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Abstract

The purpose of this thesis is to get knowledge of which parameters and set-
tings are suitable for making an accurate forecast of the electricity load. The
focus will be on one day ahead forecasts. The importance of accurate electricity
load forecasts are high since they are used for energy trading and production
planning. For instance in the Nordic power exchange market they have trading
of energy contracts for a day-ahead. The production of electricity is a complex
routine which is very cost and time consuming. Non optimized planning could
therefore have severe consequences on the budget. The approach is based on
trying different input variables for a feed forward neural network. The study
involves analysis of lagged variables, weather variables and deterministic time
components for capturing the seasonality profile of the electricity load. The con-
clusions that can be drawn is that raw time variables are the best deterministic
time components for modeling the electricity load profile.
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Chapter 1

Introduction

1.1 Purpose

This thesis covers investigation of artificial neural network models for short term
electricity load forecasts. The purpose is to get knowledge of which parameters
and settings are suitable for making an accurate forecast of the electricity load.
The implementation takes in to account several weather variables and seasonal
dependencies. The focus will be on one day ahead forecasts (24 hours ahead).
The importance of accurate electricity load forecasts are high since they are used
for energy trading and production planning. For instance in the Nordic power
exchange market(Elspot) they have trading of energy contracts for a day-ahead.
The production of electricity is a complex routine which is very cost and time
consuming. Non optimized planning could therefore have severe consequences
on the budget. The desired forecast may vary and is usually defined in three
types of length.

o from one year and ahead (also referred as long term) is used for long term
planning, maintenance and extension of production units.

o from one week up to one year ahead (also referred as medium term) is
mainly used for planning and maintenance.

e from one hour to one week ahead (also referred as short term) is used for
production planning and energy trading.

The focus of this paper is on short term forecast models.

1.2 Energy Opticon

Energy Opticon is one of the leading providers of software with economic pro-
duction optimization and load forecasting for energy producing companies. The
software tool is called Energy Optima and delivers systems with district heating
forecasts, electricity load forecasts, production optimization, long term planning
and electricity trading. Energy Opticon currently has customers in Sweden,
Denmark, Finland, Germany, Netherlands, France and Switzerland [12].




1.3 Outline of the thesis

Chapter 2 covers the data description and analysis. In Chapter 3 the theory
for neural networks is presented. In Chapter 4 the selected neural network
models are trained and evaluated. Chapter 5 contains a conclusion of the model
evaluation with some further suggestions in areas of research for a best fit model.



Chapter 2

Data Analysis

In this chapter the data for creating a forecast model of the electricity load
demand is presented. In order to be able to identify the best fit model it’s nec-
essary to analyze which type of variables are able to capture the dependencies of
the load. There exists a huge amount of articles and information around which
variables are important for the electricity load forecast.

Lagged variables are the most commonly used input variables when creating
a model for the electricity load demand [9]. The importance of the input vari-
ables may differ depending on the load consumption type. There are three
types of main classes of electricity consumption types. These are the Industrial-,
commercial- and domestic consumption. For the industrial electricity consump-
tion the weather dependency may not have as much impact since the usage is
usually highly effected by the human activity rather then the weather factor.
On the other hand we have domestic electricity consumption which has a very
strong seasonal weather dependency. For instance during the winter we can
assume that the electricity consumption will be higher due to heating and light-
ning. For optimal modeling the best practice is to distinguish the different types
of energy load classes [9]. In this case study there is no knowledge of which type
of electricity load that is being handled, therefore we can not assume any special
conditions. The data analysis will involve all obtained variables with focus on
lagged variables. Further there will also be a study of the periodicity due to
high seasonality.



2.1 Data Descripfion

The acquired data consists of time series of the electricity load and weather
observations that come from a country in Northern Europe. The data signals
are electricity power load, air pressure, humidity, wind direction, wind speed,
global radiation and outdoor temperature. All measurements have an hourly
time resolution. The time line for the data is from 1st of January 2008 to 1st
of November 2010.

All the acquired data observations are visualized in Figure 2.1. The figures
indicate that there is a notable dependency between our target variable the elec-
tricity load and three weather variables. These are the outdoor temperature,
global radiation and humidity. For instance when the temperature observations
are in general low the electricity load goes up and vice versa. The dependencies
for the other weather variables are analogue to the temperature example. An
interesting thing will be to see if the usage of more weather variables can effect
the performance accuracy of our models. Temperature and humidity are two
highly correlated weather variables. In many cases the temperature and humid-
ity may be computed to a single component referred to as temperature-humidity
index or heat index which temps to define the human-perceived temperature(9)].
The global radiation variable can be used as a way of estimating the heating of
the ground and buildings. The global radiation variable may in certain cases
cause false indications due to effects such as cloudiness therefore it is recom-
mended to be used with caution. The observed variables are defined in Table 2.1.

Data variable Notation  Unit
Electricity power load | f; MW
Temperature T °C
Global radiation G, W/m?
Wind speed W, m/s
Wind direction D; °
Humidity H, %
Air pressure P hPa

Table 2.1: Data variables and their notation
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Figure 2.1: Time series of the energy load and all the obtained weather obser-
vations
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2.2 Correlation Analysis

The relationship between the given observations are studied with linear correla-
tion analysis. An easy approach is by visualizing two different variables against
each other for different time steps. The most known seasonal components for
electricity load are the daily, weekly and yearly dependency [9]. In Figure 2.2
four graphs are shown. The firsi is of the average daily electricity load against
the actual load. The rest consist of lagged variables against the actual electricity
load. The delayed variables show a strict linear dependency but the previous
day average load seems to have some kind of conditional linear dependency that
varies depending on other factors. To get a clear overview of the electricity
load correlation between different time lags the ACF and PACF is computed.
In Figure 2.3 the ACF and PACF is demonstrated. Both correlation functions
clearly have a seasonal dependency specially the ACF.

In a classical time series approach a suggested method to decrease the sea-
sonal dependency would be to differentiate the electricity load. A suggestion
of differentiation is clearly 24 hours and 168 hours. Figure 2.4 illustrate the
ACF and PACF of the electricity load differentiated with 24, 168 and also two
times differentiated time series of electricity load. The differentiations do not
remove the strong correlation in time lags. The two times differentiated time
series seems to handle it best but still has strong correlation after 24 hours.
The differentiated time series shows an unsatistying model result since there are
notable lag correlation for length larger then 24 hours.

The actual electricity load has been shown to be a highly seasonal compo-
nent. In Figure 2.5 graphs for the actual electricity load are plotted against all
weather variables. A first and second degree polynomial curve is estimated for
each plot. Only the outdoor temperature shows significant linear dependency.
The temperature, humidity and air pressure can be described by a second degree
polynomial curve. The other variables are not easily described by polynomials
but show clear non-linearity.

In Figure 2.5 the dependency of the electricity load and the weather variables
were shown but no notable linear dependency could be identified. In order to
identify the correlation between the electricity load and the weather variables
the CCF is computed. In Figure 2.6 all the CCF’s are shown. They all show
a strong seasonal correlation. In other words this means that all our weather
variables are correlated with the electricity load. Some of the weather variables
such as temperature, global radiation and humidity have much stronger cross
correlation with the electricity load than others.

12
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2.3 Deterministic components

The focus has so far been on input variables that consist of delayed load and
weather variables. Both types of variables showed strong seasonal correlation.
There is no doubt that the seasonality variable is the most important input
factor for the electricity load demand.

Figure 2.9 shows the daily electricity load profile of each day of the week for all
obtained data. The daily load has indeed a special pattern for each day of the
week. Except for the load usage the pattern of the load for each hour seems
to remain throughout each day of the week. Therefore a deterministic variable
such as hour of the day, day of the week, month or day of the year should defi-
nitely be considered.

Previous correlation analysis demonstrate a strong seasonal correlation between
the daily load but also the load of the previous week at the same day and hour.
In Figure 2.7 a regular week example of the electricity load time series is shown.
The load has a strong oscillating effect that represents the daily load. The fig-
ures of a weekly load profile and the daily load profile concludes that there also
is a periodicity in the weekly time length.

Fourier series is a decomposed periodic function. If we can identify the pe-
riodicity in the electricity load time series we may use these variables in the
modeling. To identify the periodicity in owr fluctuation we perform spectral
analysis on the electricity load. In Figure 2.8 the power spectrum is shown.
The figures show peaks for frequencies which in descending order correspond to
the periods 24, 12, 168 and 84 hours. Hence the time series can be represented
by a Fourier model. In classical time series analysis an approach would be to
use these variables in our multiple regression model. In this case we will use
them as input variables to see if the components may improve the accuracy of
our network.

4

fi=a0+ Z (ak cos(2mt fi) + by sin(2wt fi)) (2.1)
k=1

where {t € [1,168]}z.
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The analysis of the deterministic component concludes that there is a thor-
ough seasonal pattern in all the analyzed variables. The need for deterministic
time variables may therefore capture this seasonality which includes the hourly
and daily effect. In Table 2.2 all the different time variables that will be used
when doing model selection are presented. The suggested time variables are
presented further in the next subsections of this chapter.

Data variable Notation Variable(s) Type
Hour of the day | h; 1 Raw
Weekday dy 1 Raw
Month ™My 1 Raw
Day of the year | y; 1 Raw
Hour of the day | Iy, 24 Indicator
Weekday 1y, 7 Indicator
Hour of the day | gy, 2 Fourier
Weekday 9d, 2 Fourier
Day of the year | gy, 2 Fourier
Hour of the day | a; 7 Combined
Weekday by 24 Combined
Table 2.2: Indicator time variables.
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Figure 2.7: Example of the electricity load a regular week.
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Figure 2.8: Power spectrum of the electricity load.
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2.3.1 Raw time variables

Raw time variables are defined as integer values in a certain range. The defined
variables are hour of the day (1-24), day of the week (1-7), day of the year(1-365)
and month of the year(1-12). The variables are defined below. In Figure 2.10 a
example of a regular wecek is plotted for each variable.

This yields
h: = hour of the day at time ¢ (2.2
d; = day of the week at time ¢ (2.3
4y = day of the year at time ¢ (2.4

m, = month of the year at time ¢ (2.5

JrOIYRY
mono

1 L L s L 1
20 40 60 8 100 120 140 160
Hour of the week
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L L L L
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Figure 2.10: The plots demonstrate the deterministic values of the raw input
variables for a regular week.
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2.3.2 Indicator time variables

Indicator variables are also known as dummy variables which can be defined ei-
ther as one or zero. The handled time variables are for the hour of the week and
the day of the week. Since indicator variables can only hold one categoric effect,
the need for multiple input variables are needed for capturing the chosen time
variables. The indicator variables for the hour of the day consist of 24 variables,
one for each hour of the day. The indicator variables for the day of the week are
7, one for each day of the week. In Figure 2.11 two graphs illustrate the values
for two of the indicator values. The first is for the 16th indicator variable for
the hour of the day and the latter is the Wednesday indicator variable for the
day of the week.

This yields

In, = (Iun,, Doy Iahy s oo T2a,n,) (2.6)
(1 =t

I, —{ 0 4t (2.7)

IdL - (Il,d“IZ,dv/,aI:i,dm "'717,!11,) (2'8)
1Y i=d

IJ,ILL - { O ] ;é dt (29)

Indicator function for the 16th hour variable

0.6

0.2f

0 1 L 1 1
20 40 60 80 100 120 140 160

Hour of the week

Indicator function for wednesday

0.8

0.6

0.4

0.2F

o 1 i 1 1 1 1 1 1
20 40 60 80 100 120 140 160
Hour of the week

Figure 2.11: The first plot shows how the indicator variable for the 16th hour
locks like for a general week. The second plot shows the indicator variable for
Wednesday during a regular week.
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2.3.3 Fourier series time variables

Previous identification through the power spectrum showed strong periodicity
for the time periods 24, 168, 12 and 8760 hours. Fourier series are used in clas-
sical time series for it’s ability to capture periodicity for strongly seasonal time
series. In this study the chosen Fourier variables are for the time periods of 24,
168 and 8760 hours. Each Fourier series component consists of two variables.
The Fourier series variables are defined as trigonometrical functions of sinus and
cousins where the period length varies. In Figure 2.12 examples of the chosen
variables are shown.

This yields

gn, = (cos(2mt/24),sin(2mt/24)) (2.10)
where t is the hour of the day

gd.,v = (cos(27t/168), sin(27t/168)) (2.11)
where t is the hour of the week

gy, = (cos(27t/8760), sin(27t/8760)) (2.12)

where t is the hour of the year

g(h)

-1 A L L
20 40 60 80 100 120 140 160
Hour of the day
g(d)

1 L ! ) L i
20 40 60 80 100 120 140 160
Hour of the week

aly,)

- 1000 2000 3000 4000 5000 6000 7000 8000
Hour of the year

Figure 2.12: Each plot has two variables the regular line is the cosine variable
and the dotted line is the sine variable. The first plot shows values for the daily
periodicity of a regular week. The second plot is for the weekly periodicity. The
third plot shows the yearly periodicity during one year.
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2.3.4 Combined time variables

Combined time variables consist of combinations of our previous time variables.
Since the input variables can have a multi category property there is the pos-
sibility to add several categorical effects in to the same variable. The merged
properties are the hour of the day and day of the week component. The chosen
combination is between the raw and the indicator time variables. This leads to
two new multi categorical variables. The first is a combination of the indicator
for the actual day of the week against the actual raw value for which hour of
the day. The combination consist of 7 variables where the defined values are
from 0-24. The second combination is of the indicator for the actual hour of the
day against the actual raw value for which day of the week. The combination
consists of 24 variables where the defined values are from 0-7. In Figure 2.13
examples of the combined time variables are shown for a regular week. The first
figure shows the Wednesday variable variable for out combined variable ag ;.
The second figure shows the 16th variable for our combined variable big ¢

This yields

ar = Iy, - he (2.13)
at = (a1,t,024, ., a7,t) (2.14)
by = In, - dy (2.15)
by = (b1,t, 02,8, -y b24,¢) (2.16)

Combined variable that is valid for wednesday
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Figure 2.13: An example of a regular week.
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2.4 Example of a linear model

A linear model estimate of an electricity load is made with the following input
matrix.

Xt = (Tt: Ht: hty dt, IWdE{O,l)’Tt’ ft—24) ft—lﬁg) (217)

Each variable consist of a column vector with N rows corresponding to the
amount of measurement observations.
The electricity load model is

ft = BXt + e (218)

where e; is white noise.

We estimate the models parameters in the vector B with least squares. The
result is presented in the table beneath. In Figure 2.14 we clearly see that the
residuals are highly correlated after 24 lags. The estimated model is not satis-
fying due correlated and non-gaussian residuals. The result in MAPE is slightly
below 5 percent for the linear model.

MODEL In sample Out sample
MAE MAPE RMSE | MAE MAPE RMSE
(2.18) 6.0392 4.9331 8.3593 | 6.8598 4.9830 9.5717

Table 2.3: Performance results of the linear model M(2.18) is measured using
MAE, MAPE and RMSE. The estimated parameters of the model are made
with the in sample data. The out of sample data is used to test the model with
unknown data.
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Chapter 3

Neural Networks

3.1 Background

A neural network is a circuit of biological neurons. A neuron can be connected
to several other neurons. The connection is called synapses and is built from
axons to dendrites. The human brain is estimated to contain around 10-100
billion neurons and around 10000 billion connections, with each neuron linked
with around 10000 synapses.

Artificial neural networks (ANN) is a mathematical model that is inspired
by the biological neural networks. Although in modern usage the term neu-
ral networks(NN) is referred to the mathematical model artificial neural net-
works. Today neural network models are used in research areas such as statis-
tics, signal processing, neurophysiology, informatics, meteorology, engineering,
business forecasting and so on. The applications are amongst other for pre-
diction/forecasting, pattern recognition, adaptive control such as speech recog-
nition, explosives detection at airports, rainfall prediction, credit card fraud
detection and electrical load/demand forecasting. Neural networks is a non-
parametric black box model which means that no priori assumption is made.
Solely the inputs and the network settings effect the output.

3.2 Mathematical Description

The neural network task is to basically insert inputs into the network to match
any given output. The output is normally referred as the target value. The
network structure consists of three type of layers with nodes. In the input layer
the nodes correspond the amount of variables which will be inserted. The hid-
den layer has arbitrary number of nodes depending on the type of process and
number of inputs. Also the hidden layer may consist of several layers. Finally
the number of nodes in the output layer is equal to the number of target vari-
ables. We demonstrate a simple feed forward neural network in Figure 3.1.



input hidden output
layer layer layer

Figure 3.1: This figure consists of a simple feed forward neural network with
one hidden layer. There are two inputs three nodes in the hidden layer and one
output node.

3.2.1 Mathematical description
Artificial neurons

An artificial neuron is a mathematical function that is a unit of the neural net-
work. Tt is defined as follows. Assume there are m inputs which are z1,...,Zm.
We denote the j:th node weight as wji,...,wjm,. Further the bias weight is de-
noted as wjo ans has zy equal to one. This yields

i=0

Where ¢(-) is the neurons activation function also known as the transfer function
that is chosen depending on which properties the network should have. In
general this is if there should be a linear or non-linear dependency. In this case
we there is a strive to capture non-linearity so the chosen transfer function is
the hyperbolic tangent sigmoid function. This is defined as

e -1
e +1

uj = @(§) = tanh(¢) = (3.2)

Network layers

As described earlier the layers consist of the input layer, the hidden layers and
the output layer. If the variable u; describes one node in an arbitrary layer k
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then it can be denoted as

m
uf = (Z wjg:f) (3.3)
=0

If the layer M is the output layer and there is only one output the function is
m

y=¢ @) =¢ (Zwﬁ‘lmy“> (3.4)
i=0

3.2.2 Training of neural network

To find optimal weights for our network functions we need to optimize the
functions by minimizing the error. This performance (cost) function is in this
case measured by the MSE which is defined as follows

k3 n
MSE = (e)® =D (vi —%:)° (3.5)
There are different optimization methods available for miniziming the cost func-
tion. In this study the used optimization method is Levenberg-Marquardt(LM)
which is a robust method for approximating functions.

Let the Jacobian of e; be denoted J; then the LM algorithm searches for the
solution of p; to the equation

(JETi + M) pis = =TT ey, (3.6)

where A are nonegative scalars and I is the identity matrix.

Since the computations are made backwards through the network they are re-
ferred to as backpropagation algorithms The Levenberg-Marquardt optimization
function is used as a complement to the chosen training function Bayesian Reg-
ulation. The Bayesian Regulation is a training function which generalizes how
many weights and errors should be fitted to the network [10], [11].

3.3 Neural Network Setup

The architechture which is studied in this paper is feedforward neural net-
work with a hyperbolic sigmoid transfer function. The training function is
Bayesian Regulation with Levenberg-Marquardt optimization. Since we are us-
ing Bayesian Regulation the number of nodes are automatically adjusted. The
number of hidden layers is set to a fixed number of 20.
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Chapter 4

Models and Results

In this chapter the models that have been studied are presented an evaluated.
The models are all based on an feed-forward neural network model which es-
timates the function of the electricity load (target variable). The study starts
of with models with lagged electricity load variables and then testing of differ-
ent kinds of deterministic components. Finally the weather factors are tried
out. The performance is measured in MAE, MAPE and RMSE. The quality of
the model is measured through correlations analysis and normality check of the
residuals. The dependency of prediction against actual load is also taken in to
account. The models are evaluated with both in sample and out sample data.
The training set consists of data observations 2008-01-01 to 2009-10-31. The
out of sample evaluation is made with data from 2009-11-01 to 2010-11-01. The
out-sample data consists only of observations and not of forecast.
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4.1 Lagged variables

This section presents our first set of models which are based solely on time
lagged electricity load as input. In this set case the expected results are not a
best fit model but to get an estimate of the importance of the lagged variables.
In the assumption of having a model based on lagged variables we dismiss the
importance of variables such as weather or the studied deterministic compo-
nents. These models are solely based on lagged variables of 24, 84 and 168
hours. Model M(4.3) is also including the previous days average load.

fo = f(fi-24, fi-168) + et (4.1)
fe = f(fi-24, fr-s4, fr—168) + & (4.2)
fe = [ (fi—24, fi-r68, i) + e (4.3)

where f; is equal to previous day’s average load and e; is white noise.

4.1.1 Results

The first model M(4.1) has only two input variables. The 24 and 168 hours
lagged electricity load variable. The quality results of the model are presented
in Figure 4.1. The ACF shows a clearly strong dependency for time steps above
100 hours. This indicates that the residual still has strong correlation and that
the model is not satisfying. The PACF shows only high dependency for one lag
which can be described by an AR(1) model. The ACF and PACF demonstrates
that the residuals are not uncorrelated and by viewing the normal probability
plot we can also see that it’s not normally distributed. The dependency plot
shows that the predicted electricity load is more precise for loads around 75 and
125 MW.

The results for models M(4.2) and M(4.3) are almost analogue. For model
M(4.2) the ACF is a bit lower but not remarkably. Table 4.1 shows the forecast
accuracy results of the models. The conclusion for this set of models is that
the M(4.2) with lagged variables 24, 168 and 84 is the best performing model
of this set.

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.1) 5.6112 4.5498 8.3089 | 7.2261 5.1170 11.3989
(4.2) 5.4947 4.4514 8.1162 | 6.8681 4.8818 10.5112
(4.3) 5.6193 4.5548 8.3201 | 7.5822 5.2893 13.7058

Table 4.1: Results of the performance of the models in this section.
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Figure 4.1: The figure consist of residuals from the in sample data for the
model 4.1.
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4.2 Lagged and Raw time variables

The set of models in this section all have the lagged electricity load of 24 and
168 hours as input variables. All models also have different combinations of raw
time variables. The raw time variables consist of the "hour of the day”, ”day of
the week”, "day of the year” and "month of the year”. The assumption of these
models is that there should be a notable connection between the specific raw
time variable and the electricity load. This should intentionally try to capture

the load profile of the electricity load.

fo=[f(fi-168, fr-24, he, ds) + e (4.4)
Jo = F (fi—168: fi-24, he, de, y2) + e (4.5)
fo = f (fi168, fr—24, he, di, me) + (4.6)
fe = F (fi—168, fro24, he, de, Y2, mu) + €2 (4.7)

where e; is white noise.

4.2.1 Results

Model M(4.4) has the raw time variables "hour of the day” and ”day of the
week”. In Figure 4.4 it’s results are shown. The residual ACF is unlike previous
set of models uncorrelated for lags after 24. Although the PACF still shows
dependency at time lag 1 and 25 the correlation has decreased. The graphs
demonstrate that there are still correlation in the residuals but still not as much
as in previous set. Models M(4.5), M(4.6) and M(4.7) have similar results and
patterns but the model M(4.4) is the best performing model for out of sample
data. Model M(4.6) has least correlation and performs best for the in sample
data. The PACT for this model has no dependency after the first lag. The day
of month variable seems to capture varying correlation for the 24 hours lag.

MODEL In sample Out sample
MAE MAPE RMSE | MAE MAPE RMSE
(4.4) 3.8312 3.1127 5.8001 | 4.6125 3.3641 6.8162
(4.5) 3.7727 3.0955 5.5303 | 4.8236 3.4833  6.8933
(4.6) 3.5551 2.8911 5.2364 | 4.6907 3.3718  6.8262
(4.7) 3.6487 2.9821 5.2146 | 4.8619 3.5197  6.9597

Table 4.2: Results of the performance of the models in this section.
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Figure 4.5: The figure consist of residuals from the in sample data for the
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4.3 Lagged and Indicator time variables

This set of models handle indicator variables of the ”day of the week” and the
"hour of the day”. The assumption is that there exists a individual dependency
of the "hour of the day” or the "day of the week” for the whole data set. If this
is true then the model will successfully capture the dependency. Each indicator
variable consist of several inputs. The day of the week has 7 inputs and the
hour of the day has 24 inputs as described in Section 2.

fo = f(fi-168, fi~24,In,) + et (4.8)
fo = f(fi-168, fr-24,1a,) + ¢4 (4.9)
fo=F(fi-168, fr—2a, In, 1a,) + e (4.10)

where e; is white noise.

4.3.1 Results

The first model M(4.8) performs the worst in this set. Figure 4.8 shows that the
model has highly correlated residuals like in the previous set of lagged variable
models. This means that the hourly indicator dependency is not effective as an
input for our electricity load model. Model M(4.9) consist of daily indicators
which performs much better than model M(4.8). Hence the result concludes
that the daily pattern has a much higher importance as an indicator then the
hourly load for the electricity load throughout the year. The performance is
better but still the residuals are more correlated than for the previous set of
models. Model M(4.9) has the best performance but has correlation similar
to model M(4.9). Overall the indicator variables have a worse performance in
comparison to the set of models with raw time variables.

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.8) 5.6112 4.5498 8.3089 | 7.2261 5.1170 11.3989
(4.9) 4.2901 3.4977 6.3935 | 5.6265 3.9705  8.8310
(4.10) | 3.5599 2.8817 5.3970 | 5.0240 3.5841 7.5456

Table 4.3: Results of the performance of the models in this section.
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model 4.10.
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4.4 Lagged and Fourier time variables

This set of models uses Fourier series of periods corresponding to 24, 168 and
8760 hours as input variable. Each Fourier period consist of two variables. The
testing of Fourier series as inputs is interesting since they are in general used to
model linear periodic time series.

fo =1 (fi-168, ft-24,90,) + €4 (4.11)
fo=f(fi-res, fi-24,9a,) + e (4.12)
fo=f(fi-168, fi-24,9y,) + (4.13)
fo=f (fi-16s, ft—24, 90, 9a.) + €2 (4.14)
fe = f (fe-168, fe—24, 9 Gaus 9u.) + et (4.15)

where ¢; is white noise.

4,4.1 Results

Models M(4.11) and M(4.13) have the worst performance in this set. Both
have highly correlated residuals. Model M(4.11) uses the period of 24 hours
and Model M(4.12) uses the period of 8760 hours (approximately one year).
These input variables are unfortunately not capturing the load patterns in a
effective way. The ACF of the residuals for both models indicate that there’s
still notable lag dependency after 24 hours. Model M(4.12) is one of the better
performing models. The model periodicity corresponds to the weekly(168 hour)
dependency. In Figure 4.12 the residuals ACF show small correlation after 24
lags. The PACF shows dependency for 1 and the 25th lag. The conclusion is
that importance of the day of the week periodicity is higher than the daily and
the yearly. The best performing out of sample model is the M(4.14) which is
a combination of the weekly and daily period. The best performing in sample
model is the M(4.15) which has the weekly, daily and yearly periodicities as
input variables. The residuals correlation function for this model is similar to
M(4.14).

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.11) 5.3267 4.3004 7.8910 | 6.8578 4.7961 10.7472
(4.12) 3.7287 3.0382 5.6597 | 4.8632 3.5008  7.5900
(4.13) 4.8936 4.0122 6.9241 | 6.6418 4.7809  9.2924
(4.14)
(4.15)

4.14 3.6933 29970 5.6277 | 4.6778 3.3856  7.0056
4.15 3.5868 2.9455 5.2322 | 4.7791 3.4550  6.9832

- Table 4.4: Results of the performance of the models in this section.
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Figure 4.11: The figure consist of residuals from the in sample data for the
model 4.11.
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Figure 4.12: The figure consist of residuals from the in sample data for the
model 4.12.
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Figure 4.13: The figure consist of residuals from the in sample data for the
model 4.13.
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Figure 4.14: The figure consist of residuals from the in sample data for the
model 4.14.
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Figure 4.15: The figure consist of residuals from the in sample data for the
model 4.15.
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4.5 Lagged and combined time variables

This set of models consist of a merge between raw time variables and indicator
time variables. By inserting more information to each input variable we may
possibly be able to capture more of the time periodicity. The input variables
are described in the data analysis chapter.

ft = f (fimr68, fr—24,0:) + € (4.16)
fo = f(fi-168, fi—24,b:) + ¢ (4.17)
fo=f(fi-168: fi—24, 05, b¢) + €1 (4.18)

where e; is white noise.

4.5.1 Results

Model M(4.16) has one variable per weekday as input. The objective of this time
variable is to capture the daily load profile. Model M(4.17) has one variable per
hour of the day as input. The objective of this variables are to capture the hourly
load profile. Between the models M(4.16) and M(4.17) the best results are given
by the first combination. Model M(4.18) is the best performing model for this
set both for ”in sample” and "out sample” data. Surprisingly the combined
variables do not perform better then the best raw and Fourier time variables.

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.16) 3.7190 3.0252 5.6004 | 5.0657 3.6133  7.8109
(4.17) 5.0383 4.0196 7.4520 | 6.1047 4.3177  9.1268
(4.18) 3.6397 2.9514 5.4925 | 49131 3.5198 7.4189

Table 4.5: Results of the performance of the models in this section.
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Figure 4.16: The figure consist of residuals from the in sample data for the
model 4.16.
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Figure 4.17: The figure consist of residuals from the in sample data for the
model 4.17.
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Figure 4.18: The figure consist of residuals from the in sample data for the
model 4.18.
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4.6 Best performance models without weather
variables

The two best performing models are models M(4.4) and M(4.14). Both models
consist of networks with input variables for "day of the week” and ”hour of the
day”. In this set of models a comparison of these two models are made. Also
a merged model of these two are made. The best performing model should be
used when adding weather variables in the next model set.

fe = f(fi-168, fr-sa; fro2a,he,di) + (4.19)
fo = f (fi-168, fr—s4, fr—24,Gn,» 9a,) + €2 (4.20)
Ji = f (fr-168, fe—s4, fr—24, he, diy 90y, 9a,) + €2 (4.21)

where e; is white noise.

4.6.1 Results

All the models perform slightly well. The ACF for all models is low after 24
lags and the PACF has only two strong lag dependencies. The best model in
the set is Model M(4.19). Although the difference in accuracy between M(4.19)
and the model in the set of raw time variables M(4.4) is minimal.

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.19) | 3.7838 3.0850 5.7397 | 4.6238 3.3530 6.8181
(4.20) | 3.6839 2.9984 5.5673 | 4.7639 3.4296  6.9923
(4.21) | 3.6778 2.9877 5.4985 | 4.8005 3.4431 7.1331

Table 4.6: Results of the performance of the models in this section.
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model 4.19.
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Figure 4.20: The figure consist of residuals from the in sample data for the
model 4.20.
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Figure 4.21: The figure consist of residuals from the in sample data for the
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4.7 Models with weather variables

In this section we try out different weather input variables to see if a good
model can be improved by inserting weather factors. The same input variables
as for the model M(4.4) are used for all the models in this set. Since the cross
correlation for all the weather variables have seasonal dependency such as with
the lagged electricity load all the weather variables are tested with actual hour,
24 and 168 hour delay.

fr = f (fi-168, fr—24, bty dt, Tty Te—24Ti—168) + €4 (4.22)
fo = f (fi168, 24, he, dt, Gi) + € (4.23)
fo = f (fio68, fr24, Bty di, W) + e (4.24)
Jt = f (fi~168, fr—24, he, di, Dy, Dy—94Ds_168) + €1 (4.25)
ft = f(fi-168; fr—2a, he, de, Hy, He 24 Hy_168) + e (4.26)
fe = f(fi-168; fr-24,hu, di, Pr, Pro2a Piov6s) + €2 (4.27)
fo = F (fiz16s, fr-24, P, de, Tt To—24Ty 168, We, Gt) + e (4.28)

where e; is white noise.

4.7.1 Results

The result indicates that the M(4.22) with the outdoor temperature as input
has the best performance compared to all the other models. As demonstrated
in data analysis the result shows that the temperature input is the best fitting
variable to the electricity load model. Most of the weather variables should be
able to have a positive impact on the model. Trimming of them in forms of
moving averages, other delays or other kinds of transformations may be needed
to find clearer dependencies. In this case we are satisfied with the model M(4.22)
that has the best performance in our study.

MODEL In sample Out sample

MAE MAPE RMSE | MAE MAPE RMSE
(4.22) 3.4253  2.8427 5.2021 | 4.3166 3.1819 6.4106
(4.23) 3.6782 3.0126 5.4889 | 4.6427 3.3883 6.7113
(4.24) 3.8102 3.1061 5.7557 | 4.5651 3.3284  6.7780
(4.25) 3.9175 3.2133 5.7565 | 4.9121 3.5767  7.1201
(4.26) 3.6258 2.9799 5.3978 | 4.6936 3.4446 6.7735
(4.27) 3.7445 3.0840 5.5395 | 4.8374 3.5293  7.2558
(4.28) 3.7445 3.0840 5.5395 | 4.8374 3.5293  7.2558
(4.28) 3.2004 2.7465 5.0304 | 4.3237 3.2625 6.3741

Table 4.7: Results of the performance of the models in this section.
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Figure 4.22: The figure consist of residuals from the in sample data for the
model 4.22.
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Chapter 5

Conclusion

The purpose of this study was to analyze which parameters produce the best
fitting electricity load demand forecasts. Accurate electricity load forecasts are
highly important for production planning and electricity trading. To identify
which variables were the most essential the linear dependency was studied for
delayed electricity load and weather variables. The highly seasonal impact of
the electricity load was identified and further studied. The conclusion is that the
time deterministic components are except for lagged load the most important
factors for modeling the electricity load. The results demonstrate that usage of
to many input variables may cause over fitting which causes increased errors.
The best performing deterministic components are the raw time variables which
also have the least used variables. The weather variables have a minor impact
on the accuracy and should in general be chosen carefully. This clearly also has
to do with which type of electricity load type it is. In some cases it may not
even be needed. In our test only the temperature model M(4.22) and the wind
model M(4.24) performed better then the best model without weather. The
best fit model in the study was M(4.22) which had 2.84% MAE for in sample
data and 3.18% MAE for out of sample data.

Some further interesting research would be to analyze the weather dependencies
further. The usage of recurrent neural networks that model the moving average
error would be interesting to test. The public holiday effect was not handled
in this paper. To increase accuracy this should also be handled. To combine
a neural network model with a linear model such as an ARIMA model would
be interesting since there’s already lots of studies around linear electricity load
models.
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