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Abstract

Given a query from a user, the query suggestion problem aims to suggest an-
other query better suited for the users search intent. In this thesis a theoretical
framework for the query suggestion problem is presented. In the context of
this framework a transfeme Markov model is presented and tested. The trans-
feme Markov model is a Markov chain where similar transitions are related to
each other. The transfeme Markov model was tested against two baselines, an
edit distance model and the query suggestion implementation used in eSales, a
commercial e-commerce platform. The results show that the transfeme Markov
model performs better than the edit distance model but that further work is
necessary on the language model.







Popularvetenskaplig
sammanfattning

Sékfunktioner spelar en viktig roll i det moderna sambhéllet. Det forsta man
tanker pd &r kanske de store internetsdkmotorerna s som Google, Yahoo eller
Bing men sokfunktioner &r ocksé essentiella for manga andra tjdnster som till
exempel internethandel.

Ett vanligt forekommande problem nir man anvénder sokmotorer &r att
man stavar fel pa, eller annat sitt har forvrangt, sin sokfréga. Det finns un-
dersdkningar som visar att s& mycket som 10%-15% av alla sokfrdgor &r fel-
stavade. Detta kan bero pa att sokfrigor ofta innehaller ovanliga namn eller
ord.

For att hjilpa anvéndare att hitta det de soker efter kan stkmotorn visa
ett frageforslag om det anses sannolikt att sokfrégan som anvéndaren angivit
ir felstavad. Ett modernt tillvigagdngssittet for att automatiskt generera
frageforslag &r att pa olika sitt anvinda frigeloggar. En fragelogg innehéller
historisk information om vilka sokfrdgor som anvandare s6kt pa.

Detta examensarbete presenterar en metod for automatisk generering av
frageforslag, transfeme modellen. Transfeme modellen bygger pd att alla fel-
stavningar kan forklaras med ett antal substitutioner och att sannolikheten for
sadana substitutioner #r samma oavsett i vilket ord dom forekommer. Ett ex-
empel skulle kunna vara att nigon vill séka pd liza marklund men istallet
skriver lisa marklund. En sidan felstavning skulle kunna forklaras med sub-
stitutionen z till s. Transfeme modellen séger d& att denna felstavning &r lika
sannolikt som att man skriver godsilla istillet for godzilla eftersom béada
frigeférvringningarna kan forklaras av samma substitution.

Fér att uppskatta sannolikheten for olika substitutioner kan man anvénda
en fragelogg. Tanken #r att vilja sannolikheter for olika substitutioner pé s&
sitt att den frigelogg man har blir sa sannolik som méjligt.

For att undersdka hur bra transfeme modellen presterar jamfors transfeme
modellen med tva andra metoder, en klassisk metod som kallas Levenshtein
avstand och en kommersiell frageforslagsmetod som kallas eSales. Resultaten
visar att transfeme modellen har potential men att man behdver utveckla vissa
specifika delar mer for att den ska vara riktigt anvindbar.
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Chapter 1

Introduction

1.1 Background

In many e-commerce systems the search function has a central role in helping
users find the products they desire. Past studies have shown that users often
misspell search queries. For instance Cucerzan and Brill [3] has presented figures
indication that 10%-15% of all search queries are misspelled.

To mitigate this problem many modern search engines implement some kind
of query suggestion system. A query suggestion system presents an alternative
query to the user when it’s probable that the alternative query better suits the
users search intent. The user then has the choice to see search results for the
suggested query instead of the original query.

An example of a query suggestion system can be seen in figure 1.1.

U michel jckson

hd
200

A

3k Usnigefar 7 600 000 resultat (0.29 sekender}

a Menade du: michael jackson

d
o Michael Jackson | The Official Michael Jackson Sife

rtor www.michaeljackson.com/ - USA - Oversatt den har sidan - -
Official Michael Jackson website including Michae! Jackson videos, music, news.
leor albums, pictures and more. Your number one source for all things Michael ...

Figure 1.1: Screenshot of Googles query suggestion system. If a user thinks that
the suggested query better suits her search intent she may click on the suggested
query.

The problem studied in this thesis is the offline query suggestion problem.
When studying the offline query suggestion problem one only suggests query
after the user has completed her query. In contrast when studying the online
query suggestion problem one suggests queries as the user types her query. The



two problems are related and many methods are applicable to both problems.

1.2 Common Query Alterations

When considering the problem of query suggestion it’s important to take into
consideration some real world query alterations. These query alterations has
been observed in one of Sweden’s largest e-commerce sites.

Spelling

A common type of alteration occurs when the user simply don’t know how the
query is spelled. This is common for instance with infrequent words, new words
and names.

johrdalen -> jodalen

en shopoholic i new york —> en shopaholic i new york
beurolsconi -> berlusconi

dyskalkulie -> dyscalculia

glittler tradet -> gliettler tradet

papillion -> papilion

Key slip

Another type of query alteration occurs when the user slips on the keyboard.
That is the user means to write one thing but writes another.

tgner -> tegner

an ders wahlgren -> anders wahlgren

imperuim -> imperium

folosofi mumin -> filosofi mumin

exporing gypsiness -> exploring gypsiness

ordbok spansak -> ordbok spanska

sciemce fiction —-> science fiction

fiksar malawi -> fiskar malawi

a beguinnersguide the world -> a beginners guide the world
katemosse —> kate mosse

Missing suffix

A query alteration where query suflixes has been removed is also quite common.
This might occur when the user tries to use an auto complete feature or she
might just expect the search engine to understand the query without the query
suffix.

sofie hex -> sofie hexenberg
f£6r matlagning ny -> for matlagning nybdrjare

10



Conjugation
It’s common that users choose a conjugation of a word which yields bad results.

trafikskolan turkiska —-> trafikskola turkiska
muscle orthopedic -> muscle orthopedics
samtala -> samtal

Synonyms/Language

Another query alteration occurs when users use synonyms of words or change
the language of a word.

tuttar -> breast

Word splits/concatenations

Sometimes a user splits two word or concatenates two words incorrectly. Note
that the last query also contains two key slips.

int14 -> int 14

priceguide -> price guide
rebell ledaren -> rebelledaren
swaptjing -> swamp thing

Guessing

When a user doesn’t remember the title of a book or a name of an author she
might guess parts of the query. This yields another set of query alterations.

friluftspedagogik -> friluftslivspedagogik
hakan dstergren -> hakan Ostlund
svindnglarna -> svinénglorna

Search Strategy

Sometimes when a user receives bad result from a search engine she might change
her search strategy. For instance a user searches for

pizza rasist

and receives no result. The user then instead searches for
pizza &ter

and then receives the desired result.

Jag 4r inte rabiat. Jag dter pizza : en bok om Sverigedemokraterna
by Niklas Orrenius

Another user might search for

11



dark series

and receive too many results; the query is underspecified. She may then change
search strategy and instead search for the authors name

christine feehan
which yields the desired result.

Dark Secret
by Christine Feehan

Dark Curse - A Carpathian Novel
by Christine Feehan

Dark Prince
by Christine Feehan

Conclusions

In many of the query alterations presented above one can explain the query
alteration with substitutions such as "I’ to ’1’, 'k’ to ’c’ or 'ui’ to 'iu’. Such
substitutions are in this thesis named transfemes and are introduced in chapter
6.

There are also more complicated query alterations such as the search strategy
and missing suffix alterations that cannot easily be explained by substitutions.
Those query alteration will considered by this thesis from here on.

1.3 Related Work

As far as the author knows the companies behind the major search engines has
not made public the query suggestion methods they use. Ma et al writes that
due to commercial reasons few public papers have been released that unveils
the methods Google and other big search engines adopts [9].

However there exists other papers on the subject. For instance Ma et al
proposes a query suggestion model based on bipartite graphs and matrix factor-
ization [9]. Mei et al also use a bipartite graph and use hitting times to generate
query suggestions [10].

A more classical concept, initially proposed by Damerau [4] and Levenshtein
8], is the edit distance. The edit distance has been widely used in generic
spelling correction [5]. The edit distance introduces a set of valid string opera-
tions, deletion of a character, the substitution of a character and the insertion
of a character. The edit distance between two strings is the minimum number
of such operations needed to transform one string to the other.

There are many ways of utilizing the edit distance when doing query sugges-
tions. A simple one is to find all queries within a certain edit distance radius
(e.g 3) of the misspelled query and then somehow rank those queries. The top
ranked query would then be presented to the user as a query suggestion.

12




1.4 Thesis Structure

This thesis start of by introducing notation for some well known mathematical
objects in chapter 2. In the next chapter, chapter 3, the query logs are defined
and discussed. Chapter 4 presents two methods to extract query corrections
from query logs. Once the query corrections are defined one can formally define
the problem of query suggestion, which is done in chapter 5. Further on, in
chapter 6, a mathematical model to describe query alterations is presented. The
following chapter, chapter 7, describes how to choose parameters for the model
introduced in chapter 6. Chapter 8 describes a method to do query suggestion
using the model presented in chaper 6. In chapter 9 the method is evaluated
and results are presented. Finally in chapter 10 the results are discussed and
some ideas for further work is presented.

1.5 Thesis Contribution

In chapter 3 a mathematical description of query logs is presented. Chapter 4
introduces two methods of correction extraction from such query logs. Further
on chapter 5 presents two novel evaluation metrics in relation to the established
recall@1 metric.

In chapter 6 the transfeme Markov model is presented. The model builds on
earlier work by Duan et al [5], presenting a slightly adjusted form of this model
in a Markov framework.

Then, in chapter 7, a method of inferance is presented, which may also be
viewed as an extension of the method in [5], incorporating also a noise consid-
eration. '

In chapter 8, a method of using A* search to find corrections is presented.
The method was inspirered by [5], however the A* heuristics had to be adapted
according to the adaptions made in the model and the graph preprocessing step
was added.

13
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Chapter 2
Theory

The following chapter is meant to establish notation for some well known math-
ematical objects. It’s not meant to be a complete in any way and it’s doubtful
if the reader from these definition would be able to understand a concept that
is not already known to the reader.

2.1 Sets and Sequences

Finite sequences are used to define the strings the query logs in chapter 3.

Definition 2.1. Let S(X) denote all finite sequences with elements in an arbi-
trary set X. Also if a,b € S(X) let a + b denote the concatenation of a and b.
Finally if a € S(X) let |a| denote the number of elements in a.

Example 2.2. The triple (o, 21,22) is an example of an element in S(X) if
z; € X for all 1 € {0, 1,2}.

The power set is introduced to describe probability spaces.

Definition 2.3. The power set of a set, X, is the set of all subsets of X. Let
P(X) denote the power set of X [6].

The indicator function a useful tool to compactly describe relations. It’s used
in chapter 4 and chapter 5.

Definition 2.4. Let I(z) denote the indicator function. The indicator function
is 1 when the statement z is true and 0 otherwise.

There are some confusion whether to include zero in the natural numbers or
not. In this thesis zero is included.

Definition 2.5. Let N denote the natural numbers {0,1,2,3,...}.

2.2 Graphs

Graph theory is a well established branch of mathematics. In this thesis graph
theory is used in chapter 8 to solve the most probable path problem.

15




Definition 2.6. A weighted directed graph is a triple (V, A,w) where V is a
arbitrary set called the nodes, A is an subset of V x V called the arcs and w is
a function w : A — Rt U {oo} called the weights. An arc a € A is said to start
in ag and end in a;.

Remark 2.7. Sometimes the weighted directed graphs are defined to allow neg-
ative weights. However in this thesis all weights are always positive.

In chapter 8 the most probable path problem is transformed into a shortest path
problem. The following definitions define a shortest path.

Definition 2.8. A path in a weighted directed graph, (V, 4,w), is a sequence
of arcs, (ag,a1,0a3,---,an) such that if a; ends at v € V then a;41 starts in v.
A path is said to start in the node that ag starts in and a path is said to end in
the node that a,, ends in. The path length of a path is defined as ) ;o w(a;).

Definition 2.9. Given a weighted directed graph, (V, A,w), a shortest path
between to nodes a,b € V is a path starting in a and ending in b with minimum
length.

2.3 Probability

It’s recognized that the fundamental datum in probability theory is a probability
space [6).

Definition 2.10. A probability space is a triple (Q, F, P) where the following
holds.

e ( is a non-empty set called the sample space.
e F C P(Q) and F is a o-algebra. F is called the set of events.
e Pisa func.tion from F to [0,1] and P is a probability measure.
Using the definition of probability space one may define the random variables.

Definition 2.11. Given a probability space (Q, F, P), a random variable X is
a triple (Qx, Fx, fx) where the following holds.

o (lx is a non-empty set called the state space.

o Fx C P(Qx) and Fx is a o-algebra.

e fx is a measurable function from 2 to Qx.
If A€ Fx then X = A is defined as the set fx'(4).
Using these notations one may define a Markov chain [1].

Definition 2.12. A probability space (Q, F, P) is a (time-homogeneous) Markov
chain if the following hold.

o There exist a countable state space S such that Q=8 xS xS....

16




e The triples X; = (S,P(S), f;) where f;(z) = z; are random variables (f;
are measurable).

e For every z € Q and i € N the following holds P(X;y1 = Ziqa]|Xs =
Ti, Xio1 = Tiz1,- .-, Xo = o) = P(Xip1 = Ti1| X = 7).

e Forall z,y € S, P(Xsy1 = z|Xs = y) = P(X; = z|Xs1 = 7).

If z,y € S the probability P(X;41 = y|X; = z) is denoted pzy and called a
transition probability.

Denote the Markov chain with state space S and transition probabilities p,
Markov (S, p). For a particular markov chain some states can absorbing.

Definition 2.13. Given a Markov chain X = Markov(S,p) a state is s € S is
absorbing if P(Xy = s|X; =s)=1.

Intuitively a state is absorbing if once you enter it you can never leave. Each
Markov chain can also be described by a matrix, the transition matrix.

Definition 2.14. Given a Markov chain X = Markov(S,p) and a bijection
¢:8—{0,1,2...]S| — 1}, define the corresponding transition matrix as,

Po,o Po,1 T Po,|s|-1
P10 P11 o P1,|5}-1
P|s|-1,0 P|s|-1,1 0 PIS|-1,}8]-1

where Pg(a),¢(s) = Pap for all a,b € S.
Each Markov chain can also be described by a weighted directed graph.

Definition 2.15. Given a Markov chain X = Markov(S, p) the corresponding
weighted graph (S, 4, w) is defined by the following conditions.

e Anarca€ S x Sisin A iff psya, > 0.
o w(a) = Pag.q, foralla € A.

In chapter 8 the most probable path problem is discussed. The following defi-
nitions define a most probable path [1].

Definition 2.16. A path in a Markov chain, X = Markov(S,p), is a sequence
of states sg, S1, S2,. .. Sn. The probability of a path is defined as

P(Xo = 80,X1 = 851.. .Xn = San() = So).

Definition 2.17. Given a Markov chain X = Markov(S,p) and two states
a,b € S. A most probable path between a and b is a path where so = a and
Sn, = b with maximal probability.

17
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Chapter 3

Query Logs

3.1 Query Logs

To test and train query suggestion models one can make use of query logs. The
following section defines what is meant by a weblog.
A basic component in the query logs are characters and strings.

Definition 3.1. Let the set of characters, C, be a set of finitely many elements.
Each element represent a character.

Definition 3.2. Let C be a set of characters. The set of strings Q is defined as
S(C).

Another component of the user logs are the actions. One action describes
either that the user enters a search query or that a user clicks on a search result.
A special start action is also added to describe the start of a new search intent.

Definition 3.3. Let Q be the set of strings. The set of actions, A, is defined as
QU {[CLICK], [START]}. The extra element [CLICK] represent that a select
or purchase action has occurred and the extra element [START] represent that
a new search intent has started.

A user may perform more than one action each time she visits an e-commerce
site. An element in the set of sessions describes one such visit.

Definition 3.4. Let A be a set of actions. The set of sessions, H, is defined as
S(A). Each session describe one visit from a user.

Finally a query log consist of a long sequence of sessions from different users.
These logs are often collected during several months.

Definition 3.5. Let H be the set of sessions. The set of query logs, L, are
defined as S(H).

An example might help clarify what an element in L. might consist of.

Example 3.6. This example of a query log consist of 8 sessions. A typical
query log would consist of at least 100.000 such sessions.

19




SESSION
[START]
john allen paulos
SESSION
[START]
trd ute
[CLICK]
[START]
SESSION
[START]
personliga val som skapar mirakler

the secret : kraften
[CLICK]
[START]
SESSION
[START]
yarden
[CLICK]
[START]
hund
[CLICK]
[START]
SESSION
[START]
charlesbukowski
charles bukowski
[CLICK]
[START]
SESSION
[START]
hund
[CLICK]
[START]

In the first session the user searches for john allen paulos and then abandons
the search. The second session contains a single query and then a select or
purchase event. The third session contains two unrelated searches and then a
click. The fourth session contains two search intents, one for yarden and one
for hund. The fifth session contains the only query correction in the query log,
charlesbukowski to charles bukowski.

To make use of a query log one can extract query corrections from it, the
process of extracting query corrections is described in chapter 4.

A quite common phenomenon in query logs are the duplication of queries
[11]. In this thesis this phenomenon was unwanted and thus all such duplications
were removed. Also all query were converted to lower case.

20 |



Unfortunately the query logs contains noise. The most important source of
noise is that a user may click on a product that isn’t in the search results, for
instance for product displayed in a top list. Another source of noise is that
all sessions may not originate from human user, different computer programs
regularly crawl the internet to harvest information [11]. The methods this thesis
use to handle noise is described in 4.2 and 7.3.

21
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Chapter 4
Corrections

In this chapter two novel methods to find corrections in query logs are presented.
A correction is defined in the following manner.

Definition 4.1. Let Q be the set of strings. The set of all corrections, K, is
defined as @ x Q. The first string represent a potentially misspelled query and
the second string represents the corresponding correctly spelled query.

The set of all weighted correction lists is defined in the following manner.

Definition 4.2. Let K be the set of all corrections. The set of all weighted cor-
rection lists, T, is defined as all functions ¢ : P(K) — [0, 1] such that (K, P(K),?)
form a probability space.

4.1 Finding Corrections for Testing

This method of finding corrections has the advantage that it’s simple to un-
derstand and therefore fitting for testing purposes. The downside is that this
method yields a very noisy result. From manual inspection of the result the
author estimates that there may be as high as 80% noise in a correction list
obtained using this method, making this method unsuitable for model training.

Definition 4.3. Let h € H be a session and 4,5 € Nsuch that 0 < i < j <
|| — 1. Then h; is a test correction for h; if the following hold.

e There is no k, i < k < j such that hy € {{CLICK], [START]}.
e hj+1 = [CLICK].

Note that given a A € H and an 1 such that 0 <4 < |h| then if h; has a test
correction it must be unique. Given a query log one may find a weighted list
of corrections with the weight proportional to the number of occurrences in the
query log.

Definition 4.4. Let L be the set of query logs and T be the set of all weighted
correction lists. Define the test corrections in a query log, t = Tiest(!) : L — T,

23




such that ¢({k}) is proportional to the number of times k; is observed as a test
correction for kg in /.

4.2 Finding Corrections for Training

When training models one may use a slightly more complex method to obtain
a weighted correction list with a smaller amount of noise.

Let L be the set of query logs and A the set of actions. Given ! € L define
a Markov chain Markov(A, p) where p,, is defined by the following conditions.

o Ifz=yand ), Zi’;ll_l I(h; = z) = 0 then pgy = 1.

Ifz#yand ), Z’.hl_l I(h; = z) = 0 then pzy = 0.

i=1

If £ = y and z = [CLICK] then pgy = 1.

If £ # y and z = [CLICK] then pyy = 0.

e Otherwise
_ a2 (ks = ) (hia = )
Zhel Zl'ﬁ{l I(h; = )

The states in this Markov chain is the actions defined in 3.3. In this Markov
chain two kinds of states are absorbing. The first kind is if the state z € A
satisfy > ;¢ zy;’l_ ' I(h; = z) = 0. These are states that one never observes a
next state for. The other kind of state that is absorbing is the [CLICK] state.

One may define the probability that z is a training correction for y as
o(z,y) = 2oy P(Xi = 2, X441 = [CLICK]| X1 = y).

To compute these probabilities for all state pairs z and y one can write ¢ in
the following way,

Dzy

w(@,9) = 3 P(X; = o|X1 = y)P(Xis1 = [CLICK]|X; = 2)

i=1

Using that P(X;4+1 = [CLICK]|X; = z) is the same for all 7 one may write
this as,

oo
¢(z,y) = P(Xz = [CLICK]|X; = z) Y P(X; = 2|X1 =1).
i=1
To compute the infinite sum for all pairs of z and y one may write the sum
in matrix form using the transition matrix, A, corresponding to the Markov
chain presented above. The sum Y oo, P(X; = z|X1 = y) equals to the (y,z)
element in the matrix > .o, A, One may approximate this sum using the first
k terms 300 AP &~ Y°F | Al In this thesis k was set to 20 and it’s unclear if
this provides a good approximation.
Define the training corrections in the following manner.

24




Definition 4.5. Define the training corrections in a query logs, ¢t = Ttraining(!) :
L — T, such that ¢({k}) is proportional to ¢(k1, ko) times the number of occur-
rences of kg in the query log if ¢(k1,ko) is above some threshold (for instance
0.5) and zero otherwise. Also if ko = k; let t({k}) be zero.

Here follows an example of the process.

Example 4.6. Given the query log in example 3.6 one would have the following

Markov transitions.

[CLICK] ->
[START] ->
[START] ->
[START] ->
[START] ->
[START] ->
[START] ->
john allen
trad ute ->
personliga
the secret

charlesbukowski —-> charles bukowski:

[CLICK]: 1.0

john allen paulos: 0.14

trd ute: 0.14

personliga val som skapar mirakler: 0.14

yarden: 0.14
hund: 0.28
charlesbukowski:

[CLICK]: 1.0

0.14
paulos -> john allen paulos: 1.0

val som skapar mirakler -> the secret
: kraften -> [CLICK]: 1.0
yarden -> [CLICK]: 1.0
hund -> [CLICK]: 1.0

charles bukowski -> [CLICK]: 1.0

If one enumerates the states as in the order they appear above one would
get the following transition matrix.

1.0 0 0 . O 0
0 0 014 014 0.14
0 0 10 O 0

1.0 0 O 0 0
0 0 O 0 0

1.0 0 O 0 0

1.0 0 O 0 0

1.0 0 O 0 0
0 0 O 0 0

1.0 0 O 0 0
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Calculating 70 A? yields the following result.

22 0 0 0 O 0 O 0 0 0
1568 1 2.80 0.4 014 0.14 0.14 028 014 0.14
0o 0 20 0 0 0 0 0O 0 0
. 20 0 0 1 0 0 0 0 0 0
T4 = 9 o0 0 o0 1 1 0 0 0 0
— 20 0 0 0 O 1 0 0 0 O
20 0 0 0 0O 0 1 0 0 0
20 0 0 0 0 0 0 1 0 O
9 0 0 o0 0 o0 o0 o0 1 1
20 0 0 0 ©0 0 0 0 0 1

The only non zero elements that is not on the diagonal and is not related to
the [CLICK] or [START] states are.

personliga val som skapar mirakler -> the secret : kraftem: 1.0
charlesbukowski -> charles bukowski: 1.0

Since both queries are observed once in the query log and both target queries
has 100% clickthrough rate the induced weighted correction list is as follows.

personliga val som skapar mirakler -> the secret : kraften: 0.5
charlesbukowski -> charles bukowski: 0.5
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Chapter 5

Problem Formulation

5.1 The Problem of Query Suggestion

To define the problem of query suggestion one need to consider how one should
evaluate a query suggestion function. Lets start with defining the query sugges-
tion function.

Definition 5.1. Let Q be the set of strings and L be the set of query logs. The
set of all query suggestion functions, D, is the set of all function d : Q x L — Q.

The first input argument to a query suggestion function is the potentially
misspelled query from a user. The second argument is a training query log
to train the query suggestion function. The query suggestion function should
output the corrected query if the query was likely misspelled or the same query
if the query was likely not misspelled.

One can define different evaluation metrics on the query suggestion functions.
The recall@1 (R@1) metric [5] is defined in the following way. One may also
define two variants of the recall@1 function.

Definition 5.2. Given two query logs liraining, ltest € L and a query suggestion
function d € . Let P, denote the test corrections for liest, that is Tiest(test)-
Define the functions R@1, R@lgame, R@14ig : L x L x D — [0, 1] as,

RQ1 (ltraining, ltest, d) = ZkeK I(d(kO; ltraining) = kl)Ptest (k)7
R@lsame (ltrainingy ltest) d) = ZkEK I(d(km ltraining) = kl)Ptest(k[kO = kl)a
RQlyg (ltraining7 ltest; d) - EkGK I(d(ko, ltraining) = kl)Ptest(kikO 7é kl)

Here kg = k1 denotes the sﬁbset of K where ko = k; and ko # ki denotes the
subset of K where kg # k1

To formally define the query suggestion problem in this context one needs
to somehow summarize these three evaluation metrics.

Definition 5.3. A function g : [0,1] x [0,1] x [0,1] — [0,1] is an evaluation
summary if its increasing in all its arguments.
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The choice of evaluation summary function should depend on many things
outside the scope of this thesis. No evaluation summary will be proposed in this
thesis.

Using the evaluation summary function one can define the problem of query
suggestion.

Definition 5.4. Given two query logs liraining, ltest € I and an evaluation sum-
mary g. Find a query suggestion function d € D such that

g(R@ 1 (ltraininga ltesta d)7 R@lsame (ltraining; ltest ) d) ) R@ldiﬁ(gtraining1 ltest, d))

is maximized.

Remark 5.5. In the above definition, it is implicitly assumed that the query
suggestion function has been selected independently of the test data.

To clarify the definition of the query suggestion function, an example might
be helpful.

Example 5.6. A trivial examples of a query suggestion function would be the
function d(g,!) = ¢g. This query suggestion function would have perfect score
on R@lgume, R@lgame = 1, but since it never makes any guesses it would score
zero on R@lgig, R@lgg = 0. Since the correctly spelled query is much more
usual than the incorrect spelled ones the result of R@1 might be good.
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Chapter 6

Models

The model described in this chapter was inspired by and is similar to the model
used by Duan, Huizhong and Hsu, Bo-June (Paul) [5], which in turn was in-
spired by work done in grapheme to phoneme transformation, especially a joint
sequence model by Bisani and Ney [2].

6.1 Transfemes

Transfemes|5] are used to describe how a user might transform a correctly spelled
string to a misspelled string. The definition presented here differs on minor
details from the definition used by Duan et al.

Definition 6.1. Let Q be the set of strings. A transfeme u is an element in
@ x Q such that ug and u; has no common prefix or suffix. Define U as the set
of all transfemes. Each transfeme, u, is also a relation where a string go € Q
is u-related to ¢1 € Q iff ug is a substring of go and such a substring can be
replaced by u; so the resulting string is equal to qi.

Example 6.2. The transfeme (*°,”) € U can explain the following transitions.
int 14 -> inti14
price guide -> priceguide

kate mosse -> katemosse

Example 6.3. The transfeme ('ph’, ’f’) € U can explain the following transi-
tion.

philosophy -> filosophy
philanthropy -> filanthropy

Each a transition can be explained by exactly one transfeme but a transfeme
can explain an infinite number of transitions.
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6.2 Transfeme Markov Model

The general framework in which this thesis approach the query suggestion prob-
lem is a Markov model. The states in this Markov model is defined in the
following way.

Definition 6.4. Let Q be the set of strings. Define the set of states, W, as
Q x QU {[START], [CLICK]}. Given an element w € Q x Q C W let wexed
denote the first string and Wyariable denote the second string.

The string waxed represents the part of a query that has already been cor-
rected and the string wyasiable Tepresent the part of a query that is still poten-
tially misspelled. The query is always corrected from left to right so the full
query could be acquired by concatenation, Wexed + Wvariable-

Example 6.5. These are some examples of elements in W. The string before |
is Waxea and the string after is Wyariable-

[START]

[CLICK]

Lizla markland
Jo |Nesbo

Jo Nesbgl|

Jonat |han Wulcan
Jonat|an Wulcan

In this model we imagine that a user starts of at the start state and then
chooses a possibly misspelled query to transition to. At this point the whole
query would be in Wyariable and Wexeq Would be empty. Then the user would
progressively correct her query from left to right. Each correction is represented
by a transition where the correction and everything to the left of the correction
is moved from the Wyariable String to the wayeq string. Finally, when the user
has completed her corrections she will find her result and transition to the click
state. From the click state the user will start again from the start state and
repeat the process indefinitely. An example might help to clarify the process.

Example 6.6. This is an example of what a random walk in the transfeme
Markov model might look like. The string before | is wgxeq and the string after

is Wvariable-

[START]

|Lisa markland
Liz|a markland
Liza marklu|nd
[CLICK]

[START]

| JoNesbo

Jo [Nesbo

Jo Nesbgl|
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[CLICK]

The transfeme Markov model is defined in the following way.

Definition 6.7. Let W be the set states, Q the set of strings and U the set of
transfemes. A Markov chain X = Markov(W, p) is a transfeme Markov model
with parameter o € RY iff

e P([START]|[CLICK]) = 1.

o Given z,y € Q x Q C W. If there is no transfeme such that z is related
to y then P(X; =y|Xq =2)=0.

o Given z,,Ts,Ya,¥p € W and u € U such that z, u-related to z, and y,
u-related to 3, then the following must hold P(X; = zp|Xe = z4) =
P(X; = yp|Xa = yo). Denote this probability P(u).

o Y v Pw)* =1

Remark 6.8. Note that P(X; = xp| X2 = z4) = P(X1 = %|X2 = Ya) makes
a statement about where we came from and not where we are going to. This
is important since the forward probability must somehow take into account
the popularity of different queries but the backward probabilities only need to
consider the probabilities of misspellings.

Remark 6.9. The statement about P(X; = zp| X2 = z4) = P(X1 = | X2 = ¥a)
makes it difficult to choose these probabilities in such a way that the sum of all
transitions from a states is 1. This is because for any transfeme u with P(u) > 0
one can always find a state w € W such that w has arbitrarily many transitions
explained by u, thus there is always a state where the sum of transitions is
greater than 1. Therefore from here on after I will disregard this restriction.
Since the shortest path algorithm used in 8.2 works fine on general graphs, this
is not a big issue. To prevent the transfeme probabilities from being unbounded
the last statement in the definition was added. The a parameter controls in
general how low/high the transfeme probabilities should be. The most extreme
example would be to set o = oo, then you could set P(u) = 1 for all u € U.
The o parameter is equivalent to the fudge factor used by Duan et al [5]. The
model has been tested with different « values in chapter 9.
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Chapter 7
Inference

This chapter explains how given a query 10g liraining € L one can choose tran-
sition probabilities for the transfeme Markov model. The training method de-
scribed is essentially the same as was used by Duan et al [5].

7.1 Language Model - Click Transitions

The language model is the probabilities P(X; = z|X;41 = [CLICK]). These
probabilities represent the popularity of different search queries. Given a query
log one can estimate these probabilities by simply creating a histogram of all
queries that immediately precedes a [CLICK].

7.2 Error Model - Transfeme Transitions

To estimate the transfemes probabilities P(u) one can make use of the training
corrections, Ttraining(l) of a query log . The tricky part about this is that these
corrections only correspond to the first state after start and the final state before
click. Everything in between is hidden.

Example 7.1. Given a correction (lisamarklund, liza marklund) the following
can be assumed about the random walk in the transfeme Markov model.

[START]

| 1isamarklund
777

777

liza |marklund
[CLICK]

The question marks represent unknown states.
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However if one already had the transfeme probabilities one could calculate
the probabilities of every transition given that one starts in a given state and
ends up in a given state. Inspired by this idea one may define the evidence of a
transfeme. To do that one must first define the probability P(ulk).

Definition 7.2. Given a transfeme u, a correction k € K and transfeme prob-
abilities P. Define the probability P(ulk) as the sum of all u-transition proba-
bilities given that the random walk starts at ko and ends up in ki.

The probabilities P(u|k) can be calculated efficiently using a forward-backward
algorithm [2]. The forward-backward algorithm use dynamic programming
to calculate forward probabilities and backward probabilities in two separate
phases. The probabilities are then combined to calculate P(ulk).

Definition 7.3. Given a query 10g, ltraining € L, a transfeme u and transfeme
probabilities P. Let t = Tiraining (ltraining). One may define the evidence of u as

e(uw) = Y P(ulk)t(k).

keK

By normalizing the evidence, one may obtain updated transfeme probabili-
ties p* (u),
e(u)

A Sy
By initiating the transfeme probabilities with an uniform distribution over
all transfemes and then iterating this process one may obtains the transfeme
probabilities. Finally, to control the o norm mentioned in definition 6.7, the
final probabilities were calculated using the following formula,

p(u) = p*(u)5.

Since 3,y P*(u) = 1 this will make sure that 3, oy p(u)® = 1.

7.3 Error Model - Noise Considerations

The method described for training the error model doesn’t seem to be very
robust with respect to outliers. Since the training corrections often tends to be
quite noisy this is an issue. To mitigate this, one may discard all the transfeme
for which one only finds evidence in a single correction.

Further on one may discard the corrections where the shortest path between
the start and the click states is longer than 5 states.

After these pruning steps has been applied one may redo the training of error
model to obtain better transfeme probabilities.
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Chapter 8

Computing query
suggestions

8.1 Time Reversal

Until now I have only discussed and modeled the probabilities backwards in time.
For the transition probabilities to be useful when computing query suggestions
one would need transition probabilities forward in time.

Fortunately there exist a theorem regarding time reversals of Markov chains.

Theorem 8.1. Let X be an irreducible Markov chain and 7 be a stationary
distribution on this Markov chain. Then

P(Xi-i-l = a|Xi = b) = Zr—@‘P(Xz = bIXi—i-l = (1,).
(b)

So to time reverse a Markov chain one needs a stationary distribution. Un-
fortunately, since there are an infinite number of states in the Markov chain
this stationary distribution cannot be computed. Instead, one may crudely
approximate the stationary distribution with a uniform distribution.

8.2 Query Suggestion

Given a query ¢ one would like to find the best suggestion, ¢, to present to the
user. Using the transfeme Markov model this would be analogous to finding a
¢ such that P(X; = ¢|X;4+1 = [CLICK], X = q) is maximized.

However since the number of states in the Markov model is infinite it would
be infeasible to calculate this probability. To approximate this probability, one
may instead calculate the most probable path between ¢ and [CLICK] and let
the query suggestion be the state before [CLICK] in this path.

Using the logarithmic number system, one can transform the most probable
path problem to a shortest path problem. The shortest path problem may be
efficiently solved using e.g the A* algorithm [7].
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8.3 Preprocessing of Graph Before A* Search

When the A* algorithm traverses a node it evaluates all the edges from the node.
This procedure can be ineffective since there may be many high cost edges that
are unlikely to be part of the shortest path.

To mitigate this issue, one can split nodes in the graph such that each node
has edges with similar sizes. Zero edges has to be added between the newly
created nodes to preserve the shortest path in the graph. The edges in a node
were split according to the rank of the transfeme corresponding to the edge.

A transfeme, u, is larger than another transfeme, v iff u; = v; and P(u) >
P(v). The rank of a transfeme, u, is defined as the number of transfemes that
is larger than u.

8.4 A* Heuristics

When using the A* algorithm it’s important to provide a A* heuristic function
h : W — Rt that approximates the shortest path between a node and the
[CLICK] node. If h always underestimates the shortest path the result of the
A* search is guaranteed to be optimal, otherwise it is not. Such function is
called admissible heuristics. It’s important that the evaluation of the heuristic
function is fast as it’s called for each node that the A* algorithm traverses.

The heuristic function used in this thesis can be divided into three terms.
The first term is the prefix heuristic, hpreax. Denote the set of all states where
Waxed has prefix g as Prefix(g). The prefix heuristic is,

hpreﬁx(w) = min - l()g(P(Xg = [CLICKHX1 = Q))
gEPrefix(wrixed)

The second term is the next edge heuristic, Anextedge and its defined as the
minimum of all the edges from a state w.

The third term is the variable length heuristic, hyaren. It penalizes states
with a long Wyariable- It’s defined as a constant B times the length of Wyariable-

This heuristic is not admissible. The B parameter was set to 2.1 using manual
tuning on a small dataset.

8.5 A* Node Limit

The A* algorithm has unbounded time and memory complexity when operating
on an infinite graph. To mitigate this issue one may simply give up after a
fixed number of nodes. The number of nodes before giving up was set to 10000.
When this happens the query suggestion function returns the same query as the
input query as that is a likely a good guess.
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Chapter 9

Results

9.1 Testing and Training Data

The transfeme Markov model was tested on 100 days of data from logged in
user of a popular web shop in Sweden. The data was splitted into a training
query log, datasetl, and a testing query log, dataset2. Both sets are equal in
the number of sessions and the session were splitted with an odd even rule so
that both query logs contains data from the same time period.

9.2 Edit Distance

To establish a baseline an edit distance (Levenshtein distance) [8] model was
used. The transfemes that corresponds to edit distance transformations were
given a uniform distribution and all other transfemes were given zero probabil-
ities.

Example 9.1. This list contains some examples of transfemes corresponding

to edit distance transformations and their corresponding probabilities if o is set
to 2.5.

?? => ’a’ 0.02055323216760362
’2 => b’ 0.02055323216760362
27 => ¢’ 0.02055323216760362

’a’ => ?? 0.02055323216760362
’b? -> 7’ 0.02055323216760362
¢’ ~> 77 0.02065323216760362

’a’ => ’b’ 0.02055323216760362
’a’ -> ’c’ 0.02055323216760362

’b? ~> ’a’ 0.02055323216760362
b’ => ’c’ 0.02055323216760362
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9.3 eSales did you mean

Another baseline that was used is the eSales did you mean engine [13]. The
eSales did you mean engine uses edit distance as an error model and slightly
more advanced language model involving list of all product names / product
descriptions.

9.4 Cheating in Language Model

All test were also done with the language model trained on both datasetl and
dataset2. These tests can give hints how well the error model performs without
interference from a bad language model.

9.5 Results

The performance of the transfeme Markov model and the edit distance model
are presented in figures, 9.1, 9.2, 9.3 and 9.4.

The performance of the transfeme Markov model and the edit distance model
using the language model cheat are presented in figures, 9.5, 9.6, 9.7 and 9.8.

The eSales query suggestion model was due to technical limitation only
tested with the language cheat. However, it’s the author’s belief that the re-
sult wouldn’t not change significantly if it was trained on only datasetl. The
results were as following.

total_queries: 305768
num_correct: 169336
total_same: 190441
num_correct_same: 163460
total_diff: 115327
num_correct_diff: 5876

The metric results were R@14ig = 0.051 and RQ@1g,me = 0.858.
A discussion about the results can be found in section 10.1.
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0.046 :
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alpha

Figure 9.1: The figure show results for transfeme Markov model using different
values of a. The metric used was R@lggs. The language model was trained
with datasetl.
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0.858
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Figure 9.2: The figure show results for transfeme Markov model using different

values of a. The metric used was R@lsame. The language model was trained
with datasetl.
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Figure 9.3: The figure show results for edit distance model using different values
of a. The metric used was R@lgg. The language model was trained with
datasetl.
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Figure 9.4: The figure show results for edit distance model using different values

of a. The metric used was R@lgame. The language model was trained with
datasetl.
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Figure 9.5: The figure show results for transfeme Markov model using different
values of @. The metric used was R@l4ig. The language model was trained
with both datasetl and dataset2.
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Figure 9.6: The figure show results for transfeme Markov model using different

values of a. The metric used was R@lgame. The language model was trained
with both datasetl and dataset2.
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Figure 9.7: The figure show results for edit distance model using different values
of a. The metric used was R@14;g. The language model was trained with both
datasetl and dataset2.
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Figure 9.8: The figure show results for edit distance model using different values

of . The metric used was R@lgame. The language model was trained with both
datasetl and dataset2.
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Chapter 10

Discussion

10.1 Results

Figure 9.1 and 9.3 show that the transfeme model outperforms the edit distance
model on the R@1y;g metric. However the transfeme model did not outperform
the eSales did you mean engine. Since the eSales did you mean engine uses
the edit distance error model one can draw the conclusion that eSales language
model outperforms the simple language model used in the transfeme model.
XOR comparisons between the results of the transfeme Markov model and the
eSales engine strengthen this conclusion. Figure 9.5, where the language model
was trained on both datasetl and dataset2, also shows that with a better
language model the transfeme Markov model has the potential to outperform
the eSales did you mean engine.

10.2 Future Research and Open Questions

Language Model

The results showed that a better language model is necessary. A big issue with
the current language model is that it will always predict probability zero for
query that have never been observed before. Using an n-gram model this issue
could be somewhat mitigated as only the words in the query would have to
be previously observed instead of the whole query. Another approach to solve
this issue is to use product lists / product descriptions to initiate the language
model.

Another important aspect of the language model is that in reality the prob-
ability of a query change over time. For instance when an author win the Nobel
price in literature the search query related to that author would immediately
rise significantly.

It could be important to use different models depending on the popularity
of the query. For popular queries a simple ML method may be appropriate but
for more unpopular queries a n-gram model may be used. Smoothing could be
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used to combine these models.
Another important aspect to consider when designing a language model is
that it must be possible to compute the A* heuristic from the language model.

Stationary Distribution

The stationary distribution that is necessary in section 8.1 may be impossible
to compute exactly but it’s probably possible to find a better approximation
than the uniform distribution.

Transition Probabilities Not Summing to 1

The issue described in remark 6.9 is a major theoretical flaw. It’s unclear to
what extent mitigating this issue may yield better results.

Shortest path versus sum of all paths

In section 8.2 the most probable path was used instead of the sum of all paths.
It would be interesting to somehow compare the most probable path to the sum
of all paths and see if they are approximately proportional to each other.

More Baselines

Other papers on the query suggestion problem have used a slightly different
entry point. Instead of using a query log as training data they use an assumingly
noiseless weighted correction list. This makes it difficult to relate this thesis
result to other papers and other algorithms.

It would be interesting to test other algorithms using the same testing
method as in this thesis. It would also be interesting to test the transfeme
Markov model with the same weighted correction list that was used in other
papers and compare results.

Proof of Inference Method

In chapter 7 a method for inference was presented. The same method had
been successfully used by Duan et al [5]. However Duan et al did not present
an rigorous proof for the method. The issue with transition probabilities not
summing to 1 makes it difficult to use standard probability methods.

Better Heuristics in A* Search / Other Search Algorithms

The performance of the A* search is essential for the real world uses of this model
and the performance of the A™ search is very much dependent on the heuristics
function used. It’s probable that there exists better heuristic functions than the
one presented in section 8.4.

It could also be interesting to explore other search algorithms such as the
beam search.
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Reinforcement Learning

A phenomenon that is not captured by the transfeme Markov model is that the
query a user enter depends on what the query suggestion function suggested. If
a query is suggested to the user, the query is more likely to be selected by the
user since the user just have to click the suggested query instead of entering it
manually.

Further on one may design a query suggestion function so that it explores
different query suggestions for a misspelled query. One would have to balance
the need to exploit (suggested the most probable query suggestion) and explore
(try new query suggestions).

This phenomenon could be studied in the framework of Reinforcement learn-
ing [12].

10.3 Conclusion

The transfeme Markov model shows potential but must be combined with a
better language model before it’s ready for industrial use.
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