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Abstract

Combinatorial auctions allow buyers to express preferences over bun-
dles of items. The Primal-Dual (PD) auction developed by de Vries et
al. [5] is an efficient ascending combinatorial auction which, given certain
conditions on buyers valuations, achieves Vickrey-Clarke-Groves (VCG)
payments. The Universal Competitive Equilibrium (UCE) auction by
Mishra and Parkes [6] is a generalization of the PD auction and achieves
VCG payments under more general valuations. This study compares the
PD and the UCE auction with respect to seller revenue and the number
of iterations required to reach equilibrium. Simulations are performed for
a fixed number of items over different levels of competition. The results
indicate that for some numbers of buyers, the UCE auction yields slightly
less revenue. There does not seem to be any difference in the number of
iterations before termination.

Keywords: PD auction, UCE auction, Combinatorial auction, Ascending
auction, VCG payments, Strategy-proof, Primal-dual algorithm
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1 Introduction

Economic agents that compete over a set of items might value certain com-
binations differently than how they would have valued the items in solitude.
For example, an airline company could have intricate preferences over different
airport slots which can only be rightfully represented if they are allowed to ex-
press valuations over different combinations of slots. Or, the cost for a trucker
to handle shippings in one lane could be contingent on the amount of loads in
other lanes. Similarly, a construction company that participates in a procure-
ment process for different projects might only realize economies of scale if they
are assigned geographically adjacent projects. A socially optimal solution to
these types of allocation problems can sometimes be solved by implementing
a combinatorial auction. In a combinatorial auction buyers compete for many
heterogeneous indivisible objects, and are allowed to express valuations over
bundles of items rather than only stating preferences over single items. Combi-
natorial auctions have been applied in a wide variety of areas such as truckload
transportation, facility sanitation, airport arrival slots, harbor planning, food
programs, and allocation of spectrum licenses [4, 8].

Bikhchandani et al. [3] were among the first to formulate an assignment
problem over bundles of items as a linear program. de Vries et al. [5] imple-
mented this approach to formulate the assignment problem as a combinatorial
auction. The linear program that implements the combinatorial auction is a
maximization problem that obtains an efficient allocation with minimal seller
revenue. An efficient allocation means that the buyer that values a bundle the
most will win this bundle. In terms of a linear program, the primal function
maximizes buyers social surplus given a set of conditions, and the dual mini-
mizes seller revenue. Thus, the dual can be interpreted as the prices that buyers
face over all possible combinations of bundles. When current prices do not fulfill
an efficient allocation, prices (the dual) are adjusted upwards and towards such
an allocation. This is effectively an interpretation of the combinatorial auction
as an ascending auction, sometimes also called clock-auction.! An ascending
auction is formally conducted by the seller or a third party auctioneer. At ev-
ery round, the conductor reports current prices to the participating buyers who
decides wether they are still willing to buy some bundle at the current prices.
The conductor then raise prices for some set of adjusted buyers and again asks
which buyers are prepared to buy bundles at the current prices. The auction
finishes when prices have reached sufficiently high so that every buyers demand
can be fulfilled.

Solving a combinatorial assignment problem as a linear program requires
sufficient knowledge of duality theory. However, the combinatorial auction can
also be solved with an algorithmic approach that implements the same solution.
This is described in de Vries et al. [5] as the Primal-Dual (PD) auction. The
PD auction is an iterative procedure that, via appropriate price adjustments,
achieves an optimal allocation. The PD auction is efficient and will, under some

Isee Demange et al. [7] for an early example of an ascending auction.



assumptions regarding buyers valuations, achieve truthful bidding which means
that buyers can never do better than reporting their true preferences.

Mishra and Parkes [6] further develop the PD auction by examining if there
is a way to achieve truthful bidding under a more general profile of buyers valu-
ations. This resulted in the Universal Competitive Equilibrium (UCE) auction
which is essentially a generalization of the PD auction. The UCE auction does
indeed achieve truthful bidding under a more general setting, and is from that
perspective an improvement of the PD auction. However, as will be made clear
below, this property comes at the cost of stricter equilibrium requirements that
might induce lower seller revenue, and a somewhat more complicated formula-
tion that might require a higher number of iterations before an equilibrium is
reached.

The PD and the UCE auction have attractive properties and as such they
might be considered as candidate devices to allocate items in settings where
buyers wishes to express combinatorial preferences. Thus it seems relevant to
compare the performance of these auctions. The aim of this study is to compare
differences between the PD and the UCE auction regarding seller revenue and
the number of iterations required to reach equilibrium. This is done by con-
structing simulation models of the PD and the UCE auction that can be run
over different number of buyers. To the best of my knowledge there has been no
previous work on the comparative performance of two combinatorial auctions
with respect to these issues.

The rest of this study is outlined as follows: In Section 2, I specify the
general settings of a combinatorial auction. Section 3 explains truthful bidding
and how this is linked to Vickrey-Clarke-Groves payments. Section 4 and 5
describe the PD and the UCE auction in more detail after which I, in Section 6,
apply both auctions to an example. In Section 7, I state my research hypotheses
and Section 8 describes the simulation models I use to test these hypotheses.
Section 9 presents the results from the simulation. Section 10 provides a general
discussion of the results and conclude by giving suggestions for future research.

For ease of exposition I will throughout this study denote the number of
elements in a set X as |X|; and aset X ={1,2,...;i—1,i+1,...} as X_,.

2 A general setting

Most features of the PD and the UCE auction are identical. In this section I
will formulate the basic settings of a combinatorial auction that apply to both
versions. The combinatorial auction described here can be seen as an ascending
price auction. It is an ascending price auction in the sense that prices start
at zero, then weakly increases in every round. For a technical summary, see
Appendix A.

In an economy there is a finite set N of n > 2 buyers, who compete for a
finite set of indivisible items, G. Every buyer ¢ € N, has a non-negative, integer
valuation over a bundle B C G, equal to v;(B) € R,;. Valuations are private
information to every buyer. The set of all bundles is denoted as Q = {B C



G}. The seller values all items to zero, i.e., there are no reservation prices.
Preferences are quasi-linear, so a buyer ¢ who receives bundle B, and makes
a payment of p € Ry gets a net-utility of v;(B) — p. Buyers have monotonic
preferences so if S C T, then v(S) < v(T). Other than monotonicity, no
externalities are imposed on valuations.? Valuations over bundles do not need
to be additive, i.e., it is allowed that v;(S) + v;(T) < v;(S + T'). There is a
null item, @), where v;(}) = 0 for every ¢ € N. The purpose of a null item is
that when all prices equal valuations, a buyer can drop out of the auction by
demanding the null item. In other words, receiving the null item is the same as
not getting anything at all. Throughout the auction, p(f) = 0.3

The combinatorial auction consists of a finite set of rounds T = {0, 1,...,T}.
Any round t € T is associated with a price vector p* € Rﬁv‘ x| (I will sometimes
denote p' simply as p). The price vector in the combinatorial auction is non-
anonymous, meaning that it sets different prices for every buyer. This procedure
is different from e.g. Demange et al. [7], where every buyer faces the same price
for a bundle. One can think of p as a superset of every set pLQl for i € N (call
every such set p; henceforth). At ¢t =0, p) =0 for alli € N.

2.1 The buyers

In every round, buyers report their demand set which consists of all utility-
maximizing bundles, given the current price vector p. Since prices are non-
anonymous, buyers only consider ”their subset” p; C p when determining utility-
maximizing demand. If a buyer demands the null item, such a buyer must
receive zero net-utility from any other bundle as well. This implies that p;(B) =
v;(B) ¥V B € Q. When a buyer demands the null item, call this buyer inactive.

A buyer is only allowed to change her demand set from one round to the
next in a certain way. Either the demand set in round ¢ + 1 must be identical
to that in ¢, or her demand set has expanded so that it includes more bundles.
Formally, if Df“ is the demand set of buyer i in round ¢ + 1, then D! C Df“.
This is a constraint imposed on the buyer and is called an activity rule.

2.2 The seller

Given buyers reported demand sets and p, the seller has to find every revenue
maximizing allocation. Call one such allocation X, and the set of all such
allocations L(p)*. A revenue maximizing allocation is one which maximizes the
total sum of prices at p. Any allocation, be it revenue maximizing or not, can
only assign an item to one buyer (the assignment must be feasible). At any price
vector there may exist several revenue maximizing allocations. If the auction
has not reached its final stage where it terminates, these allocations are only
temporary. The allocation only applies for this round and the buyers will still be

2Items do not fulfill other characteristics such as being substitutes.

3Using a null item is a standard technique to achieve consistency in ascending auctions
(see e.g. [7]).

4Call it L(p)* for the UCE auction. See Appendix A.



forced to compete for the items in the next round. Due to monotonicity (more
is better), every buyer will demand G at round zero. For this reason, every
revenue maximizing allocation at ¢ € T will dispose all items to the buyers.
Every buyer that does not receive a bundle under some allocation, receives the
null item which is infinitely divisible. A revenue maximizing allocation must
always give at least one buyer a bundle from her demand set. A buyer that
receives a bundle in her demand set is satisfied. If a buyer does not receive a
bundle from her demand set at some revenue maximizing allocation, this buyer
is said to be unsatisfied.

Whenever it is not possible to satisfy all buyers simultaneously there might
exist one or more sets of minimally undersupplied buyers (MUB). Denote the
revenue maximizing allocation at p that minimizes the number of unsatisfied
buyers X*, and the number of unsatisfied buyers at this allocation as |U|x«. If
|U|x+ > 0, there exists at least one set of MUB. A set of buyers K are MUB
if no revenue maximizing allocation can satisfy all buyers simultaneously, but
there are revenue maximizing allocations that can satisfy every K’ C K. For
example, if K = {1,2,3} is a set of MUB, there must necessarily exist at least
three allocations that satisfy {1,2}, {1,3}, and {2,3}; but no allocation that
satisfy K. As with revenue maximizing allocations, at any p there might exist
several sets of MUB. In such a case, the seller is free to choose any such set. A
buyer that is inactive can never belong to K. Since such a buyer demands the
null item, it will always be possible to satisfy this buyer.

2.3 Price adjustments and equilibrium

The set of MUB determine how prices will be adjusted till the next round. The
seller is free to chose any such set and all buyers that are contained in that set
will see a price increase. These buyers will see a price increase of 1 on every
bundle that belong to their demand set at the current price vector. Bundles
that did not belong to their demand set will not change in price; neither will
any price change for buyers that do not belong to the selected set of MUB.
Buyers that incur a price increase will either expand their demand set as new
bundles become utility maximizing, or their demand set will be the same in the
following round (the activity rule). Once prices have been adjusted by selecting
a set of MUB, the auction moves to the next round by starting over with buyers
reporting their updated demand sets. Since some prices have now been adjusted,
the revenue maximizing allocations might change so that new allocations exist,
and previous allocations disappear.

The procedure above is repeated until it is not possible to find any set of
MUB. This directly implies that all buyers can be satisfied simultaneously in
some revenue maximizing allocation. When there does not exist a set of MUB,
the auction has reached a competitive equilibrium (CE) price vector. When a
CE is reached the auction terminates. Upon termination, two things needs to
be decided. First, one revenue maximizing allocation that satisfy all buyers
must be chosen as a final allocation. At this stage all buyers and the seller will
be indifferent between which such allocation is chosen. Buyers are assigned one



element in their demand set, and the seller only choses allocations that maximize
revenue.® Second, once an allocation has been decided, every buyer i makes a
payment according to p; and her assignment. If a buyer receives the null item,
her payment is zero. Seller revenue is ),y p(X;) where X; is the assignment
to buyer i (X; € D;) in the final allocation. Here, payments correspond to
the price vector p. This is exactly how final payments in the PD auction are
determined. In the UCE auction, payments are not necessarily equivalent to p
(see Section 3).

Once a CE price vector has been reached, the combinatorial auction has
found an allocation that is efficient [5, 6]. It is efficient in the sense that every
bundle is rewarded to the buyer that had the highest valuation for that bundle.
Though a CE price vector has been reached, it does not need to be unique.
Depending on how sets of MUB are chosen, the auction can take different paths
towards a CE. For example, if selecting the same set of MUB over and over
prices within this group of buyers might be driven ”too high” [5]. There might
be other buyers outside of this set that have lower valuations, and thus might
become inactive at an early stage. It is "good” to obtain inactive buyers at an
early stage in the sense that these buyers can never be in a set of MUB. Focusing
on making buyers inactive within fewer iterations might speed up convergence
to equilibrium. Though this is an important aspect of any auction there is no
such ”choice rule” of MUB in neither the PD nor the UCE auction, hence I will
not discuss it further here.

3 Vickrey-Clarke-Groves payments and truthful
bidding

In the previous section I outlined the general settings of a combinatorial auction.
The auction terminated when a CE price vector had been reached and payments
were then made from the buyers to the seller according to assignments in the
final allocation. In any auction, final payments will affect how buyers behave
in terms of bidding patterns. If an auction can achieve Vickrey-Clarke-Groves
(VCG) payments then such an auction might induce truthful bidding. Buyers
bid truthfully if they behave according to their actual valuations. In this section
I will explain the idea of VCG payments and how these relate to the PD and
the UCE auction.

The notion of VCG payments can best be understood by revisiting the sem-
inal Vickrey (or second-price) auction (Vickrey [12]). In the Vickrey auction
buyers compete for a single indivisible good. The buyer submitting the highest
bid wins and pay the price of the second highest bid. In this auction it is a dom-
inant strategy to bid truthfully. A buyers payment is independent of her bid,
and she can not do anything better than to bid her valuation. For a set of buyers

5Note that the mechanism actually minimizes possible seller revenue given the condition
that every buyer must be satisfied. This is due to formulation of the combinatorial auction
as a linear program (see [6, 5, 3]).



N, let i € N be the winning buyer in a Vickrey auction. Buyer ¢’s net-utility
is v; — p where p is the second highest bid. Since no other buyer receives the
item, their utility is zero. Denote the total utility of all N buyers when buyer ¢
wins as V(N) = >, <y k. Now, if I remove buyer 4 from this auction, buyer j
who submitted the second highest bid will win and total utility is V(N_;). A
VCG payoff for buyer i is defined as V(N) — V(N_;) and is in this example
equal to v; — p, where p is buyer i’s VCG payment. Examining the net-utility
for the winning buyer i, it is clear that buyer i’s payment is determined by the
externality she imposes on the other buyers, V(N_;). Since V(N_;) is given
and can in no way be influenced by buyer i, there is no possibility for buyer i to
affect her payment. This is exactly what makes VCG payments desirable in an
auction. Under certain settings, an allocation mechanism with VCG payments
induces truthful bidding by buyers (the mechanism is said to be strategy-proof).

The PD auction can only achieve VCG payments under rather strict assump-
tions whereas the UCE auction achieves VCG payments under a more general
setting. For the PD auction to terminate with VCG payments buyers valu-
ations must fulfill a submodularity condition®. This assumption requires that
a buyer contributes more to the social surplus in a small coalition than in a
larger coalition. The UCE auction achieves VCG payments under any profile
of valuations. It does so by departing from the payment schedule discussed in
the previous section. Instead of paying the final price, buyer ¢ who receives a
final assignment X; makes a payment of p; = v;(X;) — [V(N) — V(N_;)]. In
a combinatorial auction this payment is at par with the VCG payment in a
Vickrey-auction. Since there are many items in a combinatorial auction, the
utility of all other buyers do not need to be zero either when buyer 7 is present
or not.

Though it is possible to attain VCG payments in both auctions, this does not
necessarily imply that truthful bidding is a dominant strategy. If VCG payments
are achieved and if a buyer would behave according to a false valuation profile
she can never do better than if she reported truthfully. In this sense VCG
payments induce truthful bidding. However, if a buyer would bid in a way that
did not correspond to any valuation profile then truthful bidding can not be
realized. Such a bidding pattern would occur if a buyer completely changed her
demand set from one round to the next or at some round of the auction did not
fulfill bundle monotonicity. For the PD and the UCE auction to achieve truthful
bidding, rules that forbid such behavior must be imposed. One of these rules, the
activity rule, was mentioned in the previous section. The other rule, the bundle
rule, forbids behavior that is inconsistent with the monotonicity assumption:
for any buyer i, if B C T and B € D;, then T € D;. By imposing the activity
rule, and the bundle rule, the PD and UCE auction achieves truthful bidding
whenever VCG payments can be realized. There are however some issues over
this notion. As valuations are private information buyers will not know if they
satisfy the submodularity condition in the PD auction. If buyers believe that this
condition is not fulfilled and that VCG payments will not be reached, they might

6See Appendix A.



choose to behave accordingly and report false valuations. The UCE auction is
robust to such considerations as it achieves VCG payments under any valuation
profile. Buyers know this and will hence behave thereafter.

4 The Primal-Dual auction

The PD auction is conducted in the same way as was explained in Section
2. Given the current price vector, buyers report their demand sets, the seller
then examine revenue maximizing allocations, a set of MUB is selected, and
prices are updated accordingly. Once a price vector has been reached where
it is possible to satisfy every buyer, the auction terminates. Though I use the
notion of a CE price vector as equilibrium condition, this concept is not used in
de Vries et al. [5]. Rather, the focus is on the primal-dual algorithm and how
this program is solved. No matter which interpretation that is used, the PD
auction do terminate in a CE price vector (which is the optimal dual solution in
the linear program). When the PD auction terminates, an efficient and feasible
allocation is obtained. If buyers fulfill the submodularity condition then the PD
auction terminates with VCG payments.

de Vries et al. [5] were the first to select adjusted buyers by using the
notion of MUB. Adjusted buyers are those that incur a price increase from one
round to the next. In the literature there are different ways of selecting such
a set of adjusted buyers. MUB can be seen as a generalization of minimal
overdemanded sets of objects developed by Demange et al. [7]. If B C G then
B is overdemanded if [{i € N: S C BV S € D;}| > |B|. If overdemand holds,
{ie N:SC BVS e D,;} must necessarily contain at least one coalition of
MUB. An appropriate subset can then be chosen so that it is possible to satisfy
all but one buyer simultaneously.

A useful rule in the PD auction is how seller revenue updates from round
to round. At any round ¢ of the auction, where the set K is selected as MUB,
the change in the sellers maximum revenue from ¢ to ¢t + 1 is (JK*| — 1). Since
K" is a set of MUB, every set K’ can be satisfied. When prices are increased,
K will either be MUB in ¢ + 1 or not. If K* is MUB, then total price increase
(change in revenue) is |K*| — 1 for every allocation containing K*, Vi € K. If
K is no longer MUB, then one buyer ¢ must have increased her demand set,
making it possible for all buyers in K* to be satisfied. As the demand set of i
increased, the bundle B = Xit'H has the same price for buyer 7 in ¢t + 1 as in t.
I will use this rule in Section 8.2 where I develop a simulation model of the PD
auction.

5 The Universal Competitive Equilibrium auc-
tion
Unlike the PD auction, the UCE auction has a few important deviations from

the procedure discussed in Section 2.
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First, final payments do not need to correspond to the price vector (as ex-
plained in Section 3). The UCE auction maintains a single price path as in
the PD auction; however, prices in the UCE auction only serves to elicit buyers
preferences and does not need to correspond to final payments.

Second, every marginal economy where one buyer is excluded has to achieve
a CE price vector. The UCE auction is a generalization of the PD auction
as it considers a richer environment by including every marginal economy in
the allocation problem. Let N = {N,N_;,...,N_,}. Call a group of buyers
M C N economy E(M). If M € N\N, E(M) is a marginal economy. If M = N,
E(M) is called the main economy (I will sometimes denote the main economy
as E(N)). In the UCE auction there are n + 1 economies: the main economy
and the set of all marginal economies. Economy FE(M) has a corresponding
price vector pys that is a projection of p on RIMI*I€ (denote a price vector that
does not include buyer i as p_;). pa is a CE in economy E(M) if there is a
revenue maximizing allocation such that no buyer in M is left unsatisfied. The
price vector p is a universal competitive equilibrium (UCE) if pys is a CE price
vector of E(M) for every M € N. Hence, compared to the PD auction, the
UCE auction puts additional requirements on reaching termination. Not only
does p need to constitute a CE of the main economy, it also needs to constitute
a CE of every marginal economy. Unlike the PD auction where it was sufficient
to reach a CE price vector in the main economy, the UCE auction requires the
price vector to be tested on every economy to see if it is possible to satisfy all
buyers in the marginal economies as well.

Third, MUB is generalized by considering universally minimally undersup-
plied buyers (uMUB). Let the set of buyers Kj; be a set of MUB in economy
E(M) (The same definition of MUB as in Section 2.3 apply). The set of buyers
K D Ky is uMUB if every buyer ¢ € K is MUB in some economy E(M). In
other words, it is possible to choose the set of uMUB in two ways in the UCE
auction. Either the set can be chosen from some economy E(M), or it can be
chosen to include MUB from many economies. As mentioned in Section 2.3, the
UCE auction does not prescribe how this selection should be done. If it is de-
sirable to obtain inactive buyers at an early stage, choosing the largest possible
set of uMUB at every round might be a good strategy.

The UCE auction can be seen as a PD auction that is repeated over n + 1
economies. By starting the auction in E(N) and only selecting uMUB from the
main economy, the UCE auction is identical to the PD auction. Once a CE
price vector p is reached, the PD auction terminates whereas the UCE auction
proceeds to the next element in N. If p is a CE price vector in every economy,
the UCE auction can terminate. If the price vector is updated in some economy,
the procedure has to be repeated over all economies again.

By considering all marginal economies the UCE auction can implement VCG
payments for any valuation profile. It can be shown [6] that if p is a UCE price
vector, the payment schedule defined in Section 3 is equal to p; = p;(X;) —
[7(p) — m(p—;)], where m(-) is the sellers revenue given p. The second part of
the equation, [(p) — 7(p—;)], can be considered as a discount on the final price.
The discount is the Vickrey payoff and can be considered as buyer i’s marginal
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product in the auction. The presence of buyer i increases seller revenue by
7(p) — m(p—;), and the final price is discounted with this value. Thus, if a buyer
were to report some false valuation profile she could not reduce her final payment
since p;“(X;) is the lowest price possible at which she can receive X; (recall
the Vickrey-auction where the lowest possible payment for the winning buyer is
the second highest bid). As payments might deviate from the price vector seller
revenue will not correspond to that explained in Section 2.3. Instead, seller
revenue in the UCE auction is equal to >,y p;“(X;).

In Mishra and Parkes [6] the UCE auction is actually called the Universal
Quasi Competitive Equilibrium (uQCE)-invariant auction. This is to highlight
the fact that in temporary allocations, prior to termination, the auction achieves
quasi CE price vectors. I do not explain these quasi allocations here as it would
complicate the formulation without adding any relevant information for this
study. Thus I use the term UCE auction instead.

The UCE auction is an improvement of the PD auction in one sense: it
achieves VCG payments under more general valuations. If the rules in Section 3
are also fulfilled, biding according to ones true valuation is a dominant strategy.
Thus, the UCE auction induce truthful bidding in a more general setting than
the PD auction. When an auction achieves truthful bidding, it is said to be
strategy-proof. Using an auction that is strategy-proof as a mean of allocating
goods is usually more desirable than using one that fails to be strategy-proof.
Consider for example a government that wants to allocate a set of goods to firms
in a market. If the implemented mechanism is strategy-proof, firms do not have
to worry about their competitors bidding strategically [13]. The possibility
of market manipulation is erased as all firms will bid according to their true
valuation. The seller can maximize her revenue and be certain that the final
allocation will give each item to the buyer that valued it the most.”

6 An example

In this section I will provide examples of how the combinatorial assignment
problem can be solved. Given a set of buyers and a set of items, I will first
show how the problem is solved using the PD auction. After that, I apply
the UCE auction on the very same problem. For other illustrative examples of
the combinatorial auction, see de Vries et al. [5] and Mishra and Parkes [6].
For ease of exposition, I will call a revenue maximizing allocation an allocation
throughout this section.

There is a set of buyers N = {1,2,3}, a set of items G = {4, B}, and a null
item . Denote the number of buyers in a set of MUB as |[MUB|. The profile
of buyers valuations can be described by the 3 by 3 matrix

vi(A) wn(B) v({4,B})
V=1 w(A) wun(B) w({AB}) |=
v3(A) wv3(B) wv3({4,B})

70Of course, for this statement to be valid requires that firms fulfill all necessary assumptions
such as monotonic preferences discussed in Section 2.
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Table 1 below describes how a solution to the combinatorial problem is solved
using the PD auction. For every round, demanded bundles are highlighted with
a parenthesis. The very right column states maximum seller revenue of the
current round. In Round 0 all prices are zero, hence seller revenue can only be
zero. Note that {1,2} can be satisfied since they demand A and B respectively.
{1,3} can not be satisfied since buyer 3 only demands G. For the very same
reason it is not possible to satisfy {2,3}. Thus, it is possible to choose either of
these sets as MUB. In this instance, choose {2, 3}.

From Section 4, I know that seller revenue increases with 1 when |MUB| = 2.
Due to the increase in seller revenue in Round 1, it is still possible to satisfy
{1,2} since po(B) = 1. Since neither buyer 2 nor buyer 3 has expanded their
demand sets, {2,3} are still a set of MUB. Since buyer 1 is assigned A in one
allocation, and buyer 3 is assigned G in another, {1,3} is a second set of MUB.
Choose {2,3} as MUB again. Round 2 follows the same procedure as Round 1.
This time however, choose {1, 3} as MUB.

In Round 3, prices have increased for buyer 1 as well. Since maximum
revenue in this round is 3, it is not possible to satisfy {1,3} or {2,3} in this
round. Again, choose {1, 3}.

In Round 4, buyer 3 is inactive and demands the null item. At the current
price vector there exists three allocations: X' = [X, Xo, X3] = [4, B, 0], X? =
[4,0, B], and X3 = [, 0, G]. Inspection of these allocations show that in X! no
buyer is unsatisfied. Thus, it is not possible to find a set of MUB. A CE price
vector has been reached and the auction can terminate. The final assignment is
X = [X1, X2, X3] = [A, B,)] and seller revenue is Y,y p(X;) =2+ 042 = 4.

Having explained how a combinatorial assignment problem is solved by the
PD auction, I now proceed to apply the UCE auction to the very same problem.
As there are three buyers, there is a total of four economies. For the rest of this
section denote a marginal economy without buyer i as E(N_;). To follow the
structure of later sections, I will only choose uMUB from one economy in every
round. As uMUB is selected from only one economy, it is more appropriate to
call such a set MUB instead. I will start to look for a CE price vector of the
main economy. Once a CE has been obtained, I examine wether the price vector
achieves a CE in every marginal economy. This is in line with the sequential
procedure suggested in Mishra and Parkes [6] for solving UCE auctions (see
further Section 8.3).

The UCE auction is described in Table 2 below. The right most column show
maximum revenue at the current price vector for every economy, starting with
the main economy. Every marginal economy must be evaluated with respect to
the maximum revenue that can be attained in that specific economy.

Since I start in the main economy, Round 0 to 3 is identical to the PD
auction. Prices are updated accordingly, and maximum seller revenue is equal
across all economies. Entering Round 4, a CE price vector has been obtained
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Table 1: Example of a PD auction

Round Buyer 1 Buyer 2 Buyer 3 7

Bundle A B AB A B AB A
Value 0 3 0 6 6 0 2 4
0

3

0 Price 0O 0 O 0 0 0
Surplus (3) 0 (3) 0 (6) (6) 0 2 (4

{1,3} and {2,3} are MUB. Choose {2, 3}.
1 Price 0 0 0 0 1 1 0 0 1 1
Surplus (3) 0 3) 0 () (5) O 2 (3

Same as Round 0. Choose {2, 3}.

2 Price 0 0 0 0 2 2 0 0 2 2
Surplus (3) 0 (3) 3 4 4 0 (2) (2

Same as Round 0 and 1. Choose {1, 3}.
3 Price 1 0 1 0 2 2 0 1 3 3
Surplus (2) 0 (2) 0 4 4 0 (1) (1

Same as previous rounds. Choose {1, 3}.
4 Price 2 0 2 0 2 2 0 2 4 4
Surplus (1) 0 (1) 0 (4) (4) (0) (0) (0)
Buyer 3 is inactive. CE price vector reached.

in the main economy. However, in economy FE(N_1), buyer 2 does not belong
to any allocation. The only allocation in F(N_1) that satisfies maximum seller
revenue assigns G to buyer 3 (examine p_; for this round). Thus, {2} is a
unique set of MUB in E(N_;) (note that in all other economies, there is no set
of MUB).

In Round 5, maximum seller revenue has increased by 1 in E(N) and E(N_3).
The set of allocations has not changed in any economy since no buyer has ex-
panded their demand set. Neither are the prices of buyer 2 sufficiently high
to belong to some allocation. Hence, the current price vector is a CE in every
economy except F(N_1). Again, {2} is a unique set of MUB.

In Round 6, seller revenue again increase by 1 in E(N) and E(N_3). The
set of allocations has still not changed, but buyer 2’s prices have now ”caught
up”. In E(N_;) it is possible to satisfy both buyers since one allocation assigns
G to buyer 2 and the null item to buyer 3. Since p2(G) = 4 and buyer 3 is
inactive, the current price vector achieves a CE in F(N_1). Also, pys is a CE in
every economy E(M). A UCE price vector has been obtained and the auction
terminates.

Though there are several allocations in Round 6, only one is valid as a final
allocation. Any other allocation could not satisfy all buyers and can thus not
be chosen. The final allocation is X = [A, B, ()] (same as in the PD auction).

vecg

VCG payments are calculated as p; Y = p;(X;) — [r(p) — 7(p—:)]. Hence, p]
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Table 2: Example of a UCE auction

Round Buyer 1 Buyer 2 Buyer 3 ()
Bundle A B AB A B AB A B AB
Value 3 0 3 0 6 6 0 2 4
0 Price 0 0 0 0 0 0 0 0 0 0,0,0,0
Surplus (3) 0 (3) 0 (6) (6) O 2 4

{1,3} and {2, 3} are MUB. Choose {2, 3}.

1 Price 0 0 0 0 1 1 0 0 1 1,1,1,1
Surplus (3) 0 3) 0 () (5) ©0 2 (3
Same as Round 0. Choose {2, 3}.
2 Pice 0 0 0 0 2 2 0 0 2 [2222
Surplus (3) 0 3) 3 4 4 0 (2 (2
Same as Round 0 and 1. Choose {1, 3}.
3 Pice 1 0 1 0 2 2 0 1 3 [3333
Surplus (2) 0 (2) 0 4) 4 0 (1) (1)
Same as previous rounds. Choose {1, 3}.
4 Price 2 0 2 0 2 2 0 2 4 | 4444
Surplus (1) 0 (1) 0 (4) (4 (0) (0) (0)
In E(N_1) {2} is uniquely MUB.
5 Pice 2 0 2 0 3 3 0 2 4 |5445
Surplus (1) 0 (1) 0 (3) (3) (0) (0) (0)
Same as Round 4.
6 Price. 2 0 2 0 4 4 0 2 4 |6446
Surplus (1) 0 (1) 0 (2) (2) (0) (0) (0)
par is a CE price vector in every economy.
A UCE price vector has been obtained

2-[4-61=2-2=0,pyY=4—-[6—-4]=4-2=2,p; =0-1[6—6] =0.
Seller revenue is >,y p; (X)) =0+24+0=2.

Both auctions yield the same final allocation. However, since final payments
in the UCE auction must be VCG payments, prices are discounted. The PD
auction does not require that prices in a CE are discounted if they fail to achieve
VCG payments. For this reason, identical valuation profiles can lead to different
seller revenue in the PD and the UCE auction. A second observation is that the
UCE auction requires a higher number of iterations before termination. Once
a CE price vector is achieved in the main economy, the PD auction terminates
whereas the UCE auction must check if the price vector is a CE in every economy.
In this example, this was not the case. In marginal economy F(N_1) it was not
possible to satisfy buyer 2 in any allocation. This was effectively a result of
the current prices for buyer 2, but also for buyer 1. In the main economy,
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the low prices of buyer 2 could be ”supported” by buyer 1 to attain a revenue
maximizing allocation. However, in the absence of buyer 1, buyer 2’s prices
were not sufficiently high. Since buyer 3 would pay 4 for G, the low prices of
buyer 2 could not satisfy any allocation in E(N_1). Thus, prices for buyer 2
needed to ”catch up” in order to achieve a UCE price vector.

7 Purpose

The previous sections constructively outlined the reasoning behind the research
hypotheses I intend to test:

e Hypothesis 1) For any random profile of valuations, on average, the PD
auction yields higher seller revenue than the UCE auction.

e Hypothesis 2) For any random profile of valuations, on average, the PD
auction terminates within fewer iterations than the UCE auction.

As should be clear from Section 5, achieving a strategy-proof auction is in some
respect costly. In the UCE auction payments are discounted prices and could
thus decrease seller revenue as compared to the PD auction. Since the UCE
auction has to find a CE in every economy, it should generally require more it-
erations to achieve termination than in the PD auction. The research question is
relevant as it investigates if, and to what degree, there exists a trade-off between
implementing a strategy-proof auction or possibly achieving faster termination
and higher revenue. It is generally accepted [9, 11, 2] that participation in an
auction is costly as buyers must learn the mechanism and decide how to bid
in every round. From this perspective, an auction that terminates as quick as
possible is desirable. The seller in an auction wants to maximize her revenue
and might also want to induce truthful bidding. Clearly, these objectives might
be conflicting. From this perspective it is relevant to know the costs, if any,
of implementing a strategy-proof auction rather than one that is not strategy-
proof.

8 Constructing the simulation models

To test wether the PD auction yields higher revenue and terminates faster than
the UCE auction I develop a simulation model of each auction. In this section I
will describe the general construction of these models and discuss how I expect
them to perform. Each auction is formulated as an algorithm that searches
for an equilibrium in a way that is consistent with the theory. The core of
these algorithms will be the CE algorithm which I will describe below. Then,
following the pattern of previous sections, it will be convenient to describe the
PD algorithm, after which I explain the UCE algorithm.

The simulations will be executed for different number of buyers. Buyers
will always compete for exactly three items (G = 3). Keeping the number
of items constant and increasing the number of buyers effectively shows how
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changes in the level of competition affects the performance of the auctions.
Both algorithms initiates by drawing buyers valuations for the items in G from
the uniform distribution with support v = {0, 1,...,25}. The value of bundle B
to buyer i is v;(B) = ), . g vi(b), i.e. valuations are additive. I allow valuations
to be additive in order to speed up calculations. This should not inflict any
bias in the results. If non-additivity (as described in Section 2) was allowed,
both algorithms should increase revenue and number of iterations equally much.
Every buyer and the seller has the objectives discussed in Section 2, and the
buyers obey the rules defined in Section 3.

8.1 The CE algorithm

The CE algorithm can be described by Figure 1. As is clear from the name, the
purpose of the algorithm is to find a CE price vector. Since MUB and uMUB
drives the auction forward, the CE algorithms focus is on finding such sets.
The algorithm uses the profile of buyers valuations and the current price vector
as input. The input is used to calculate the demand set of every buyer, given
the current price vector. The maximum achievable seller revenue for the current
round is identified by some rule (different rules are used for the PD and the UCE
algorithm, see below). When the algorithm initiates, the price vector is taken
as input and then updates within the algorithm. Once the the demand sets and
maximum revenue of the current round are known, the algorithm searches for a
set of MUB. This procedure makes use of the following rule:

e Rule 1) With |G| items, the maximum number of buyers that could con-
stitute a set of MUB is |G|+ 1 (Propisition A.1).

This rule gives an upper bound on how many buyers I can expect in a set of
MUB. At the first round, buyers will typically only demand the full bundle G.
Since maximum revenue is zero (all prices are zero), it will normally only be
possible to satisfy one buyer simultaneously, implying that in any set of MUB
there can only be two elements. The algorithm will for every round start to
look for a set [MUB| = 4. |MUB| = 4 can only exist if there are at least
four revenue maximizing allocations satisfying three buyers. Denote the set
of active buyers in N as N,. For for {i,j,k,I} € N to be MUB, it must
be true that {D;, D;, Dy} € X', {D;,D;,D,;} € X2, {D;,Dy,D;} € X3, and
{Dj, Dy, D;} € X*. Similarly, |MUB| = 3 can only exist if there are at least
three revenue maximizing allocations that can satisfy two buyers. However, it
can not not be possible to satisfy all three buyers simultaneously. Thus, for
{i,7,k} € Ny to be MUB, it must be true that {D;, D;} € X', {D;, Dy} € X2,
{Dj, Dy} € X3, and {D;,D;,Dy} ¢ X for any X € L(p). The process is
identical for |[MUB| = 2. For such a set to exist, there must be at least two
allocations satisfying one of the buyers. |MUB| = 1 only requires that there is
no revenue maximizing allocation that can satisfy some buyer (remember the
definition in Section 2.2).

The process above formalized a general rule that controls the process of
obtaining a set of MUB. Denote a set of active buyers K, where |K| € {1,2,3,4}.
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Figure 1: Flow chart of the CE algorithm.
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Figure 2: Flow chart of the PD algorithm.

For [MUB| = |K| to exist, there must be at least |K| revenue maximizing
allocations satisfying K_; for every ¢ € K, and there can be no allocation
X € L(p) such that every buyer in K is satisfied. The CE algorithm starts
at |K| = 4 and then work through every possible set of MUB in a descending
order to |K| = 1. Whenever a set of MUB is identified, the algorithm cancels
the search, update prices, and proceeds to the next round. If no set of MUB can
be found, the algorithm terminates. The reported output in the CE algorithm
is the CE price vector p, and the number of iterations to termination.

The CE algorithm follows the general procedure outlined in de Vries et al.
[5] and Mishra and Parkes [6]. Collecting unsatisfied buyers for every X € L(p)
is a simple method to obtain MUB candidates. Of course, every such candidate
group has to be examined to make sure that there is no allocation satisfying all
these buyers simultaneously. Due to the assumptions made on valuations, there
will generally be |MU B| = 2 initially. As buyers will begin to demand bundles
of only one item only when prices has reached a certain level, |IMUB| = 3,4
will generally only exist in later rounds of the algorithm. The CE algorithm
selects candidate buyers with a queuing order q. For example when considering
|MUB| = 3, the queuing order is ¢ = [{1,2,3},{1,2,4},--- ,{n — 2,n — 1,n}].
Thus, the algorithm will initially only select MUB from the ”first” buyers in N.
As a result, prices tend to increase for these buyers until they become inactive.
At this stage the revenue maximizing allocations yield a sufficiently high level
of revenue so that other buyers are not satisfied in any X € L(p). Each one of
these buyers will hence constitute separate sets of |[MUB| = 1. Prices will then
adjust for one buyer at the time until that buyer ” catches up” in prices. This will
result in a rather large number of iterations before termination. As the number
of buyers increases, this effect will be more and more apparent. The algorithm
will however sort buyers contingent on their valuations so that the buyer that
value G the least is placed first. In the light of the discussion in Section 2.3,
this might somewhat reduce the number of iterations before termination.

8.2 The PD algorithm

The PD algorithm is described in Figure 2. As is clear from the figure, only a
few amendments to the CE algorithm are necessary to obtain the PD algorithm.
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To determine seller revenue in every round of the PD algorithm, the following
rule is used:

e Rule 2) From round t to round t + 1, seller revenue increases by |K*| — 1
(see Section 4).

In the initializing round seller revenue is zero. For any following round where
termination does not occur, there will be a set of MUB. This set determines
the evolution of seller revenue from one round to the next. Rule 2 reduces
calculations since it is not necessary to search through all demand sets and the
price vector to obtain maximum revenue in a round. Instead, using Rule 2, the
algorithm can directly test if a set of buyers can fulfill a revenue maximizing
allocation or not. This in turn reveals wether these buyers are unsatisfied and
should be considered as MUB or not. Once a CE price vector is obtained, the
algorithm reports seller revenue and number of iterations and terminates. Due
to Rule 2, it is not necessary to determine a final allocation.

8.3 The UCE algorithm

The UCE auction respects marginal economies and VCG payments, hence the
algorithm requires a more dynamic structure than the PD algorithm. The UCE
algorithm can be explained by Figure 3.

The algorithm initiates in the main economy where it searches for a CE price
vector pys. Once the price vector is obtained, the algorithm proceeds to check
if pps is a CE in E(M) for every M # N. If so, a UCE price vector is reached.
The algorithm proceeds to calculate VCG payments, report seller revenue and
number of iterations, and terminates. If pys is not a CE in some E(M), the
algorithm updates the price vector in that economy until a CE price vector p,
is reached. The new price vector p), is then run for every economy. If p), is
a CE in every economy, a UCE price vector is obtained. Otherwise, the price
vector is again updated in the economy where it was not a CE, and is checked
against every economy.

Sets of uMUB are chosen only from the economy that the algorithm is cur-
rently working in. From Section 5 it is clear that there might exist larger sets
of uMUB other than that in some specific economy. This procedure might have
a positive effect on the number of iterations required to reach termination.

It is not always possible to calculate seller revenue in the UCE algorithm with
Rule 2. More specifically, whenever the algorithm changes from one economy
to another, Rule 2 does not apply. Since the algorithm selected uMUB from
one economy, the change in revenue in another economy might be different
as the revenue maximizing allocations could be different. Whenever the price
has been updated once in F(M), Rule 2 can be used as long as the algorithm
stays in E(M). Whenever the algorithm goes from E(M) to E(M') (once a
CE is reached in E(M)) a function calculates maximum seller revenue by using
demand sets and the current price vector.

To calculate VCG payments it is necessary to select a final allocation. The
UCE algorithm does so by searching , in a descending order, for groups of three,
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Figure 3: Flow chart of the UCE algorithm.

two or one buyers that satisfy maximum seller revenue. Once such a group of
winners is identified, the algorithm can calculate VCG payments by examining
maximum seller revenue for each marginal economy that does not include one
winner.

The UCE algorithm follows the sequential approach suggested in Mishra and
Parkes [6]. By ordering the elements in N, starting with E(N), one economy
at a time is considered. In this study, the procedure on one hand simplifies
the construction of the algorithm since the differences in calculations between
economies are minimal. On the other hand, it does not fully utilize the concept
of uMUB since only buyers from one economy is chosen.

9 Results

In this section I will present the results from the simulations. The results are
intended to answer wether the PD auction on average yields higher seller revenue
and requires fewer iterations than the UCE auction. As will be explained further
below, the results suggest that discrepancy in revenue increases in the number
of buyers, i.e. with higher levels of competition in the economy, whereas the
number of iterations tends to be the same over both auctions.
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I run simulations for 2 to 10 buyers with 1.000 repetitions for every auction
and every number of buyers (totally 18.000 repetitions). Of course, results be-
come more reliable with more repetitions. The algorithms described above are
essentially based on running tests over permutations of buyers. Thus, increasing
the number of buyers drastically increases necessary calculations for each iter-
ation. Also, more buyers generally requires more iterations before termination.
For example running a PD auction over 2 buyers takes approximately 0.052
seconds whereas a PD auction for 3 buyers takes 0.243 seconds. Considering
the time it takes to run an auction for larger number of buyers, I chose 1.000
repetitions as a suitable number. A summary of the results are given in Table
3.

Table 3: Summary statistics

UCE PD
Buyers | Max Min Mean Max Min  Mean
Revenue
2 56 0 24.542 59 1 24.768
3 68 9 37.604 69 10 37.610
4 70 13 45.188 70 18 45.812
5 70 22 50.531 69 22 50.849
6 73 28 54.028 72 31 54.936
7 73 32 56.569 73 33 57.521
8 72 34 58.716 74 31 59.627
9 74 42 59.983 74 46 61.331
10 74 42 61.570 74 43 62.727
Iterations
2 56 0 24.542 59 1 24.768
3 111 10 55.373 118 13 55.336
4 162 22 89.204 156 31 89.561
5 207 54 125,575 209 46  123.435
6 270 81 161.360 256 82  161.396
7 306 95 197.633 284 96  196.111
8 361 141 233.573 356 94  232.241
9 382 163 269.115 382 163 269.474
10 554 189 308.647 426 186 305.423

9.1 Average revenue

The general pattern of average revenue with 2-10 buyers can best be understood
by Figure 4. Revenue tends to increase at a diminishing rate for both the PD
and the UCE auction. This is a reasonable result as the competitive effects
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when introducing one more buyer ought to be higher over initially smaller num-
ber of buyers. In the case of 2 buyers, there will be a relatively high number
of allocations that satisfy both buyers in the early rounds of the auction. In-
troducing a third buyer decreases the likelihood of finding an allocation that
satisfy all buyers early in the auction and tends to drive final prices and revenue
higher. When there are 4 buyers, a final allocation must assign the null item to
at least one buyer. This implies that at least one buyer must have p = v across
all bundles, i.e., the buyer is inactive. For 4 buyers and above there can be at
most three active buyers in any final allocation. Thus, all other buyers must be
made inactive by raising prices equal to valuation.

65

Revenue

20 | | | | | | |
2 3 4 5 6 7 8 9 10

Buyers

Figure 4: Average seller revenue in the PD and the UCE auction.

Increasing the number of buyers results in a more homogeneous valuation
profile in the sense that the distribution of valuations approaches the uniform.
As the valuation profile becomes more homogeneous the effect on revenue of
the marginal buyer decreases. In other words, making one buyer inactive has
more effect on revenue for smaller number of buyers. With higher number of
buyers there does not need to be significant relative changes in the price vector
to make many buyers inactive. As the number of buyers increases, it becomes
more likely that valuations of the marginal buyer is ”contained” within the
valuation profile of the other buyers. Based on these results, I can now turn to
research hypothesis 1:

e Hypothesis 1) For any random profile of valuations, on average, the PD
auction yields higher seller revenue than the UCE auction.

Comparing average revenue of the PD and the UCE auction in Figure 4, there
seems to be a clear tendency of divergence when the number of buyers increases.
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To test wether this can be statistically supported, I apply a two-sided t-test al-
lowing unequal variance, and calculate confidence intervals (CI) for each number
of buyers. The results are displayed in Table 4. The CI uses the PD auction
as a base. Thus, a strictly positive CI implies that, for some significance level,
the PD auction yields a higher revenue than the UCE auction. As CIs includ-
ing zero are not relevant I do not report these here. The significance level for
calculating CIs is 1%.

Table 4: Comparison of average revenue.

Buyers 2 3 4 5 6 7 8 9 10

t-statistic | 0.479 0.013 1.500 0.879 2.755 3.293 3.376  5.553  5.185
p-value | 0.632 0.989 0.133 0.379 0.006 0.001  0.000 0.000  0.000
CI - - - - [0.058, [0.206, [0.215, [0.722, [0.581,
1.757]  1.697] 1.606] 1.973] 1.732]

For 2 to 5 buyers I can not reject the null of equal means at any relevant
significance level (given the sample sizes I would not consider t-tests with p-
values above 5% to give any reliable indications on differences in revenue). Going
from 5 to 6 buyers significantly improves p-values and for 6 buyers and above
I can reject the null at significance levels below 1%. Examining relevant Cls,
there does seem to be a tendency of revenue divergence as the number of buyers
increases. The CIs tend to be higher, and the span of every CI narrower. The
statistical tests imply that with low numbers of buyers the PD and the UCE
auction yield similar revenue; and with higher numbers of buyers the PD auction
yield increasingly higher revenue than the UCE auction. The magnitude of
this difference is rather small, implying that a random draw of a profile of
valuations for e.g. 9 buyers will yield a difference in revenue of only about 1 to
2. A difference in revenue means that the PD auction does not achieve VCG
payments and that final prices in the UCE auction are discounted.

It does not seem plausible that VCG payments would be less frequent in
the PD auction when the level of competition increases. This would imply that
the submodularity condition is more likely to be fulfilled for lower numbers of
buyers. Since the valuation profile becomes more homogeneous in the level of
competition it would rather be reasonable to assume that the submodularity
condition was more likely to be fulfilled when there are many buyers present.

The observed differences in average revenue might be explained by statistical
properties of the auctions that arise due to the way valuations are drawn. Since
the relative difference in revenue between the auctions is rather small, it can only
be small differences in revenue between the main and the marginal economies.
As the number of buyers increases the profile of valuations become more ho-
mogeneous, and thus it becomes more likely that 3 buyers will be assigned one
item each. This in turn implies that there will be more strictly positive prices
in the final allocation. In the UCE auction a price will be discounted if the
revenue without that particular buyer would have been lower. This occurs with
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a positive probability and thus when the number of non-zero prices increase,
there is a higher probability that at least some price will be discounted. At the
same time, however, there will be smaller relative differences between one buy-
ers valuations to that of others. This will have an opposing effect on differences
in revenue, as a marginal buyer contributes less and less to seller revenue when
the number of buyers increase. The results from Table 4 implies that the first
effect of increasing the probability of higher numbers of strictly positive prices
outweighs the probability that revenue in a marginal economy is the same as
that of the main economy.

The reasoning above suggests that differences in average revenue would not
increase continuously as the number of buyers increased. Rather there would be
some critical number (or region of numbers) of buyers after which the probability
that there would always be three buyers that paid strictly positive prices in the
final allocation would be close to 1. At this point, adding new buyers would only
move the profile of valuations closer to the uniform distribution which would
reduce the difference between revenue in the main and marginal economies.
Thus it would be possible that above some number of buyers the difference
in revenue would begin to decrease. Changing the number of items, or the
distribution of valuations, would affect when and if such a level of competition
would be reached.

9.2 Average number of iterations

Average number of iterations for the PD and the UCE auction can be seen in
Figure 5. From a graphical analysis iterations seem to increase in a fairly linear
manner. Since at most three buyers can be active in a final allocation, all other
buyers need to be made inactive by raising their prices equal to valuation. As
the construction of the algorithms will tend to force a subgroup of buyers to
compete amongst themselves until they become inactive, all other buyers will at
this stage constitute sets of |MUB| = 1. The price vector will then be increased
for one buyer at a time until they become inactive or a final allocation can be
reached. Price paths like this will be the usual case and thus adding one more
buyer requires that the process is repeated for this buyer too. Hence the linear
pattern in Figure 5 seems reasonable. I now turn to research hypothesis 2:

e Hypothesis 2) For any random profile of valuations, on average, the PD
auction terminates within fewer iterations than the UCE auction.

Examining Figure 5, there does only seem to be any differences in number of
iterations. To investigate this observation further, I apply the same statistical
tests as for Hypothesis 1. The results are displayed in Table 5. I can find no
support that there is a significant difference in the number of iterations at a 5
% level or below. Though the p-values are quite close to the 5 % level for 5 and
10 buyers, there is no apparent difference between these levels of competition
to others. It should for example not be possible to more easily obtain sets of
MUB that contain more elements for these number of buyers. Hence, it seems
likely that these results are caused by outliers.
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Since both auctions start in the main economy, this means that most of the
times the CE price vector in the main economy is also a CE in all marginal
economies. This might be explained by the fact that there can be at most 3
active buyers in a final allocation. Hence, as all other buyers are made inactive
it might be trivial to satisfy all buyers in the marginal economies. The main
economy consists of all buyers and thus there might just be a few, if any, changes
that has to be made for the initial CE price vector in the main economy to be
a UCE price vector. This reasoning is supported by the rather small differences
that were obtained for average revenue.

Table 5: Comparison of average number of iterations.

Buyers 2 3 4 5 6 7 8 9 10

t-statistic | 0.479 -0.049 0.368 -1.896 0.027 -1.121 -0.862 0.216 -1.816
p-value | 0.632 0960 0.712 0.058 0.972 0.262 0.388 0.829 0.069

As uMUB were chosen from only one economy at the time, this could have
had a positive effect on the number of iterations before termination. The results
from the simulations suggests that by always picking uMUB from a specific
economy, the UCE auction will on average not yield more iterations than the
PD auction. Since the UCE algorithm did not consider the maximum sizes of
the sets of uMUB and still did not give higher numbers of iterations, picking the
maximum size sets might even result in the UCE algorithm terminating within
fewer iterations.
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Figure 5: Average number of iterations in the PD and the UCE auction.
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A last observation related to my results is that when there are 2 buyers, the
number of iterations is identical to seller revenue (see Table 3). This follows
directly from Rule 2 and how adjusted buyers are chosen. In the first round
both buyers will either be satisfied, or both buyers will be in the unique set
of MUB. For any round where the auction does not terminate, seller revenue
increases by 1 in the main economy. Thus, both buyers will belong to the
unique set of MUB (and uMUB) until an allocation is found that satisfy both
buyers. This occurs at the T’th iteration where seller revenue is equal to T.
In the marginal economies, buyers are trivially satisfied in every round. Since
both buyers see a price increase in every round prior to termination, revenue
increases in increments of 1 for every round and maximum revenue is the same
across all economies in every round. Thus, for any given valuation profile with
2 buyers, revenue and number of iterations in the PD and the UCE auction
should always be the same. For the case of 2 buyers there are more items than
buyers and thus it is possible that seller revenue is zero (this could also happen
if there are 3 buyers). Hence, a seller that wants to be certain to raise revenue
when there are more or equal number of items and buyers must specify strictly
positive reservation values.

10 Discussion

This study presented two different combinatorial auctions where one, the UCE
auction, yielded VCG payments under more general settings than the other,
the PD auction. It was argued that since VCG payments required that buyers
payments sometimes were discounted, the UCE auction would on average yield
lower seller revenue than the PD auction. A second argument directly related to
fulfilling VCG payments was that the UCE auction would on average require a
higher number of iterations since every marginal economy needed to terminate
in a CE price vector.

To test wether these arguments were valid, I constructed simulation models
of both auctions. The results showed that as the number of buyers increased,
seller revenue diverged though the absolute difference remained small. I claimed
that this was caused by the fact that as competition increased, it became more
probable that a buyer only received one item, rather than a bundle containing
many items. Hence, more buyers would pay a strictly positive price in a final
allocation. Since this effectively meant that more prices were subjected to a
possible discount, this might explain the divergence in revenue. This argument
also suggested that a continuously increasing divergence was unlikely and that
above some number of buyers, revenue would begin to converge as the valuation
profile became more homogeneous. There was no apparent difference between
the auctions with regards to the number of iterations before termination.

My results suggests that with regards to the properties studied here, there
are only small, nonetheless significant, differences between the PD and the UCE
auction. Thus the choice of which auction to implement is contingent on what
the auctioneer wants to achieve. If the auctioneer is strictly concerned with
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maximizing revenue, the PD auction might be preferable. However, if buyers
reporting truthfully is important, implementing the UCE auction will only yield
small differences on achievable revenue. Concerning the time aspect, there does
not seem to be a difference between the auctions, hence this aspect might be
ignored when deciding on which auction to execute.

Of course, my simulations and the results that can be inferred from these
are limited by the number of items, and the number of buyers. Due to time con-
straints I could only run simulations to a certain extent. Thus the conclusions
that I have presented should in no way be interpreted as applying for every set-
ting where an auctioneer wants to allocate items by conducting a combinatorial
auction. Rather my results point to the fact that under certain conditions, there
seems to differences in how much seller revenue the PD and the UCE auction
raise, and this might be explained by reasons mentioned above.

Combinatorial auctions are essentially intricate systems that can be studied
from many different perspectives. As such there were many aspects, both theo-
retical and practical, that due to the limited time available to finish this study
were not covered. The environment in which the PD and the UCE auction were
described do not allow for e.g. seller reservation values or some types of buyer
valuations such as substitute values. To be able to make normative statements
about when and how these auctions can be implemented in real-world situations
requires further research.

Allowing buyers to express valuations over bundles of items can have both
positive and negative effects on the general performance of an auction. The
positive effects can be related to the valuation profiles of buyers and their in-
formation. First, both auction formats discussed in this study respect some
characteristics of buyers valuations that are likely to be observed in some mar-
kets. It is allowed that items are perfect complements so that a buyer might
have a strictly positive valuation only for a bundle and value each individual
item within this bundle to zero. Complementaries could for example exist in
spectrum auctions where the possibility to control two geographically adjacent
licenses is worth more than the sum of the individual licenses. The PD and
UCE auction allow for such possibilities. If buyers were restricted to submit
independent bids for both licenses, this could lead to inefficiencies. At the risk
of winning only one license, buyers might either refrain from bidding, or they
might be forced to bid above their valuation in order to secure the synergies.
In this sense, the combinatorial auction increases efficiency. Second, the com-
binatorial auction does not necessarily require that all buyers reveal their true
willingness to pay. Since preferences are private information, buyers might be
reluctant to state their willingness to pay. Unlike one-shot auctions (e.g. the
Vickrey auction), ascending auctions does not necessarily require that buyers
reveal all their private information. A second observation related to the infor-
mation structure of these auctions is that buyers are not required to express
their valuation of every bundle at every round. Buyers only have to report the
currently utility maximizing bundles and can remain silent about their ranking
over other bundles. The possibility to express preferences over bundles rather
than items and not being forced to completely reveal true valuations are two
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features that makes the PD and the UCE auction attractive as allocation mech-
anisms.

Though both auctions discussed in this study do account for some types
of valuations, these are far from completely covering those that could occur in
reality. It is easy to see that, for example, the monotonicity assumption could
break down for a variety of reason. Say that a contractor is participating in a
bidding process of receiving building contracts in three different geographical
areas, A, B, and C. Area A and B are neighbor regions but area C is far away
from both these regions. The contractor estimates that it is possible to extract
200 each in rent from every region. The necessary machines for construction
costs 300. Since A and B are adjacent it is possible to use the same machines
in both areas but area C, being located far away from A and B, requires a
second set of machines. Thus the contractor would value the bundle {4, B}
to 2004-200-300=100. However, due to the geographic distance, the bundle
{4, B, C'} would be worth 200+200+200-300-300=0. The contractor would fail
to satisfy the assumption of monotonicity and hence neither the PD nor the UCE
auction would be applicable. Though this is a greatly simplifying example,
it stresses the fact that when applying a certain combinatorial auction, the
required assumptions need to be carefully evaluated against the actual situation.

Another problem with allowing bids over bundles of items is the increased
complexity required to handle such a bidding procedure. When there are G
items there is a total of 2¢~! bundles that needs to be evaluated with respect to
possible revenue and reported demand sets. As the number of bundles increase
exponentially in the number of items, the computational requirements rather
quickly become vast. On behalf of the seller, determining an efficient allocation
can thus be rather demanding. Also, for the buyers to bid optimally they must
be able to understand the rules of the auction, and appropriately estimate their
valuations. In this sense, combinatorial auctions are costly for the seller and
the buyers since participation is encompassed by transaction costs.

10.1 Future research

There is still a lot to learn about combinatorial allocation problems. This study
could for example be improved by considering higher number of buyers and con-
ducting more repetitions. It would be interesting to see if the results presented
here holds in an experimental setting. Also, with the rather large number of
combinatorial auctions available, a general comparison of performance should
be conducted for families of combinatorial auctions.

Theoretical research should aim at relaxing constraints to make combinato-
rial auctions more general and hence more applicable in the field. For the same
reason, rules for e.g. iteration minimization should be examined. It would be
interesting to explore the submodularity condition in a combinatorial setting
further by examining under which general conditions, with respect to number
of buyers and the profile of valuations, it will hold.
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A Appendix

Here I will make a more technical summary of the PD and the UCE auction. I
start with defining the common elements in the auctions. Everything mentioned
here should be seen as an extension to Section 2. The same definitions of buyers,
seller, items, bundles and valuations apply here. Without distorting the general
results of the PD and the UCE auction, I will not be as explicit in my definitions
as de Vries et al. [5], and Mishra and Parkes [6]. The interested reader should
consult these papers for a complete description of the auctions.

A combinatorial auction seeks to find an efficient allocation of bundles over
the buyers in an economy. An allocation X is a feasible vector of bundles on
buyers. X assigns a bundle, possibly (), to every buyer in the economy. For
any X it is required that X; N X; = 0 Vi,j € N. Hence, any X can, unlike
items in G, assign the null item to multiple buyers. Due to the assumption of
monotonicity, any X will have ( ;. X; = G. The set of all feasible allocations
is X. A feasible allocation X is said to be efficient if there does not exist another
allocation Y € X such that » ; nvi(Y) > >0 oy vi(X).

At any instance of the auction there is a price vector p € R‘_iv‘ X ‘Ql, for which
buyer ¢ has an associated demand set:

Di(p) ={B € Q:vi(B) —pi(B) <vi(T) —pi(T) VT € Q}.

The supply set of the seller in the PD auction under the same price vector
p is denoted:

L(p) ={X €X:> pi(X;) > pi(Y)) VY € X,and X, € D;(p) U{0}}
i€EN 1EN

The supply set in the UCE auction under the same price vector p is denoted:

L*(p) ={X e X: Zpi(Xi) > Zpi(Yi) VY eX,
ieN iEN
and X; € D;(p)U{0}} VM C N

From the definition above it is fully possible that X does not correspond to
the demand set of buyer . The demand set and supply set capture the standard
notion that buyers and sellers are maximizing utility /revenue. Of course, every
buyer can have several bundles in her demand set, and a seller can have several
allocations in her supply set.

A.1 Prices

Adjustment towards equilibrium in the combinatorial auction is completely
channeled through a price path. A price path is defined as a function P : T —
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RLNMQI, where T is the set of rounds in the auction. P(t) is a mapping from

every round ¢t € T, to the corresponding price vector p. This type of price path
is mon-linear and non-anonymous. Allowing a non-linear price path means that
it is possible to have p(B)+p(T) < p(B+T) for B,T € Q (much like non-linear
valuations). A non-anonymous price path maintains individual prices over §.
In other words, it is fully possible that at any point in the auction, two buyers
can face different prices for the very same bundle. P(t) is non-decreasing over
time and thus it can be called an ascending price path. Furthermore, P is single
so that it is only possible to have one price path.®

A.2 Minimally undersupplied buyers

At price vector p, buyers might demand the same items. Also, the seller could
have several revenue maximizing allocations. When these problems occur, it
might not be possible to fulfill the demand of some buyers simultaneously.
As long as 0 ¢ D;(p), a buyer is said to be active. Denote the set of active
buyers in an economy as N,. I will call buyer i unsatisfied if X; ¢ D;(p).°
Denote the set of unsatisfied buyers K C N, at price vector p and allo-
cation X € L(p) as U(K,X,p). The total number of unsatisfied buyers at
some U(K,X,p) is [U(K,X,p)|. Find an allocation X* € L(p) such that
UK, X*,p)| < |U(K,X,p)| for all X € L(p). A set of buyers K C N, are
said to be wundersupplied at price vector p if and only if |U(K,X* p)| > 0.
The coalition K C N is a set of minimally undersupplied buyers (MUB) if
|[U(K_;, X,p)|=0 for every i € K. In other words, for every K/ C K it must be
possible to find an allocation X € L(p) such that no buyer in K’ is unsatisfied.
Note that even though some buyers are undersupplied in X € L(p) this does
not necessarily imply that there exists a set of MUB. As long as there is some
X € L(p) that satisfy all active buyers, there is no set of MUB.

I will now prove a useful proposition related to the concept of MUB that
will be used in the simulation models in Section 8.

Proposition A.1l. If there are |G| items, the mazimum number of buyers that
could constitute a set of MUB is |G| + 1.

Proof. The proof follows readily from the definition of MUB. Consider only the
active buyers N; C N at current price vector p. Assume that |Ny| > |G| + 1.
Note that for some set of buyers K C N, where |K| = |G|, an allocation X
that satisfy every buyer in K must assign ezxactly one item in G to every buyer.
Now include one more active buyer k, and call this set of buyers K+ = {K, k}.
In the set K+ it is no longer possible to satisfy all buyers since there are too few
items. For the set K+ to be MUB, it must be possible to find some allocations
X € L(p) that satisfy K+_;, for every i € K+. This is only possible if every
K+_; allocates one item from G to every buyer. Generally |G| 4+ a buyers,
where a > 2, can never constitute a set of MUB since at least a buyers will
always be unsatisfied at any X € L(p). O

80ther auctions allow for multiple price paths, see e.g. Ausbel [1].
9A buyer that is unsatisfied must by definition be active.
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A.2.1 Universally minimally undersupplied buyers

At price vector p, K is a set of universally minimally undersupplied buyers
(uMUB) if KNMy is a set of MUB in E(M) for some M € N. Identifying MUB
in this instance is done with L*(p), rather than L(p). uMUB is a generalization
of MUB as it considers not only MUB in the main economy, but also sets of
MUB in the marginal economies.

A.3 The submodularity condition

HV(MU{i}) - V(M) > V(M U{i}) — V(M) holds for every M C M' C N
and all ¢ € N, the submodularity condition is fulfilled. Thus, the submodularity
condition implies that buyer ¢’s contribution to the social surplus is greater for
smaller coalitions than for larger coalitions. In Section 6, the profile of valuations
does not fulfill the submoularity condition.

A.4 An ascending price combinatorial auction

The following definition describes the PD auction as an algorithm using previ-
ously defined notions.

Definition A.1. The price path starts at P(0) and all prices are set to zero.
The auction ends at P(T) where final allocation and payments are decided. At
any round t, where 0 <t < T, the procedure is as follows:

e Step 1) Every buyer i reports her demand set D;, given the current price
vector p'.

e Step 2) From the reported demand, the seller identifies every X € L(pt).

e Step 3) Using the information in 1) and 2), a set of MUB, K* is chosen.
If there is no MUB, go to step 6.

e Step 4) Every buyer i € K¢ see a price increase on bundles in their demand
set. If B € D;(p'), then p't'(B) = p!(B) + 1. For all other buyers
i (B) = pi(B).

e Step 5) Proceed to round ¢ + 1 by repeating from step 1.

e Step 6) The auction terminates. Bundles are allocated according to X €
L(pT) where X; is the assignment to buyer i. The payment for every buyer

Clearly, the demand set will only change from round ¢ to ¢ + 1 for buyer
i € K. Every buyer j ¢ K! will be unaffected by the price adjustments in
terms of demanded bundles.

To obtain the UCE auction, replace L(p) with L*(p) throughout Definition
A.1, and replace Step 3 as
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e Step 3.1) Using the information in 1) and 2), a set of uMUB, K* is chosen.
If there is no uMUB, go to step 6.

Also, replace step 6 with

e Step 6.1) The auction terminates. Bundles are allocated according to
X € L(p") where X; is the assignment to buyer i. The payment for every
buyer is p (X;) + [7(pT) — 7w (pT,].
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