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On Parametric Modeling of Bivariate Extreme Value
Distributions

Zhichen Zhao

Abstract

Extreme value theory is a branch of probability theory and statistics which deals
with large values in a dataset. It has become more wide spread in the past decade
as a tool for risk management in different areas. The theory can be used by banks
to estimate extreme investment losses, enables insurance companies to price their
products and aids the government to budget for possible storms, earthquakes and
other natural disasters.

Generally, there are two approaches to study the distribution of extreme values
namely, Block Maxima and Peaks Over Threshold. In the univariate case these ap-
proaches respectively lead to the Generalized Extreme Value Distributions (GEV)
with location, scale and shape parameters and the Generalized Pareto Distributions
(GPD) with shape and scale parameters. However, in most practical applications
the data is multi-dimensional which requires the extension of the above mentioned
approaches to the corresponding bivariate and multivariate distributions. In this
thesis two bivariate extreme value models are considered namely, generalized sym-
metric mixed model and generalized symmetric logistic model. These two models
were suggested by Tajvidi in 1996 but their statistical properties have not been ex-
plored yet. In particular, we are interested in studying how the dependence between
margins is affected by the change of parameters in each model. We study maximum
likelihood estimation of the parameters and investigate the strength of dependence
relationship by using Kendall’s 7, Spearman’s p and Pickands dependence function.

The historical data on daily return of IBM and Apple stock prices are chosen for
analysis in this thesis as they both are among world’s leading computer companies.
We show how the theory can be used for risk management and study the distribu-
tion of one stock prices’ extreme returns conditional on the extreme returns of the
other stock.
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1 Introduction of Extreme value theory

1.1 Basis Concepts

One of the basis concepts in probability and statistics theory is random variable X,
which represents a quality whose outcome is uncertain. The set of possible outcomes of
X, denoted as (2, is the sample space. Another concept is called probability distribution,
which assigns probabilities to consider. A random variable X is said to be a discrete
random variable if its sample space is discrete: like @ = {0,1,2,...}. In this case the
probability distribution is determined by the probability mass function, which takes the
form

f(z)=Pr{X =z}

for each value of z in . Also, there exists continuous random variables whose sample
space {1 is continuous. In continuous scale, we can take probability distribution function,
defined as

F(z) = Pr{X < z}

for each z in Q. If the distribution function F is differentiable, it is also useful to define
the probability density function of X as

dF
T) = —
f) =5
A multivariate random variable is a vector of random variables
Z1
X =
T

Each of components z; is a random variable in its own right, but to know properties
of X requires information about how every variable in X influence the other variables.
Generalizing the single variable case, the joint distribution function of X is defined by

F(z) ={Xi < z1,..., Xg < 2}

where ¢ = (z1,...,2;). When the X; are continuous random variables, the joint density
function is given by

OFF
£@) = 55

y ..,8xk

Now, we constrain discussions to the case of continuous random variable whose probability
density function exist and belongs to the parametric density functions

F={f(z;0):0 €0}

The parameter # may be a scalar, such as # = p in binomial family or be a vector of
parameters, such as 6 = (u,0) in normal family.




A general method to estimate the unknown parameter § within a family F is maxi-
mum likelihood. Each value of 6 gives a model in F that attaches different probabilities
to the observed data. The probability of observed data as a function of 4 is called like-
lihood function. Values of # that have high likelihood correspond to models which give
high probability to the observed data. The principle of maximum likelihood estimation is
to adopt the model with greatest likelihood, since of all the models are under considera-
tion, this is the one that assigns highest probability to the observed data. The likelihood
function is
L(0) = Hf(a:i;ﬁ)

i=1

It is often more convenient to take logarithms and work with the log-likelihood function

£(6) =log L(9) = ) _log f(x:;6)

1.2 Introduction to Generalized Extreme Value (GEV) Model

The model which represents the cornerstone of extreme value focuses on M,, = max{ X, ..., X»},
where X, ..., X}, is a sequence of independent random variables having a common distri-
bution function F'. In applications, X; may represent hourly measured sea level or daily
stock prices, so that M,, may represent the maximum seal level in a day or the maximum
stock price in a week.

In theory, the distribution of M, can be derived exactly for all values of n:

P(Mn < 3.7) = P(Xl <z,.., Xy gx)
=P(X;<z) --P(X,<xz)
= F"(z)

However this is not very useful in practice, since the distribution F' is mostly unknown
or even if we know F, the computations will be too complicated. Thus, we proceed
by looking at the behavior of F™ as n — oco. But this alone is not enough: for any
z < zy, where z; = sup{F(z) < 1}, then F™ — 0 as n — oo, so that the distribution
of M, degenerate to a point mass on z,. This difficulty is avoided by allowing a linear
renormalization of the variable M,,:

M, — b,

Qn

M =

n

for sequences of constants {a, > 0} and b,. We therefore seek limit distribution for M,
with the choices of a,, and b, rather than M,.

Theorem 1.1 If there exist sequences of constants for {a, > 0} and b, such that

(Mn - bn)

n

Pr{ < z} = G(2)

as n — oo, where G is a non-degerate distribution function. Then G belongs to one of
the following families:




0 z< b,

Fréchet : G(z) = — >0
(2) exp{—(z b)_a} i>b 10"
z—=0b,
Weibull:  G(z) = { PI-I-(2)T LI
1 z2=b,

Gumble:  G(z) = exp{—exp{—(=2)}}, —00 < 2 < .

with parameters a > 0, b.

Theorem 1.1 implies that, if the M, can be stabilized, the corresponding M has a lim-
iting distribution that must result in one of the three types of extreme value distributions.

A better analysis is offered by a reformulation of the models in Theorem 1.1. It is

straightforward to show that the Fréchet, Weibull and Gumbel families can be combined
into a single family of models having distribution functions:

G(2) = exp{—[1 + 7 (=)}

where the parameters satisfy —oo < p < 00, 0 > 0 and —0o < v < co. This is the Gen-
eralized Extreme Value (GEV) distribution with three parameters: a location parameter
1, a scale parameter o and a shape parameter +.

Thus, the Theorem 1.1 can be restated as:

Theorem 1.2 If there exist sequences of constants for {a, > 0} and b, such that

Pr{——(Mn )

n

<z} = G(2)

as n — 00, for G is a non-degenerate distribution function. Then G is a member of the
GEV family

Z— -1
O(2) = exp{~[1 +v(*—F)77)
defined on {z: 1+ %% > 0}, where —oo < pu < 00, 0 > 0 and —o0 < 7y < o0.

To fit extreme value models, data X, ..., X, are blocked into sequences of observations
with length n, generating a series of block maxima M;, ..., M,,. Often, the block maxima
are chosen to correspond to a time period. If the period is too long, we will have fewer
observations which gives large variance in GEV estimation. On the other hand, if the
period is too short, we have poor approximation of F"(z) by GEV which leads to large
bias in estimation. Thus, we need to check the validity of our GEV models after we
decide the block length.

Estimation of extreme quantiles of the periodical maximum distribution can be obtained
by inverting GEV distribution:




I - e Cor IV TS )

p — o log[—log(1 - p)], for y=0
where G(z,) =1 — p. In common terminology, z, is the return level associated with the

return period 1/p, since to a reasonable degree of accuracy, the level z, is expected to be
exceeded on average once every 1/p period.

1.3 Inference for the GEV Distribution

Under the assumption that Zi, ..., Z,, are independent variables having the GEV distri-
bution, the log-likelihood for the GEV parameter when v # 0 is

m

e DY ERTE D

=1

lp,0,v) = —mlogo — (1 —l—

provided that

'u) >0,for i=1,...m

Z; —
14+ 9( =

The case v = 0 requires separate treatment using the Gumbel limit of the GEV distribu-
tion. This leads to the log-likelihood

Up,0) = —mlogo — Z(zz_;_ﬁ> — Z{_

Maximization of these above log-likelihood functions with respect to the parameter vector
(p,0,7) leads to the maximum likelihood estimates with respect to the entire GEV fam-
ily. For any given dataset the maximization is straight forward using standard numerical
optimization algorithm.

By substitution of the maximum likelihood estimates of the GEV parameters into (1.1)
the maximum likelihood estimate z, for 0 < p < 1, the 1/p return level, is obtained as

. 0 3 .
. _ ) A=zl —(~log(1—p))™"] for §#0
2= ¥

p — o log(—log(l — p)) for 4=0

Furthermore, by the delta method,
Var(%,) = vz;fV Y %p
where V is the variance-covariance matrix of (4,4,%) and

vl = [82,, 0z, Oz

g

ou’ Oc’
=[1,-y7(1- ( log(1—p))™),072(1 = (—log(1 —p)) ") -
oy~ (—1log(1 — p)) " log(—log(1 — p))]




evaluated at (i, 5,7).

Numerical evaluation of the profile likelihood for any of individual parameters u, o or
is straightforward. For example, to obtain the profile likelihood for v, we fix vy = o, and
maximize the log-likelihood with respect to the remaining parameters y and o. This is re-
peated for a range value of vy. The corresponding maximized values of the log-likelihood
constitute the profile log-likelihood for «. In particular, we can obtain confidence inter-
vals for any specified return level z, which requires reparameterization of the GEV model.
Then z, is one of the model parameters, after the profile log-likelihood is obtained. Repa-
rameterization is proceeded by:

P %[1 — (~log(1 - p))™]

so that replacement of 4 has desired effects of expressing the GEV model in terms of the
parameter (z,,0,7).

The model assessment can be made with the observed data by the use of probability
plots and quantile plots. A probability plot is a comparison of the empirical and fitted
distribution functions. With ordered block maximum data zq) < 2@) <, ..., %(m), the
empirical distribution function evaluated at z(; is given by

~ 7
G(z(i)) - m+1

The model estimates are

A L2(0) — fg_1
Glew) = exp{~[1 +4=2—] 77}
If the GEV model works well,

so a probability plot, consisting of the points

A

{(é’(z(i)), G(zy)),i=1,...,m}

should lie close to the unit diagonal.

A weakness of the probability plot for extreme value models is that both G(z(;) and

@(z(i)) are bound to approach 1 as z;) increases, while the accuracy of a model can
achieved by checking large values of z.

The deficiency can be avoided by the quantile plot, consisting of the points

]

{(é‘l(m+ 1),Z(i)),i =1,..,m}
where
N ) & 7 .
% -5
G(—) = = 211 = (~log(—=7)) )

Departures from linearity in the quantile plot indicate model failure.



1.4 Introduction to Generalized Pareto (GPD) Model

Modeling only block maxima is a wasteful approach to extreme values analysis. If an
entire time series of observations is available, then a more efficient use of data can be
achieved by the following approach.

‘Let X7, X5, ... be a sequence of independent and identically distributed random vari-
ables, having marginal distribution function F'. It is nature to regard those of the X;
that exceed high threshold u as extreme values. Denoting an arbitrary term in the X;
sequence by X, it follows that a description of the stochastic behavior of extreme events
is given by the conditional probability

P(X >u+z)

PX>w 70

PX>u+z|X >u) =

If the parent distribution F' were known, the distribution of threshold exceedances would
also be known. By the use of GEV models as an approximation to the distribution, we
get a new distribution namely, Generalized Pareto Distribution.

Theorem 1.3 Let X3, X5, ... be a sequence of independent random variables with com-
mon distribution function F', and let
M, = max{X;, ..., X}

Denote the arbitrary term in the X; sequence by X, and suppose that F satisfies Theorem
1.2 so that for large n we have

Pr{M, < z} = G(z),
where
Z—p

G(2) = exp{~[1 +y—L]77}

for some p, o > 0 and . Then, for large enough u, the distribution function of (X — u),
conditional on X > mu, is approximately

Hz) =1-(1+ ~,-§)—% (1.2)

defined on {z : 2 > 0 and (1++%) > 0}, where 6 = 0 + v(u — p).
Ifv=0,
H(z)=1- exp(~§), z>0
The family defined by Equation (1.2) is called the Generalized Pareto family.

Proof of Theorem 1.3 can be found in an outline of the proof but here we give a rough
proof as following [4] :

By the assumption of Theorem 1.1, for large enough n,

F™ () ~ exp{~[1 + ()77}




Hence,
nlog F(2) ~ ~[1 +y(*—5)]
For large values of z, a Taylor expansion implies that
log F(z) ~ —(1 - F(2)

gives

1— F(u) =~

S|+

U— fhy 1
1 —)| 7
(ERTESL)
for large u. Similarly, we have

U+T— U 1

1~ Flu+a) 21+ N

Hence,

n UL 4 yRte]
14 y*E]
Ty

YT, 1
- 7
(o2

Pr{X>u+z|X >u}l~

=2 [

=
Where 6 = o + y(u — p).

An important point here is that, like the choice of number of observations in each block,
the choice of threshold also needs to be done carefully. A low threshold is likely to violate
the asymptotic basis of model, leading to bias. A high threshold generate fewer excesses
leading to a large variance.

Like the GEV model, it is more convenient to interpret extreme value models in terms
of quantiles or return levels, rather than individual parameter values. So, suppose that
a generalized Pareto distribution with parameters o and « is a suitable model for ex-
ceedances of a threshold u by a variable X. That is, for z > u,

&

PT(X>x|X>u):[1+’ym_u

o

follows

r—1U

PrX>z)=C[l+7v ]_%

g

where ¢, = Pr{X > u}. Hence, the level z,, that is exceeded on average once every m
observations is the solution of
o m

U=

Cu[l +7

10




if v #0.
Rearanging,
o
Tm = u+ ;[(mﬁuW - 1]
provided m is sufficiently large to ensure that z,, > u.
Ify=0
Tm = U+ o log(md,).

Zm, 1S the m-observations return level.

1.5 Inference for the GPD distribution

Having determined a threshold, the parameters of generalized Pareto distribution can
be estimated by maximum likelihood. Suppose that the values ¥, ...,y are the k ex-
ceedances of a threshold w.

For « # 0 the log-likelihood is

k
1 ;
lo,v) =—klogo — (1+ ;) E log(1 + 73 )
i=1

if (1+07Yyy;) >0fori=1,...,k; otherwise, £(c,7) = —oo.

If v = 0, the log-likelihood function is obtained as

k
{(o,7) = ~klogo — ot Zyz

i=1
Estimation of return level requires the use of estimated parameter values o and v which

corresponds to maximum likelihood estimation, but an estimate of (, can be naturally
made by

Standard errors or confidence intervals for z,, can be derived by the delta method. The
properties of binomial distribution gives Var(fu) ~ Ci(%@, so the complete covariance

matrix for (,,4,4) is approximately
A ) 0 0

n
V= 0 V1,1 V12

0 V2,1 V2.2

where v; ; denotes the (4, j) term of the covariance matrix of 6 and 4. Hence, by the delta
method,

Var(zh,) ~ VziV 7 Tm

11




where

T [amm O, me]
Ven =15, 80 oy
= [om (7 v (M) — 1), —oy 2 ((m) = 1) + oy~ (mdu)” log(mdu)]

with evaluated (C,,,79).

For accessing the quality of fitted generalized Pareto model, probability plots and quantile
plots are still useful. Assuming a threshold u, ordered threshold excesses yq) < ... < Y

and an estimated model H , the probability plot consists of the pairs

) N

{(m>H(y(i))),Z =1,.,k},
where
Aly) =1-(1+2H7

provided 4 # 0.

A(y) =1 - exp(~3)

Assumming ¥ # 0, the quantile plot consists of the pairs

A

A y) =u+ 2y — 1]
Y

2 Multivariate Extreme Value Distribution

2.1 Copula

Before we discuss the multivariate extreme models, the idea of the copula will be intro-
duced.

Consider a random vector (X1, Xs, ..., X4). Suppose its margins are continuous, i.e. the
marginal cumulative distribution functions F;(z) = P(X; < z) are continuous functions.
By applying the probability integral transform to each component, the random vector
can be seen that

(U1, Uz, ..., Ug) = (Fi(X1), Fo(X3), ..., Fa(Xa))
has uniform margins.
The copula of (X1, Xa, ..., X4) is defined as the joint cumulative function of (U, Us, ..., Uy):
C(ul,uz, cesy Ud) = P(Ul < U1, Ug < Uus..., Ud < ud)

The copula C' contains all information on the dependence structure between the com-
ponents of (X, Xy, ..., X;) whereas the marginal cumulative distribution functions F;

12




contain in all information on the marginal distributions.

The definition of copula can be defined as follow: C : [0,1]¢ — [0,1] is a d-dimension
copula if:

O(,U'l) ey Ui—1, 0>ui+15 ...,Ud) =0
c@1,..,Lul,.,1)=u

C is d-increasing, i.e. for each hyper rectangle B = x&_[z;, %] C [0, 1]¢ the C-volume of
B is non-negative:

> (=1)NEez) =0

zEa;;.Ll (z3,3:)

where the N(z) =#{k : 2, = 71}
For bivariate case which will be discussed in this thesis, for every u, v in I = [0, 1],

C(u,0) =C(0,v) =0
C(u,1)=v and C(1l,v)=v

For every us,ug, v1,v2 in I with u; < up and v; < vy,

C(ug,v2) — Cu1,v2) — C(ug,v1) + Clug,v1) =0

The following theorem shows the Fréchet-Hoeffding bounds.

Theorem 2.1 Let C be a d-dimension copula. Then for u,, ..., ug in I¢

max{u; + ... + uqg — (d — 1),0} < C(uy, ..., uq) < min{uy, ..., uqg}

For bivariate case, we have

Theorem 2.2 Let C be a two dimension copula. Then for every (u,v) in 12,

max{u+v — 1,0} < C(u,v) < min{u,v}
The Sklar’s theorem guarantees that if we a joint distribution H with margins F' and G,
we can find a bivariate copula C.

Sklar’s Theorem In bivariate case, let H be a joint distribution function with mar-
gins F' and G. Then there exists a copula such that

H(z,y) = C(F(z), G(y))

13




2.2 Max-stable and Max-infinitely divisible

From univariate extreme values, we know that for positive integer k there exists vectors
ar > 0 and By such that a;'ane — o and a; (bug — by) — By 88 n — co. Also, as we
have F™ (a2 + bni) — G(z).

Then we obtain:
G*(ogz + Br) = G(z) z € R? (2.1)

with G(z) is a d-variable distribution. We can find vectors oy > 0 and S such that (2.1)
1s true and we call this max-stable. The meaning of (2.1) is if we can find Y, Y, Y5, ... are
independent random vector with distribution function G, we have

o (max{Y1,Ys, .} = B) 2Y k=12, ..

A result of (2.1) is that if GY/* is a distribution function for every positive integer k,
then G is max-infinitely divisible. It means in particular, we can find a measure, y, on
[—00, 00], such that

G(Hi) = exp{—u([—oo,x]c)}, z € [—o0, OO]

To learn more about max-stable, it is convenient if we use Unit Fréchet margins. Let G
be a d-variable distribution function with Y3, ...,Y;, G, is the jth margin of G and G;’. is
the quantile function of G, that is G}(p) = = where 0 < p < 1. We have

1
Gj = exp{—(1 +’YijU 1),"} o € R?
j
Yi
z? —1
Gie /%) = p; + 0;- T E> 0
J

and if we let G, be a d-variable function with (—1/log(G1), ..., —1/log(Gq)), then we get

Gi(z) = G{Gi(e7 V™), .., G%e ")} 2> 0
G(z) = G {—1/10g(G1(z1)), ..., =1/ log(Ga(z4)) }.

Because we have G% (o ;; + Br,;) = G;(z;) for any positive integer k£ and j = 1,...,d, so
not only does G, have max-stable margins, it is also max-stable as well.

Gi(k2) = G.(z) ze€e R%k=1,2,...

Let p. be an measure of the extreme value distribution with Unit Fréchet margins, then
we have

—log G.(z) = p.([0,00]/[0,2]) 2 € [0,00) (2.2)
leading to
1(lg, 0)/[g, z]) = —log G(z) = —log G.(2) = p.([0,00)/[0,2]) =z € [g,00] 2 € [0,00]

As a result of above discussions, a multivariate extreme value distribution can be given
with Unite Fréchet margins [6] .

14




2.3 Measures of dependence for bivariate extreme value distri-
bution

Let {(z1,41), (2,¥2), -, (Tn,Yn)} denote a sample of observations of continuous random
variables. If c denotes the number of concordant pairs , that is (z; — z;)(y; — ;) > 0,
and d denotes the number of discordant paris, that is (z; — z;)(y; — y;) < 0. Then the
Kendall’s 7 for these observations can be defined as

c—d

c+d

If these observations are denoted by two vectors (X,Y’), (X1Y1) and (Xs, Yz) be indepen-
dent and identically distributed vectors with joint distribution H. Then the Kendall’s 7
can be written as

T=Txy = P{(X1 - X2)(Y1 - Y2) > 0} — P{(X1 — X2)(Y1 - ¥3) < 0}

—1 <7 < 1. Also, it can be written as an integration of the copula,

T=4 C(u,v U, v) —
[ ], . ctwoict -1
=4E{C(u,v)} — 1.

To know more about the dependence, we now let (X7,Y7), (Xz,Y2) and (X3,Y3) be three
independent and identically distributed vectors with joint distribution H. Then the
Spearman’s p can be defended as

ps = 3(P{(X1 — Xa)(Y1 — ¥3) > 0} — P{(X1 — X,)(Y1 — Y3) < 0}).

Like Kendall’s 7, it can be written as

ps = 12// wvdC(u,v) — 3
(0,12
= 12E{uv} — 3

-1<ps <L

For a bivariate extreme value distribution G(z,y) with Unit Fréchet margins, from (2.2)
we know the G(z,y) can be written as

G(z,y) = exp{—u([0, (z,9)]°)}
The measure p can be shown as
u(l0, (@) = (5 + A

z Y T4y

) (2.3)

where we call the function A(;%;) as Pickands Dependence function.

Let ¢t = .1, the properties of A(t) are:
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(2) max{t,1 —t} < A(¥) < 1;
(3) A(t) is convex in ¢ € [0,1].

1.0

0.9

0.8
1

A®)

0.7

0.5
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Pickands Dependence

The strength of dependence increases if the dependence function get closer the the lower
bound, and we have independent case if A(t) = 1 for t €[0,1], complete dependence if

A(—;—) = % The upper straight line shows the independent case while the lower bound

shows the complete dependent case.

The Kendall’s 7 and Spearman’s p can also be achieved by the integration of A(¢) [1] :

= /0 %(-_t—)-tld/l’(t) (2.4)

ps =12 / 1[A(t) +1]2dt -3 (2.5)
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2.4 Bivariate Extreme Value Models

For general bivariate extreme value distribution G with Unit Fréchet margins G; and Gy
and Pickands dependence function A. The distribution can be shown as:

log Gy

G(z,y) = exp{log(Gle)A(m)}.

The measure p of G(z,y) can also be written as
0 4@
w([0, (z,v)] / max{a— a—}S(da)
where || - || is the norm in R% N = {(a,a@)[||(a®,a®)|| =1} .

If we let  — 0o or y — oo, we get Unit Fréchet which leading to the expression

/ aWS(da) =1
N

/ a®S(da) = 1.
N

Then, we have

o g®@
S+ DG [ max(= s

_ l 1 max ya(l) za®@
‘%*y)/N x{ }5(da)

z+y z+y
—> At / max{(1 — t)a®, ta®}S(da)

with ¢t = szy

3 Two new Bivariate Extreme Value Models

Following parametric models, generalized symmetric mixed model and generalized sym-
metric logistic model, are firstly suggested by Tajvidi [3] and formulated under the as-
sumption of having Unit Fréchet margins. The parameters of these two models will decide
how distribution functions look like which means the dependence of X and Y in the dis-
tribution change with the values of k£ and p.

Bivariate extreme values distributions with Unit Fréchet margins can be written as

G(z,y) = exp{—u([0, (z,9)])}.

As (2.4) and (2.5) show, the dependence measures, Kendall’s 7 and Spearman’s p, can be
formulated with the dependence function A(t). Thus, to get the dependence relationship
between X and Y, A(t) where ¢ = ;7 is required.

An extreme value model can be equivalently expressed by giving either the measure p, in
(2.2) or the dependence function defined in (2.3). And in both extreme value models of

this thesis, they will be introduced by showing their measures and dependence functions.
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3.1 Generalized Symmetric Mixed Model

o101 1
H({O,(W,y)])—§+§+k(xp+yp
k

GEITENEE

Pictures below show how A(t) changes with parameters p and k:

WP 0<k<1, p>=0

Aft) =
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(d) p=0 (e) p=5 (f) p=800

Figure 2: A(t) changes with k and p
The information of this model and above figures tell:
For k = 0 or p = 0 we have independence case.
For k =1 and p = co we have complete dependence.

For neither k¥ = 0 nor p = 0, the increase of either k or p value results in more de-
pendent relationship.

It would be really helpful if Kendall’s 7 and Spearman’s p can be written as a func-
tion of p and k. However as the the integration function for A(t) of T, ps, like we have
shown in (2.4) and (2.5), is too complex to get a specific result. Adopting the idea of-
Riemann integration, that is if we want to get the answer of

/bf(x)dx a<b
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and we cannot work it out, then it can be calculated by approximation [7] . Let a = z¢ <
.. < Zp, = b, we have n equal length intervals with z; = zx_1 + kb_T“ for k = 1,..n, the
approximation is made by

n
nb—a
Zf (zk) "
k=1
where 2} € [zg_1,2x]. Here, we take the midpoint in the kth interval, which leads

Ti = %(xk_l +zp)=a+ %(2k — 1)b—;“— and the approximation is

b—a
n

b—a

n

gf(a + %(% _pbzay

Applying this approximation an approximated surface of how p, changes with k£ and p is
obtained.

0.32

Figure 3: Spearman’s p changes with k and p of generalized symmetric mixed model
From the picture, the p, will increase if £ or p increase.

As a conclusion above, either k or p grows the dependent relationship of X and Y grows.

3.2 Generalized Symmetric Logistic Model

0, @)1 = (5 + -+ o

Alt) =+ QA =t + k(AL - 1)) 0<k<2p-1), p>2

Wro0<k<2p-1), p>=2
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Figure 4: A(t) changes with k£ and p

The information of the model and above figures tell:

For k = 2 gives the symmetric logistic model.

For k = 2 and p = 2 we have independence case.

For k =2 and p = co we can obtain complete dependence.

When we set k, the larger of p the larger of dependence function. When we set p,

the more k differs from p, the larger of dependence function. But if the p is large enough,
k can only influence the dependent relationship a little.
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Figure 5: Spearman’s p changes with k and p of generalized symmetric logistic model

The figure shows if the p increases the p; increases and if p is large enough k can only
influence the dependence a little.

4 Application

4.1 Data Introduction

The two datasets which will be studied in this section are the daily stock prices from
2006 to 2011 of two most well known computer companies in the world namely, IBM and
Apple. As they both are world’s leading computer companies, it is interesting to see how
their stock prices depend on each other.

Figures 6(a) and 6(b) show the individual daily stock prices of these companies from
2006 to 2011
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Figure 6: Original stock prices of IBM and Apple

These figures show that both IBM and Apple stock prices have two peaks around 2008,
a sudden downwards at the end of 2008 and a comparatively stable increase after 2009.
But they both have their own trends, for example during 2010, IBM seems to have a
comparable stable stock price while Apple keeps its up-going trend.

For further analysis, data needs to be transformed to a stationary set by using the trans-
formation : '

Z;

In(

) i=2,..,n (4.1)
Ti-1

where z; are stock prices of IBM or Apple and n is the length of data and the trans-

formed dataset tells us the returns of daily stock prices. After transformation we obtain

a stationary series which are depicted in Figure 7(a) and 7(b) for IBM and Apple stock

prices, respectively

22




0.05
!

Transformed IBM

-0.05

0.10
1

0.05
1

2 8
g ©
kel
[}
E g
B o |
5 g
[
8
Q
-
3 o
©
2
,
o
Q| o
<
T T i T T T T
0 200 400 600 800 1000 1200
Time
(b) Apple

Figure 7: Transformed data of IBM and Apple

Both of the transformed datasets vary around y=0 and are assumed to follow a stationary
process.

There are 5 workdays in each week. Thus, 5 seems to be a reasonable length to get
the maxima in each block. For comparison, however, we also take 10 days as a block
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length to compare with the 5-day block maxima.

For visual investigation of dependence in transformed and blocked data, we present plots
of IBM extreme returns against Apple extreme returns below.
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Figure 8: IBM extreme returns against Apple extreme returns
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4.2 Maximum-Likelihood estimation of parameters

To fit these extreme returns to our bivariate extreme value models, the estimation method
called Inference Function for Margins (IFM) [8] is adopted. For multivariate distribu-
tions F'(Y1,...,Yy) with parameters ( oy, ..., aq,0) which can be associated to univariate
marginal distributions F;(Y;; o;). Instead of maximizing the log-likelihood function to fit
all parameters together, we maximize the log-likelihood function

() = Zlog flysas) 1=1,..,d
k=1

(n is the size of random vector y;) to get & first and then maximize the pseudo log-
likelihood function

Ub; &, ..., Gg) = Zlogc (W53 62), ooy Fi(ya; 6a); 6)

where c is the density copula, to get the .

In this thesis, we are going to fit parameters of two extreme value models where each
model has Unit Fréchet margins. Following the IFM method, the first step is to get the
estimated parameters (i, d,%) for margins. After transforming datasets to Unit Fréchet
distributions, the transformed datasets are used to fit our £ and p by maximizing pseudo
log-likelihood functions.

Thus the first step is to fit these data into univariate extreme models. Actually, there
can be a time trend in local parameters which enables local parameters to change with
time.

Hence, tests for different models are addressed:

Model 1:  p =B
Model 2:  p = By + Bit

If 2(negloglik(model 1)-negloglik(model 2)) < x%(0.95,1) we accept model 1 with no
time trend in location parameter.

Estimated value Bo b1 o) y nllh

Model 1(5 obs) 0.011351 0.009268 0.039803  -782.4639
Model 2 (5 obs) 0.010274  0.002209  0.009240 0.037993 - 783.1285
Model 1(10 obs)  0.014905592 0.007601846 0.281810192 -395.3201

Model 2 (10 obs) ~ 0.013429  0.002899  0.007464 0.305914  -396.7967

Table 1: Local parameter tests for transformed IBM
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7
Estimated value Bo Jo1 o ¥ nllh

Model 1(5 obs) 0.01967 0.01524  0.02065 - 656.0937
Model 2 (5 obs)  0.023407 -0.007154 0.015119 0.015887 -658.7624
Model 1(10 obs)  0.02911 0.01542  0.05025 - 324.116

Model 2 (10 obs) 0.03615 -0.01357 0.01470  0.06556 -329.0732

Table 2: Local parameter tests for transformed Apple

Test result ' IBM T ~ Apple
5 obs in each block  Accept Null Hypothesis Reject Null Hypothesis
10 obs in each block Accept Null Hypothesis Reject Null Hypothesis

Table 3: Test results for time time trend of GEV local parameters

As a conclusion, transformed IBM dataset has no time trend in location parameters and
transformed Apple dataset has a time trend in location parameters. The time trend has
been defined as t = %, i=1,2,...,m and m is the length of transformed dataset. Those
estimated models can be shown as

1

IBM :Gx(z) = exp{—(1 +fy$x ; Mx)_v—w}

- — Piyt - L
APPLE :Gy (y) = exp{—(1 + Vyy__ﬂ@%_ﬁi) )
Y

Check the estimated GEV models for 5 and 10 block length with probability plots and
quantile plots:
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Figure 9: Probability plot and quantile plot for IBM extreme returns’ model (5 obs)
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7
Estimated value Bo B o y nllh

Model 1(5 obs) 0.01967 0.01524  0.02065 - 656.0937
Model 2 (5 obs)  0.023407 -0.007154 0.015119 0.015887 -658.7624
Model 1(10 obs)  0.02911 0.01542  0.05025 - 324.116

Model 2 (10 obs) 0.03615 -0.01357 0.01470  0.06556 -329.0732

Table 2: Local parameter tests for transformed Apple

"Test result IBM Apple
5 obs in each block  Accept Null Hypothesis Reject Null Hypothesis
10 obs in each block Accept Null Hypothesis Reject Null Hypothesis

Table 3: Test results for time time trend of GEV local parameters

As a conclusion, transformed IBM dataset has no time trend in location parameters and
transformed Apple dataset has a time trend in location parameters. The time trend has
been defined as t = %, 1=1,2,...,m and m is the length of transformed dataset. Those
estimated models can be shown as

IBM :Gx(z) = exp{—(1 +’y$$ ; a _%}

- — Byt —L
APPLE :Gy(y) = exp{—(1 + ,yyg_ﬁ%ﬁl_y) )
Yy

Check the estimated GEV models for 5 and 10 block length with probability plots and
quantile plots:
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Figure 9: Probability plot and quantile plot for IBM extreme returns’ model (5 obs)
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Figure 10: Probability plot and quantile plot for IBM extreme returns’ model (10 obs)

For non-stationary variables, the lack of homogeneity in the distributional assumption
leads to the modification

- 1 — u(t
Z = —log{l+ 'y—z‘t Al )}
o o

each have the standard Gumbel distribution. And the probability plots consists of
i

{5

oy 1,exp{— exp{—2}}),i=1,..,m}

while the quantile plots consist of

{39, ~ log{~log{———=}}),i = 1,...m}.

We have probability plots and quantile plots for GEV models of Apple’s extreme returns.
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Figure 11: Probability plot and quantile plot for APPLE extreme returns’ model (5 obs)
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Figure 12: Probability plot and quantile plot for APPLE extreme returns’ model (10 obs)

Figures above suggest that our GEV models are reasonable.

Then, we let

T— fhy, L
no= (1 ye——te)w

- — Pyt L
Oy
to transfer these datasets into Unit Fréchet.

Finally, by maximizing the pseudo log-likelihood functions with estimated parameters
from margins, parameters of generalized symmetric mixed model and generalized sym-
metric logistic model k£ and p can be achieved.

Estimated value k p
Mixed model ~ 1.0000000 0.6242569
Logistic model  2.696930  3.007469

Table 4: Estimated parameters (5 observations in each block)

Estimated value k p
Mixed model ~ 1.000000 0.6132411
Logistic model ~ 3.233722  3.135627

Table 5: Estimated parameters (10 observations in each block)

4.3 Further study

With all estimated parameters, it is possible to see extreme returns’ dependent relation-
ship between IBM and APPLE. Pickands dependence functions can be plotted as below:
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Figure 13: Pickands dependence functions

It has been shown, firstly, the dependence functions follow with each other which ensures
that these two new bivariate extreme models are proper. Secondly, the locations of de-
pend functions tell us the extreme reruns of IBM and Apple are dependent with each
other.
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This analysis can be extended in the following way. In practice, people may be in-
terested in conditional distributions ( IBM| Apple) and ( Apple| IBM) , that is, if one
stock prices’ extreme returns are known we would like to see how the other stock prices’
extreme returns vary. Below, we set the minimum, mean and maximum extreme returns
of one stock prices and see how the other stock prices’ returns change in different models.
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Figure 14: f(Apple|IBM) (5 obs)
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Figure 16: f(Apple|IBM) (10 obs)
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Figure 17: f(IBM|Apple) (10 obs)

It seems that both block sizes and both parametric models result in similar conclusions.
This demonstrates the validity of our two bivariate extreme models once again.

For f(Apple|I BM), the conditional probability is slightly flat at the top and varies slower.
Also, there are more cases that Apple stock prices’ returns lie around 0.02. Furthermore,
if we set the mean of IBM extreme returns, the mean of the conditional distribution lies
around the mean of IBM extreme returns. It means IBM’s extreme returns depend on
Apple’s.

For f(IBM|Apple), the conditional probability has a sharp peak and are more sensi-
tive with IBM’s extreme returns. Also, there are more cases that the IBM stock prices’
extreme returns lie around 0.01. If we set the mean of Apple extreme returns, the mean
of the conditional distribution lies away from the mean of Apple extreme returns. It
means Apple’s extreme returns hardly depend on IBM’s

Another thing to be investigated is quantile plots. In many distributions, quantile plots
are drawn to analysis the distributed datasets. It means for

G(X <2,Y <yg)=p, 0<p<lL (4.2)

we want to find a series of (z,,v,) satisfying (4.2) which give us a curve. The points
outside quantile curves of our bivariate extreme models mean: based on the distribution
G, the extreme returns (z,y) in every 5 or 10 days be larger than (z4,y,) occur with the
probability less or equal than 1 — p.
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This thesis takes p = 90% as the quantile to fit a quantile plot.

(a) 90%quantile plot for mixed model (b) 90% quantile plot for logistic model

Figure 18: 90% quantile plots for two models(5 obs in each block)

(a) 90%quantile plot for mixed model  (b) 90% quantile plot for logistic model

Figure 19: 90% quantile plots for two models(10 obs in each block)

The points above quantile curves for both models are few, it means that the large returns
which result in large change of stock prices for both IBM and Apple will not happen with
probability over 10%.

The similar results in quantile plots of mixed and logistic models prove the validity
of these models again.

5 Conclusions and Further Work

By fitting estimated model parameters and plotting the Pickands dependence functions,
conditional distributions and quantile plots, we get similar results of the same dataset
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for generalized symmetric mixed model and generalized symmetric logistic model. This
demonstrates that these two models are valid and reasonable. The influence of depen-
dence in these two models are measured parameters k and p. Thus, once the estimated
k and p is calculated the dependence is known.

For IBM and Apple stock prices’ extreme returns, it is reasonable to say that they are
dependent with each other. But on the other hand, from the conditional distributions
it is obvious to see that IBM depends on Apple more than Apple depends on IBM. In
a word, they are dependent with each other but the dependent relationship is asymmetric.

Even though we can study the dependent relationship in extreme returns with depen-

dence function A(t), it would be interesting to study Kendall’s 7 and Spearman’s p to
see how exactly the k and p influence these measures of dependence.
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A R codes for applications

The R codes used to estimate two new models parameters are shown below:

#x_IBM , y_APPLE original data, n is the length of datasets.

# change them to stationary
xs<-log(x_IBM[2:n]/x_IBM[1:(n-1)]1)
ys<-log(y_APPLE[2:n]/y_APPLE[1: (n-1)1)

#take the block maxima with 5 or 10 observations in each block. And plot them togethe
1=5;# block maxima

m<-ceiling(n/1)

x<-rep(0,m)

y<-rep(0,m)

for(i in 1:m-1){

x[i]<-max(xs [(1+1*(i-1)): (1*1)])

}

x[m] <-max(xs[(1*m-1) :n-1])

for(i in 1:m-1){
ylil<-max(ys[(1+1*x(i-1)): (1*i)])

}

y [m]<-max(ys[(1*m-1):n-1])
plot(x,y,xlab = "IBM",ylab = "Apple")

#Fitting GEV models with extreme values and get one with time trend in location param
trend<-(1:m)/m

mi<-fgev(x)

mit<-fgev(x,nsloc=trend)

-2%(logLik (m1)-logLik(mit)) < qchisq(0.95,1)

m2<-fgev(y)

m2<-fgev(y,nsloc=trend)

-2%(LogLik (m2)-logLik(m2t)) < qchisq(0.95,1)

#probability plot and quantile plot

#1BM

z<-sort (x)

prpx<-c(1l:m)/(m+1);

pPrpy<- exp(—(1+m1$estimate[3]*(z-m1$estimate[1])/m1$estimate[2])‘(—1/m1$estimate[3]))
plot (prpx,prpy,xlab = "i/(m+1)", ylab = "G(z) with estimated parameters",cex.lab=1.5)
#quantile plots
qupx<—m1$estimate[1]—m1$estimate[2]/m1$estimate{3]*(1—(—1og(prpx))‘(—m1$estimate[3]))
plot(qupx,z,xlab = "Inversed G(i/(m+1))", ylab = "Ordered block maxima",cex.lab=1.5)
#for APPLE

t<-(1:m)/m
ty<—1/m2$estimate[4]*1og(1+m2$estimate[4]*(y—m2$estimate[1]—m2$estimate[2]*t)/m2$esti
z<-sort (ty)

prpy<-exp(-exp(-z))

plot (prpx,prpy,xlab = "i/(m+1)", ylab = "G(z) with estimated parameters",cex.lab=1.5)
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qupy<- -log(-log(prpx))
plot(z,qupy,xlab = "Ordered block maxima", ylab = "Inversed G(i/(m+1))",cex.lab=1.5)

#tansform to univariate Frechet margins.
xu<-(1+mi$estimate [3] ¥ (x-m1$estimate[1]) /mi$estimate[2]) ~ (1/mi$estimate [3])
yu<-(1+m2$estimate [4]* (y-m2$estimate [1]-m2$estimate [2] ¥t) /m2$estimate [3]) " (1/m2Bestim

#Get our parameters in extreme value models by maximizing pseudo log- likelihood func
#negloglikelihood for mix model
wx<-(xut+yu) /xu
wy<-(xu+yu) /yu
nllmix<-function(par) {
k<-par[1]
p<-par[2]
-sum(log(1/xu"3/yu~3*exp (- (1/xu+1/yu)* (1-k* (wx"p+wy~p) " (-1/p) ) ) * (wx"p+wy~p) ~ (-2%(1+p)
+
est.mix<-function(start){
optim(start,nllmix,method="L-BFGS-B",lower=c(0,0) ,upper=c(1,Inf))
}
#negloglikelihood for logistic model
nlllog<-function(par){
k<-par[1]
p<-par[2]
exy<-(xu” (-p)+yu” (-p) +k* ((xuxyu) ~ (-p/2))) "~ (1/p)

fxy<-(exp(-exy)*xu” (p-1) *yu~ (p-1) *exy* (k" 2%xu p*yu”p* (exy—1) +4 (xuxyu) "p* (exy-1+p
if (par[1]1>2*(par[2]-1))
{cat("Warning 2")
1e09}
else if (any(fxy < le-12))

{cat("Warning 1")

1e09}
else

-sum(log(£fxy))
}
est.log<-function(start){ _
optim(start,nlllog,method="L-BFGS-B",lower=c(0,2) ,upper=c(Inf,Inf))
}

#Dependece function of two extreme value models with estimated parameters
#10obs ,k=1,p=0.6132411

#bobs k=1,p=0.59715635

A_mix<-function(x,k=1,p=0.6132411){

1- X/ (x~(-p) +(1-x)"(-p))~(1/p)

}
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#10 obs, k= 3.233722 ,p=3.135627

#5 obs k=2.774460,p=2.974842

A_log<-function(x,k= 3.233722 ,p=3.135627){

(x"p+(1-x) “p+kx* (xx (1-x) )~ (p/2) )~ (1/p)

}

curve(A_mix,0,1,x1im=c(0,1),ylim=c(0.5,1) ,xlab="w",ylab="A(w)")

par (new=TRUE)

curve(A_log,0,1,x1im=c(0,1),ylim=c(0.5,1),col="red",xlab="",ylab="")
legend(1ist(x=0,y=0.7), legend = c("mixed model","logistic model"), col=1:2,1lty=1, me

#Conditional density functions ( they work in the same way, here we show one conditio
Hai_mix<-function(x,y,kh,ph){

gevx<-exp(-(1 + mi$estimate[3]*((x-mi$estimate[1])/mi$estimate[2])) " (-1/mi$estimate[3
gevy<-exp(-(1 + m2$estimate[4]*(y-m2$estimate[1]-m2$estimate [2]*t) /m2$estimate[3]) (-
xu_s<-(1+mi$estimate[3]* (x-mi$estimate[1])/mi$estimate[2]) "~ (1/mi$estimate[3])
yu_s<-(1+m2$estimate [4]* (y-m2$estimate [1] -m2$estimate [2] *t) /m2$estimate[3]) " (1/m28est
wx_s<-(xu_s+yu_s)/xu_s

wy_s<-(xu_s+yu_s)/yu_s

(1/xu_s"3/yu_s"3*exp(-(1/xu_s+1/yu_s)*(1-kh* (wx_s ph+wy_s"ph) " (-1/ph)) ) *(wx_s "ph+wy_s
}

plot(y,Hai_mix(min(x),y,1,0.6132411) ,xlab="Apple",ylab="P(Apple|IBM)",cex.lab=1.2)
abline(v=min(x),col="blue")

#Quantile plots for two extreme models

G<-function(x,y,k,p){

xu<-(1+mi$estimate [3]* (x-mi$estimate[1]) /mi$estimate[2]) ~(1/mi$estimate[3])
yu<-(1+m2$estimate [4] * (y-m2$estimate [1] -m2$estimate [2] ¥t) /m2$estimate [3]) " (1/m2$estim
exp (- (1/xu+1/yu-k*(1/ (xu"p+yu~p)) " (1/p)))

}

H<-function(x,y,k,p){

xu<-(1+mi$estimate [3] *(x-mi$estimate[1]) /mi$estimate[2]) "~ (1/ml$estimate[3])
yu<- (1+m2$estimate [4]*(y-m2$estimate [1]-m2$estimate [2] *t) /m2$estimate [3]) " (1/m2$estim
exp (-(1/xu"p+1/yu"p+k/ (xuxyu) ~(p/2)) " (1/p))

}

xax<-seq(-0.015,0.135,by=0.0001)#1-6 70% 11-15 90%
yax<-seq(-0.015,0.135,by=0.0001)

#mix100bs,k=1,p=0.6132411

#mixbobs k=1,p=0.5971535

#10 obs, k=3.233722 ,p=3.135627

#5 obs k=2.774460,p=2.974842

#tmp<-outer (xax,yax,G,k=1,p=0.6132411)

tmp<-outer (xax,yax,H,k=3.233722 ,p=3.135627)

g<-0.90

I<-which(abs (tmp-q)<le-5)
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xx<-rep(xax,length(yax))
yy<-rep(yax,each=length(xax))

xd<-rep(0,length(I))

yd<-rep(0,length(I))

for(i in 1:length(I)){

xd [i]<-xx[I[i]]

yd[il<-yy[I[il]

}# xd,yd is the quantile line
plot(x,y,x1im=c(-0.015,0.135) ,ylim=c(-0.015,0.135))
lines(xd,yd,col="red")
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