

Integrating X-Plane

- Communicating with X-Plane

LTH School of Engineering at Campus Helsingborg
Computer Engineering

Bachelor thesis:
Ricky Djerf
Marcus Hammar

 Copyright Ricky Djerf, Marcus Hammar

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2012

Abstract

Saab Training Systems develop training systems for civil and military use.

The company desires a possibility to connect the flight simulator X-Plane 10

to other simulators with the use of their existing integration platform, WISE.

X-Plane has a built in plug-in manager which makes it possible to use third-

party plug-ins for the simulator. There is a free SDK available for writing

plug-ins. This SDK is not provided by Laminar Research, the company who

develops X-Plane, but two persons working on it as an extra project. Plug-ins

for X-Plane are coded using C or C++.

This report describes how information in X-Plane is accessed by a plug-in and

how the developed plug-in works. The plug-in is able to extract and inject data

with the use of X-Plane’s existing data references. The data references and

functions for data access are declared in the existing X-Plane SDK. This report

also describes how the plug-in handles communication via UDP socket to send

and receive data to and from WISE and some of the limitations and

possibilities with X-Plane from an integration point of view.

The plug-in is able to send data such as aircraft type, velocity, orientation,

landing gear status etc. for the user’s aircraft. It is also able to receive data of

the same type, seize control over an AI aircraft and apply the data on it. The

plug-in uses a simple form of dead reckoning to make the aircraft drawing

look smoother.

Keywords: X-Plane, Flight simulator, SDK, Plug-in

Sammanfattning

Saab Training Systems utvecklar träningssystem för militärt och civilt bruk.

Företaget vill veta vilka möjligheter det finns med flygsimulatorn X-Plane 10

samt koppla ihop flygsimulatorn med andra simulatorer via deras existerande

integrationsplatform, WISE.

X-Plane har ett inbyggt stöd för plugins vilket gör det möjligt att utveckla

egna plugins. Det finns ett tillgängligt SDK för utveckling av plugins. SDK:et

tillhandahålls inte av Laminar Research, utvecklarna av X-Plane, utan

utvecklas som ett eget projekt utav två personer. Plugins skrivs i C eller C++

kod.

Rapporten beskriver hur information från X-Plane hämtas ut via plugin och

hur ett plugin skrivs. Det utvecklade pluginet är kapabelt att extrahera samt

injecera data med hjälp av data referenser ifrån X-Plane. Data referenserna

och funktionerna för data tillgång är deklarerade i SDK:et. Rapporten

beskriver även hur pluginet, via UDP socket, hanterar kommunikationen

mellan pluginet och WISE. Möjligheter och begränsningar med integrationen i

fokus tas också upp.

Pluginet kan skicka data så som flygplanstyp, hastighet, position och status för

landningsställ för användarens flygplan. Pluginet kan även ta emot denna data,

ta kontroll över ett AI kontrollerat flygplan och tillämpa den mottagna datan

på detta. Det finns även en enklare form av dödräkning implementerad, detta

för att flygplanet skall ritas upp på ett jämnare sätt.

Nyckelord: X-Plane, flygsimulator, SDK, plugin

Foreword

This report and the software developed is the result of a project initiated by

Saab Training Systems, Helsingborg.

We would like to give our special thanks to the following:

Sandy Barbour for answering forum threads and developing the SDK,

Fredrik Ullner for support and supervising at Saab Training System,

Mats Lilja for support regarding the report,

Saab Training System for the opportunity to work in our desired field.

Helsingborg June 2012

Ricky Djerf och Marcus Hammar

List of contents

1 Introduction ... 1

1.1 Questions to answer ... 1

1.2 Project delimitations ... 2

1.3 X-Plane 10 .. 2

2 Method ... 3

2.1 Research.. 4

2.1.1 X-Plane .. 4

2.1.2 SDK .. 4

2.1.3 Driver ... 4

2.2 Extracting data from X-Plane ... 5

2.3 Communication ... 5

2.4 Source criticism .. 6

3 Analysis of X-Plane and the SDK ... 7

3.1 X-Plane and its possibilities ... 7

3.2 X-Plane data access via SDK ... 9

4 Development .. 11

4.1 Plug-in and driver sequence .. 13

4.2 Structuring information .. 14

4.3 Communication ... 14

4.4 Dead reckoning ... 17

4.5 Debug .. 18

4.6 Driver implementation .. 19

4.7 WISE Communication ... 20

4.8 Problems during development ... 21

4.8.1 Representation of aircrafts in X-Plane 21

4.8.2 Other objects in X-Plane ... 24

4.8.3 General problems concerning X-Plane and the plug-in 24

4.9 Problems outside development ... 25

4.10 Design decisions during development 26

5 Result ... 28

6 Conclusion ... 29

6.1 Future Development ... 30

7 Dictionary ... 31

8 References ... 32

9 Appendix .. 35

9.1 X-Plane tests checklist ... 35

9.2 SDK test checklist ... 36

9.3 Essential plug-in functions .. 37

1

1 Introduction

SAAB Training Systems [sts] is a part of the SAAB group and develops

training systems for civil and military use. The company has a client who

desires a possibility to connect X-Plane with other simulators and interact

between them. SAAB Training Systems provides an integration platform,

WISE, which can be used for communication between the simulators.

Currently they have no way of extracting information from X-Plane.

X-Plane is a commercial simulator with several versions such as a time-

limited Demo version and a professional version, where the user may obtain

actual flight hours [xplane info].

The assignment regards extracting and injecting information, such as position

and orientation, from and to the X-Plane simulator by communicating with the

integration platform. This will be made possible by writing a plug-in for X-

Plane, which handles information input and extraction, and writing a WISE

driver.

1.1 Questions to answer

The questions that this project will answer are

 What are the possibilities with X-Plane?

o Is it possible to draw ground objects in X-Plane and if so how to

do it?

o Does X-Plane support weapons and if so how to access weapon

data?

 How to develop a basic plug-in for X-Plane?

o How to access and modify aircraft data?

o What are the necessary functions in a plug-in?

 How to handle plug-ins in X-Plane?

o How to install a plug-in in X-Plane?

o How to remove a plug-in from X-Plane?

 How to get the plug-in to communicate with a server?

 What are the limitations in the X-Plane simulator?

2

1.2 Project delimitations

The development during this project will focus on aircraft information

extraction and injection, information concerning other objects in X-Plane are

outside the development scope. The main focus of the plug-in will be

communication with the integration server and decent display of other

controlled aircrafts. The display of other controlled aircrafts is possible with

the information sent via the integration server, at a set interval, and dead

reckoning calculations within the plug-in [dead reckoning].

1.3 X-Plane 10

X-Plane 10 aims to be “the world’s most comprehensive and powerful flight

simulator for personal computers” [xplane] and ”offers the most realistic flight

model available.”. X-Plane 10 is developed and owned by Austin Meyer and

Laminar Research. Once bought it includes the flight simulator, plane maker,

to make own aircrafts, and airfoil maker, all of which is runnable in Windows,

Mac and Linux environments.

X-Plane 10 is a relatively new flight-simulator released December 2011. It has

a lot of similarities with its predecessor X-Plane 9 but not all the information

in the communities is applicable in X-Plane 10. X-Plane 10 has a completely

renewed air traffic control system called ATC which controls all the aircrafts

in the system including the users [xplane news]. There are also some data

references that are removed and some that are added [datarefs].

3

2 Method

A SCRUM [scrum] inspired development was intended to be used in a way

that sprints and backlog were utilized. This was to create a better structure in

the work and to be able to make more accurate time estimations of the work

required to meet deadlines. As the project evolved and the knowledge of

possibilities of X-Plane expanded the SCRUM inspired development seemed

superfluous and was therefore not used. Instead of SCRUM the development

turned towards daily meetings to decide what was going to be developed the

next day. Development also made use of post-it notes which worked as a

backlog and stated what functionality was needed and when it should be

completed. The documentation of the project proceeded with Code

Commenting and comments on problems in a simple text-file for helping with

report writing later on.

Development of the plug-in and analysis/evaluation of X-Plane have

proceeded simultaneously. This came natural as questions of functionality and

operations came up during development and it would be hard to cover it all in

the limited time available for testing X-Plane before the development began.

Both the plug-in for X-Plane and the driver for WISE [see Chapter 2.1.3] are

coded in C++.

The first tests of the simulator occurred at home using the X-Plane demo

version, to get a feel for the different functions available in the simulator and

how the simulator worked. Development of the plug-in started after the first

tests were completed and workplace was set to Saab Training System’s

facilities. Some testing was done at STS as the development process

proceeded.

The concept of the work model narrows down to: analysis of problem, viable

solution to the problem by researching, implementing solution and

documenting code and encountered problems.

Before the project started, this project was divided into three stages:

 Research and testing of X-Plane

 Extracting and injecting data with X-Plane

 Communication with WISE

4

2.1 Research

2.1.1 X-Plane
As X-Plane provides a Demo version it was solely to install and test X-Plane

on a personal computer. The main goal with this phase was to try out the

possibilities with X-Plane simulation and to gain some understanding of the

simulator. To do this a checklist [see Appendix 8.1 and 8.2] was established

for structural testing. The checklist concerned matters like “is it possible for a

plane to collide with a car or a building?” and “Are there cars and if so, are

they moving?”. These tests were made to get a better understanding of how

the objects work, interact with each other and if there’s a possibility to extract

information from ground objects.

2.1.2 SDK
X-Plane SDK [sdk] was originally developed by Sandy Barbour and Ben

Supnik as volunteers and is still maintained. As the SDK is made as a spare-

time project there are no obligations to improve the SDK but the community

helps each other and the developers by forum or email contact.

Research concerning the existing X-Plane SDK was also made by going

through the different functions available and isolating the ones that might be

useful for this project. There are existing code samples in the SDK folder

which proved useful when trying to understand the structure of the SDK.

Plug-ins for X-Plane are coded in C but the SDK support C++ through “extern

C” [extern].

An update [sdk21] for the SDK was released during development and

provided some needed functionality and some possibilities to expand the

functionality of the plug-in further. Functionality of Flightloopcallbacks [see

Chapter 4.3] was expanded and data references for damage were included,

providing support for firing at aircraft and registration of hits.

2.1.3 Driver
The driver is a component with the task of sending, receiving and converting

data to/from a data model. To get a better understanding of how the driver

should be coded a two day education was given by STS. This education gave

an introduction in how to write a driver which is working as a middle man

between the integration platform and the simulator. The education also

provided information on how simulators, drivers and servers are working

together to achieve the integration, see picture Overview.

5

Picture Overview: Shows a system overview of an integration between two instances of X-

Plane 10

2.2 Extracting data from X-Plane

By using a plug-in to X-Plane it is possible to extract data values from the

simulator. The developers of the SDK provide simple examples [sample code]

to get anyone going with plug-in development in X-Plane.

The SDK provides functions which uses data references to access data within

X-Plane, there are also functions which are able to write data to X-Plane using

the same data references. Writing data does not apply to all data references

though, only the ones which are writable [datarefs].

2.3 Communication

The chosen path to communicate with WISE came down to socket

communication since it was the only way known to the project members and it

is a valid way to communicate in networks. Socket communication is an easy

way to decide where to send data and where to receive data. There are several

types of sockets available for implementation. The types of sockets considered

in this project were c-sockets[c-socket], an implementation of Berkeley

sockets [berkeley-socket] called simple-socket [simple socket] and the

standard windows socket winsock [winsock].

6

2.4 Source criticism

The references were chosen as the SDK used is developed and maintained by

the administrators of XSquawkBox. The forums used are often replied by the

developers of the SDK or people that have worked with the SDK for a long

time and have provided valuable feedback to the developers. It should be

noted though that when it comes to the decisions of not choosing X-Planes

built in way of communicating via UDP it was made only by reading forum

[forum] threads on the X-Plane forums, this was due to the time limit of the

project.

The fact that decision was based on forum threads means that these things

have not been tested in the project and may in fact work even if people on

forums said that they did not. Other references than the ones concerning X-

Plane were chosen either because they answer a problem in a way that the

project members found satisfying, because they are written by known

companies/organizations or because the documents were written by the

creators of a certain code for example simplesocket created by carrierlabs.

7

3 Analysis of X-Plane and the SDK

This chapter contains information apprehended concerning the possibilities

with X-Plane and functionality of the SDK.

3.1 X-Plane and its possibilities

As mentioned in the introduction X-Plane is a very versatile flight simulator. It

can both entertain and educate the user in the various aspects of flying. The

simulator includes special scenarios such as entering earth’s atmosphere in a

space shuttle, landing on an aircraft carrier and simulating air to air combat.

Basic flying in X-Plane is fairly easy even with a mouse as controller. The

user starts on the runway of a chosen airfield and only needs to apply throttle,

loosen the brakes and use the mouse to control the rudders. There is also a

more advanced dimension to flying in X-Plane. The user may start with all

systems offline and will then need to complete the entire start sequence

manually including taxiing and radio communication.

X-Plane does not need a super powerful computer to run. As long as graphics

and draw-distance is not an issue, a 256 MB graphics memory card and 3 GB

of RAM is sufficient. If the user wants a good experience though the system

needs better specifications, at least a

3 GHz dual-core processor, 4 GB

RAM and a 1 GB graphics memory

card.

There are a lot of possibilities created

with X-Plane since it supports

network play and third party plug-

ins. X-Plane has a lot of data which

is available for access and

modification, not only for aircrafts

but for missiles, bombs, weather and

time. This opens up the possibilities

with X-Plane, theoretically X-Plane

could be used to reproduce weather

in a second simulator. This could be

done by completing the steps shown

in picture Weather.

Since data is available for weapons,

it should also be possible to shoot missiles

and bombs on ground targets in other

simulators by extracting the weapon data

Picture Weather: shows a possible way to

use X-Plane as a weather controller

8

in X-Plane and cross-referencing it with object data received from another

simulator which has ground-units. This has not been covered in the testing

process but should not differ much from the aircraft information transfer.

It is possible to draw ground objects such as people and vehicles in X-Plane as

long as the objects are valid X-Plane object files. Valid X-Plane objects are

.obj files with references to a .png texture map. An .obj file is a 3D object file

which can be created in for example Autodesk 3D studio [object files].

There are already a lot of third party plug-ins available. The most renowned is

the existing XSquawkBox plug-in [xsquawkbox] which allows the user to

connect the simulator to a simulated traffic control network. By running the

plug-in the user gets live traffic control information from real persons who are

using the VATSIM [vatsim] air traffic control simulator. X-Plane users

receive the traffic information whilst flying online with other real persons, the

network contains players running both X-Plane and Microsoft flight. There

has not been enough time to test the XSquawkBox plug-in so what data is sent

and received by the plug-in is currently unknown, it is also unknown how

other aircrafts are represented in the plug-in.

The simulator shows elevation in feet but when retrieving data using the SDK

the values returned are in meters. The elevation in X-Plane is calculated by the

difference between the mass point of the aircraft and the mean sea level, MSL.

The maps in X-Plane appear to be geotypical of the real world but the detail

level differs depending on where in the world the aircraft is located. Originally

only the airport in Seattle has buildings on it but there are other airports

available for download. A possibility to create own airports also exists with

the use of WorldEditor program called WED[wed].There are new third party

textures available for purchase but not for all airports. Cities are never exact

copies of the real ones but the user notices buildings on the positions where

cities are located.

If all maps are not installed X-Plane will warn the user when flying outside the

installed maps. After the warning all terrain shown will be water until the user

reaches a part of the world where a map is installed.

Weapons are own objects in X-Plane, there are several types of weapons in the

simulator including: guns, rockets, missiles and bombs. There are data

references similar to the ones for the aircraft which access information

concerning the weapons for the user’s aircraft. The data references are able to

provide information concerning the weapon type, weapon location, fire rate

for the gun and if the weapon is in the aircraft, free flying or demolished.

9

One aircraft may carry a maximum of 25 weapon units (missiles or bombs)

and the weapons included in the aircraft are specified in the aircraft file.

This means that if the creator of an aircraft has not included bombs in his

aircraft, the aircraft will not be able to drop bombs even if it is designed as a

bomber. The amount of data accessible for guns is very limited and the

information available concerns the firing rate and bullets.

3.2 X-Plane data access via SDK

The SDK contains a set of functions called XPLMDataAccess. By using this

function combined with data references, will henceforth be called DataRefs. A

lot of useful information is available when developing a plug-in. DataRefs are

used to access and modify data in X-Plane. There is a lot of data available for

access such as aircraft: location, speed, heading etc. DataRefs also provide the

possibility to control the airplane remotely using the plug-in. To extract data

from X-Plane the functions must be called i.e. the plug-in must “ask” X-Plane

for information at every update. X-Plane does not send the information to the

plug-in.

The data access functions are fairly easy to understand and may look as

follows: XPLMGetDataf(“data reference”), the function name can be broken

down to three pieces:

1. XPLM which only states that it is the X-Plane library

2. Get which declares that you want to read data

3. Dataf which declares that the reference contains a float value

All data access functions are built this way so XPLMSetDataf(“data

reference”, number) assigns the number to the specified data reference as long

as the reference is modifiable which is far from all references.

An interesting example of non modifiable data references is longitude and

latitude for airplanes.

If the longitude and latitude coordinates for the aircraft are to be modified the

user has to call the function XPLMWorldToLocal(lat, lon, alt, &x, &y, &z) so

the coordinates can be modified into OpenGL coordinates(x, y, z) and then set.

If the data reference to be accessed contains an array of integers

XPLMGetDatavi is used where the “Datavi” declares that a vector of integers

is returned and/or expected.

To find a data reference the function XPLMFindDataRef(“reference name”) is

used. There are approximately 3700 data references available, these references

contain everything from weather and position of aircrafts to certain buttons in

the cockpit. Data references are accessed by search-paths to the specific

10

reference. An example of this is “sim/flightmodel/position/latitude” which

gives access to the latitude position for the user aircraft. The search-path can

also be broken down to smaller pieces:

1. Sim clarifies that it is a simulator reference and is always used.

2. Flightmodel is the reference for user aircraft.

3. Position states that the reference has something to do with the aircrafts

orientation, position, speed, angles etc.

4. Latitude is the specified instance of position.

All data references are built in the same way which makes it easier to obtain

the wanted information. For access to the heading of multiplayer aircraft 1 the

reference “sim/multiplayer/position/plane1_psi” is used, an important notice

here is that there is a maximum of 20 aircrafts in X-Plane. Aircraft number

zero is the user aircraft followed by numbers 1-19 which are AI aircrafts. This

means that flightmodel references must be used instead of multiplayer

references when controlling aircraft number zero.

Not all data references have as long search-paths as the ones for position. An

example of this is the data references for weather which may look like

“sim/weather/sigma” which contains “the atmospheric density as a ratio

compared to sea level”.

X-Plane has a lot of settings for weather, the user may customize the weather

to his liking, set random weather, paint weather with the mouse, download real

weather from the internet or inherit weather from a master-machine. All these

functions are not available remotely but weather can be customized by a plug-

in which changes data-references for weather.

When manipulating data references on AI-planes it is important to notice that

it is only DataRefs in “sim/multiplayer/position” that modify the outside of the

plane, for example “sim/multiplayer/position/plane1_flap_ratio” sets the flap-

ratio on AI-plane one but “sim/multiplayer/controls/flap_request” only

modifies the lever for the flaps inside the aircraft.

11

4 Development

X-Plane is very compatible with plug-ins as it has a built-in function for

deploying plug-ins into the game. Plug-in deployment is done with three easy

steps:

1. Set the project configuration to “Dynamic Library”

2. Change “target extension” to .xpl

3. Copy the .xpl file from the build directory and paste it in the X-

Plane plugins folder, X-Plane 10\Resources\plugins\.

X-Plane does not allow plug-in to be added or removed while the simulator is

running. When X-Plane is started the plug-in will be loaded as any other X-

Plane resource file, it will also be initialized automatically on start-up. It might

take some extra time before the plug-in starts though.

A plug-in for X-Plane must contain five functions if it is supposed to work:

XPluginStart, XPluginStop, XPluginEnable, XpluginDisable

and XPluginReceiveMessage [see Appendix 9.3].

The structure of the plug-in is as follows, show in Picture Structure :

XPlug – Standard X-Plane plug-in, calls functions

Communication – Handles socket communication

DataRefs – Handles everything concerning the data references, setting and

getting values to and from X-Plane

getConfig – Handles the configuration file

XPlaneStructs – contains all data structs used by the plug-in and driver

Picture Structure: How the plug-in is structured with classes.

12

The development of data extraction and injection proceeded smoother than

first expected. The implementation of communication between plug-in and

driver with extraction/injection was not as simple. Much time was spent

learning to understand and implement socket communication as well as testing

the communication with simulator-to-simulator.

Adding WISE in the mix complicated the development as the driver was

developed during the plug-in development and uses different syntaxes. The

functionality of the driver and plug-in communication is the same but the

implementation is slightly different. As the project members have no prior

experience with WISE the introduction course given at STS complemented the

documentation and eased the driver development. Still minor mistakes have

been made and required more time than estimated.

Several different implementations of socket communication [see Chapter 2.3]

were tried and evaluated based on the amount of code, inclusions and linking

needed. In this project Windows was used as platform, this contributed to the

decision to choose standard Windows socket communication as it was well

documented and could be implemented.

13

4.1 Plug-in and driver sequence

Picture Message Sequence: Shows the message sequence for X-Plug

The message sequence begins with the plug-in, called X-Plug, sending a

newAircraftMessage when the simulator has been fully initialized. The driver

receives the message and passes it on to the server which stores the

information. A newAircraftMessage is then sent from the server to the drivers

of other simulators connected.

After the plug-in has sent its newAircraftMessage it immediately starts to

update the information by sending updateAircraftMessages, these messages

are sent periodically at a specified interval, default setting is once per second.

The plug-in continues to send these messages until the simulator is shut down

or the plug-in is disabled.

When the simulator is shut down or the plug-in is disabled data needs to be

removed from the server, this means that a removeAircraftMessage is sent

which erases the references for the object in both the drivers and the server.

Illustration see Picture Message Sequence.

14

4.2 Structuring information

When sending information to and from the plug-in the structs within

XPlaneStructs are used to structure the data. This simplifies the

communication by sending the message by a specified structure and receiving

the message by the same structure. Which structure to use is specified in the

first bytes sent, which contains the header with message type. The different

message types makes it easier for the plug-in/driver to process the message as

each message type needs to be processed in their own way.

A new aircraft message only adds the id and the search-path, within X-Plane

10 folder, to the integration server. This makes the driver send a new aircraft

message to other simulators plugged into WISE. A new aircraft message looks

as shown in Picture new aircraft message.

Picture new aircraft message: Content of a new aircraft message.

The update message contains all position data of the aircraft such as

coordinates, elevation, heading, pitch, roll and also the velocity and

acceleration of the aircraft. Some minor details such as landing gear, flaps and

speedbrake are also included. The velocity and acceleration is used for the

dead reckoning calculations, basically using the velocity and acceleration to

determine where the aircraft should be at the next update. This makes the

aircraft appear to fly smoothly until the next position update, when the aircraft

needs to be positioned correctly, to reduce stuttering.

4.3 Communication

Communication with WISE is made with the plug-in for X-Plane. The plug-in

has a socket which communicates with a driver on the integration server. The

driver translates information and handles communication in both directions.

The plug-in socket uses a send-function which runs periodically so that the

information flow is constant.

The plug-in sends an information package at a set interval, modifiable in the

configuration file. The configuration file also contains the information of

which port to connect on, IP address of receiver, flight id and dead reckoning

rate.

15

The implementation in the plug-in is Server-Client communication, the plug-

in acting server and the integration server acting client. At first TCP was used

for communication, requiring a connection to be established before

communicating. This would freeze X-Plane as the plug-in awaited connection

from the integration server. By threading the receive process this problem

should be averted though this has not been tested due to the projects time

constraints.

To avoid the lock of X-Plane at every start-up and enable of the plug-in, UDP

was chosen instead. UDP only need to know which socket port to listen to and

which IP address to look for. This means that X-Plane could start with the

plug-in, without the need to establish a connection, while still being able to

receive messages once started.

When both the plug-in and the integration server have started they are able to

send and receive data to and from each other. The plug-in will listen for data

until the plug-in is disabled, either through the plug-in administrator or by

shutting down X-Plane.

The concept of socket communication is easy to grasp and once you

understand it, not too complicated to implement. If one has never programmed

network communication before it can take some hours to understand and build

a socket that is able to establish a valid connection.

X-Plane has a built-in way of communicating via UDP-socket. It was decided

not to use the built-in UDP communication [see Chapter 4.10].

Before implementing the socket communication in the plug-in a short server-

and client-program was coded and compiled. With these programs the socket

properties were observed and the structs were tested to make sure everything

was working correctly.The server sent a message to the client with fictive

aircraft data. The client receives the message. This test was meant to make

sure the socket communication worked as planned and the structs were

correctly implemented. By displaying the message on both client and server,

by printing the values on screen, it showed that while the message was

successfully sent and received, the information did not look the same at both

ends. This proved to be a handling error as the structs were of different

versions. Correcting the mistake showed that, while using same version of the

structs, the aircraft information got through in a correct way.

After testing the server and client the socket communication code was

implemented in the plug-in. Another test was made to measure the send and

receive limits of the plug-in. To test this, the client from before was modified

16

to receive and bounce the message with aircraft information. At first the send-

and receive functions was put in respective DrawCallback, which are called

each frame. This was done to see if the plug-in could send and also receive as

often as every frame. This hurt the performance of the simulation and only

worked “well” for one aircraft.

It was decided to send information at an editable rate [see Chapter 4.10].

This is where FlightLoopCallback, as previously mentioned, comes into the

development. FlightLoopCallback is a periodic callback with a modifiable

value and had added functionality with the SDK update.

FlightLoopCallback is used for scheduling periodic tasks, such as sending

information. The return value of the callback is the number of seconds until

the callback will be called again. If the return value is negative then the

function will be called after the absolute value number of X-Plane cycles.

This value can be edited in the configuration file supplied with the plug-in.

The receive function is still in a DrawCallback as the integration server could

send information at any moment and the plug-in need to process the

information as soon as possible. By setting the socket option to non-blocking

it is possible to receive and send at the same time. If the socket is set to

blocking, the plug-in would lock up when it is trying to receive data. As data

is not sent very often the plug-in would lock the entire simulator, thus the

socket is set to non-blocking. No major performance dips due to the receive-

Callback have been noticed during testing.

With every update the plug-in receives information about position, velocity

and acceleration of the aircraft as well as speedbrakes, landing gear and flaps.

The velocity and acceleration is used in the dead reckoning calculations to

make the aircraft move smoothly and minimizes the jump needed when

updates arrive with new position information.

As the plug-in can not be feed a constant stream of updates dead reckoning

was implemented and brought some problems. The first tests did not include

acceleration in the calculation as the information was not yet implemented in

the messages. At low speeds the aircraft jumps forwards at updates and at high

speed the aircraft is calculated to fly too far and is therefore pulled backwards

at updates.

After implementing the acceleration the representation of another aircraft is

good at a distance. When watching another aircraft closely or following it

small jump can be seen when updates are received.

17

It is possible to get a better simulation of the received aircraft by

implementing interpolation or two-step Adams-Bashforth Integration

[bashforth]. These functions are much more mathematically advanced than the

current dead reckoning implementation and they require extra variables to

save the last position. These methods were therefore not considered in this

project due to the projects time limit.

4.4 Dead reckoning

Dead reckoning was first implemented with a DrawCallback seeing as

drawing every frame would be desirable. The dead reckoning implementation

uses the current position, velocity and acceleration to determine where the

aircraft should be at the next update. This however made the simulated aircraft

move faster than it should and was exponentially increased as the aircraft

moved faster. At high flight speed the simulated aircraft would position itself

at the correct position as the update was received and then “slingshot”

forward. This is most likely something with the DrawCallback being called

more often than every frame.

A FlightLoopCallback was used instead of the DrawCallback as it is possible

to set the period of the interval at which the FlightLoopCallback is executed.

The period is not guaranteed but it will come very close. By setting the period

close to frame rate or a bit higher the simulated model will look smooth and

will not slow down the simulator more than needed.

The formula for dead reckoning, used in the plug-in, is as follows

[drcalculation]:

The position, velocity and acceleration are updated with every update

message. Acceleration is not stored internally in the plug-in as position and

velocity are, it is only used in the dead reckoning calculation.

18

4.5 Debug

Debugging the plug-in with “Attach to process” via Visual Studio 2010 did

not yield the expected results since even when the plug-in crashes it is shown

that X-Plane.exe has crashed as it was the process running the plug-in.

To be able to debug and find flaws in the plug-in a simple debug method was

implemented by surrounding the troubling code parts with try-catch blocks

[trycatch], see Picture Debug. The try block would check most functions and

validate their return-value. If this value was out-of-bound or unexpected, an

error was thrown and the catch block would create a file and write the error in

the file. This way the errors could be checked even if X-Plane crashed. The

error codes were noted in a separate document for easy follow-up.

The same process was used for debugging and checking the communication of

the plug-in.

Example: When sending the aircraft type, the search-path within X-Plane 10

folder was specified. By printing the path being sent and the path being

received it was possible to determine if the problem was located in the plug-in

or the driver.

Picture Debug : Example of try-catch used for debuging.

19

4.6 Driver implementation

All data sent from and to the plug-in is handled by a driver. The driver uses

STS own classes and because of the cross platform compatibility some data

needs to be converted. This is due to X-Plane 10 using char and string while

WISE uses wchar and wstring. By simply converting the information either

when sent to WISE or when received in WISE the format issue is solved.

The driver uses a template database model containing all concerned attributes.

The driver is able to receive data concerning attributes that are not mapped in

the template database, these attributes will however not be stored. In order for

WISE to receive data from the plug-in a template database containing all

attributes sent from the plug-in was created for the driver. The database is

shown in picture Database.

Picture Database: shows the objects and attributes in the WISE template database

The remove aircraft message only contains the id of the aircraft as that is the

only relevant information for removing an aircraft. In the driver this will

remove the aircraft from the database of the integration server and notifying

the other driver that an object with the specified id will no longer be

simulated. As this message is sent to the plug-in the specified aircraft will no

longer be updated by the plug-in. The aircraft ID reference is also removed in

the driver so that the ID becomes reusable.

20

After the message has arrived at the driver it is decoded by reading the header

type of the message. The header type is a parameter in a switch-case function

which processes the message based on header type. The new aircraft message

contains only id and aircraft type. The id is stored as a long type and the

aircraft type is stored as a char array. The information is stored in the

integration server. The integration server notifies the other drivers that a new

aircraft is registered so that the drivers can send the information to their

respective simulators/plug-ins/applications.

The update message is stored in grouping of position (latitude, longitude,

elevation), orientation (heading, roll, pitch), velocity and acceleration in each

vector of the coordinate system. Position is stored as double type arrays with

the other numeric arrays are stored as float type arrays. This makes it easier

for the plug-in to receive data from the driver as it is formatted in the same

way as X-Plane handles data.

A yet unresolved problem occurred when testing plug-in driver

communication with TCP. As X-Plane on machine one got connection with

the driver the user interface on machine two locked up and started shaking.

This seems to be related to the driver as it did not happen anything like this

while testing with the self implemented server acting driver. This problem

disappeared when the protocol was changed to UDP, the reasons for the shaky

picture have not been investigated due to time constraints.

4.7 WISE Communication

To communicate between X-Plane and the integration platform the X-Plane

plug-in needs a socket which handles communication with a driver. Both the

driver and the plug-in are able to send and receive data as byte streams. The

byte stream is decoded in two steps, first to see which kind of data the package

contains by converting the byte stream to an XPlaneHeaderMessage struct

pointer to retrieve the header which declares what type of message it is. After

that the byte stream is converted to the type of message-struct pointer declared

by the header, for example a NewAircraftMessage struct pointer which states

that it is a new aircraft which has not appeared in the game yet. Information

from the received message is now accessible by using the message pointer to

access its variables in the following way: message->variable.

During test of the implementation a maximum of two updates per second was

used as a delay is seen when using a higher update frequency. This problem

probably lies in the implementation of the driver since both the sockets and

21

servers have been tested successfully with more updates per second. It should

be noted though that WISE is usually able to handle up to 60 updates per

second so the problem lies in the code for the driver. The update frequency is

not a big problem though since many simulators are not able to send and

receive data more often anyways.

4.8 Problems during development

4.8.1 Representation of aircrafts in X-Plane

When developing the plug-in some problems concerning the plug-in were

encountered and dealt with. The first problem that occurred was how to draw

the aircrafts in X-Plane. The SDK has a built in function called

XPLMDrawAircraft which seemed suitable. The function requires parameters

such as position, angles for the aircraft and aircraft type. The problem

however was that when the function was called no aircraft showed up on the

given coordinates. This problem was due to the fact that the

XPLMDrawAircraft function only draws the aircraft for one frame. If the

aircraft is to be drawn for a longer period of time a draw callback function

must be used. The DrawCallback is a loop which is called when every frame is

drawn.

When the Aircraft was drawn another problem showed up, the drawn aircraft

was just a picture of an aircraft, not a real aircraft as far as X-Plane was

concerned. This meant that the aircraft did not show up on radar and had only

the essential data available (position, angles, type). An important notice here is

that the speed is not an input for XPLMDrawAircraft, This means that the

aircraft will be drawn on one position only and it will not move. To get the

aircraft moving, the speed variable may be passed from another simulator and

then used to calculate the next position on which the aircraft will be drawn.

This means that a function for calculating the aircrafts movement must be

implemented and used for the aircraft to move. It is also important to notice

that when XPLMDrawAircraft is used, the aircraft drawn will not show on the

radar since the aircraft is basically just a 3D image which is drawn and not

seen as a true aircraft from X-Planes point of view.

The alternative to the XPLMDrawAircraft function is to make use of the AI-

aircrafts in X-Plane. When X-Plane runs in single-player mode it creates other

aircrafts controlled by an AI, these aircrafts fly along with the user and have

data references which can be modified. The user of the simulator may specify

how many aircrafts are to be shown by changing a setting within the

simulator. A backside when using these aircrafts however is that X-Plane only

supports a maximum of 20 aircrafts which might be considered too few,

22

especially compared to the XPLMDrawAircraft which has no limit other than

the computers performance.

When trying to change the position of an AI controlled aircraft by setting new

real world coordinates in the data references the aircraft did not move. This

problem was due to the fact that real world coordinates are not writable data

references in X-Plane. To get past this problem one must convert the real

world coordinates to OpenGL coordinates and then write those to the data

references. Converting coordinates in degrees to coordinates in meters can be

tricky, especially if you do not know where the 0,0,0 OpenGL coordinate is

located on the map. This is however not a problem in X-Plane since the SDK

has a function called XPLMWorldToLocal which handles this computation.

After obtaining the OpenGL coordinates attempts were made to change the

aircrafts position. This was however unsuccessful, the problem now turned out

to be XPLMAcquirePlanes which is a SDK function that gives the plug-in

access to modify aircraft data. This function has to be called before trying to

modify the AI-aircrafts.

The decision to modify AI aircraft was made [see Chapter 4.10].

When changing the position for AI aircrafts a few new problems appeared.

When the position and heading for an AI aircraft was changed the aircraft

moved to the correct position and it had the correct heading, however after

moving the aircraft it continued towards its previous destination and not in the

given heading. Sometimes the aircraft that was moved would also get some

strange looking behaviour where it crashed and bounced off the ground. There

was also a problem with aircrafts standing on the ground since they would not

move when changing the data references. These problems were easily solved

by using XPLMDisableAIForPlane to disable the AI for a specific aircraft.

When the AI is disabled for an aircraft, physics for that aircraft is also

disabled. This means that the aircraft stops to move as soon as the AI is

disabled. With the AI disabled one can move the aircrafts as one likes but the

drawing must be done manually using functions. To enable the AI again

XPLMReleasePlanes must be called which releases control over all the

aircrafts and not just a specific one. If the aircraft data references are to be

modified the function XPLMAcquirePlanes must be called again after

XPLMReleasePlanes has been called.

If the AI aircrafts are being used when running a multiplayer session which

uses the plug-in, a problem is that AI aircrafts show up on different locations

for every player. This is quite a large problem a player might collide with

http://www.xsquawkbox.net/xpsdk/mediawiki/XPLMDisableAIForPlane

23

aircrafts on another players screen even if he does not do this on his own

screen. It is also difficult to use air traffic control since the controller does not

know where aircrafts are located. This problem has not been solved in the

plug-in due to time constraints. There are several solutions to this problem,

one is that the first simulator that is registered on the server sends data

concerning all AI aircrafts. This data is then sent to every new simulator that is

registered on the server. In this way, the first registered simulator controls all

AI aircrafts for the other simulators. The problem when using this method is

that if the first registered simulator shuts down first, all aircrafts which are not

user controlled will stop to move.

A second solution to the AI aircraft problem is to have an extra computer

running an instance of X-Plane. This computer would not have a user, instead

it sends data for all aircrafts except the ones being controlled by other

computers/users. By using this method a more rigid solution is achieved but at

a higher cost economically since an extra computer is needed.

A necessary feature in the plug-in was the ability to set and change the aircraft

model for each user. This is important not only because it might look strange

with a commercial airliner flying as a fighter jet but also because the input

data needs to be correct. An example of this correctness might be that if the

simulator receives data for a fighter which has three sets of landing-gear and

that data is applied to a commercial airliner which has six sets of landing-gear

only half the landing-gears will be affected. This makes it important to be able

to set the aircraft model.

All aircraft models in X-Plane are located in the “X-Plane 10\Aircrafts” folder

where each aircraft has its own folder and a file with the file extension .acf.

It is important to know the location of this file since it is needed when loading

the aircraft-model in X-Plane.

The first problem with setting the aircraft type was to retrieve the search-path

for the current aircraft. This was easily done since the SDK contains a

function called XPLMGetNthAircraft (int AircraftNbr, char* buffer) which

saves the search-path for the aircraft with AircraftNbr into the char array

buffer. This search-path was however not the one wanted since it was a

complete search-path and the one wanted was

“X-Plane 10\Aircrafts\...\aircraftType.acf”. This is desirable as the installation

path should not matter when using the plug-in. This problem was solved by

iterating through the char array and finding the first notation of the number

zero. This zero is the one in “X-Plane 10”, when this is found one can create a

substring containing all data from zero+1 to the end of the char array.

24

It was decided to only send the aircraft type with a NewAircraftMessage [see

Chapter 4.10].

To set the aircraft type the SDK function XPLMSetAircraftModel(int index,

char* search-path) is used where index is the aircraft ID and search-path is the

search-path for the aircraft model. This function is called when the plug-in

receives a newAircraftMessage, the message contains the aircraft ID and the

correct search-path for the aircraft which that ID uses.

During the SetAircraftModel tests one machine running Windows XP Service

pack 3 the simulator continuously crashed after enabling and disabling the

plug-in two times. The Windows 7 machine also experienced this problem at

later tests. After restructuring the plug-in, by moving the XPLMAcquirePlanes

function from XPluginStart to XPluginEnable, this problem seems to be

solved.

4.8.2 Other objects in X-Plane

When trying to draw objects using the XPLMDrawObjects function the object

chosen for drawing could not be seen on the screen. Since this problem

occurred when using the XPLMDrawAircraft function as well, conclusions

were that this function also needed to be in a loop that is called before every

frame is drawn. When the loop function was used the correct object showed

up on the screen as expected but when starting to fly the object moved along

with the aircraft. This turned out to be quite an embarrassing problem which

was easily fixed. To be able to see the drawn object it needed to be within a

certain distance from the aircraft. A decision was made that ten meters beside

the aircraft would be a sufficient distance for the user to be able to see the

drawn object easily. The problem however was that the position for the object

was set inside the loop function and every time the loop function was called it

read the aircraft position and then positioned the object. Therefore the object

moved along with the aircraft. The problem was solved by using global

variables and setting the position for the object when registering the loop

function.

4.8.3 General problems concerning X-Plane and the plug-in

X-Plane has a built in multiplayer function where users may fly together

without AI-aircrafts. When running X-Plane in this mode with a plug-in that

controls aircrafts active X-Plane has tendencies to freeze. If two players are

running X-Plane with plug-ins controlling aircrafts and it freezes one player

needs to inactivate the plug-in. Most likely the reason for this is that when the

25

plug-in is active both users claim access to modify the aircraft data which X-

Plane does not allow. This is however not a problem in the finished

implementation of the plug-in since it runs X-Plane in single-player mode and

all communication is done via the plug-in instead of X-Plane.

Search-paths for all DataRefs are built in the same way and may look like

“sim/multiplayer/position/plane1_lon” which retrieves the longitude for the

first multiplayer-plane. This makes it fairly easy to create a universal string

and then only change the aircraft number. By using the “sprintf” function one

is able to have a model-string and change certain elements inside it.

The function is used as follows:

sprintf (strBuf, “sim/multiplayer/position/plane%i_lat”, iPlaneNbr);

XPLMGetDataf(strBuf);

In the example the integer iPlaneNbr which contains the aircraft-number is

applied to the string instead of “%i” and the new string is then saved into

strBuf which is a char array. This means that if iPlaneNbr is 1, strBuf will

contain “sim/multiplayer/position/plane1_lat”. A consequence of this is that

when XPLMGetDataf(strBuf) is called it will return the latitude value for

multiplayer-plane one. By using this function in a for-loop beginning on one

and ending on 19 the code shrank from 423 lines to 25 which combined with

comments is much more foreseeable.

4.9 Problems outside development

Here follows some problems encountered that did not derive for plug-in

development.

A problem was encountered that made X-Plane crash on initialization. This

crash was not related to the plug-in as the plug-in was removed from the X-

Plane folder. X-Plane would start up as normal but once the screen with UI

was expected to appear everything crashed. This had something to do with the

aircraft being a seaplane and starting on water. It was found that it is possible

to change the aircraft type by editing the search-path in the file X-Plane.prf

located in “X-Plane 10\Outputs\Preferences\”.

It is possible to change the aircraft model for all 20 aircraft by modifing the

search-paths in the X-Plane.prf file. To change which airport the user starts at

is possible through X-Plane Binary.prf located in the same folder.

Another issue with the driver was that it was sending data to the simulator a

bit too often. This issue was solved by using a variable which stated when it

26

was ok to send data. The variable was set to one when the data update was

completed and was then immediately set to zero again.

When an attribute is updated in WISE the server immediately sends the update

to the other simulators connected. This was a problem since the plug-in sends

several attributes in one message. If the message received from the plug-in

contains four attributes it will make the server send four messages to the other

simulators which is not desirable since the plug-in wants to receive

information in the same way that it sends information. To resolve this problem

a trigger attribute was added to the data model. As long as the trigger attribute

is zero no data will be sent from the server and when all attribute updates are

completed the trigger will be set to one and then immediately set to zero.

When the trigger is set to one the server sends a message and since the trigger

is set to zero again, only one message is sent.

4.10 Design decisions during development

The following decisions were made during development:

Which method to use for displaying aircrafts, modifying the AI aircrafts or

draw the aircrafts with the XPLMDrawAircraft function? The decision fell

upon modifying DataRefs for AI aircrafts, mostly because there is a lot more

information to be given and set when using DataRefs and one of the tasks with

the project was to extract and import as much information as possible.

To minimize the amount of data being sent over the socket it was decided that

the aircraft type would only be sent with the NewAircraftMessage struct

which means that it will be sent only once when X-Plane is started. There is

however a possibility to send a newAircraftMessage again but then the user

will have to disable and then enable the plug-in.

The decision not to use the built-in UDP communication was made. This was

based on several threads on the X-Plane forum [forumudp] which stated that

the syntax for X-Planes UDP communication could change between updates

and versions of the simulator. This was unwanted since the user of the plug-in

needs to be able to update the system with the plug-in still working. By

implementing the SDK instead of X-Plane’s UDP communication it is

possible to form the structure of the data sent. This enables more control over

the information and is safer to use due to persistence during SDK

development.

During a meeting with the supervisor it came up that other simulators might

not be able to send updates at high rates such as 50 Hz. This led to the design

27

decision that the plug-in will not send as often as every frame but instead at a

configurable rate. The rate can be configured in the included configuration

file. At that moment this made the aircraft updates look bad as the aircrafts

would jump to the new position at every received update. This is to be solved

with dead reckoning.

28

5 Result

This project resulted in a plug-in for X-Plane 10 and a driver for WISE, which

is associated with a database developed with WISE.

The plug-in for X-Plane is able to send and receive information via socket

communication. The data sent and received is position, orientation, velocity,

acceleration, id of the aircraft, flaps, speedbrakes, landing gear and aircraft

type. These attributes are sent in three different kinds of messages :

newAircraft, updateAircraft and removeAircraft. newAircraft contains a

unique id for the user and the aircraft type for that user. updateAircraft

contains all aircraft information except the aircraft type and removeAircraft

only contains the id that is to be removed.

The developed driver for WISE receives the information sent from the plug-in

and applies it in the database. The driver uses a self made datamodel to map

the different datatypes sent from and to X-Plane, this datamodel was also

created during the project. The driver is also able to receive information from

the database and sends such information to the plug-in where it is applied in

the simulator which

completes the integration.

During startup the plug-in

reads data from a

configuration file to get the

ip-address and port to

connect on. The

configuration file also

contains the users id and the

interval for sending data to

the driver. Example see

Picture Config

When the simulator starts,

newAircraft is sent to the

driver to register the id and

aircraft-type. When this is

completed the plug-in

immediately starts to send

updateAircraft at the specified interval and when the simulator shuts down a

removeAircraft is sent. During this whole procedure the plug-in listens for

data on the specified port and applies data in the simulator as it is received.

Picture Config : Contents of the configuration file,

the variable deadReckoning specifies the interval at

which the DR function will be called

29

6 Conclusion

X-Plane is a very competent flight simulator and there are lots of possibilities

with it when it comes to integration. Considering the flight physics, the

advanced weather model, weapons and easy access to data for almost

everything concerning these things one could easily say that the sky is the

limit for what you can do with X-Plane. This is not the whole truth though

since X-Plane has its limitations such as only being able to draw a certain

piece of the map and the 20 aircraft limitation. The degree to which the

limitations affect the integration possibilities vary. If simulation only occurs

on a limited area of the map and less than twenty aircrafts are being used the

limitations does not matter but if the goal is to simulate realistic air traffic over

a whole country X-Plane’s limitations affect the possibilities to do it. It is also

a flaw that no default airport scenery exists for Europe since it makes all

airports look the same except for the runway layouts.

Aircraft data is accessed by using the SDK functions and data references.

There are two main types of SDK functions, read and write, and they all have

a data reference as parameter. The difference between read and write is that

write also has the value to be written as parameter. The weapons in X-Plane

are accessed in the same way as aircraft information. This information mainly

concerns missiles and bombs such as their position and velocity.

When creating a plug-in there are five functions which must exist: start, stop,

enable, disable and receive message [see Appendix 9.3]. If these functions do

not exist the plug-in will not work. There are different access functions for

data which depends on if the data is to be read or written and also depends on

the type of data that is to be accessed. These functions have similar names but

the last letter/letters decide what type of data the function concerns. It is not

allowed to access data before the simulator is fully initialized since it may

cause the system to crash. There are loop functions in the X-Plane SDK which

may schedule the function calls to retrieve or write data, these loop functions

are called callbacks and are not activated until the simulator is initialized. The

callbacks are efficient since they do not slow down the simulator performance

more than what is necessary and they can also be used to write and/or access

data in the simulator as close to initialization as possible.

Plug-ins are easily installed and removed in X-Plane. When creating the plug-

in one must simply change the file extension from .dll to .xpl. To install the

plug-in the .xpl file must be put in X-Plane’s plug-in directory [see Chapter 4].

To remove a plug-in the simulator needs to be shut down and then it is simply

to remove the .xpl file from the plug-ins directory.

30

There are a few ways to get the plug-in to communicate with a server. X-Plane

has a built in UDP function to send and receive data, this was however not

chosen after consulting different forum threads which said that the syntax for

UDP-communication could change between different versions/updates of X-

Plane. Socket communication using UDP is fairly easy since the plug-in only

has to send information to the specified port on the specified IP address.

When creating the plug-in several types of messages were created. A message

is a struct containing the interesting variables and a header saying what kind of

message it is. The message types are new aircraft, update aircraft and remove

aircraft. When sending messages like this the receiver only has to check the

message type to know the content of the message. Knowing the content the

referred variables can then easily be set.

6.1 Future Development

With the use of the SDK functions one is able to draw objects wherever one

wants. If one wants a custom created object that is ok as well as long as it is in

the .obj format and is a 3D object [see Chapter 3.1]. Objects are drawn with

the use of the SDK function XPLMDrawObjects which takes the objects

search-path as a parameter. The chosen object is then displayed for one frame.

If the object is to be persistent a callback function needs to make the draw

function call so that the object is drawn every frame.

It is possible to customize the scenery in X-Plane by creating liveries for

airports and adding more detailed maps. Laminar Research, the developer of

X-Plane, provides an open source world editor program [see Chapter 3.1].

There are lots of possibilities for the future with plug-ins. It is possible to draw

objects such as persons and vehicles which expand the list of simulators that

can be integrated with X-Plane. A plug-in can export and import data for

missiles and bombs which enables both air-to-air and air-to-ground combat. It

is also possible to register hits on aircrafts with the use of data references. As

X-Plane evolves and the community and SDK along with it, the possibilities

can reach new heights.

31

7 Dictionary

AI Artificial Intelligence which makes the airplane fly by itself

ATC Air traffic Control

Char Standard C++ one byte character

DataRefs Data references: search-paths for data in X-Plane

Dead

Reckoning

Calculates where an object should be at a later time based on

the object’s position and velocity

DLL Dynamic Link Library

Float Standard C++ 4 byte decimal number

Frame One drawn picture on the screen

RAM Random Access Memory

SDK Software Development Kit refers to the X-Plane SDK

provided at www.squawkbox.net/xpsdk/

String Standard C++ string consisted of one byte characters

Struct A collection of variables used to structure data, useful for

communication

STS Saab Training Systems

TCP Transmission Control Protocol

UDP User Datagram Protocol

32

8 References

[bashforth] Information of Adams-Bashforth integration

http://math.fullerton.edu/mathews/n2003/AdamsBashforthMod.html

(2012-05-25 11:10)

[berkeley-socket] Information about Berkeley-socket

www.on-time.com/rtos-32-docs/rtip-32/programming-

manual/programming-with/berkeley-socket-api.htm

(2012-04-12 11:50)

[c-socket] Information about the Csocket class.

http://msdn.microsoft.com/en-us/library/wxzt95kb(v=vs.80).aspx

(2012-05-17 12:38)

[datarefs] Link to available data references in X-Plane

www.xsquawkbox.net/xpsdk/DataRefs.html

(2012-03-21 15:29)

[dead reckoning] Explanation of dead reckoning

 http://www.merriam-webster.com/dictionary/dead%20reckoning

(2012-05-17 11:20)

[dll] Information regarding the PLUGIN_API declaration

http://msdn.microsoft.com/en-us/library/a90k134d(v=vs.80).aspx

(2012-04-12 13:03)

[drcalculation] Calculation used for dead reckoning

http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hid

ing_for_.php

(2012-05-18 10:34)

[extern] Explanation of Extern usage

http://msdn.microsoft.com/en-us/library/0603949d(v=vs.80).aspx

(2012-05-17 15:23)

[forum] Link to the X-Plane forum used during this project

http://forums.x-plane.org/index.php?showforum=23

(2012-05-08 15:33)

http://math.fullerton.edu/mathews/n2003/AdamsBashforthMod.html
http://www.on-time.com/rtos-32-docs/rtip-32/programming-manual/programming-with/berkeley-socket-api.htm
http://www.on-time.com/rtos-32-docs/rtip-32/programming-manual/programming-with/berkeley-socket-api.htm
http://msdn.microsoft.com/en-us/library/wxzt95kb(v=vs.80).aspx
http://www.xsquawkbox.net/xpsdk/DataRefs.html
http://www.merriam-webster.com/dictionary/dead%20reckoning
http://msdn.microsoft.com/en-us/library/a90k134d(v=vs.80).aspx
http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hiding_for_.php
http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hiding_for_.php
http://msdn.microsoft.com/en-us/library/0603949d(v=vs.80).aspx
http://forums.x-plane.org/index.php?showforum=23

33

[object files] Information concerning object files in X-Plane

http://wiki.x-plane.com/Creating_Airplanes_and_Object_Files_for_X-

Plane

(2012-05-18 09:21)

[sample code] X-Plane plug-in sample code

http://www.xsquawkbox.net/xpsdk/mediawiki/Category:Sample_Code

(2012-05-17 15:29)

[scrum] Explanation of SCRUM

http://www.mountaingoatsoftware.com/topics/scrum

(2012-05-17 12:03)

[sdk] Main page of X-Plane SDK

http://www.xsquawkbox.net/xpsdk/mediawiki/Main_Page

(2012-02-23 13:20)

[sdk21] Information about the updates in SDK 2.1

http://www.xsquawkbox.net/xpsdk/mediawiki/XPLM_2.1_Release_Notes

(2012-04-01 15:43)

[simple socket] Carrierlabs Berkley-socket implementation

http://sockets.carrierlabs.com/

(2012-05-17 12:39)

[sts] Homepage of Saab Training Systems

http://www.saabgroup.com/Training-and-Simulation/

(2012-04-25 12:05)

[trycatch] Explanation of the try-catch statement

http://msdn.microsoft.com/en-us/library/6dekhbbc%28v=vs.80%29.aspx

(2012-05-18 11:00)

[vatsim] Link to the VATSIM homepage

http://www.vatsim.net/

(2012-05-18 09:30)

[wed] WorldEditor information

http://wiki.x-plane.com/Scenery_Tools

(2012-05-21 12:58)

http://wiki.x-plane.com/Creating_Airplanes_and_Object_Files_for_X-Plane
http://wiki.x-plane.com/Creating_Airplanes_and_Object_Files_for_X-Plane
http://www.xsquawkbox.net/xpsdk/mediawiki/Category:Sample_Code
http://www.mountaingoatsoftware.com/topics/scrum
http://www.xsquawkbox.net/xpsdk/mediawiki/Main_Page
http://www.xsquawkbox.net/xpsdk/mediawiki/XPLM_2.1_Release_Notes
http://sockets.carrierlabs.com/
http://www.saabgroup.com/Training-and-Simulation/
http://msdn.microsoft.com/en-us/library/6dekhbbc%28v=vs.80%29.aspx
http://www.vatsim.net/
http://wiki.x-plane.com/Scenery_Tools

34

[winsock] Functions for Winsock

http://msdn.microsoft.com/en-

us/library/windows/desktop/ms741394(v=vs.85).aspx

(2012-05-17 16:01)

[xplane] Information about X-Plane 10

http://www.x-plane.com/desktop/meet_x-plane/

(2012-05-17 15:43)

[xplane info] Information about X-Plane 10 Professional

http://www.x-plane.com/pro/certified/

(2012-02-23 11:05)

[xplane news] X-Plane 10 version information compared to X-Plane 9

http://wiki.x-plane.com/What's_New_in_X-Plane_10

(2012-05-17 11:35)

[xsquawkbox] Information concerning the XSquawkBox plug-in

www.xsquawkbox.net

(2012-03-21 15:09)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms741394(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741394(v=vs.85).aspx
http://www.x-plane.com/desktop/meet_x-plane/
http://www.x-plane.com/pro/certified/
http://wiki.x-plane.com/What's_New_in_X-Plane_10
http://www.xsquawkbox.net/

35

9 Appendix

9.1 X-Plane tests checklist

 Time it takes to start X-Plane 10?

Depends on the computer performance and how much scenery that is to

be loaded but between 1 and 5 minutes.

 Performance demands?

X-Plane is able to run on low settings using a 256 MB graphics card,

3GB RAM and a 2.4GHz quad-core, it doesn’t look very nice though.

 Is it possible to view other aircrafts in X-Plane?

Yes, there are other aircrafts, both on the ground and in the air, amount

of aircrafts in the air is changed in the simulator settings but there seems

to be a maximum of 20 aircrafts.

 Is it possible to view buildings in X-Plane?

Yes there are buildings which the user may see in X-Plane.

 Is it possible to view ground objects in X-Plane?

Yes there are ground vehicles in X-Plane, both trees, cars, trucks, boats,

birds and deer.

 Are cars moving?

Cars are moving on the roads.

 Is it possible for bombers to drop bombs?

Yes, bombers may drop bombs if the aircraft-model supports it.

 Is it possible to collide with buildings and ground objects?

No, a collision between objects isn’t supported, the aircraft only flies

through the object, the same goes for buildings.

36

 Are the controls different when flying with a joystick?

No the aircraft behaves in the same way whether the user is flying with

joystick or mouse but the joystick improves the experience since it isn’t

that sensitive.

 Is there a fast forward button?

No, such a function has not been found. Time can be modified but the

movement is not affected.

9.2 SDK test checklist

 Is it possible to extract information from ground objects?

No, no way of extracting this information has been found.

 Do objects have some kind of code to specify what kind of object it is?

Objects are specified by the complete search path to the folder where

the object is located.

 Is it possible to inject objects into X-Plane?

Yes, there are functions in the SDK to draw objects.

 What kind of aircraft data is accessible? (coordinates, velocity, height

etc)

A lot of data is available, everything from position to levers inside the

cockpit for the users aircraft, a bit more limited for AI aircrafts though.

 Is it possible to access information concerning ground objects such as

cars?

No, not by default.

 Is information concerning weather available?

Yes, information of weather is available, such as cloud density, air

humidity, rain level etc.

 Is it possible to set the weather?

Yes, it’s possible to set the weather remotely.

37

9.3 Essential plug-in functions

 PLUGIN_API int XPluginStart (char* outName,

char* outSig, char* outDesc) the input variable

are name, signature and description for the

plug-in

 PLUGIN_API void XPluginStop (void)

 PLUGIN_API void XPluginDisable (void)

 PLUGIN_API int XPluginEnable (void)

 PLUGIN_API void

XpluginReceiveMessage(XPLMPluginID inFromWho,

long inMessage, void* inParam)

PLUGIN_API which stands prior to the function return types is a definition.

The definition declares that it’s a dll-export file and adds the export directive

to the object file so that a definition file (.def) is unnecessary [dll].

