with conventional information systems, it focuses on solving prob-
lems related to spatial issues, such as geography, positioning and navigation. Techni-
cally, it is highly interdisciplinary covering computer science, cartography, remote 
sensing, geodesy, mathematics, information technology and management. However, 
different applications seem to have distinct forms of GIS, e.g., it can be associated 
with a research tool in geography, a graphic database on cadastral management or a 
real-time system on transportation query, etc. 

Since it emerged, GIS has for long been mainly used in two-dimensional geographical 
data. However, in applications such as landscape analysis in urban planning, noise 
modeling, underground pipeline management, telecommunication (signal range simu-
lation) and real estate marketing (integrate indoor structure into building model), 
which require immediate accessibility of the third-dimensional information, 2D GIS is 
not suitable. Many city governments and companies have shown great interest in 
combining GIS functionalities with 3D geographical data, especially of urban areas. 
In this context, developing automated methods for creating 3D city models has be-
come a hot research topic in both academia and industry. 

1.1 Objectives 

Although many researchers have published their novel and cutting-edge methods, 
perhaps due to space limitations in the articles, or purpose of protecting their core 
technologies, those articles often fail to describe their methods in sufficient detail. 
There will be uncertainties when they are applied in real applications. Thus, this study 
seeks to make the following contributions: 1) developing an automated pipeline for 
extracting buildings and creating plane models for roof facets based on airborne laser 
scanning point cloud data; 2) evaluating the extraction effect with regard to different 
parameters; 3) provide the theory and procedures explicitly to make the method re-
peatable. The method is in no need of any other auxiliary data; all relevant features 
are derived solely from the 3D point data itself. 

Chapter 2 presents a thorough literature review, from 3D data collection to the exist-
ing methods in industries and related researches in academia. Chapter 3 gives an in-
troduction to the data used in this study. The explicit methodology and theory is de-
scribed in Chapter 4. The experimental results and relative comments are presented in 
Chapter 5, followed by the discussion and conclusions in Chapter 6 and 7. Finally, 
some important but lengthy experimental results and some knowledge that are not 
closely related to the methodology are attached in Appendices. 



1. Introduction 

2 

 

1.2 Tools 

There exist many powerful computer programs for automatically creating massive 3D 
city models. But they are normally in-house and commercial, which are normally ex-
tremely expensive and inaccessible. On the other hand, many open source software 
can be used for free in research, such as GRASS GIS and LAStools. However, those 
programs provide only general processing functionalities such as format conversion, 
rasterization, classifying ground and non-ground points, which greatly limits the ex-
tension feasibility, e.g., designing a user defined filter. Especially, although LAStools 
provides 27 efficient tools covering nearly all the commonly used functionalities, only 
12 most basic ones are really open source (Isenburg, 2012). Owing to the obstacles, 
all the experiments in this study are programmed from scratch. Matlab serves as the 
main platform for the visualization and organization of different functionalities, where 
some open source C++ packages of key functionalities are integrated. 

1.3 Limitations 

Due to the time limit, the study focuses only on extracting roof points and generating 
plane models for roof facets, which is part of the entire process of automated 3D city 
modeling. The complete system for automated 3D city modeling is studied but has not 
been fully implemented. A proposed future work is however described in Appendix 
A. 

1.4 Clarification on some terminologies 

The term “modeling” in this context merely refers to creating geometric models for 
buildings, instead of a mathematical modeling of some process. For example, a plane 
can be modeled by {(x, y, z) | ax + by + cz + d = 0}, where (a, b, c, d) are the model 
parameters. And a “roof facet” refers to a planar surface that is part of a complete roof 
structure. All the terms such as “classification”, “segmentation”, “separation” and 
“clustering” refer to the same operation, which is merely dividing a set of data into 
groups according to some attributes of the data. 

 



3 

 

2. BACKGROUND 

As is well known, 3D technology is commonly used in video games, films, and indus-
trial animations and simulations. In 3D GIS, buildings and other urban facilities can 
be modeled as the graphs composed by 3D polygons. These urban facilities can in-
clude constructions, trees, bridges, roads and traffic signs, etc. In order to conduct 
spatial analysis accurately, the 3D models are normally required to be accurately 
georeferenced. This requires that the models should be generated from some raw 3D 
data that is also georeferenced. Section 2.1 introduces the two most fundamental 
methods for massive and rapid 3D raw data collection. In section 2.2, a Web ex-
change format for 3D city models is introduced. Section 2.3 focuses on the available 
methods in both industry and academia. 

2.1 3D Data Collection 

Airborne laser scanning (ALS) and 3D reconstruction from multi-view images are the 
two fundamental methods for collecting raw 3D data. The raw data refers to 3D scat-
tered points representing the shapes of the target objects. 

2.1.1 3D reconstruction from multi-view images 

Given images of the same object taken from different positions, the three-dimensional 
coordinates of a point can be estimated from the two-dimensional information of the 
corresponding point in those images. The imaging mechanism of a modern camera is 
very complex. For mathematical tractability, we normally use Pinhole Camera 
(Figure 1) to model how 3D objects from real world are projected onto 2D images. 

 
Figure 1. Pinhole camera model. 
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The pinhole camera model can be formulated by a 3x4 matrix 

 P = KR[ I | –C] (1) 

where R is a 3x3 rotation matrix determining the camera orientation; C is the 3D co-
ordinate of the camera center; I represents a 3x3 identity matrix; K is a 3x3 matrix 
consisting of the camera’s internal parameters such as focal length, scaling and skew-
ing ratios. Suppose that X is the homogenous coordinate of a point in the 3D world 
and x is the corresponding homogenous 2D image coordinate, i.e., X = [x, y, z, 1]T and 
x = [a, b, 1]T, the relation between X and x can be formulated as 

 λx = PX (2) 

where λ is a normalizing constant. For multi-view images, the projections of the same 
3D point are formulated as a system of equations: 

 ��
�λ�x�� = P�X�λ�x�� = P�X�…λ
x
� = P
X�

 (3) 

The problem of reconstructing P�	�i = 1, … , n�  and X�	�j = 1, … ,m�  from image 
points x�� is usually called structure and motion. One of the key theories to solving 

this problem is the epipolar geometry for two cameras, by which the relative pose of 
the cameras can be obtained for computing the 3D coordinate of Xj. Figure 2 illus-
trates an intuitive interpretation of epipolar geometry. 

Figure 2. Epipolar geometry of two cameras. a) Converging cameras. b) Parallel camer-
as. 

Suppose there are two cameras with the focal (center) points C1 and C2. The x1 and x2 
are the projection of the 3D point X in the images taken by the two cameras. The e1 
and e2 are called epipoles, which are the projection of C1 and C2 on their opponent 
image planes. Those points are actually coplanar. The imaginary plane Π intersects 
the two images at x1e1 and x2e2, which are referred to as epipolar lines. For two con-
verging cameras, all the epipolar lines corresponding to different Xj should converge 
to the corresponding epipoles. On each image, the projected point of Xj must be on its 
epipolar line. Thus, the corresponding image points forms an epipolar constrains, by 
which the camera matrix P2 are solvable conditional to an initialized P1. Afterwards, 
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the 3D point Xj can be calculated by the intersection of the projection lines C1x1 and 
C2x2. This process is called triangulation. (Hartley and Zisserman, 2003)  

By contrast, if the cameras are parallel, i.e., the two image planes are parallel, the 
epipolar lines are consequently parallel with each other in an image. The epipoles be-
come vectors pointing to the direction parallel to the epipolar lines. Such a vector, 
with a form of [x, y, 0]T in homogeneous coordinate, is called point at infinity in the 
context of prospective geometry. In general, epipole is a point that is not expected to 
lie inside the area of visible image, even in the case of converging cameras. “Epipolar 

geometry depends only on the relative pose (position and orientation) and internal 

parameters of the two cameras. It does not depend on the scene structure (3D points 

external to the camera).”(Zisserman 2004). 

Today, both parallel and converging cameras are applied in collecting massive 3D 
points of urban area. The former case is more common in traditional photogrammetry 
based methods. Normally, an aircraft mounted with camera and GPS flies back and 
forth in parallel courses above a certain region. The photos are taken successively 
during the flight and have a certain degree of overlap both along (forward overlap) 
and across (side overlap) the flying direction (Figure 3). The 3D coordinate of corre-
sponding points on the two images can be calculated based on the epipolar geometry  

 

Figure 3. Courses of photography (Linder 2009). 

An obvious characteristic of this method is that it cannot collect the same amount of 
information for vertical faces as for roofs owing to the use of vertical photography. 
The information on vertical faces can be supplemented by oblique aerial photos, as if 
the photos were taken from converging cameras. 

2.1.2 Airborne Laser Scanning 

Airborne laser scanning (ALS), commonly referred to as Light Detection and Ranging 
(LIDAR) or Laser Detection and Ranging (LADAR), is an optical and active remote 
sensing technology for generating point clouds that draws the shape of the land sur-
face by emitting laser beams. The terms can be seen equivalent and are interchangea-
bly used in the entire thesis. The necessary devices mounted on board an aircraft for 
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the scanning include scanner assembly, differential GPS (DGPS) and Inertial Meas-
urement Unit (IMU). 

Scanner assembly: 

The sensor continuously emits laser pulses to the land surface and receives the re-
flected signals as the aircraft flies forward. As is shown in Figure 4, the range, which 
refers to the distance from the sensor to the target, is derived from the elapsed time 
between the emitting and receiving of a laser pulse. Meanwhile, the laser beams are 
swung across the direction of flight to a certain angle (Figure 5). Thus, the density of 
the measured spots depends on speed and flying height of the aircraft. 

  

Figure 4. R = ct /2, R = range; c = velocity 
of light; t = elapsed time; Pe = emitting 
phase; Pr = receiving phase. (Wehr and 
Lohr 1999) 

Figure 5. Swath of the scanning. 
(Wehr and Lohr 1999) 

GPS and Inertial Measurement Unit (IMU) 

In order to calibrate errors caused by atmosphere, off-line differential GPS (DGPS) is 
applied for calculating the geographical coordinate of the scanner (WGS84) every 
time the range is detected, with reference to ground stations on the earth. The IMU 
device provides necessary parameters to relate the GPS coordinate to the detected 
spots, such as velocity, acceleration, yaw angle of the aircraft, and swath angle of the 
laser beams. The coordinate of a detected spot on the land surface is calculated from 
the range, swath angle and the GPS coordinate. The rest of the parameters are used for 
compensating the positioning errors. Figure 6 demonstrates how the three devices in-
teract in scanning land surface. 

 
Figure 6. The principle of airborne laser scanning. ( Mackinnon ) 
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Compared with image based methods, ALS has two advantages: 1) ALS itself emits 
signals to detect the target objects, thus it is independent of day light. 2) Laser beam is 
highly energy-condensed light with very small radius. It can penetrate vegetation and 
detect the shape of the “bare earth”, while traditional aerial photos are impossible to 
reveal the real terrain under foliaged vegetation canopies (Figure 7). 

 

Figure 7. Laser beams can penetrate trees. (Rutzinger 2011) 

2.2 Data format of 3D City Models 

An evidence of the growing interest in 3D City could be the invention of CityGML 
(City Geography Markup Language), which is a data exchange format developed by 
the members of the Special Interest Group 3D (SIG 3D) of the initiative Geodata In-
frastructure North-Rhine Westphalia (GDI NRW) in Germany. Based on XML (Ex-
tensible Markup Language) format, the CityGML standard combines both geometric 
and semantic information of city facilities, and defines five levels of details to reduce 
the unnecessary computations when the map is zoomed out (Figure 8).  

Figure 8. The five levels of detail (LoD) defined in CityGML (Kolbe et al. 2005)  

2.3 Creating 3D city models 

In this section, some typical approaches, both automatic and non-automatic for 3D 
building reconstruction are introduced. 
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2.3.1 Methods in industry 

Manually digitization of 3D city models is still widely used in industry. For instance, 
Tianjin Free Trade Zone, a district in Tianjin municipality, China, digitizes the local 
3D virtual city by combining several desktop 3D modeling programs. First, 3D build-
ings are roughly modeled as boxes using ArcMap by adding a field of elevation to the 
attribution table and assigning each building polygon a representative height from ex-
isting cadastral data. Afterwards, those 3D boxes are imported to 3Ds Max and 
“sculptured” into their real appearances according to the photos personally taken by 
modeling workers. Meanwhile, trees and other urban facilities such as traffic lights 
and signs are only modeled in approximate sizes. Finally, the modified 3D models are 
imported to ArcGIS platform and visualized in ArcGlobe or ArcScene. ArcGIS has its 
own 3D data format named Multipatch, where polygons that belong to the same 
building are grouped into one integrated graphical object by default. A terrain model 
for the urban area is derived from DEM data. Finally, with trees, traffic lights and 
signs, and other 2D vector data such as traffic network imported altogether into the 
ArcGIS, where 3D spatial analysis tasks are able to be implemented with the func-
tionalities offered in ArcGIS environment. 

 
Figure 9. 3D city models in ArcGIS environment. 

As another example, the GIS and Land surveying department in the government of 
Malmö municipality is responsible for collection, purchase and management of geo-
graphical data of Malmö. They use different desktop programs such as Espa Systems, 
AutoCAD Map3D/Civil3D, and Google Sketchup. Espa Systems is a software suite 
for digital photogrammetry and LIDAR data processing. Roof outlines and ridges can 
be digitized and automatically transmuted into basic roof models of predefined types 
in the roof library (Figure 10). The complex roofs that cannot be found in the roof li-
brary then have to be drawn individually in AutoCAD Map3D or Civil3D. They com-
pleted roof models and exported to Google Sketchup. Roofs of different LODs are 
saved in different layers. Since vertically directing aerial images have little infor-
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mation on building’s walls, the walls are simply the extensions of the roof’s outline 
vertically down to the earth. The 3D complete building model ends up with the inter-
section by the ground model which is TIN derived from existing DEM data. Figure 11 
demonstrates the digitization environment and roof models in Google Sketchup. 

 
Figure 10. The predefined basic roof types in a digitization program. (Plan3D, 2011) 

 

Figure 11. a) Digitization of roofs with stereo-pair images.  b) Roof models 

There are also automated approaches based on complete multi-view reconstruction 
pipeline. C3 Technologies AB (has been acquired by a company from the U.S.) is 
specialized in producing 3D city maps from multi-view aerial photos. Five cameras of 
different orientations (one vertical to the ground and the other four oblique to opposite 
directions) are mounted on the aircraft. The corresponding points are detected auto-
matically using Scale-invariant feature transform (SIFT). 3D triangle meshes over the 
points are automatically and correctly generated with the aid of colors in the images. 
And finally, all the meshes are rendered by the color of the images. The entire process 
is said fully automatic. And their models can be highly detailed and photorealistic 
(Figure 12). 

a) b) 
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Figure 12. Photorealistic 3D models produced by C3 technologies AB. (Kim 2011)  

2.3.2 Related researches 

Kada and McKinley (2009) developed a LIDAR based 3D building reconstruction 
approach with the aid of existing vector data of building footprints, which was applied 
for 3D reconstruction of the entire cities of East Berlin and Cologne, Germany. They 
designed an algorithm partitioning a building’s footprint into nonintersecting, mostly 
quadrangular cells. Each cell is then assigned with a parametric roof model that fits 
the LIDAR points above the piece best. Figure 13 demonstrates the process of their 
method. 

 

Figure 13. a) Building footprint and its decomposition into cells. b) LiDAR points inside 
the cell colored according to their local regression plane and the best fitting roof shapes. 

Vosselman (1999,2001) applied Hough transform and connected component analysis, 
to detect and classify buildings. ”main building orientation” is derived and used as a 
constraint for the orientation of build’s edges. The building’s regularities are con-
trolled by geometric constraints.  

Vosselman and Dijkman (2001) introduced vector data of ground plan as auxiliary 
information to their former approach. The building area of the ground plan is split into 
smaller rectangular area, where the Hough transformation is performed. The final 
faces are reconstructed using a “split-and merge” approach. 

a) b) 
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Mass and Vosselman (1999) predefined a seven parameter model for a simple gabled 
roof primitive, and solved the parameter using first-order and second-order moments 
of the original laser points.  

Verma et al. (2006) devised a novel automatic method based on an adjacency graph 
representing topological information between segmented roof facets. It first removes 
all the points that are not distributed as a plane by principle component analysis, and 
uses connected component analysis to group all the points into individual roofs and 
ground based on their vicinity. The group with largest number of points is labeled 
ground points. And then, the points in each entire roof are regrouped according to the 
planar patch they belong to. The adjacency graph is constructed by the planar patches 
(vertices) and whether they are connected (edge). The connections (edges) are labeled 
as O+, O- , S+ and N, where O+ and O- refers to that two roof facets are orthogonal 
convex and concave corner in 2D view respectively, S+ means the ridge of a roof, and 
N for all other connecting cases. The entire adjacency graph will contain subgraphs 
that represents predefined simpler roof structures, such as U-shaped, L-shaped and 
hipped primitives. The points are then labeled according to the belonging vertices in 
the graph. Those points that cannot be labeled will be removed. The final model is 
refined by minimizing a non-linear energy function composed by the sum of the dis-
tances of the estimated height of the roof model to all the corresponding points, with 
constrains on symmetries and right angles. 
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3. DATA 

In this chapter, the general information about the LIDAR data is introduced. An over-
view of the data is provided in Table 1. 

3.1 Area 

The LIDAR data used in this study is a 250m by 250m tile covering an area of the city 
center in Lund, Sweden (Figure 14). 

 
Figure 14. The height map of the experimental region, which is a 
250m by 250m data tile within the center of Lund, Sweden. The col-
or scale demonstrates the elevation (meter). 

 

Location Center of Lund, Sweden 
(55º42’09.40” N, 13 º11’38.08” E) 

Area 250m x 250m 

Number of Points 2966837 

Density 47.4694/m2 

Geodetic referencing 

system 

SWEREF 99 13.30 

Height system RH 2000 

Format ASCII 

Attributes 3D coordinates, reflectance 
Table 1. The general information about the LIDAR data. 
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Located in County of Skåne, southern Sweden, Lund is originated from approximetly 
990 A.D.. A number of old buildings in the city have typical historical-style roofs, 
such as gable roof, gambrel roof, mansard roof, hipped roof, shed roof and their 
combinations (Figure 10). 

Resembling many other European cities, Lund is not established on a plain. The to-
pography is slightly varied. The elevations in the entire city contain an almost linear 
trend, by which the south part of the city is up to 80m lower than the north part 
(ThomasÅkerholm, personal communication, 26th Sept, 2011). 

3.2 Format 

The data is in the format of American Standard Code for Information Interchange II 
(ASCII). Figure 15 demonstrated that the ASCII format is actually a neatly arranged 
table in only plain text. Each row in the table stands for a data record and each column 
represents an attribute. The attributes comprise 1) classes of the points (the provided 
classification is poor and of no use), 2) three-dimensional coordinates and 3) reflec-
tance. An advantage of ASCII format is that the values can be easily browsed and ed-
ited by any text editor. The data in ASCII can be imported and parsed using I/O oper-
ation by any programmable, graphics-supported software such as ArcGIS, Matlab or 
Google Sketchup. However, parsing of ASCII data is normally very slow and the file 
size can be extremely large. On the contrary, LAS format, which is a binary format 
widely supported by LIDAR processing programs, is more efficient in data processing 
and need much less storage memory. (ASPRS Online, 2010). 

 
 
Figure 15. LIDAR data in ASCII. 

3.3 Inconsistency 

The LIDAR data have a certain inconsistency with vector cadastral data in represent-
ing the same object that mainly comes from the different data collecting mechanisms. 
The cadastral vector data are measured according to buildings’ footprints, whereas 
LIDAR measures buildings on the roofs, which are normally larger than the footprints. 
Figure 16 illustrates a topological test of the LIDAR points of Lund Cathedral com-
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pared by polygon measured by GPS. The points outside the polygon are shown in 
Figure 16 c), forming an outline of the building. The widths of this outline are meas-
ured by sampling five segments (red circles) from the points. Table 2 shows that the 
widths of the extended part of LIDAR data compared to the vector data are smaller 
than 0.5m. Since not too large, this error could however be negligible in some appli-
cations that are not strict with accuracy. 

   
Figure 16. Inconsistency between LIDAR data a) and cadastral vec-
tor data b). There are 117298 points belonging to Lund Cathedral, of 
which 2766 points lie outside the area of the polygon c). The red cir-
cles represent the five sampled segments from the points in c). 

 

 Segment 

1 

Segment 

2 

Segment 

3 

Segment 

4 

Segment 

5 

width (m) 0.2293    0.4660    0.1472    0.1213    0.1151 

Table 2.  The widths of the 5 sampled segments from the points in Figure 16 
c). All of widths are smaller than 0.5m. 

 

a) b) c) 

= � 
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4. METHODOLOGY 

In this chapter, the pipeline converting the raw 3D points into roof facet polygons is 
explicitly described. For classification of ground and non-ground, a graph cuts based 
classifier combined with EM algorithm is described in section 4.1. The roof points 
extraction based on PCA technology is described in section 4.2. Finally, a modified 
RANSAC algorithm for automatic generation of roof facet polygons is described in 
section 4.3.  

Figure 17 demonstrates the entire pipeline. Besides the LIDAR data itself, the pipeline 
does not need any other auxiliary data such as remote sensing image, DEM or vector 
data of constructions. The pipeline is only part of the process of automatic 3D city 
modeling. The last arrow implies that there are still some successive procedures be-
fore the complete 3D city models can be created. 

 
 Figure 17. The flow chart of the pipeline. 

4.1 Step 1: Classification of ground and non-ground areas 

In the first step (Figure 18), the ground points need to be excluded from the data set 
because they are not used in the following steps. For the urban area established in 
plain, where ground heights are normally consistent on different areas, the ground and 
non-ground points can be simply separated by setting a threshold on heights. However, 
as is mentioned in the previous sections, the test region has a varied topography. Thus, 
the method applies the graph cuts with necessary parameters automatically found by 
EM algorithm. The method relating to the graph cuts and its formulation are intro-
duced from Section 4.1.1 and 4.1.3. The EM algorithm and its derivation are de-
scribed in Section 4.1.4. 

 
 Figure 18. The red blocks and arrows denote the current stage in the pipeline. 
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4.1.1 Graph cuts and maxflow-mincut theorem 

There are a variety of classification methods, from the simple methods, e.g. parallele-
piped classifier (Lillesand et al, 2004), k-means, to the more sophisticated methods, 
e.g. parametric method: Gaussian mixture model with Expectation Minimization (EM) 
classifier, non-parametric: SVM classifier, random forest classifier, etc. A common 
characteristic of these classification methods is that the decision on the classification 
of an object is independent from that of its neighboring objects. In result, the classifi-
cation usually ends up with a “salt and pepper” effect, i.e., there are many isolated 
single object of a class surrounded by neighboring objects of another class. Another 
type of classification method takes the spatial influence into consideration. The classi-
fication of an object is influenced by the class of its neighbors. Consequently, the 
classification of a datum depends on both of its own value and the neighbors’ classes, 
so that many isolated objects will therefore be assimilated into their surroundings, 
which results in smoother boundaries between classes. 

4.1.1.1 The mathematical formulation of a classification problem  

The principle of graph cuts and its formulation has been described by Kolmogorov et 

al. (2004) in detail. Mathematically, a classification problem comes down to a map-
ping from a data set P to a set of labels (or classifications) L. The definition of a da-
tum varies in different contexts: it can refer to a pixel in an image, or a 3D point in 
point clouds data. The solution of a classification problem can be seen as finding a 
labeling f that minimizes some energy function with regard to the data value and the 
labeling. For a classification without spatial influence, the energy function in a gen-
eral form is: 

 ���� = ��������∈�  (4) 

The data term ������ is the penalty or cost of assigning some label �� to pixel p 
given the data values. The resulting labeling is a vector of labels for the entire data, 
e.g., f = {1,…,|L|}|P|. Solving such a problem is normally straightforward. For each 
datum p, we need only to choose the label that minimizes	������, e.g., assigning the 
point to the cluster with the closest centroid in k-means algorithm, where	������ is 
the Euclidean distance between p and the centroid of the cluster fp. In the case where 
the influence from neighbors is considered, (4) should be supplemented with a second 
term and become 

 ���� = ��������∈� +	 � !�,"���, �"��,"∈#  (5) 

where $, % ∈ & denotes p and q are neighbors under some user-defined neighboring 
system (Section 4.1.1.5), and !�,"���, �"�, named smoothness term or spatial regular-

ization, which penalizes the assignment of two different labels to the adjacent data p 
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and q. However, minimizing (5) turns out to be a combinatorial optimization problem 
which is expensive to solve using exhaustive enumeration. Some general optimization 
techniques, such as simulated annealing, can solve the problem in theory but is very 
slow in practical because they require exponential time (Kolmogorov and Zabih, 
2004). Fortunately, Greig et al. (1989) originally applied the max-flow min-cut theo-

rem to obtain the maximum a posteriori (MAP) estimate of a binary image. The re-
sulting estimate is a binary image smoother than the original one. Relevant algorithms 
based on this idea has been well developed in the last ten years and today they are 
able to solve the problem in polynomial time (Kolmogorov and Zabih, 2004). 

4.1.1.2 Max-flow min-cut theorem 

As the prerequisite knowledge, the max-flow min-cut theorem, proved by Ford and 
Fulkerson (1956), should be introduced. Suppose there is a flow network modeled as 
a directed graph	' = �!, ��, where V stands for the set of vertices in the graph in-
cluding a source s and a sink t; and E stands for the set of mono-directional edges 
connecting all the adjacent vertices. A flow is generated from the source s and termi-
nated in the sink t, passing through all the nodes and edges. Each vertex except s and t 
receives and emits always the same amount of flow. Each edge has a capacity c(u, v) 
that limits the amount of flow passing through. An s-t cut refers to the cut of a certain 
set of edges in such a way that no flow can pass from the source to the sink. More 
precisely, it partitions all the vertices into two disjoint subsets S and T, where	( ∈)	and	* ∈ +. The capacity of the s-t cut refers to the sum capacities of all the cut edges, 
i.e., 

 
,�), +� = � ,�-, .�/,0∈1,2,3∈4,�/,2�∈#

 
(6) 

The max-flow min-cut theorem can be described as the rule that the maximum 
amount of the flow passing from the source to the sink is determined by a combina-
tion of the edges with the minimum sum capacities meanwhile satisfying the condi-
tion that cutting those edges causes an s-t cut. This combination can therefore be 
found by maximizing the flow. Figure 19 gives an intuitive interpretation of the theo-
rem. In a simple case in a), it is obviously that the maximum flow is determined by 
the capacity of the bottleneck edge. This property also applies to the more complex 
networks such as in b). But the bottle necks cannot be found by intuition in this case. 
Instead, the solution should rely on some sophisticated algorithms, of which, Ed-
monds-Karp algorithm, developed by Ford and Fulkerson, has the complexity of 
O(VE

2
) time, while the push-relabel algorithm (Goldberg et al, 1986) achieved a 

complexity of O(V
2
E). The latter is more efficient because vertices are usually far 

fewer than edges in a complex graph. 
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Figure 19. Flow in a graph: a) a simple graph; b) a complex network. 

4.1.1.3 Energy minimization using graph cuts 

In the theory of Greig et al. (1989), an image can be modeled as the aforementioned 
flow network, where each pixel is denoted by a vertex in the graph, and each edge 
connects two adjacent pixels under a user-defined neighboring system (section 
4.1.1.5). The capacity of an edge is substituted by the cost of the energy function (5) 
in a certain way. Consequently, the solution for minimizing the energy function (5) is 
imaginatively associated to the minimum cut in the flow network. Since the energy 
minimization is modeled by cutting a graph, the method is named “graph cuts”. In ad-
dition to the high efficiency, graph cuts method computes the global minimum to cer-
tain types of energies (Boykov et al, 2001), which is superior to some existing algo-
rithms that can only find one of the local minima. 

In this study, an open source C++ package MAXFLOW is used in the computation of 
the max-flow/min-cut of a graph, developed by Boykov and Kolmogorov. The pro-
gram provides also an API for Matlab. The technical details about the algorithm are 
described in Boykov et al. (2004). 

4.1.1.4 Data structure for graph 

A graph can be stored in adjacency list or adjacency matrix. In an adjacency list, each 
object is associated with a list of all its neighbors. Suppose that there are n objects, 
each of which has m neighbors, an adjacency list needs to take up n5m units of 
memory. While an adjacency matrix is an n by n upper triangular matrix with each 
entity	678 satisfying 

 678 = 91,											:, ; ∈ &, : < ;	0,											:, ; ∉ &, : ? ;  (7) 

It takes up O(n2) units of memory, which is very memory consuming and impractical 
when n is large. On the other hand, it takes only constant time to index a neighboring 
object, whereas in an adjacent list it requires a searching operation of linear time. 
Overall, adjacency list is more commonly used in practice. (Cormen et al., 2001) 

4.1.1.5 Neighboring system 

Graph cuts based method was originally devised for problems in image analysis and 
computer vision. Thus, the typical neighboring systems are based on image pixels, 
e.g., 4-connectivity and 8-connectivity (Figure 20). The nature of the neatly arranged 
pixel structure allows the neighbor indexing taking only a constant time.  

For randomly distributed points, the neighbors of a point can be defined by all the 
points with the Euclidean distance to this point smaller than a radius (Figure 21), as 

Flow = 3 

Capacity = 3 
T 

Flow = 3 

Capacity = 10 
S 
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was used in Lafarge et al. (2011). However, such a neighbor system has two potential 
drawbacks: 1) the neighbors of a point are randomly distributed, so there does not ex-
ist a fixed structure to index neighbors in a constant time. Instead, the neighbors have 
to be searched in a certain way. A naïve algorithm will need up to O(n2) time to 
search neighbors for all the points, which is very cumbersome for high resolution 
LIDAR. 2) The number of neighbors is not consistent and much dependent on the size 
of the radius. A large radius can guarantee a point having sufficient many neighbors. 
But this results in too many redundant edges in the graph and consequently may slow 
down the computation. If the radius is too small, some points will have no neighbors 
at all. Nevertheless, this neighboring system is used in this study because this is the 
only choice so far for irregular distributed points. The searching time of neighbors can 
be reduced to O(log n) if the kD-tree structure is applied (Worboys et al. 2004). The 
introduction to kD-tree is given in Appendix B. 

  
Figure 20. Neighboring systems in image. Figure 21. A neighboring system 

for randomly distributed points. 

4.1.2 Split the region into smaller areas 

As was mentioned in chapter 3, there is basically a southward linear trend over the 
entire city of Lund. It is doubtable whether a single mean height is adequate to repre-
sent the expectation height of the entire region. A common sense in spatial statistics 
says that the stationarity is always stronger in a subarea than in the entire area, i.e., 
the elevation difference decreases as the area shrinks. In this sense, by splitting the 
map and processing them separately, as the assumption for the model above fits better, 
one might generate a more promising result. To be more specific, the data is split up 
into subtiles of 25m by 25m (Figure 23), which is the size that can guarantee most of 
the subtiles include both ground and non-ground points with the assumption that most 
buildings are smaller than this size. In addition, the sparse urban areas where all the 
points belong to ground can be judged by putting a threshold on the smallest height 
difference within the subtile. Figure 22 compares the distributions of the elevation in 
the entire data (Left) and one of the subtiles (Right). The most dominate peak on the 
left side of each histogram corresponds to the distribution of ground points. The ele-
vation variance for ground is much smaller in the subtiles than that in the entire data. 

  

     

     

     

      

      

4-connectivity 8-connectivity 
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Figure 22. The histograms of the elevation in the entire test region (Left) and one of 
the subtiles (Right). The most dominate peak on the left side of each histogram corre-
sponds to distribution of ground points. The variance is much smaller in the subtile. 

 

 
Figure 23. The test region is split into 100 subtiles, each of which has the size of 25m x 
25m. The axis labels the relative locations for each subtile. 

4.1.3 Defining data terms 

The energy function (5) has been specifically defined for separating ground and 
non-ground points in this study, which is a modified version of Mumford-Shah func-
tional. Section 4.1.3.1 gives a general introduction of Mumford-Shah functional. The 
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modification of Mumford-Shah functional specifically for the problem is described in 
section 4.1.3.2.  

4.1.3.1 Mumford-Shah functional 

A simplified version of Mumford-Shah functional by Mumford and Shah (1989) is 
formulated by 

 ��γ� = A �B�C� � D���ECF +A �B�C� � DG��ECH\F + λlength�γ� (8) 

where B�C� denotes height at the position x. The first two terms and the third term 
corresponds to the data term and smoothness term respectively. The functional re-
flects the idea that the ground and non-ground points have the mean heights of DG	and D� respectively. If a point’s height is more close to	DG, it will be probably labeled as 
ground, vice versa. The	γ	denotes the boundary between the ground and non-ground 
areas. It is not difficult to understand that the smoothness of resulting classification 
image has a direct relation to the sum of the length of the boundaries, i.e., less “salt 
and pepper” effect corresponds to	γ	of a shorter length. Figure 24 demonstrates the 
notations in (8).   

 
Figure 24. A demonstration to the notations 
corresponding to image segmentation using 
Mumford-Shah functional.  

Since either a digital image or a set of LIDAR data is discrete, the functional is con-
verted into the discrete form: 

��O� =�O7�B�:� � D���P
7Q� +��1 � O7��B�:� � DG��P

7Q� + R2�� �O7 T O8�8∈#U
P
7Q�  (9) 

Where and I(i) denotes the height value of the ith point and	O7 	is defined as: 

O7 = 91, if	pixel	:	is	nonground0,																if	pixel	:	is	ground 

4.1.3.2 Changing data terms in Mumford-Shah functional 

The distribution of the heights in a subtile is shown in Figure 22 (Right), where the 
prominent peak to the left corresponds to the ground heights and the rest of the histo-
gram represents non-ground points. This height pattern can be modeled by a mixture 

 Γ 

Ω 
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statistical model consisting of the two Gaussian distributions with different means and 
variances: 

9ΘG = �DG, G̀��Θ� = �D�, �̀�� 
that govern the heights of ground and non-ground points separately, where 	D7	and	 7̀�	denote the mean and variance for the model i. The probability density of a 
height value	a7 belonging to model k is formulated by 

 ��a7|Θc� = 1d2e c̀� exp f�
�a7 � Dc��2 c̀� g (10) 

In this study, the data term of Mumford-Shah functional defined in (9) is replaced 
with (10). Notice that when using probability density function as the data term, a point 
with height value h is regarded more likely to belong to ground if	��a|ΘG� ? ��a|Θ��, 
which implies the new data terms should be maximized. To convert the data terms to 
be consistent with the minimization of the energy function, we can however inter-
change the data terms, i.e., assigning	��a|ΘG� to the data term of non-ground points 
and vice versa, as is shown in (11). In addition, the new data term can potentially re-
sult in a more accurate classification since both mean and variance of the heights are 
considered in the model. 

 ��O� =�O7��B�:�|ΘG�P
7Q� +��1 � O7���B�:�|Θ��P

7Q� + R2�� hO7 T O8i8∈#U
P
7Q�  (11) 

The Gaussian mixture model can be automatically estimated by EM algorithm, which 
is explicitly described in section 4.1.4. 

4.1.4 Finding mean and variance automatically using EM algorithm 

The most ideal mixture model for the heights can be automatically found by Expecta-
tion-Minimization (EM) algorithm. In brief, EM algorithm is an iterative method that 
implements the following two steps alternatively, which are 1) reclassify data using 
the latest model parameters (means and variances) and 2) updates the parameters 
based on the classification of the data until the parameters converge. The model pa-
rameters are often initialized empirically or based on the solutions of other methods. 
In this section, the principle and mathematical formulation of EM algorithm are ex-
plicitly described based on Lindgren (2005), combined with the context of separating 
ground and non-ground points. A Matlab package written by Lindgren is used in the 
programming. 

4.1.4.1 Introduction to EM algorithm 

Let x = jC�, … , CPk  stands for the n relative height values and 	C7 l 0 , z =jn�, … , nPk, n7 ∈ j0,1k for the labeling for ground points (0) and non-ground points 
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(1), Ψ for the universal set containing all the parameters, epU = $�n7|ΘpU� for the 
prior probability of pixel i belonging to class n7 and ΘpU = �DpU , p̀U� � for the param-

eters of the Gaussian model of class	n7. Thus, the joint distribution for both the obser-
vations and labeling is formulated by: 

 $�x, z|Ψ� =q$�C7 , n7|ΘpU�P
7Q� =q$�C7|n7, ΘpU�epUP

7Q�  (12) 

In each iteration, the parameters of interest are the ones maximizing the expectation of 
the log-likelihood of	$�x, zr|Ψ�	conditional to the old parameters estimated from the 
previous iteration, i.e., 

 shΨ,Ψ�3�i = �hln	$�x, zr|Ψ�|x,Ψ�3�i (13) 

 Ψ = argmaxshΨ,Ψ�3�i (14) 

This is the reason why the algorithm is named after EM. And equation (14) is actually 
the backbone of the entire algorithm. The explicit algorithm can be described as the 
following steps: 

1) Initialize	Ψ�G�	empirically. The initialization of	epU�G�		and	ΘpU�G�	are briefly de-

scribed in Section 4.1.4.3. 

2) Iterates the Expectation (E) and Maximization (M) steps until the parameters 
converge. 

i. E-step: 

Calculate the posterior distribution	$7,c�3� = $hñ7 = v|C7 , Ψ�3�i, k = {0, 1} 

according to Bayes’ rule: 

 

$7,c�3� = $hC7 , ñ7 = v|Ψ�3�i$�C7|Ψ�3�� 	
= $wC7|ñ7 = v, Θc�3�xec�3�∑ $ wC7|ñ7 = ;, Θ8�3�xe8�3��8QG  

(15) 

ii. M-step: 

Update the parameters in sequence by 

 

�zz
�
zz� ec�3{�� = �P∑ $7,c�3�P7Q� 																																		
Dc�3{�� = ∑ f �U,|�}�∑ �U,|�}�~U�� C7gP7Q� 																					
c̀��3{�� = ∑ f �U,|�}�∑ �U,|�}�~U�� wC7 � Dc�3{��x�gP7Q�

  (16) 
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Equation (16) is derived from (14). The relation between (16) and (14) is explicitly 
described in the following section. 

4.1.4.2 A detailed derivation of the equations in EM algorithm 

Bilmes (1998) elaborates clearly on how to formulate (14). Taking the function a�O, C� for example, where	O	a constant and x is a random variable with the distribu-
tion	��C�, its expectation can be formulated by 

 �ha�O, C�i = �a�O, C���C�EC (17) 

in the continuous form and 

 �ha�O, C�i =�a�O, C7�$�C7� (18) 

in the discrete form, where	$�C7�	is the probability mass function with regard to each 
pixel value. By analogy, (14) includes the arguments of x,	zr, Ψ and Ψ�3�, where x 
and Ψ�3� are always constant; Ψ	is adjusted in M-step but fixed in E-step. This 
makes zr	the only random variable in the function, which is governed by the distribu-
tion (15). Thus, (14) can be formulated by 

 shΨ,Ψ�3�i =��ln	$�C7, ñ7 = v|Ψ�$7,c�3��
cQG

P
7Q�  (19) 

Since 

 
ln $�C7, ñ7 = v|Ψ� = ln�$�C7|ñ7 = v, Θc�ec�	= ln $�C7|ñ7 = v, Θc� + ln�ec� (20) 

(19) can be rewritten as 

 

shΨ,Ψ�3�i =��hln	$�C7|ñ7 = v, Θc� + ln�ec�i$7,c�3��
cQG

P
7Q� 	

= ��$7,c�3�ln	$�C7|ñ7 = v, Θc��
cQG

P
7Q� +��ln�ec��$7,c�3�P

7Q� ��
cQG  

 

 

(21) 

The new parameters	Ψ	maximizing (21) are found by the non-linear optimization 
technology: 

Estimate �: 
Introduce the Lagrange multiplier 	R  and the linear constraints ∑ ec�cQG = 1 
and	ec l 0 to the partial differential function 

��ec �shΨ,Ψ�3�i + R ��ec�
cQG � 1�� = 0 
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⇒ ��ec ���ln�ec��$7,c�3�P
7Q� ��

cQG + R��ec�
cQG � 1�� = 0 

⇒ 1ec�$7,c�3�P
7Q� + R = 0 

 ⇒ ec�3{�� = 1�R�$7,c�3�P
7Q�  (22) 

Substituting (22) into 	∑ ec�cQG = 1, we obtain	R = ��. Thus, the prior distribution 
of class k for the new iteration is 

 ec�3{�� = 1��$7,c�3�P
7Q�  (23) 

Estimate �: 
The parameters from different models are independently estimated. For each model, 
all the parameters of other models are fixed. Thus, maximizing Q with regard to the 
model k is equivalent to maximizing 

 

sc =�ln	$�C7|ñ7 = v, Θc�$7,c�3�P
7Q�  

=�f�12 ln�2π� � 12 ln c̀� � �C7 � Dc��2 c̀� g$7,c�3�P
7Q�  

 

 

(24) 

Solving ∂sc ∂Dc⁄ = 0 and ∂sc ∂ c̀�⁄ = 0 separately, we will obtain the same equa-
tions in (16). 

4.1.4.3 The method to initialize the EM algorithm 

In this section, we describe the method to initialize the EM algorithm. As is men-
tioned in the previous sections, the relative heights of the data are used in the data 
term. For each subtile, the relative height Hrelative = Habsolute – min(Habsolute). Thus, the 
range of Hrelative is always above 0. We first assume that all the points with Hrelative 
below a threshold of 2m should belong to ground. Then the means, variances and the 
percentage of each class derived from this classification are used as the initial param-
eters in EM algorithm. For simplicity, this threshold is named initial height in the fol-
lowing paragraphs. 

4.2 Step 2: Extracting roof points 

This step aims at extracting roof points from the non-ground points that are extracted 
from the previous step (Figure 25). Principal component analysis (PCA) is a com-
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monly used technique in mining the key indices for detecting roof points, which has 
been applied in Verma et al. (2006), Matei et al. (2008), Carlberg et al. (2009) and 
Lafarge and Mallet (2011). In this section, the method of extraction of roof points us-
ing PCA is explicitly described. Especially, the principle of PCA is introduced in Sec-
tion 4.2.2. The key indices for extracting roof points are introduced in Section 4.2.3. 
Section 4.2.4 elaborates on the different classifiers and choice of parameters. 

 
 Figure 25. The red blocks and arrows denote the current stage in the pipeline. 

4.2.1 Reflectance 

It is plausible that vegetation has a significantly lower reflectance than those concrete 
materials do, such as road or construction, thus we can extract points of vegetation 
based on the differences in reflectance. Thus, the reliability of reflectance will be 
tested first. But it is not be used in this study since the reliability is unknown. 

4.2.2 Principal Component Analysis (PCA) 

Principal component analysis (Pearson, 1901) is a mathematical method that converts 
a set of observations denoted by correlated or uncorrelated variables into a set of val-
ues of uncorrelated variables, named principal components. In this study, the varia-
bles of the data refer to the 3D coordinate of the points. The procedure of PCA can be 
briefly described as follows: 1) Let X be an n by 3 matrix consisting of row vectors 

representing 3D coordinates of the points and X the mean coordinate, i.e., the cen-
troid of the points. A 3 by 3 covariance matrix	Σ	is approximated by 

 Σ = 1� hX � Xi�hX � Xi (25) 

which can be either positive-definite or positive-semidefinite. 2) Decompose	Σ	by 

 Σ = ���� (26) 

where	�	denotes a 3 by 3 diagonal matrix containing the 3 eigenvalues of	Σ; and each 

column in P is an eigenvector corresponding to the eigenvalue of the same column 

in	�. The 3 eigenvectors are pairwise orthogonal. The eigenvalues and eigenvectors 

together describe the spatial pattern of the points. In theory, if the points are exactly 

distributed on a hyperplane of	��, Σ will have rank 2, i.e. the smallest eigenvalue is 
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zero. In practice, due to the existence of noise in LIDAR data,	Σ has normally the full 

rank. Nonetheless, the smallest eigenvalue should be significantly smaller than the 

other ones. The corresponding eigenvector is the normal vector of the fitting plane of 

the points. Figure 26 demonstrates how PCA is associated with the points, where (V1, 

V2, V3) is the eigenvectors. Since those eigenvectors are orthogonal, they can also 

serve as a new coordinate system for the points as needed. The coordinates under the 

new coordinate system are computed by 

 �� = �� (27) 

If we calculate the variances of the new coordinates for each dimension in the rotated 
coordinate system, we can find that they are actually identical to the aforementioned 
eigenvalues. This reveals the physical meaning of the eigenvalues derived from a co-
variance matrix (Figure 27). 

  
Figure 26. The transformation of basis. 
v1, v2 and v3 are the three eigenvectors 
indicating the directions along which the 
data is distributed. 

Figure 27. Projected coordinates of the 
points to an eigenvector. The variance 
of the coordinates is equivalent to the 
eigenvalue corresponding to this eigen-
vector derived by PCA from the covar-
iance matrix. 

4.2.3 Mining of indices for roof points recognition 

In this section, some key indices for the recognition of roof points are introduced. For 
each point pi, PCA is first implemented on all the neighboring points with the Euclid-
ean distances smaller than a radius, by which we seek to obtain the three eigenvalues 
λi1<λi2<λi3 and the normalized eigenvector n = (ai, bi, ci) corresponding to the smallest 
eigenvalue λi1. The neighboring system and the kd-tree structure used in the points 
processing have been introduced in Section 4.1.1.5. 

Based on these eigenvalues and the eigenvector, some commonly used key indices for 
roof point recognition can be mined for distinguishing the roof points and other points 
from different respects, which are planarity index, linearity index, vertical index and 
density index. 
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1) Planarity index: 

As is introduced in the previous section, if a set of points are distributed like a 
plane, for each point with its neighbors processed by PCA, the eigenvalues 
satisfy λ1<<λ3. Thus, the planarity index can be defined by the ratio of λ1 /λ3, a 
smaller value of which suggests that the point is more likely to belong to a 
roof. 

2) Linearity index: 

In the set of points satisfying λ1<<λ3, there exist some collinear points, which 
means the points are distributed as a line. Those points are also undesirable 
and therefore need to be removed. For each of those points, their eigenvalues 
satisfy λ2<<λ3. Thus, the linearity index can be defined by the ratio of λ2/λ3, a 
larger value of which suggests that the point should be retained. 

3) Verticality index 

The points of vertical walls need to be removed as well because they are nor-
mally irregularly and sparsely distributed due to the mechanism of airborne 
laser scanning. The existence of those points may potentially affect the ro-
bustness for the following process (Verma et al. 2006, Matei et al. 2008, 
Carlberg et al. 2009 and Lafarge and Mallet 2011). The verticality index is 
simply defined by |c|, i.e., the absolute value of the third dimension of the 
normalized eigenvector  

4) Density index: 

Considering that the spatial distribution of roof points normally keeps a certain 
high level of density, while some non-roof points, especially the remaining 
noises after the exclusion of ground points, are very sparse and isolated, we 
can use an index relating to points density to distinguish them. Since the 
neighboring radius is constant for all the points, the density index is simply 
defined by the number of neighbors within the radius for each point. The few-
er neighbors a point has, the more likely that this point should be discarded. 
Furthermore, since the input of PCA requires at least 3 points, this index is of 
importance in preventing the program from crashing. 

4.2.4 Using different classifiers based on the indices 

Based on the above indices, we can use some classifiers to recognize the roof points. 
A simple linear threshold classifier is first used. 

1) The sparse and isolated points can be removed by the criterion that the number 
of neighbors smaller than a threshold d, which is assigned with 15R. The R 
denotes the neighboring radius of the points. The value of 15 is chosen based 
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on a statistics of the minimum number of neighbors of the points on a manu-
ally selected roof. 

2) Most of the tree points and other non-planar clutters can be filtered off by λ1/λ3 
< r1. Collinear points can be filtered off by the constraint λ2/λ3 < r2. In addition, 
points of vertical walls are filtered off by |ci| > r3. These three thresholds can 
be manually tuned based on the histograms of their distributions and the re-
sults of the extractions. 

Meanwhile, the graph cuts based classifier combined with EM algorithm is experi-
mented on the planarity index. Unlike elevations, the distribution of λ1/λ3 for roofs 
should be relatively consistent and independent of locations. Thus, it is possible to 
apply the EM algorithm in the entire data to estimate the global parameters of the dis-
tribution of λ1/λ3. This classifier serves as a comparison to the simple linear threshold 
classifier. 

4.3 Step 3: A RANSAC based method for plane fitting 

The plane model for each roof facet can be computed from the roof points extracted in 
the previous step (Figure 28). The buildings can be first separated by applying Con-

nected Component Labeling on all the points within the test region, assuming the dis-
tance between every two buildings is at least v meters (Verma 2006). Ideally, one 
should rasterize the roof points into an image with the resolution of 3m and imple-
ments the connected component labeling based on the pixels. Due to the time limit, 
this step is omitted in this study and only briefly introduced in Appendix C. The test 
region is the roof points of Lund cathedral extracted by the linear threshold classifier. 

In this study, a RANSAC based technique is independently developed and imple-
mented for automatically computing plane model and extracting points of each roof 
facet, which can be visualized as 3D polygons. In section 4.3.1, the ordinary RAN-
SAC algorithm for single plane fitting is introduced. Sections 4.3.2 give the detailed 
description for multi-plane detection. Section 4.3.3 described the method of deter-
mining the parameters. And Section 4.3.4 describes the method for evaluating the ro-
bustness of the algorithm. 

 
 Figure 28. The red block and arrow denote the current stage in the pipeline. 
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4.3.1 Ordinary RANSAC 

Model fitting refers to estimating the most ideal parameters of a model so that the 
model gives the greatest extent of coincidence with the data. The most widely used 
method for fitting data with Gaussian noise is least squares. However, using least 
squares directly will treat each datum equally, even including outliers. When outliers 
exist in a data set, a more robust method should be used. (Szeliski 2010). 

Rousseeuw (1984) proposed the least median of squares (LMS). The key change of 
LMS from ordinary least square method is that the objective function to be minimized 
is the median of the squared residuals instead of the sum.  

Another robust approach for model fitting is Random Sample Consensus (RANSAC), 
proposed by Fischler and Bolles (1981). The fundamental idea of this approach is 
each time selecting a certain amount of samples randomly from the data to generate 
candidate models in a certain way, and applying some scoring system to determine the 
best model when all the iterations finish. 

4.3.1.1 Algorithm outline 

Given a data set P, the algorithm iterates for k times. For each iteration: 

1) Randomly select n samples from P to compute a hypothetic model M, where n 
is the minimum required number of data for determining a model, i.e., n = 2 
for a line and n = 3 for a plane. 

2) For each	$7 ∈ �, calculate its deviation from M. The data with the deviation 
smaller than an error tolerance t are added in the Consensus Set S of the cur-
rent iteration. 

3) According to the assumption that the outliers are supposed to be much fewer 
than inliers, the S with the number of data smaller than a threshold d will be 
discarded. This threshold eliminates those obviously unqualified consensus 
sets in advance of the following model estimations, so that the unnecessary 
computations are avoided. 

4) The model of the current iteration is estimated by the data in S in a least 
squares sense. 

5) The estimated model is compared with the saved best model of previous itera-
tions according to some scoring system measuring how well the model fits the 
data, which is introduced in section 4.3.1.3. If the new model is better, it will 
be saved as the best model by far. Otherwise, the model will be discarded. 

6) The algorithm goes to 1) for the next iteration. 

In this study, the error to be minimized is the sum of squared Euclidean distances 
from the points to the model (Figure 29), i.e., in the Total Least Squares sense. 
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Figure 29. The total least squares used in line fitting for 2D points  

4.3.1.2 Properties of the thresholds 

The error tolerance t and the minimum required number of iterations k are the two 
critical parameters in RANSAC. In theory, t should depend on the distribution of the 
noises in the data, e.g., one or two standard deviations plus the average errors to the 
hypothetic model (Fischler et al., 1984). However, it is not practical to evaluate the 
effect of noise analytically from the n random samples, as a result, t is normally de-
termined empirically (Vosselman et al., 2010). 

The minimal number of iterations depends on the a priori probability of sampling 
outliers in data, which can be simply seen as the proportion of outliers in the data. Let 
w be the approximated proportion of outliers, and the model is determined by n inde-
pendently selected samples. For each iteration, the probability that all the n samples 
are inliers is (1-w)n. Thus, 1-(1-w)n means the probability that at least one of the n 
samples is an outlier, in which case the estimated model is definitely unqualified. Af-
ter k iterations, the algorithm might end up with having never selected such n samples 
that all of them are inliers. The probability of this case is (1-(1-w)n)k. A sufficiently 
large k can limit this probability down to 5%: 

 

 �1 � �1 � w�P�c � 5% 

⟹ v l log�1 � 95%�
log�1 � �1 � ��P� 

 

 

(28) 

where k is the minimum required number of iterations. Since RANSAC is based on 
random samplings over a data set, it is not a deterministic method. Figure 30 demon-
strates the relationship between the percentage of outliers and the runtime efficiency. 
The number grows exponentially as the outliers increase in a linear ratio. A data set 
with about 20% outliers will need only 5 iterations to get a qualified result, while the 
data with 80% outliers will need up to approximately 600 iterations.  
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Figure 30. The relation between the percentage of outliers and minimum required 
number of iterations. 

4.3.1.3 The scoring system 

As to the scoring system voting for the best model, there are two different methods 
that can be applied. Formally, the scoring system can be viewed as finding the model 
that minimizes the energy function: 

 6� � argmin�(�6, $�
�∈�

 (29) 

where		(�6, $�	denotes the specific scoring method with regard to model M and point 
p. The simplest method is to choose the model with the largest consensus set. This 
corresponds to 

 (�6, $� � 90,							E:(*��,��6, $� < *
1,							E:(*��,��6, $� l * (30) 

This method fits for the case when t is properly set. When t has to be large for some 
reason, the resulting consensus set may therefore include many outliers and then af-
fect the correctness of the model. To solve the potential problem caused by a large t, 
Torr and Zisserman (1998) introduced the MSAC (M-estimator Sample Consensus) 
algorithm, which modifies the	(�6, $�	in RANSAC as 

 (̃�6, $� � 9E:(*��,�
��6, $�,							E:(*��,��6, $� < *

*�,																																			E:(*��,��6, $� l * (31) 

The robustness is still guaranteed in that: 1) since	*�, which is the penalty given to 
outliers, is always larger than	E:(*��,���6, $�, this scoring system will also prefer to 
choose the model with a larger consensus set; 2) When the consensus set is large 
enough but includes many outliers, The	∑ E:(*��,���6, $��∈� 		will be large and 
therefore the bad models are distinguishable (Vosselman et al. 2010).   
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Figure 31. The flow chart of the RANSAC paradigm for single model fitting, 
where |S| denotes the number of elements in set S. 

4.3.2 Multi-plane fitting 

The original RANSAC is normally not applicable for the data potentially containing 
several models, because for each model, all the points belonging to a different model 
are outliers. According to Figure 30, this will require thousands of iterations. In this 
section, a modified RANSAC is designed for solving the problem. Section 4.3.2.1 and 
4.3.2.2 introduce the necessary supplements to the ordinary RANSAC. Section 4.3.2.3 
describes the modified RASNAC algorithm.  

4.3.2.1 Sampling from neighboring points 

It is observable that if the samplings are forced within a small range, the n selected 
points will be more likely from the same roof facet. This idea is predicated on the as-
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sumption that all the roof facets are not curved, so that sampling points from any local 
part of a facet is equivalent. 

Based on this idea, the n samples are selected from the neighboring points of a ran-
domly selected point pi. Let A stand for the event of successfully finding a model and 
B for the event that the neighboring points of pi are from the same roof facet. Accord-
ing to Bayes’ theorem, the probability of the occurrence of A is formulated by 

 ���� � �� ����| �	
�� |��  (32) 

As a common sense, A is a sufficient condition to the occurrence of B. 
Thus,	�� |�� � 1 and 

 ���� � �� ����| � (33) 

The event A|B, i.e., finding the model given that all the samples are selected on the 
same roof facet, is equivalent to the single model fitting problem using ordinary 
RANSAC. Its number of iterations, denoted by	v��| �, obeys the curve demonstrated 
in Figure 30. By analogy,	v� �	is determined by �� �, which can also be seen as the 
probability of finding a qualified point pi. The total number of iterations is the product 
of the two terms: 

 v��� 	� v� � 5 v��| � (34) 

And	v� �	is the only term to reduce. 

4.3.2.2 Considering local normal as a criterion 

In addition, a predicable drawback of ordinary RANSAC based methods is that it 
cannot separate points from two facets that share the same plane. If some of the points 
of a roof facet are coplanar with another facet, those points are subject to misclassifi-
cation. To solve this problem, the local normal vector of each point, which has been 
obtained from the previous step, is introduced as an auxiliary criterion. Figure 32 
demonstrates that some of the points in question will become separable.  

 
Figure 32. The red points belong to different facets but are coplanar, so they are subject 
to be misclassified. However, they can be separable by introducing the local normal for 
each point that is derived from the previous step.  
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4.3.2.3 The modified RANSAC algorithm 

The modified algorithm comprises two layers of iterations. The inner layer is similar 
to the ordinary RANSAC, but is supplemented with the local normal. The outer level 
is the random selection of a qualified point pi. Every time the algorithm finds the 
model for a roof facet, the points of this roof facet will be discarded from the data. 
Thus, an UNEXTRACTED list U is used for recording the indices of the remaining 
points. The algorithm is implemented as follows: 

1) Randomly select a point pi from the U. If U is empty, the algorithm terminates. 
Otherwise, if all its neighbors N are within the same roof facet, and the num-
ber of neighbors is larger than a threshold d1, the algorithm continues to 2); 
otherwise, the point should be resampled. If the number of neighbors is small-
er than d1, remove pi and their neighbors from U.  

2) Run the inner iteration for k times: 

i. Randomly select 3 points from the neighbors and estimate a hypothetic 
model. 

ii. Calculate the deviations from the model to each point in U. Save all the 
points with the error smaller than an error tolerance t1 to a set S1. 

iii. Calculate the mean normal of those neighboring points. And calculate 
the angles between the mean normal to each local normal of the points 
in S1.  

 ¡7 � arccos	( £¤¥¦P
4 £7|£¤¥¦P||£7|) (35) 

where n stands for a normal vector in the form of (a, b, c)T. And save 
all the points in S1 with the angle smaller than a threshold α to the 
Consensus Set S2.  

iv. If the number of points in S2 is smaller than threshold d2, the algorithm 
returns to i. Otherwise, estimate the total least squares model from S2.  

v. (30) is applied as the scoring system for voting for the best model, i.e., 
if the number of points in S2 is larger than that from the best current 
model, save this model as the best model. Otherwise, return to i. for the 
next inner iteration.  

3) Calculate the deviations from the best model to each point in S2 of the model, 
and add the points in U with the error smaller than another error tolerance t2 
into a set S3, from which the convex hull of the roof facet is extracted. Finally, 
remove S3 from U. So far the model of a roof facet and its convex hull has 
been successfully estimated. The algorithm returns to 1) for the next outer it-
eration. 
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Figure 32 demonstrates the entire process of the modified RANSAC. The setting of 
the thresholds is specified in Section 4.3.3. 

 
Figure 33. The flow chart of the modified RANSAC for multi-model fitting 

4.3.3 Setting of thresholds 

In this section, the selection of parameters is described in detail. First of all, t1 is the 
threshold for determining the inliers of the points to a model. Assuming all the roof 
points are distributed with the similar thickness, the error tolerance t1 is empirically 
assigned with the thickness of a manually selected roof facet. To visualize the 
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cross-section of the roof facet, PCA is applied on those points for deriving the eigen-
vectors to which the coordinate system is rotated by applying (27). Figure 34 displays 
the cross-section of the roof facet. In this coordinate system, t1 is assigned with the 
variance of the coordinates that are projected on the vertical axis. 

Figure 34. A cross section of a roof facet displayed in the new co-
ordinate system, where the outliers are highlighted. 

The threshold t2 is used for extracting the points of an entire roof facet, from which 
the convex hull is derived. Thus, t2 should be set larger than t1. In this study, the t2 is 
adjusted according to the experiments. 

The number of iteration k is determined by equation (28). Assuming in every roof 
facet 40% of the points are outliers, the value of k is therefore 13 with the success rate 
of 95%. 

There are two purposes for using threshold d1. First, the number of neighbors should 
be sufficiently large (at least larger than 3), so that they can generate enough hypo-
thetic models. Second, it can filter off sparse points, which are normally some unde-
sirable isolated points remaining from the last step. d1 is empirically chosen as 10R

2, 
where R is the neighboring radius. The d2 is also empirically set to 50. 

The angle tolerance α is set as the mean of the angles between the mean normal to 
each local normal within the neighbors plus m times standard deviations of those an-
gles. The value of m is also tuned by experiments. 

4.3.4 Evaluating the Robustness of RANSAC on Single Model Fitting 

If the algorithm is applied to all the points for hundreds of times, because the order of 
estimating the specific roof facet is totally random, it is difficult to find a way to sort 
them in a uniform order, which will be problematic for collecting statistical results on 
each model. Consequently, in the first test, the algorithm is simply applied 200 times 
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on only one of the roof facets for evaluating the accuracy of the algorithm, which is 
measured by the variance of the deviation angles (35) between each of the 200 results 
and their mean.  

In the second test, the algorithm is tested on the cathedral points for 10 times 
(Appendix F). The quality of the roof facet plane models is evaluated from visual in-
spection. 



41 

 

5. RESULTS 

The pipeline is extensively tested on the LIDAR data. In this section, the experimental 
results relating to the three steps, which are classification of ground and non-ground 
points, extraction of roof points and generation of roof facet polygons are presented 
respectively in Section 5.1, 5.2, and 5.3. 

5.1 Classification of ground and non-ground areas using graph cuts 

In this section, the results of the experiments in classification of ground and 
non-ground points are presented. The EM estimates of the Gaussian mixture model 
are demonstrated in Section 5.1.1. In Section 5.1.2, the classification on the low-
er-right 36 subtiles using graph cuts are presented with regard to different spatial reg-
ularizations. Section 5.1.3 demonstrates a comparison between the classifications with 
and without splitting the data into subtiles. 

5.1.1 Parameter estimation using EM algorithm 

The first experiment is the estimation of Gaussian mixture model using EM algorithm 
based on elevation data. The initial height for ground heights is set 2m. Figure 35 
demonstrates a typical Gaussian mixture model automatically estimated by EM algo-
rithm in one of the subtiles. The EM estimations of 36 lower right subtiles of the area 
are presented in Appendix D. 

From those plots, we can see that in most of the subtiles, the estimated model param-
eters fit the data well in general. This should give credit to the fact that in most of the 
subtiles the distributions of ground and non-ground points are sufficiently different so 
that it is easy to find the correct convergence to separate them. Especially they will 
always converge to the same values no matter if the initial height is set 2m or 3m. 
However, the estimation is problematic if there are several dominant peaks in the sub-
tile, such as the subtiles demonstrated in Figure 36 and Figure 37. The convergence in 
those subtiles is sensitive to the choice of the initial height. In this sense, 3m is a more 
ideal value for the initial height. In addition, Figure 38 illustrates a distribution of the 
number of iterations when using EM algorithm on the 36 subtiles, where we can see 
that most of the subtiles can converge in approximately 10 iterations.  
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Figure 35. The two Gaussian models estimated from the data us-
ing EM algorithm 

 

Initial height = 2m 

 

Initial height = 3m 
Figure 36. The EM estimation on the subtile (10, 9), where different initial heights are 
used and compared. When using the 2m initial height, the parameters converge to a bad 
result 
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 Initial height = 2m 

 Initial height = 3m 
Figure 37. The EM estimation on the subtile (10, 8), where different initial heights are 
used and compared. When using the 2m initial height, the algorithm converges to a 
seemingly bad result.  

 

 
Figure 38. The distribution of the number of itera-
tions in the EM algorithm applied on the 36 sub-
tiles.  

5.1.2 Graph cuts with different spatial regularization 

The effects of spatial regularization are studied in this section. Figure 39 demonstrates 
the non-ground points extracted using graph cuts method. For the first figure, the spa-
tial regularization factor is set to 0. In contrast, the second figure is the result when a 
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proper spatial regularization factor is applied, where we can see that some cars and 
low shrubs are classified as ground. For the third figure, the spatial regularization is 
set very large, consequently some roofs are disappeared. This suggests that the spatial 
regularization should be carefully tuned.  

   

Spatial regularization = 0 Spatial regularization = 2 Spatial regularization = 10 

Figure 39. The classification of ground and non-ground areas with respect to different 
factor values of spatial regularizations. The differences are presented on those red cir-
cles. 

5.1.3 The effect of splitting the data into subtiles  

Figure 40 shows the comparison of the classifications with and without splitting the 
data into subtiles. In this test, the data is rasterized into a height map because the re-
quired RAM for processing the entire LIDAR data is beyond the ability of the com-
puter used in this study. We can find that some of the building areas in the first image 
are not present in the second image, while in the second image, the northeast part is 
misclassified as building. The third image represents the elevation trend for the 
ground of the region, where the northeast part is higher than its southwest counterpart.  

   

Classify with splitting Classify without splitting Elevation Trend 

Figure 40. The comparison of classifications of ground and non-ground areas with and 
without being split beforehand, and the estimated elevation trend. 
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5.2 Extracting roof points 

5.2.1 The reliability of provided reflectance 

First, we studied whether the provided reflectance can be seen as an index for ex-
tracting roof points. Figure 41 demonstrates the test comparing the points with high 
reflectance (>200) and those with low reflectance (<20). A remarkable phenomenon 
can be seen in a) that some of the roofs have the similarly low reflectance to that of 
vegetation; for some of the gabled roofs, the two opposite roof facets have even 
sharply different reflectances. This suggests the reflectance is not a reliable index for 
extracting roof points. 

  

a) Intensity < 20 b) Intensity > 200 

Figure 41. The points with different thresholds in intensity. 

Some of the roof points have distinct reflectances. This could be ascribed to the fol-
lowing reasons: 1) some materials on the roofs absorb more signals than others, or 2) 
some signals were reflected in a large angle of incidence. In fact, for the data obtained 
from traditional passive remote sensing, a robust classification method based on re-
flectance usually employs the reflectances of multi-spectrum. For instance, the Nor-
malized Difference Vegetation Index (NDVI), which is the ratio between the sum and 
difference of reflectance in near infrared and red, has been proved to be a reliable in-
dex for detecting vegetation. A single spectrum would normally not be competent 
alone. Nevertheless, there could exist some way of combining the reflectance into the 
framework as a supplemental feature, which could be a topic in the future. 

5.2.2 Applying the linear threshold classifier 

The quality of a classification relies greatly on the choice of parameters in the classi-
fier. In this section, different thresholds are tested for the proposed linear threshold 
classifier and the graph cuts based classifier. First, the distributions of the classifica-
tion indices are studied because they can always provide intuitive information about 
the suitable value ranges. From Figure 42, we can find that in general, the distribu-
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tions under the 2m neighboring radius look more concentrated, which implies the roof 
points are easier to extract with 2m radius. The transparent pink regions demonstrate 
the reasonable value ranges for the thresholds. 

Figure 43 shows the extraction results for the two representative subtiles, in which 
buildings and trees take up the entire area respectively. This test aims at investigating 
the extraction quality under the 0.5m neighboring radius, with respect to different 
thresholds on the planarity index. From the figure we can see that if the threshold is 
set as 0.08, roof facets can be well extracted. Meanwhile, since 0.08 is relatively 
“loose”, many tree points cannot be thoroughly excluded. As the threshold goes down, 
the number of undesirable tree points decreases. But the roof areas shrink at the same 
time due to the increasingly stricter criterion.  
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Figure 42. The distribution of the three indices for extracting roof points with respect to 

two different sizes of neighboring radiuses: 1m and 2m. The red transparent regions 

denote the range of the appropriate thresholds. 

 

In comparison, Figure 44 illustrates the extraction results with respect to different ra-
dius sizes, which are 0.5m, 1m and 2m. For each size, the thresholds on the planarity 
index are properly set so that the undesirable tree points can be almost cleared. Ob-
serve the buildings points and we can find that as the radius size increases, more 
points on the joint part between adjacent roof facets are missing. 
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r1 = 0.08; r2 = 0.2; r1 = 0.03; r2 = 0.2; r1 = 0.01; r2 = 0.2; 

r3 = 0.3 r3 = 0.3 r3 = 0.3 

Figure 43. A comparison on the extraction of buildings under different criteria of R� R§⁄  
when the radius of the kernel is 0.5m. Red and blue points denote roof points and other unde-
sired points respectively. 

  

   

   
Radius = 0.5m Radius = 1m Radius = 2m 

Figure 44. A comparison on the extraction of buildings by different radius sizes, under the 
condition that the tree points are minimally misclassified by assigning the appropriate values 
for r1. Red and blue points denote roof points and other undesired points respectively. 
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Figure 45 demonstrates the extraction of a larger area including different buildings 
when applying different radius sizes and a less-strict threshold on r1. This means some 
noises are allowed to exist so that the roof points can be well retained. Afterwards, the 
noises are erased by a threshold on each point with less than 10 neighbors. By com-
parison, we can find that applying the 2m radius will cause massive disappearance of 
roof points. When radius is 1m, only the roof facets of LOD 3 (Figure 8) are missing. 
When radius is 0.5m, roof facets of LOD 3 can be retained, but in expense of remain-
ing more undesirable noises.   

   
Radius = 0.5m; r1= 0.08; Radius = 1m, r1= 0.08; Radius = 2m, r1= 0.04; 

 r2= 0.2; r3 = 0.3 r2 = 0.2; r3 = 0.3 r2 = 0.2; r3 = 0.3 

Figure 45. Extracting roof points in a larger area, where different radius are used. 
The threshold of r1 is not very strict. The remaining noises are removed by a filter of 
the density index. 

It seems that when using the simple linear threshold classifier, the quality of extrac-
tion is sensitive to the size of neighboring radius and strictness of the thresholds. The 
distributions of the indexes will have smaller variances if the neighboring radius is 
larger, which improves the quality of the extraction. Meanwhile, more points on the 
joint part between adjacent roof facets are subject to be misclassified to non-plane 
points. On the other hand, a smaller neighboring radius can limits the points missing 
on the joint part between adjacent roof facets. But the consequent larger variances in 
the indices distribution require stricter criteria to exclude undesirable points, which 
will also result in points missing on the roof facets. Thus, a good choice for the 
thresholds in this simple classifier should be based on the balance between the influ-
ences from the size of radius and the strictness of the criteria. For the dense urban area 
where exist small roof facets, the simple thresholding classifier seems not a good 
strategy for plane detection. 

5.2.3 Applying the graph cuts based classifier 

Since the determination of the optimal parameters is very sensitive in the simple 
thresholding classifier for plane detection, applying the graph cut based classifier is 
motivated due to the assumption that the spatial regularization can help the correct 
classification of the points on the joint part of adjacent roof facets. Figure 46 demon-
strates the comparison of detecting planes using the simple linear threshold classifier 
(Left) and the graph cuts based classifier (Right), conditional to the neighboring radi-
us of 2m. From the left figure, we can see clearly that many points on joint part be-
tween the roof facets are misclassified. In the right figure, however, the graph cuts 
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classifier merges those points into their surrounding roofs. But this causes some tree 
points closed to buildings are misclassified. The EM estimate for the parameters of 
the distribution of the planarity index is demonstrated in Figure 47. 

  

The simple linear threshold classifier; The graph cuts based classifier; 

Figure 46. The comparison of plane detections with (right image) and without (left im-
age) using graph cuts. The radius of neighboring structure is 2m for both cases. Blue 
and red denote the classified plane and non-plane respectively. 

 

 
Figure 47. The Gaussian mixture model esti-
mated from the planarity index in the entire 
250m x 250m region using EM algorithm. The 
model parameters are used as arguments of 
Mumford-Shah functional in the graph cuts 
method. 

5.3 The modified RANSAC for multi-plane fitting and visualization 

In this section, the results for modified RANSAC are presented. The roof points are 
extracted by the simple linear threshold classifier, where there are gaps between cou-
pled roof facets. For all the experiments, the value of t2 is 1.5m; the value of m for the 
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angle threshold α is set as 5, i.e., 5 times standard deviations. The detailed explanation 
on the choice of those thresholds has been introduced in section 4.3.3. 

5.3.1 Accuracy tests 

The modified RANSAC algorithm is implemented 200 times on a large roof facet. 
The standard deviation of the angles from the mean normal of the 200 results to each 
of those normals is 0.1131º. The explicit results for 200 times are listed in Appendix 
E. 

5.3.2 Visual inspection 

Figure 48 shows the models estimated from the building points using the modified 
RANSAC, each of which is rendered as a 3D polygon bounded by the convex hull of 
the roof facet. We can find that some of actually separated roofs are mistakenly mod-
eled as a whole 3D polygon (Red circle). The algorithm takes 10s on average in the 
processing of 73229 points. The explicit plots for the ten results can be found in Ap-
pendix F, eight of which are satisfactory. In each of the two results in question, there 
is only a small roof facet that is not properly modeled. They can however be manually 
modified afterwards in practice. 

 

 

 

Figure 48. The visualization of roof facet polygons (Green) estimated from the roof 
points extracted without using graph cuts (Blue). Some of the facets are not separated 
(the red circle). 
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6. DISCUSSION 

Although many experiments relating to points extraction and plane modeling have 
been conducted, due to the limitations on time, hardware and software, there are some 
respects in this study that can be further improved. For example: 

1) The quality of the extraction has not been numerically evaluated because the 
correct referencing classification is not provided. Because of the data incon-
sistency mentioned in Section 3.3, the vector data of constructions is not suit-
able for evaluating the extraction. 

2) The connected component labeling is not conducted. This step aims at labeling 
points with different building numbers, so that the points belonging to the 
same building are processed as a group.  

3) The robustness of the kd-tree used in this study has not been investigated, e.g., 
when finding the neighbors of a point within a radius, whether really all the 
points within the radius are included. 

4) The open source kd-tree package used in this study cannot handle the data of 
too large quantity. According to the experiments, the program crashes when 
building a kd-tree for millions of points. This is another reason for splitting the 
data into subtiles. 

5) Due to the less effort put in developing memory-efficient codes, the memory 
often overflows when processing millions of points at the same time even 
though the data are split, which causes a great inconvenience in applying a 
method on all the subtiles. The workaround is applying the method on some of 
the subtiles. When the entire data has to be considered, the data are rasterized 
for saving memory. The neighboring structure in a LIDAR data is normally 
heavier than those in an image, which is the main reason for the program con-
suming so many memories and running time. 

6) The most time-consuming part of the program is repeatedly constructing and 
destroying kd-tree in different steps. This is because the open source kd-tree 
package does not provide the function for removing points. One of the solu-
tions could be designing a dynamically scalable kd-tree in such a way that the 
tree need only be built-up once and the points can be removed from the tree 
while keeping the tree balanced for the remaining points. Since the time limit, 
this task is left for the future. 

7) The classification of LIDAR data comes down to the problem of finding dis-
criminable indices and designing robust classifiers. The indices in this study 
are only the most commonly used ones. However, there could be many other 
better designed indices or combinations of indices that can potentially improve 
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the quality of classification. For example, Lafarge and Mallet (2011) uses a 
Scatter index that is defined as the minimal principal curvature mean of a 
considering point and its neighbors, in which a high value corresponds to trees 
and other undesirable urban components. Meanwhile, the rapid development 
of the LIDAR technology today may provide more and more useful physical 
features to improve classification accuracy. 

8) The modified RANSAC is only tested on a building with large roof facets. 
When applying the method to the smaller roofs, some parameters may have to 
be changed. The roof points used in this test are extracted by the simple linear 
threshold classifier, where there are gaps between coupled roof facets. The al-
gorithm can make use of the gaps to reduce the k(B) in equation (34) by set-
ting the searching radius smaller than the gap. Whereas, for the roof points ex-
tracted by the graph cuts based classifier, where there are no gaps between 
coupled roof facets, the algorithm will need an extra procedure to check 
whether the selected points are within the same roof facet. 

9) This version of modified RANSAC is only limited to planar roof facets. 
However in reality, some planar roof facets have a certain degree of curvature 
on their tails. This is the main error source from which some undesired fitting 
polygons are generated. 
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7. CONCLUSIONS 

In this study, a pipeline of detecting plane and creating polygons for roof facets has 
been devised and implemented based on some existing ideas and methods. Some 
technical details omitted by other literatures, such as choices of parameters, choices of 
energy functions have been explicitly described. The framework can be useful in pro-
cessing LIDAR data limited in dense urban area. But the codes will need further op-
timizations if used in the real industry. 

For separation of ground and non-ground areas, classifying separately on the smaller 
areas and merging them together afterwards is an effective way of reducing the influ-
ence of slightly varied topography. However, the splitting does not guarantee every 
subtile can achieve a good classification. Instead, it improves the classification in such 
a way that the bad classification is limited within the local subtile where the height 
distribution is too complex and therefore will not affect the classification of the 
neighboring subtiles. EM algorithm can effectively and efficiently find the most ap-
propriate parameters automatically. When the spatial regularization is properly set, 
graph cuts method can make the classification smoother. Especially, some cars and 
low shrubs can be separated from buildings. 

With regards to the quality of the extraction, the simple linear threshold classifier de-
pends on both the strictness of the criteria and the radius size. When the radius is set 
small, some of the undesirable points cannot be well excluded. When the radius is set 
large, undesirable points will remains fewer, but there will be more points missing on 
the joint part between roof facets. This can results in some smaller roof facets can be 
totally missing. One of the solutions is set a less strict threshold and filtering off the 
noises afterwards. According to the test, the radius of 1m gives the generally best re-
sult. Another solution is using the graph cuts based classifier, which can guarantee no 
points disappearance on the joint part between roof facets even though the criteria on 
the indices are strict and the size of neighboring radius is of up to 2m. 

Finally, the modified RANSAC gives a robust way of estimating multiple models. 
The variance of the estimates is sufficiently small, although it cannot generate a 
unique solution. A drawback of this RANSAC base method is that it cannot separate 
the points that are totally coplanar. The separation of such roof facets will perhaps 
need some other information, e.g., adjacency between points. 

In addition, there are also a few smaller polygons generated from small undesirable 
points that fail to be filtered off. They can be removed afterwards. 

Overall, this study contributes to clarifying some technical details in one of the possi-
ble methods for detecting and extracting roof facets in dense urban area. 
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APPENDIX A. Future Work 

According to the method by Verma et al. (2006), the estimated roof facet model pa-
rameters will be refined by non-linear optimization with constraints. For a gabled roof 
composed by two planar facets, let (C¨7©ª¥ , «¨7©ª¥, n¨7©ª¥) denote a point on the roof 
ridge approximated by the intersection line between the two facets. The coupled fac-
ets can be formulated with regard to the ridge point: 

 Πc = jC, «, n|�chC � C¨7©ª¥i + ­ch« � «¨7©ª¥i + ,chn � n¨7©ª¥i = 0} (36) 

where k = {1,2} and ck>0. Let (C7c , «7c, n7c) be the coordinate of ith point belonging to 
facet k. The estimated height from the plane with regard to the point pik is therefore: 

 n̂7c = − 1
�c h�cC7c + ­c«7c − �cC¨7©ª¥ − ­c«¨7©ª¥i + n¨7©ª¥ (37) 

Let	(c =	−d�c� 	+ ­c� ,c¯  and °c =	�c d�c� 	+ ­c�⁄  denote the slope and 2D orien-

tation of facet k (Figure 50), we can get 

 
n̂7c = −d�c

� 	+ ­c�,c f�cCc + ­c«c − �cC¨7©ª¥ − ­c«¨7©ª¥d�c� 	+ ­c� g + n¨7©ª¥	

= (c f°cC7c +±1 − °c�«7c − °cC¨7©ª¥ −±1 − °c�«¨7©ª¥g + n¨7©ª¥ 

 

 

(38) 

which is demonstrated in Figure 49.  

The two planar facets of a regular gabled roof are normally symmetric. Thus, the con-

straints of (� = (� and °� = −°� are set so that the two facets are forced to have the 

same slope and opposite orientations.  

As a result, the refinement is actually minimizing the following energy function 

 � = � �ε7c�
7cQ�,�

= � �(n̂7c − n7c)�
7cQ�,�

 (39) 

subject to (� = (� and °� = −°�. 

This formulation implies that the optimization is in ordinary least squares sense, 
which means only the sum squares of z-coordinates are minimized. If we want to 
change the formulation into total least squares, the error function has to be replaced 
by the sum squares of point-plane distances. First the plane model Πc  can be 
changed to the expression with regard to (c and °c: 
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°7hC − C¨7©ª¥i + ±1 − °7�h« − «¨7©ª¥i + 1(7 hn − n¨7©ª¥i = 0	
⟹ (7°7hC − C¨7©ª¥i + (7±1 − °7�h« − «¨7©ª¥i + hn − n¨7©ª¥i = 0 

 

(40) 

Then the error function becomes: 

έ7c = ´(c°chC7c − C¨7©ª¥i + (cd1 − °c
�h«7c − «¨7©ª¥i + hn7c − n¨7©ª¥i´

d(c� + 1  

Unfortunately, due to the time limit, the refinement has not been implemented by 
programming. In addition, although the roof polygons are created for some algorithms 
that automatically assemble the refined planar facets into complete roof structures, 
they can also facilitate manual digitization, since digitizing directly on LIDAR points 
might be boring and daunting for human beings. The proposed process of digitization 
will only need the following two steps: 1) select planar facets belonging to a complete 
roof manually, 2) convert them into a predefined roof structure, such as gabled or 
heaped roof. The pipeline of the remaining tasks is given in Figure 51. 

 
Figure 49. The refinement of roof model parameters.  

   

 
Figure 50. The slope and orientation of a planar roof 
facet. 
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Figure 51. The rest of the procedures to create 3D city models. 
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APPENDIX B. kD tree 

kD-tree is a binary tree structure for storing multi-dimensional data in such a way that 
the data can be more efficiently queried than using a naïve algorithm. Each datum is 
stored as a node in the tree. Each node has a left descendent and right descendent rep-
resenting the two data which are respectively smaller and larger than the datum on the 
node in one of the dimensions. “kD-tree” is only a general name for cases of arbitrary 
dimensions. It can be also specified according to the dimension of the data, which 
means that for 2D data, it is called 2D-tree while 3D-tree for 3D data. Considering 
that the LiDAR data is distributed in 3D Euclidean space, we will use the name 
“3D-tree” for clarity in the following context.  

A complete 3D-tree is built through inserting the points into an empty 3D-tree one 
after another. Each point is inserted by comparing its x, y or z coordinate periodically 
to the coordinate of its node at different depths of the tree. If the inserting point has a 
smaller x coordinate than its node, it will take up the left descendent of this node, vice 

versa. Since for a binary tree structure, the searching efficiency is directly determined 
by its depth, a balanced 3D-tree is preferred. Thus, the median of the remaining points 
is selected as the point to be inserted every time. The medians can be efficiently found 
using Heapsort algorithm with the O(nlogn) time (Cormen et al. 2001). And consid-
ering that inserting a new datum into a balanced 3D tree takes O(logn) time, building 
up a 3D tree takes O(nlog2

n) time. 

The algorithm of building up a 3D tree is given below. (Worboys et al. 2004) 

Input: Point p and 3D-tree T 
1: if T is an empty 3D-tree then 
2:    T←←←←a new 3D-tree with root p and two null tree descendants 
3: node n←←←←the root of T 
4: tree level l←←←←0 
5: repeat 
6:       if l mod 3 == 0 then 
7:           a ←←←← x-coordinate of p 
8:           b ←←←← x-coordinate of n 
9:       elseif l mod 3 == 1 then 
10:          a ←←←← y-coordinate of p 
11:          b ←←←← y-coordinate of n 
12:      else 
13:          a ←←←←z-coordinate of p 
14:          b ←←←←z-coordinate of n 
15:      if a < b then n’←’←’←’← the LEFT node from n 
16:      else n’←’←’←’← the RIGHT node from n 
17:      n ←←←← n’’’’ 
18:      l ←←←← l + 1 
19:until n = null tree 
20:insert new node p at position of n with two null tree descendant 
This study applies an open source kD-tree package published by Tagliasacchi (2008). 
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APPENDIX C. Connected Component Labeling 

The connected component labeling aims at separating non-adjacent pixels in an image 
into different classes. Figure 52 demonstrates that the two disjoint areas are labeled 
differently. The algorithm is given below. 

 
Figure 52. An example of connected component label-
ing applied on an image, where black denotes NaN. 

algorithm TwoPass (data) 

Linked ← [] 
Labels ← structure with dimensions of data, initialize 
First Pass 
for i ← 1 to Num_of_Row 
   for j ← 1 to Num_of_Column 
       if data[i][j] is not Background 
           neighbors ← connected elements (whose value = current element’s value) 
           if neighbors is empty 
                linked[NextLabel] ← set containing NextLabel 
                labels[i][j] ← NextLabel 
                NextLabel ← NextLabel + 1 
           else 
                Find the smallest label 
                L ← neighbors_labels 
                labels[i][j] ← min(L) 
                for label in L 
                   linked[label] ← union(linked[label], L) 
Second pass 
for i ← 1 to Num_of_Row 
   for j ← 1 to Num_of_Column 
       if data[i][j] is not Background 
          labels[i][j] ← find(labels[i][j]) 
return labels                

(Horn, 1986) 
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APPENDIX D. Gaussian Mixture Model of 

Elevations Estimated by EM Algorithm 

The plots below demonstrate the Gaussian mixture models estimated by EM algo-
rithm for each subtile. The black curve stands for the mixture model for all the 
heights. The blue and green curves denote the Gaussian models of ground and 
non-ground respectively. 36 of 100 subtiles are chosen. The (x,y) represents the loca-
tion of a subtile in the entire data, which correspond to the grids in Figure 23. The 
numbers above the figures are the number of iterations before the parameters con-
verge. 
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APPENDIX E. Robustness of the Modified 

RANSAC 

Let {x, y, z | ax + by + cz + d = 0} be a plane model, the table below lists the 200 re-
sults of the estimated model parameters.  

Column One (100 x 4)  Column Two (100 x 4) 

a b c d  a b c d 

-0.00693 -0.0201 0.035737 -0.99914 -0.00675 -0.01958 0.035319 -0.99916 

-0.00674 -0.01955 0.03528 -0.99916 -0.00671 -0.01952 0.035237 -0.99917 

-0.00664 -0.01926 0.035045 -0.99918 -0.00668 -0.01938 0.035145 -0.99917 

-0.0067 -0.01947 0.035209 -0.99917 -0.00672 -0.01951 0.035249 -0.99917 

-0.0068 -0.01973 0.035437 -0.99915 -0.00679 -0.01962 0.035361 -0.99916 

-0.00675 -0.0196 0.035325 -0.99916 -0.00674 -0.01962 0.035328 -0.99916 

-0.00663 -0.01938 0.035104 -0.99917 -0.00671 -0.01956 0.035278 -0.99916 

-0.00671 -0.01954 0.035257 -0.99916 -0.00653 -0.01914 0.034899 -0.99919 

-0.00685 -0.01977 0.035497 -0.99915 -0.0067 -0.01946 0.035211 -0.99917 

-0.00681 -0.01979 0.035479 -0.99915 -0.00664 -0.01928 0.035064 -0.99918 

-0.00681 -0.01991 0.035536 -0.99915 -0.00668 -0.01931 0.035108 -0.99917 

-0.00671 -0.01955 0.03526 -0.99916 -0.00669 -0.01949 0.035213 -0.99917 

-0.00689 -0.01998 0.035641 -0.99914 -0.00675 -0.01951 0.035268 -0.99916 

-0.00654 -0.01911 0.034879 -0.99919 -0.00666 -0.01945 0.035175 -0.99917 

-0.00673 -0.01955 0.035278 -0.99916 -0.00658 -0.01938 0.035072 -0.99918 

-0.00686 -0.01984 0.035542 -0.99915 -0.00665 -0.01934 0.035102 -0.99917 

-0.00673 -0.01959 0.035309 -0.99916 -0.00669 -0.01929 0.035097 -0.99918 

-0.00668 -0.01951 0.035238 -0.99917 -0.00672 -0.01953 0.03526 -0.99916 

-0.00672 -0.01955 0.03528 -0.99916 -0.00671 -0.01953 0.035255 -0.99916 

-0.00665 -0.01941 0.03514 -0.99917 -0.00675 -0.01961 0.035323 -0.99916 

-0.00673 -0.0196 0.035305 -0.99916 -0.00676 -0.01966 0.035365 -0.99916 

-0.00677 -0.0197 0.035389 -0.99916 -0.00668 -0.01936 0.03513 -0.99917 

-0.00679 -0.01967 0.035394 -0.99916 -0.00684 -0.01987 0.035553 -0.99915 

-0.00682 -0.01985 0.035527 -0.99915 -0.00674 -0.0196 0.035316 -0.99916 

-0.00676 -0.01965 0.035362 -0.99916 -0.00677 -0.01962 0.035353 -0.99916 

-0.00679 -0.01968 0.035406 -0.99916 -0.00669 -0.01951 0.035229 -0.99917 

-0.00662 -0.01929 0.035044 -0.99918 -0.00655 -0.01924 0.034967 -0.99918 

-0.00679 -0.01973 0.035432 -0.99915 -0.00657 -0.01915 0.03494 -0.99918 

-0.00678 -0.01965 0.035372 -0.99916 -0.00637 -0.0188 0.034579 -0.9992 

-0.00688 -0.01995 0.03562 -0.99914 -0.00676 -0.01964 0.035357 -0.99916 

-0.00683 -0.01986 0.035535 -0.99915 -0.00631 -0.01854 0.034394 -0.99922 
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-0.00671 -0.0195 0.035235 -0.99917 -0.00679 -0.01977 0.035445 -0.99915 

-0.00664 -0.01924 0.035032 -0.99918 -0.00674 -0.0196 0.035318 -0.99916 

-0.00677 -0.01969 0.035387 -0.99916 -0.00682 -0.01973 0.03546 -0.99915 

-0.00664 -0.01932 0.035091 -0.99918 -0.00669 -0.01942 0.035175 -0.99917 

-0.00671 -0.01945 0.03521 -0.99917 -0.00672 -0.01975 0.035366 -0.99916 

-0.0067 -0.01953 0.03525 -0.99917 -0.00683 -0.01972 0.035448 -0.99915 

-0.00691 -0.01999 0.035671 -0.99914 -0.0066 -0.01921 0.034984 -0.99918 

-0.00654 -0.01925 0.034955 -0.99918 -0.0066 -0.0192 0.034991 -0.99918 

-0.0067 -0.01935 0.035141 -0.99917 -0.00683 -0.01979 0.035485 -0.99915 

-0.00668 -0.01951 0.035226 -0.99917 -0.00685 -0.0199 0.035577 -0.99915 

-0.00675 -0.01964 0.035349 -0.99916 -0.00657 -0.01924 0.034986 -0.99918 

-0.00671 -0.01943 0.0352 -0.99917 -0.00667 -0.0194 0.035147 -0.99917 

-0.00667 -0.01962 0.035263 -0.99916 -0.00665 -0.0193 0.035078 -0.99918 

-0.00692 -0.02 0.035681 -0.99914 -0.00682 -0.0198 0.035495 -0.99915 

-0.00673 -0.01959 0.035303 -0.99916 -0.00676 -0.0196 0.035338 -0.99916 

-0.00659 -0.01927 0.035016 -0.99918 -0.0066 -0.01929 0.035045 -0.99918 

-0.00674 -0.0196 0.035327 -0.99916 -0.00682 -0.01975 0.035461 -0.99915 

-0.00681 -0.01968 0.035414 -0.99916 -0.00661 -0.01925 0.035026 -0.99918 

-0.00672 -0.01949 0.035234 -0.99917 -0.00661 -0.01931 0.035052 -0.99918 

-0.00673 -0.01964 0.035325 -0.99916 -0.00658 -0.01921 0.034975 -0.99918 

-0.00664 -0.01939 0.035124 -0.99917 -0.00679 -0.0197 0.035408 -0.99916 

-0.00665 -0.01925 0.035053 -0.99918 -0.00677 -0.01956 0.035318 -0.99916 

-0.00672 -0.01936 0.035158 -0.99917 -0.00675 -0.01969 0.035366 -0.99916 

-0.00658 -0.01912 0.034932 -0.99919 -0.00688 -0.01989 0.035594 -0.99914 

-0.00683 -0.01982 0.035502 -0.99915 -0.00672 -0.01956 0.035285 -0.99916 

-0.00666 -0.01929 0.035075 -0.99918 -0.00685 -0.01985 0.035549 -0.99915 

-0.00666 -0.01928 0.035079 -0.99918 -0.00655 -0.01911 0.0349 -0.99919 

-0.00669 -0.01938 0.035159 -0.99917 -0.00668 -0.01949 0.035209 -0.99917 

-0.00665 -0.01924 0.035055 -0.99918 -0.00663 -0.01942 0.035125 -0.99917 

-0.00675 -0.01958 0.035311 -0.99916 -0.00683 -0.0198 0.035504 -0.99915 

-0.00668 -0.01949 0.035208 -0.99917 -0.00679 -0.01983 0.03548 -0.99915 

-0.00676 -0.01963 0.035345 -0.99916 -0.00673 -0.01961 0.035319 -0.99916 

-0.00674 -0.0196 0.035315 -0.99916 -0.00684 -0.01987 0.035542 -0.99915 

-0.00672 -0.01963 0.035312 -0.99916 -0.00672 -0.01943 0.035204 -0.99917 

-0.00684 -0.01975 0.03548 -0.99915 -0.00673 -0.01951 0.035259 -0.99917 

-0.00658 -0.01921 0.03498 -0.99918 -0.00679 -0.01971 0.035426 -0.99915 

-0.00649 -0.01874 0.034638 -0.9992 -0.00672 -0.01959 0.035301 -0.99916 

-0.00672 -0.01955 0.035275 -0.99916 -0.00677 -0.01969 0.035389 -0.99916 

-0.00646 -0.01889 0.034706 -0.9992 -0.00685 -0.01989 0.035571 -0.99915 

-0.00675 -0.01959 0.035315 -0.99916 -0.00655 -0.01919 0.034933 -0.99918 
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-0.00684 -0.01983 0.035525 -0.99915 -0.00671 -0.01955 0.035265 -0.99916 

-0.00668 -0.0193 0.035107 -0.99917 -0.00676 -0.01966 0.035368 -0.99916 

-0.00672 -0.01956 0.035285 -0.99916 -0.00674 -0.01967 0.035357 -0.99916 

-0.0067 -0.01938 0.035148 -0.99917 -0.00678 -0.01961 0.035349 -0.99916 

-0.00664 -0.01936 0.035105 -0.99917 -0.0067 -0.01954 0.035254 -0.99916 

-0.00674 -0.01958 0.035307 -0.99916 -0.00671 -0.01952 0.035247 -0.99917 

-0.00685 -0.01987 0.035553 -0.99915 -0.00677 -0.01989 0.035486 -0.99915 

-0.00678 -0.0197 0.035406 -0.99916 -0.00681 -0.01971 0.035441 -0.99915 

-0.00673 -0.0196 0.035311 -0.99916 -0.0067 -0.01945 0.035196 -0.99917 

-0.00667 -0.01942 0.035168 -0.99917 -0.00666 -0.01947 0.035183 -0.99917 

-0.00661 -0.01915 0.034962 -0.99918 -0.00676 -0.0196 0.035335 -0.99916 

-0.00663 -0.01936 0.035097 -0.99917 -0.00676 -0.01966 0.03537 -0.99916 

-0.00666 -0.01905 0.034933 -0.99919 -0.00655 -0.0193 0.034997 -0.99918 

-0.0069 -0.01997 0.035655 -0.99914 -0.00683 -0.0198 0.035499 -0.99915 

-0.00667 -0.01924 0.035062 -0.99918 -0.00666 -0.01943 0.03516 -0.99917 

-0.00682 -0.01982 0.035504 -0.99915 -0.00681 -0.01969 0.03542 -0.99916 

-0.00661 -0.01944 0.035111 -0.99917 -0.00664 -0.01932 0.03509 -0.99918 

-0.00665 -0.01931 0.035085 -0.99918 -0.00663 -0.01934 0.035082 -0.99918 

-0.00668 -0.01946 0.035199 -0.99917 -0.0068 -0.01967 0.035409 -0.99916 

-0.0067 -0.01986 0.035409 -0.99915 -0.00673 -0.01961 0.035314 -0.99916 

-0.00673 -0.01958 0.035299 -0.99916 -0.00677 -0.01961 0.035337 -0.99916 

-0.0068 -0.01974 0.035444 -0.99915 -0.00677 -0.01955 0.035316 -0.99916 

-0.00686 -0.01991 0.035587 -0.99914 -0.00697 -0.02101 0.036221 -0.9991 

-0.00662 -0.01927 0.035042 -0.99918 -0.00665 -0.01933 0.035098 -0.99917 

-0.0068 -0.01977 0.035462 -0.99915 -0.00668 -0.01948 0.035209 -0.99917 

-0.00676 -0.01965 0.035363 -0.99916 -0.00673 -0.01952 0.035261 -0.99916 

-0.0067 -0.01951 0.035244 -0.99917 -0.0066 -0.01919 0.034984 -0.99918 

-0.00674 -0.01961 0.035318 -0.99916 -0.0066 -0.01927 0.035015 -0.99918 

-0.00676 -0.01967 0.035368 -0.99916 -0.00675 -0.01958 0.035307 -0.99916 
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APPENDIX F. Running the Modified RANSAC 

for 10 Times 

 

 

  

Implementation 1:  

Elapsed time = 10.5856s 

Implementation 2:  

Elapsed time = 10.1564s 

Implementation 3:  

Elapsed time = 9.8941s 
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Implementation 4:  

Elapsed time = 10.3007s 

Implementation 5:  

Elapsed time = 10.0485s 

Implementation 6:  

Elapsed time = 10.3277s 

Implementation 7:  

Elapsed time = 9.7276s 
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Implementation 8:  

Elapsed time = 10.7447s 

Implementation 9:  

Elapsed time = 9.9212s 

Implementation 10:  

Elapsed time = 10.6762s 
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