

Fuel Tankering

- Flygprestanda AB

LTH School of Engineering at Campus Helsingborg
Department of Computer Engineering

Bachelor thesis:
Martin Lindgren
Jonathan Brynhagen

2

 Copyright Martin Lindgren, Jonathan Brynhagen

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2012

Abstract

One of the biggest expenses for airline companies is the fuel for the aircrafts;

preceded only by labor costs it is important for an airline to optimize its use of

fuel[1]. One option to save money on fuel is by doing something called Fuel

Tankering. Essentially, fuel tankering is a way to lower the fuel cost by

refueling at departures where the fuel price is lower than at the destination of

the aircraft.

It is difficult for a pilot to predict whether or not he can make a profit by

tankering and if he can, how much extra fuel he should take onboard to gain

the biggest profit possible.

To be able to calculate whether it is possible to make some profit on fuel

tankering there is a lot of variables that needs to be taken into account, such as

fuel tankering amount, flight distances, velocities, winds, altitude, local fuel

prices, payload and more. All these variables are available in Flygprestandas

flight planning system FOCS so our task was to integrate a fuel tankering

solution into FOCS that retrieves accurate fuel consumption data with

different amount of extra fuel loaded and uses this to present a tankering table

in the tripkit for the pilot to see how much fuel the pilot should tanker to gain

the most profit (if there is any profit).

The solution is integrated and fully working but certain enhancements can still

be made. There are still some variables that are missing that will slightly affect

the profit results, such as CO2 emission tax and different currencies. When

these variables are added at a later stage our design allows these to be

integrated without much difficulty.

Keywords: Tankering, flight planning, calculations, tripkit, profit

4

Sammanfattning

En av de största utgifterna för flygbolagen är bränslet för flygplanen;

kostnaden föregås endast av arbetskostnader och därför är det viktigt för

flygbolagen att minska utgifterna för bränsle[1]. Ett alternativ för att spara

pengar på bränsle är att använda sig utav något som heter fuel tankering. Fuel

tankering är en metod för att minska bränslekostnaderna genom att tanka på

extra bränsle vid avgångens flygplats där bränslekostnaden är lägre än vid

flygplanets destination.

Det är svårt för piloten att förutse om han kan spara pengar genom att fylla på

extra bränsle eller inte, och om det går att spara pengar, hur mycket ska

piloten då tanka på för att spara så mycket pengar som möjligt.

För att kunna beräkna eventuell vinst finns det många variabler som måste tas

i beaktning, såsom mängden extra bränsle, ruttlängd, hastighet, vindar, höjd,

bränslepriser, flygplanets vikt, m.m. Alla dessa variabler finns noggrant

uträknat i Flygprestandas flygplaneringssystem FOCS. Vår uppgift var att

integrera en fuel tankering lösning i FOCS som hämtar dessa data och därefter

gör ett antal beräkningar så att vi kan presentera en lista i tripkiten för piloten

som gör att han kan se hur mycket han ska tanka på extra för att spara så

mycket pengar som möjligt (om där är någon vinst).

Denna lösning är integrerad och fungerar felfritt men där finns ett par

förbättringar som kan göras. Där finns ett par variabler som saknas som kan

komma att påverka resultatet något, såsom koldioxidskatt och

valutakonvertering. När dessa väl läggs in så tillåter vår design det till att

implementeras utan några stora svårigheter.

Nyckelord: Tankering, flygplanering, beräkningar, tripkit, vinst

Foreword

We would like to thank Flygprestanda for giving us the opportunity to do our

thesis work for them. During our time there we have had help from Vadim

Feldman and Lars Andersson together with the developers at Flygprestanda

which we are very thankful for and without your assistance this thesis would

not have been possible. We would also like to thank our examiner Mats Lilja

for helping us with writing the thesis.

6

List of contents

1 Introduction ... 1

1.1 Background ... 1

1.1.1 Flygprestanda AB ... 1

1.1.2 FOCS ... 1

1.2 Problem Description ... 2

1.3 Technical background .. 3

1.3.1 FOCS ... 3

1.3.2 Database .. 3

1.3.3 Java and Eclipse .. 3

1.3.4 Subversion (SVN) ... 3

1.3.5 Apache Maven ... 3

1.4 Goals .. 3

2 Project Model ... 4

2.1 Time Plan ... 4

2.1.1 Preparation and Investigation ... 4

2.1.2 Programming & Testing .. 5

2.1.3 Thesis .. 5

2.2 Project Model .. 5

3 Investigation .. 7

3.1 Current Fuel Tankering Solutions ... 7

3.2 Real-world usage of Fuel Tankering .. 7

3.3 Risks with fuel tankering .. 7

3.3.1 Cold soaked wings ... 7

3.4 Calculations .. 8

3.4.1 Initial pre-study ... 8

3.5 What data is required ... 11

3.5.1 Terminal Charges ... 11

3.5.2 Overflight Fees ... 11

3.5.3 Future Planned Routes ... 11

3.5.4 Weather .. 11

3.5.5 Route ... 12

4 Implementation .. 13

4.1 Prototype 1 .. 13

4.1.1 Proposed solution ... 13

4.1.2 Implementation ... 13

4.1.3 Problems .. 14

4.1.4 Result ... 15

4.2 Prototype 2 .. 16

4.2.1 Proposed solution ... 16

4.2.2 Bug fixing & Optimization ... 16

4.2.3 Enhancements ... 18

4.2.4 Problems .. 20

4.2.5 Result ... 22

4.3 Prototype 3 .. 22

4.3.1 Proposed solution .. 22

4.3.2 Bug fixing ... 23

4.3.3 Enhancements ... 24

4.3.4 Result ... 24

5 Conclusion .. 25

6 Further enhancements ... 26

6.1 Currency conversion .. 26

6.2 CO2 emission tax ... 26

6.3 Three or more flight legs .. 27

6.4 Mask fuel-prices in tripkit... 27

6.5 Optimization .. 27

7 Terminology .. 29

8 References ... 30

9 Appendix ... 31

9.1 Prototype 2 .. 31

9.2 Prototype 3 .. 32

1

1 Introduction

This report describes the different parts of the actual thesis work done at

Flygprestanda to integrate a fuel tankering solution into their flight planning

system FOCS. It contains different parts of the project phases such as

investigation, and implementation where it is explained in detail methods

used, problems encountered, proposed solutions, and phases during this

project.

The purpose of this thesis is to first investigate whether or not you can make a

profit or loss by fuel tankering, and if there is profit, implement a solution that

will make it easy for the pilot to see how much money he can gain/lose if he

tankered a specified amount of extra fuel.

Due to respect of Flygprestanda AB, this report does not contain any actual

code from either the existing system (FOCS) or our solution. Our solution is

explained on such a level where no sensitive information is revealed. Some

names of the classes have been renamed. However, our result is not affected

by this and will be visible in this report.

1.1 Background

When we asked our Programme Manager Christin Lindholm about

recommendations for companies to do our thesis work with, Flygprestanda AB

was one of them. We heard about students that had done their thesis work here

in the past and that the collaboration was successful so we contacted the

company via e-mail. They quickly replied with enthusiasm which made us

excited to come for a visit so a meeting was arranged the following week. On

the meeting a basic problem description was given with an introduction of the

company. We thought it sounded interesting so we decided to do our thesis

there. Another meeting was booked where some ethical rules and company

policies were discussed.

1.1.1 Flygprestanda AB
Flygprestanda AB [2] makes software and databases for hundreds of airline

companies all over the world. Their services include both software

development and technical-engineering calculations with focus on delivering

all information needed to perform a commercial flight from one place to

another. Flygprestanda AB has around 50 employees and has their head office

in Malmö, Sweden and has another office in the United States. The company

was founded 1969.

1.1.2 FOCS
FOCS is a system developed by Flygprestanda AB to do flight planning and

other flight related calculations. It allows the user to, with a few clicks, find

2

the best route possible taking into account all parameters required to get the

best/most economical route possible. Furthermore it analyzes NOTAM data

and other sources of information to keep track of obstacles on the way.

1.2 Problem Description

To earn money, an airline company needs to have their aircrafts up in the air

as much as possible. The problem is that fuel is very expensive and it keeps

getting more expensive every day. There are a lot of things you can do to

lower the fuel consumption, for example:

 Aircrafts fuel efficiency

 Reducing the payload (fuel also weighs, so you only refuel

the amount of fuel that is needed for the trip and for the alternate

departure airport)

 Optimizing the flight routes

 Regular aircraft maintenance

 Fuel tankering

Fuel tankering is a way to lower the fuel cost by buying extra fuel in other

countries where the fuel is cheaper. You may think that if the fuel is cheaper at

the arrival country you can just refuel as much as possible. Unfortunately, it is

not that easy.

For example, if you fly between Malmö and Stockholm, you will have to fuel

up around two tons of fuel (this is of course, actually depends on the route and

the aircraft) and the more fuel you have, the more your airplane weighs. The

more your airplane weighs, the more fuel is needed for the engines.

So the problem is how the pilots should know how much extra fuel they

should buy based on if the fuel price is cheaper at the departure than at the

arrival to get the most money out of it.

Our task is to investigate and implement an aircraft fuel tankering module into

FOCS. The users of the system should be able to make flight planning and

routing decisions based on the information from the fuel tankering module.

3

1.3 Technical background

1.3.1 FOCS
FOCS consists of a client and can’t be run without a FOCS server. The client

is where the user make flight plans and such and the server is where the

calculations are made and where all the data is stored.

1.3.2 Database
The database that is used is MySQL and will be administrated using

phpMyAdmin, which is a web administration tool for MySQL databases. The

database communicates with the server in order to retrieve and save data. The

database contains information about aircrafts, data about the actual flight

plans, route segments, etc.

1.3.3 Java and Eclipse
FOCS is developed in Java so this will be the language we use. Eclipse will be

our IDE with a few plugins in order to integrate revision control and project

dependencies into Eclipse. These are Subclipse and Maven.

1.3.4 Subversion (SVN)
In order to get the latest branch from FOCS we use SVN as the revision

control system. SVN is a tool used for retrieving earlier and current versions

of documents and source code. It is also used for tracking changes between

versions.

1.3.5 Apache Maven
For build automation and project dependencies within FOCS it is required to

use Apache Maven. Maven is a tool used for Java that automatically builds

projects into a distributable unit.

1.4 Goals

The main goal of the project is to integrate a fully working solution with the

current system FOCS to give an as accurate result as possible with minimum

amount of user interaction. To reach this goal an investigation must be made

to determine whether or not fuel tankering can be used to make a profit for the

airlines. An examination on what the current fuel tankering systems do shall

be made so it can be determined what can be made better.

The solution should be as modular as possible and be written in the coding

standards specified by Flygprestanda.

4

2 Project Model

2.1 Time Plan

Figure 1 – The initial time plan

2.1.1 Preparation and Investigation

Development environment
A development environment has to be set up. Eclipse, Maven and subversion

are all necessary tools that has to be installed and configured.

Getting to know FOCS
FOCS is the program that will be integrated with our solution so it is very

important to know what FOCS is and how the users interact with it and how it

should be presented with our solution in the GUI.

Current solutions
Before starting to think about the problem it can be helpful to study existing

solutions, in order to gain some insight into the current status of the field.

Real-world usage
How useful can our solution be? Do most airline companies use any fuel

tankering method? Here an investigation will be made about the usage of fuel

tankering around the world.

Calculations
A series of calculations must be made in order to get an accurate result. This

part is dedicated to coming up with some ideas for getting the most accurate

result possible.

5

What data is required?
Before implementing an investigation should be made on what data is needed

in order to get an accurate output. Deciding what data that is most important

and how they depend on each other is also necessary.

Getting to know the FOCS codebase
Before development can begin it is necessary to familiarise ourselves with the

current codebase so that we may know where our module fits in and how the

system is designed.

2.1.2 Programming & Testing
This is where the actual work for Flygprestanda is done and where the

implementation of our solution into FOCS will be made. Testing will be made

on the solution iteratively to see if it works properly.

2.1.3 Thesis
Work on the thesis will be done throughout the course of the project; this is

more of a reserved space for any thesis work remaining after the project is

completed.

2.2 Project Model

The project model used will be a light version of Kanban where the

implementation phase will be split up into four sprints. A Kanban board will

be set up at our office that will use three phases; backlog, in progress, and

done. At the beginning of each sprint, it will be discussed on what should be

focused on at this prototype, and what things that should be done in this

prototype. At the end of each prototype, it will be discussed what needs more

focus and what problems were encountered during the sprint.

At the end of these sprints the prototype shall be launched and demonstrated.

Marked in red on the Time Plan are weeks where the investigation, prototypes

and implementation shall be finished.

Deadline one: A formula should have been made to see how much gain or loss

fuel tankering would give in a given case. It should also be made clear what

fuel tankering systems are out there today, and how the solution may differ

from others. At this point there should be a general idea of what data is

required.

Deadline two, three, and four: By now a prototype shall be ready for

demonstration. It may not be fully implemented, but for each sprint this

prototype will be more and more integrated into FOCS. Every new prototype

should have more in-data to rely on to get an even more accurate output.

6

Deadline five: Here the prototype will have been developed into a fully

working solution. It should be fully integrated into FOCS and it shall give an

accurate output with small interaction from the user.

All work will be done Monday through Thursdays at the Flygprestanda office

except for a bit of the thesis work. All equipment for development is supplied

by Flygprestanda. The system shall be developed in Java programming

language using Eclipse as development environment.

7

3 Investigation

3.1 Current Fuel Tankering Solutions

There are systems out there today that deal with Fuel Tankering. Most of them

are inaccurate and the rest are not simple enough to use. What is unique about

our implementation is that it will require close to no interaction from the user

as all the necessary data is already stored within FOCS.

3.2 Real-world usage of Fuel Tankering

Fuel Tankering is being done by many airlines today but most of them lack a

proper tool and instead go by general figures or speculations that are not

always accurate.

In some cases, the pilots are calculating on it on their own with a simplified

formula that is called the 3-5% rule (Discussed in [7]). This rule says that for

every hour travelled you burn between 3-5% (dependent on the aircraft) of the

extra fuel tankered.

In some other cases the pilots have a fuel tankering table that consists of trip

distance and a break-even price ratio. The pilot will take the fuel price where

he departed from (where the fuel is cheaper), and divide it with the break-even

price ratio for the given distance. If the result is higher than the fuel price at

arrival (where tankering is intended to) then fuel tankering is to be considered.

Today there are also fuel tankering solutions that will do all the calculation for

you which are more accurate than the previous methods. These methods

require the user to enter data such as aircraft, trip distance, and route.

3.3 Risks with fuel tankering

3.3.1 Cold soaked wings
Cold soaked wings [3] is a phenomena where ice will form on the wings even

though the air temperature can be well above zero degrees.

Most of the aircrafts today are equipped with fuel tanks in their wings. The

problem is that if you are flying on a high altitude for a long period of time

where the air temperature is below zero, the temperature of the fuel in the

wings can get to below zero, which will also make the wing surface

temperature below zero. When descending, if the wings come in contact with

liquid water, such as condensation or rain, the wings will begin to freeze.

This effect can have serious consequences, because it can reduce the speed to

such a degree that the aircraft cannot even reach the minimum speed for take-

8

off, or maintain flight. If you get cold soaked wings, you will need to de-ice

your aircraft. De-icing means that you are warming up the fuel in the wings to

above zero to prevent ice from forming on the wings. This can take a long

time and can get the aircraft to be delayed for next flight, and money is lost.

3.4 Calculations

3.4.1 Initial pre-study
The first investigation made was to see whether or not you could even make

any profit by fuel tankering.

FOCS was started and a specific route was entered with the aircraft Embrear

E135. Then it could be seen how much fuel the airplane would spend on the

trip without any extra fuel on it. It was then added an extra 500 kg fuel to the

aircraft to see how much fuel it would have spent extra compared to the first

case.

Calculations were made that ended up with a simple inequality which gives

the condition for using fuel tankering:

 stands for fuel price at the airport you are departing from
stands for fuel price at destination,

F stands for extra fuel tankered. This is the variable that was used as an input.

is a function of for extra fuel burned (from carrying F). This number is

calculated using many variables, such as the weight of the airplane with F

loaded onboard, the route, weather, etc. FOCS does this very accurately

already so this data is used. This is the output from FOCS.

As F increase so will and if the prices differ greatly then the cost of this is

quite negligible.

If the left hand side is less than the right, you will gain money by tankering

extra fuel. The formula was applied to the numbers returned from FOCS and it

was made clear that if the price difference was big enough, money could be

earned.

The next investigation was to determine how the gain/loss changed depending

on the route length. It was also necessary to determine if the function between

extra fuel loaded and money gained/lost was linear or not.

9

FOCS was launched and a specific route was entered with the aircraft E135.

Notes were taken for every 100 kg fuel tankered to see how more the aircraft

would spend in terms of fuel. Extra fuel added was increased by 100 kg until

MTOM (Maximum Takeoff Mass) was reached.

The data saved was tankered fuel, trip fuel, total fuel, ATOM (Actual Takeoff

Mass) and ALM (Actual Landing Mass).

A diagram was made to see if the function was linear or not. This was done for

three different routes with different length to determine if there is any relation

between the distances regarding the gain/loss. To ensure that the results are

consistent we turned the weather calculations off for these diagrams.

Figure 2 – Profit diagram for the aircraft E135 with different routes

In figure 2, 3 and 4, the x-axis shows how much fuel is tankered, and the y-

axis shows how much money you will gain/loss. The diagram shows that there

is a relation between the distance and the money gained/lost. The longer the

distance the more expensive it is to carry the extra fuel, and eventually the

price for the extra fuel burned exceeds the money saved by fuel tankering. In

making the diagrams an empty airplane is assumed, loaded only with the

required fuel for the flight and a pilot.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

E135 Airport A: 13kr Airport B: 15kr

396NM

1249NM

1765NM

Tankered Fuel (kg)

V
in

s
t
(K

r)

10

0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E145 Airport A: 13kr Airport B: 15kr

336NM

1073NM

1628NM

Tankered Fuel (kg)

V
in

s
t
(K

r)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

B737 Airport A: 13kr Airport B: 15kr

2753NM

943NM

330NM

Tankered Fuel (kg)

V
in

s
t

(K
r)

In figure 3, the same test was made with the aircraft Embraer E145 and the

results turned out quite similar.

Figure 3 – Profit diagram for the aircraft E145 with different routes (NM =

Nautical miles)

The results show that the function is more or less linear for short distances but

the rate of the gain decrease as distances increase. For amounts of fuel that is

to be considered realistic for this airplane the function can be treated as linear.

In figure 4, the same test was made with a much larger airplane that can carry

a lot more fuel. The results point in the same direction where shorter distances

are linear but for longer distances the fuel cost depends more non-linearly on

the tankered fuel as the aircraft gets heavier.

Figure 4 – Profit diagram for the aircraft Boeing 737 with different routes

11

3.5 What data is required

3.5.1 Terminal Charges
Terminal charges are fees paid by airlines provided by the airports. Whenever

an aircraft is going to use any service provided by the airport such as:

(Taken from [4])

 Use of the runway (landing charges)

 Use of the airport infrastructure (parking and boarding bridge charges)

 Use of the terminal building (passenger charges)

 Airport security (security charges)

 Protection of the environment (noise charges)

 Air traffic control (en route navigation and terminal charges)

 Other air navigation services (meteorological and aeronautical

information services)

The airline is going to need to pay a terminal charge. The terminal charge

varies from airport to airport, and no data can be found regarding the change

of charges depending on the aircraft weight, so these are not going to be

factored into the calculations.

3.5.2 Overflight Fees
A factor that was considered to take into account was overflight fees. An

overflight fee is a charge that must be paid in order to use a certain airspace

and it is based on distance traveled, airplane weight and unit rate of charge.

While tankering certainly increases airplane weight, it is not the actual take-

off weight being measured, instead they use something called Maximum

Take-off Weight (MTOW for short) [5]. MTOW is the maximum allowed

weight for an airplane to take off and so tankering extra fuel does not affect

this.

3.5.3 Future Planned Routes
Having additional destinations planned is something that can definitely be

taken into consideration to make extra profit with fuel tankering. For example:

you are taking off from Airport A with a fuel price of 13kr/kg. Your

destination is Airport B where the fuel costs 15kr/kg. After landing at B you

are scheduled to fly to Airport C where the fuel is only 10kr/kg. Under certain

conditions the best option would be to fuel up as much fuel needed at Airport

A to take you to Airport C and then tanker again there but this is not always

true.

3.5.4 Weather
Weather is a big factor in calculating fuel consumption. Wind, temperature,

atmospheric pressure are all some of the parameters that need to be accounted

for. This is all done in the current version of FOCS so this will not have to be

included in our calculations, however as mentioned above when carrying fuel

12

in low temperature areas icing on the wings might occur and it costs time and

money to remove it. This is too situational to include in our calculations

though and the decision has to be made on a case to case basis.

3.5.5 Route
The route you fly is obviously the biggest impact on fuel consumption.

Altitude, velocity and distance are some of the parameters here. These are,

again, calculations already being done in FOCS and thus will not have to be

made by us. Tankering a bunch of fuel might impact the route selected

however and this might have to be taken into consideration.

13

4 Implementation

This chapter will be describing the implementation phase of the different

prototypes for this project. Each prototype will be described as an ongoing

process divided into sections of proposed solution, implementation, problems

and ends with a reflection on the results of each prototype.

4.1 Prototype 1

4.1.1 Proposed solution
The first idea on how to solve this problem in the first prototype is to re-

calculate the performance for the same trip by adding extra fuel between the

performance-calculation iterations. A search is needed to determine where

within the source code the fuel calculations are made. A new class will

probably be created that will contain the data needed for fuel tankering

calculations between the results in order to get the most optimized results.

The goal for this prototype is to get a decently accurate result that later can be

improved and optimized further in the following prototypes.

4.1.2 Implementation
The first thing that had to be done was to find how the essential data could be

retrieved to perform calculations, and where the solution should be integrated.

The class PerformanceData contained information regarding the actual

flight (ATOM, ALM, and such). The Aircraft class contained useful

information about the MTOM, MLM (Maximum Landing Mass).

In order to determine the place where the performance calculations actually

were done, a search was made. The class FlightPlanningClass calls on

a method that does performance calculations and then returns a

PerformanceData object where all the results for the actual flight are

stored. These performance calculations are implemented in another project

which FOCS uses to retrieve performance values. It seems appropriate to

implement the solution in FlightplanningClass because it was noticed

that it should be possible to change the needed data for the flight before the

calculations are executed here.

The next step was to try to calculate the same trip but with extra fuel. It took

some time to find a way to change the data in PerformanceData, but at

last the result gave different trip fuel burns, even though the execution time

was very long due to our implementation.

14

The different trip fuel burns had to be saved before making calculations on

them. For this reason a class called FuelTankeringHelper was created.

Within this class all the necessary calculations are made as well.

In FlightPlanningClass a method was implemented for capturing all

the data and doing calculations on them. In pseudo-code, it looks like this:

The process can be illustrated in a block diagram in the following figure.

Figure 5 – A block diagram illustrating the fuel tankering process

The first block returns performance calculations for the flight (fuel used,

weights, time etc.). This data is then handled by our fuel tankering module

which determines whether the performance calculation should iterate again

with more extra fuel. When the iterations are done, the tankering module

should return a fuel tankering result.

Once implemented the first fuel tankering numbers was shown in the console.

4.1.3 Problems
 It is uncertain if the fuel tankering results are correct because there is no

way of verifying the results.

While the aircraft is not too heavy and fuel capacity is not

exceeded

{
 Increase the extra fuel tankered
 Clear the performance for the previous flight

Calculate new Performance and check that ATOM,ALM,Fuel

 capacity isnt too high

 Calculate tankering profits

 if the current profit < largest profit for the flight

 break

}

Do some final calculations

Print out the values

15

 One or more values for tankering calculations are not being reset correctly

sometimes which affects the result.

 Right now it takes approximately twenty times longer than normal to get

the fuel calculation because of the tankering calculations. This needs to be

optimized because there is a lot of redundant code at the moment.

 There were problems at first to get different trip fuel costs when adding

extra fuel. It was discovered that if you selected an alternative airport the

extra fuel was not calculated correctly, but if you did not select an

alternative airport it was. Therefore the calculations will only work on non-

alternative flights until this bug is fixed.

 The performance values for the flights are not saved between sessions. It

has something to do with our fuel tankering calculations because it works

without our implementation.

 The trip fuel cost values for a flight with a certain amount of extra fuel are

not always correct.

 Sometimes it is not possible to add extra fuel between the iterations. This

results in an infinite loop, because the weight or fuel capacity is never

exceeded.

4.1.4 Result
After creating a flight the following data is presented in the development

console.

Trip: 948.9 Tankered: 0 Total: 2788.7 (NaN kr/ton) Profit: 0.0

Trip: 953.6 Tankered: 500 Total: 3297.2 (1879 kr/ton) Profit: 939.5

Trip: 958.5 Tankered: 1000 Total: 3806.1 (1876 kr/ton) Profit: 1875.9

Trip: 971.0 Tankered: 1500 Total: 4322.5 (1809 kr/ton) Profit: 2713.9

Trip: 997.5 Tankered: 2000 Total: 4853.0 (1684 kr/ton) Profit: 3368.3

Trip: 1016.8 Tankered: 2500 Total: 5376.2 (1647 kr/ton) Profit: 4118.1

Trip: 1042.9 Tankered: 3000 Total: 5907.4 (1593 kr/ton) Profit: 4778.8
Trip: 1062.4 Tankered: 3500 Total: 6431.9 (1579 kr/ton) Profit: 5525.6

Trip: 1088.8 Tankered: 4000 Total: 6963.4 (1545 kr/ton) Profit: 6182.0

Trip: 1107.8 Tankered: 4500 Total: 7487.4 (1541 kr/ton) Profit: 6935.5

Trip: 1127.8 Tankered: 5000 Total: 8012.4 (1535 kr/ton) Profit: 7675.5

Trip: 793.3 Tankered: 5500 Total: 8183.0 (2368 kr/ton) Profit: 13023.5

Trip: 1037.1 Tankered: 6000 Total: 8931.8 (1809 kr/ton) Profit: 10853.8 Loss

Trip: 1062.5 Tankered: 6500 Total: 9462.3 (1773 kr/ton) Profit: 11523.8 Loss
Trip: 1081.8 Tankered: 7000 Total: 9986.6 (1753 kr/ton) Profit: 12273.3 Loss

Trip: 1100.2 Tankered: 7500 Total: 10510.4 (1738 kr/ton) Profit: 13034.0

Trip: 1119.7 Tankered: 8000 Total: 11035.3 (1722 kr/ton) Profit: 13780.0

Trip: 1138.5 Tankered: 8500 Total: 11559.4 (1710 kr/ton) Profit: 14535.7

Trip: 1150.8 Tankered: 9000 Total: 12077.1 (1708 kr/ton) Profit: 15375.7

Trip: 1169.7 Tankered: 9500 Total: 12601.4 (1698 kr/ton) Profit: 16129.6

Trip: 841.0 Tankered: 10000 Total: 12778.0 (2140 kr/ton) Profit: 21403.7

Trip: 1076.3 Tankered: 10500 Total: 13518.7 (1842 kr/ton) Profit: 19345.0 Loss
Trip: 1094.1 Tankered: 11000 Total: 14041.9 (1828 kr/ton) Profit: 20113.4 Loss

Trip: 1112.5 Tankered: 11500 Total: 14565.7 (1815 kr/ton) Profit: 20874.0 Loss

Trip: 1124.5 Tankered: 12000 Total: 15084.5 (1810 kr/ton) Profit: 21718.1

Trip: 1135.6 Tankered: 12500 Total: 15602.4 (1806 kr/ton) Profit: 22574.1

Trip: 1147.9 Tankered: 13000 Total: 16121.6 (1801 kr/ton) Profit: 23414.2

Maximum fuel capacity reached

Price at Airport ESMS: 13.0

Price at Airport ESGG: 15.0
Most money earned at: 13000 kg of tankered fuel

You will earn: 23414.19264680159 kr (1801 kr/ton).

16

Clearly visible above is the inconsistencies in fuel required for the trip where

for example at 5500kg of tankered fuel trip costs takes a major dip down.

For now this text is put into the developer-console but will be implemented

somehow into FOCS in the following prototypes.

At first the costumer wanted to get the result in the unit kr/ton, but that value

changes depending on how much the pilot is going to tanker. For this reason it

would be better to present some kind of list for the pilot. A mail explaining

this was sent to the customer.

4.2 Prototype 2

4.2.1 Proposed solution
In this prototype it will first be ensured that the solution from prototype 1 is

correctly implemented and that the fuel tankering values are correct. This will

be ensured by speaking to the manager of the software department at

Flygprestanda and with a contact at City Airline.

Next, the bugs in prototype 1 must be taken care of and some stress tests will

be made to find more bugs.

If there is time left, this will be spent by optimizing the code and

implementing new performance methods that are going to be used only for

fuel calculations (in prototype 1 performance methods were used that

calculated more than fuel consumption, which made the calculations very

slow).

An idea on how to solve this problem is to reduce the amount of iterations in

the while-loop. In prototype one the flight started with zero amounts of

tankered fuel, and then increased the extra fuel by a given value (right now the

flight is loaded with 500 kg extra fuel for each iteration. A larger value yields

faster calculation but is less accurate. This is also something that needs some

further research to get the optimal value). Iterations were made until ATOM,

ALM, or fuel capacity was exceeded. It was discovered that fuel tankering is

often most profitable when reaching the MTOM/ALM or maximum fuel

capacity, so therefore it would be better to start at the maximum fuel tankering

amount and then decrease the fuel tankering iteratively, because then it would

converge after a few iterations to the most profitable tankering amount. If a

list of different tankering results is required to be presented this method cannot

be used.

4.2.2 Bug fixing & Optimization
The first things that were fixed in prototype 2 were the major bugs in

prototype 1.

17

The infinite loop bug was fixed by forcing the performance calculator to

recalculate with different amount of extra tankered fuel. The performance

calculator is written to be run only once per flight but by writing a new

method, it was possible to get around that and make it run several times on the

same flight but with different amount of extra fuel to get different tankering

results.

In an effort to optimize and hopefully fix some of the bugs, a large part of the

code was moved to an earlier stage. Now the fuel tankering calculations are

performed after the standard calculations. This eliminated the bug where the

fuel values were not saved.

All the methods were reduced until it only contained the essential operations.

For example in prototype 1, methods that did performance corrections for

different altitudes was used, which gave the exact same tankering results with

or without it so this piece of redundant code was removed. When this was

done, the bug where some values did not always reset was solved. This also

made a huge difference on the time required for tankering calculations. The

time required for the tankering calculations was reduced to be even faster than

in the standard calculations, and yet this can be even faster by reducing the

amount of tests.

The bug that caused the trip fuel to be lower when adding additional fuel was

not actually a bug. It was caused by changes in flight levels (fuel burn rates

changes depending on the flight level). This has to do with the algorithm for

fuel calculation, because it is always trying to get the optimal fuel cost for the

aircraft by, in this case lowering the flight level. Considerations were made

about having a locked value on the flight level but after some discussion it

reached the conclusion that it should not be, because the pilot probably wants

to be flying at the given flight level for his aircraft weight anyway and the

option to lock the flight level is already implemented into FOCS.

But even with this in mind, sometimes the trip fuel values got too much lower

than the others. The bug was found at another FOCS server as well where this

solution is not implemented so this bug has nothing to do with the

implementation, though the fuel calculations depend on getting the correct

values. Apparently, there is no climb calculation at some segments, which

makes the trip fuel cost much lower. This bug has been reported and it is on its

way to be fixed by others. The best way to bypass this right now is just to

ignore the values if the trip fuel is much too lower than the previous one.

18

Mentioned earlier was an idea on how to reduce the amount of iterations by

starting at MTOM/MLM/fuel capacity. This is no longer relevant because the

result is going to be shown as a list with different amount of tankered fuel

instead of just a number with profit per tonne of fuel.

4.2.3 Enhancements
There is a view in FOCS that is called Management where it is possible to

store fuel prices for airports. The first enhancement in this prototype that was

implemented was to gather the fuel prices from this view to the fuel tankering

calculations instead of hard-coding it like before. The first solution was to try

to get the data from another class but it was noticed that if you change the

value of an already existing price, the value did not change in its flight plan.

For this reason the data had to be extracted directly from the database.

This implementation led to several minor bugs. If the user stored prices in

different currencies between the airports, the wrong result was obviously

returned. A class that contained methods for converting a currency into

another was found but this class was not fully implemented so for now fuel

tankering is blocked when different currencies are used. It is also blocked

when the price at departure is higher than at destination for obvious reasons.

An answer returned from the customer regarding how the data should be

presented where he agreed with us and wanted to get the result as a table with

Fuel tankered, trip fuel, total fuel, and profit. He wanted the results to show

the top 5 most profitable results into the first page of the tripkit documents. An

empty field was found on the first page where our table would fit perfectly so

the goal is to put the results there.

To be able to do this, the results needs to be saved in the database. A new table

called `tankering` was created in the database which contains information

about how much trip fuel, total fuel, profit, there is at a specific amount of

tankered fuel, and which performance calculation it is tied to.

Attempts were made to save fuel tankering data to the database from the class,

but it was not the easiest thing to understand. After some discussion with the

other developers the problem was better understood.

One class TankeringImpl is required that symbolizes a row in the actual

table, where the attributes represent the different columns, and another class

ServerTankeringProvider(including interface) is needed for

establishing the connection between the class and the table. In this class

implementation of methods on how to save/retrieve data from the table is

needed.

19

When this was done, an object could be created and filled with data from the

calculations and then added to a list with tankering objects and then saved to

the database.

As mentioned above, the customer only wanted the top 5 most profitable

results. This means that no other rows needed to be saved so some basic logic

was added to pick the two surrounding rows around the optimal result and

save them to the database as well.

When trying to retrieve the data from the table a problem was encountered.

The specified row could not be found because the foreign key connecting the

performance calculation with the tankering table was being overwritten with a

new completely different id. The problem was that every row in every table

required a column with a unique id and even though there were (the initial key

used two columns to be unique) a new one was being generated. So a new

column `pdId` had to be added which contained information about which

performance calculation it is tied to. When this was done the fuel tankering

data could finally be retrieved/saved and investigations could be made on how

to get the results into the trip kit.

After some searching an .xml file TripkitData was found which contains

information about the appearance of the trip kit. A java class with the same

name is used to store all the information that is going to be shown in the trip

kit. The first thing that had to be done was to try to access the fuel tankering

results from the database to this class and this succeeded.

Retrieving the data from the trip kit was not as straight forward as one might

think. A new class TankeringInfo (a static one) had to be created that

contains the information that is going to be presented into the trip kit. This

class will be serialized in order to be able to show the data in the xml file.

Once this was done only the formatting remained.

The first thing attempted when trying to get our results visualized on the trip

kit was to just write out the column names. When this was done it was

attempted to retrieve the actual data from TankeringInfo and then iterate

through the tankering list so a table could be presented with the tankering

results.

20

The whole procedure is illustrated in Figure 6.

4.2.4 Problems
 All the problems in prototype 1 have been fixed. Some problems were

encountered on how to save/collect data from the table in the database

but all of this has been fixed so there are no major problems right now,

just some minors that will be described in the next prototype.

 It is uncertain if the solution is fast enough so a meeting will be

arranged to discuss if further optimization is needed in the next

prototype.

 A couple of more enhancements need to be implemented in the next

prototype that will be described in the chapter for prototype 3.

21

Figure 6 – The procedure between our classes that describes how they are

communicating with the system and each other.

22

4.2.5 Result
When the user has created and activated a flight the fuel tankering results are

going to be shown at the first page in the tripkit. The result of this prototype

can be seen in the appendix under Prototype 2. The result is displayed as a list

where the columns are Tankered, Trip, Total, and profit in given currency

(highlighted in grey). In this case most profit was gained by filling up as much

as possible until it reached the fuel capacity limit.

Some sensitive information has been censored in the trip kit in respect of

Flygprestandas privacy but the tankering result is still fully shown.

4.3 Prototype 3

4.3.1 Proposed solution
Most of the major bugs were fixed in the previous prototype and

enhancements where made which allowed fuel tankering data to be

saved/retrieved and be shown in the trip kit. In the time plan conclusions were

made that four prototypes will be the needed, but there has been great progress

so it is probable that prototype 3 can be released as the final release. This

prototype will focus mostly on further enhancements as most of the bugs are

already fixed. Adding new enhancements can of course lead to several more

bugs, but there is enough time to solve these within the time span.

Some of the bugs that are going to be fixed:

 When the aircraft has fuel left over from the previous flight, the user

will add this to the extra fuel column. However, this is not taken care of

(this value is being reset because it is used for tankered fuel

calculations) in the fuel tankering calculations so this needs to be fixed.

 It is not possible to load a tripkit from the database the first time when

starting the focs server without recalculating it. It has something to do

with serialization of one of the tankering objects.

 If there are less than 5 rows in the results, sometimes the optimal rows

text font does not get bold.

 If there is a loss instead of profit there are errors when trying to retrieve

the loss from the database.

Some of the enhancements that are going to be implemented:

 Make a new column in the tankering results called ”underload”. The

underload shows how much weight the airplane can take on before

MTOM/MLM is exceeded. This is useful for the pilot so he can make

decisions with this number in mind.

 Correctly round the prices in the tripkit for every valid currency. Right

know the profits are shown as integers which just cut the decimals.

23

 Investigate/Discuss whether or not it is needed to have some error

windows for the user, e.g. if departure- or arrival-airport does not have

fuel prices, or if they are in different currencies, will the user get any

error message, if so, how should this be presented?

 Investigate/Discuss whether or not it is needed to optimize the solution

further.

 Investigate/Discuss if a button is needed in FOCS that enables/disable

fuel tankering.

 When the space for fuel is less than the amount of fuel it increases

between iterations, it simply breaks. For this prototype the aim is to

make this go higher up to a safe amount that does not exceed any

weight or fuel capacity limits.

4.3.2 Bug fixing
Before adding more enhancements it would be wise to fix the remaining bugs.

The first bug fixed was the ”extra fuel” bug described in the previous

prototype. This was an easy fix. A temporary mass object was saved called

initialExtraFuel that stored how much extra fuel the pilot had over

from the previous flight. This amount was then added with a tankered amount

like data.setExtraFuel(initialfuel + tankeredAmount) instead of

data.setExtraFuel(tankeredAmount). This solved the problem.

A previously saved trip kit could not load the first time a server has started.

This was caused by the fact that the TankeringInfo was not included into

a configuration file which loads all the different data into the tripkit.

The bug where the optimal rows font did not get bolded was caused by an

IndexOutOfBoundException. The top 5 optimal rows are added in to

an arraylist. When five rows were not available, a row that did not even exist

was attempted to be saved. This was fixed by a simple algorithm that returns

two values, bottom, and top, which determines the span on which rows that

will be saved to the database. It is only the top 5 most optimal results that will

get saved in the database.

When retrieving profits as a negative number (loss) from the database errors

were encountered when deserializing. This was because the price object is not

built to contain negative numbers when deserializing. This led to some

problems, but it was fixed easily by making a different approach. Before the

profits are saved to the database, there is a check to see if the profit is negative

or not. If it is negative, the profit is set to zero. Then when retrieving the

results, there is a check to see that if all the rows profit is 0, then there is no

profit gained. Then there will just be a line of text in the trip kit: ”No profit

can be made by tankering extra fuel” instead of printing out the results. This

24

solution made it easier to implement and certainly easier for the pilot to

understand.

At the end of this phase a lot of testing was made to see if there were still any

remaining bugs left. A couple of bugs were found where the underload went

negative, tankering values got flagged as optimal when it was not (again) and

the fuel capacity was exceeded. After a whole afternoon of debugging these

bugs were fixed.

At this point, all of the bugs that have been found are fixed.

4.3.3 Enhancements
The rounding problem was easy to fix. Before the price object was returned as

an integer, but a method was found inside the price object that could round the

price within given precision, so now the price is rounded before it is converted

into an integer.

A meeting with the mentor took place to discuss what he thought should

happen if the user does not specify fuel prices at destinations etc. Conclusions

were made that there should not be any info in the tripkit if there are fuel

prices missing at airports, because this is not relevant for the pilot. He

suggested it should be as it is right now, but with just another print in the

tripkit that says that ”No tankering calculations could be made” that will be

printed if anything goes wrong, for example no fuel prices, different

currencies, etc.

Discussions also took place about if FOCS should have a button for

enabling/disabling fuel tankering. Decisions were made that it should always

be enabled because there is actually no reason to turn it off as a user.

4.3.4 Result
The result is shown in the appendix under Prototype 3.

There is now a new column ´underload ´ in the trip kit and a more precise

maximum tankering value. In this case most profit was gained by filling up as

much as possible until it reached the fuel capacity limit.

Due to time limits prototype four is going to be skipped since sufficient goals

have been achieved in this prototype.

25

5 Conclusion

The project started with a question: “Can profit be made by tankering fuel and

if so, how much and how can it be calculated?” This part was entirely

theoretical and was spent investigating what different variables that had to be

considered that would impact the result. A conclusion that it was possible was

reached and the implementation of the first prototype was started.

The first prototype was mostly about learning how the system was built and

finding where the solution would fit best. Having found this, a simple

algorithm was made that wrote all the results into the console. It was slow and

unstable but results were accurate.

For prototype two a lot of the code was restructured and was made a lot faster

this way. Prototype one left a lot of bugs to correct and there were a lot of

discussions on how the results were to be displayed. Having spoken to the

software manager and the customer it was concluded that the result should be

shown as a table in the tripkit and proceeded to implement this.

Prototype three brought even more bug-fixing and some optimization of the

code. But most of the work here was to prevent unhandled errors and making

the max tankering amount more precise while still being safe in regards to fuel

capacity and MTOM/MLM. Furthermore some data was missing in the tripkit

and the table in the database contained redundant information which was also

taken care of here.

The time plan specified a fourth prototype but there was no need for another

prototype and that it was ready for a final demo so the software department of

Flygprestanda was gathered and a fuel tankering presentation was held. At the

end of the demo a discussion was started concerning future enhancements and

we got a chance to say what could be improved with fuel tankering in FOCS.

The manager of Flygprestanda approved of what we had done. Our mentor

gave us a clear pass and told us this is something that will really come to good

use. In accordance with the goals an accurate fuel tankering module, with no

user interaction and code that follows the coding standards of Flygprestanda

has been implemented and integrated in a way that offers enhancements to be

added easily.

Other than the skipping of prototype four, the work has been conducted

exactly as specified in the time plan.

26

6 Further enhancements

There is a lot of work that still can be further developed regarding the fuel

tankering solution. What has been implemented is the ground for the fuel

tankering algorithm and there is a lot that still can be developed further.

Unfortunately, due to the limited scope for this project there was no time to

enhance it further with more features, so we have tried to make the

implementation easy to further enhance for the other developers at

Flygprestanda.

There are a couple of more variables that would have given slightly more

accurate results, such as Carbon Dioxide taxes and terminal charges.

Cases when flying with one or more alternative destinations is not treated,

either.

In later versions of FOCS there is going to be implemented a feature that

stores data about how long the runways are on airports. The more weight an

aircraft has, the longer the landing distance is going to be. There can be a

problem when tankering, because when more is tankered the weight of the

aircraft gets higher, which will require a longer runway than without

tankering. In the worst case, the pilot will not be able to land because the

aircraft weighs too much. When flying with an alternate destination this

airport also needs to be taken into consideration. This was not implemented

simply because FOCS does not have the data for this solution right now. When

this data is available there should not be any problem to implement it into this

solution.

6.1 Currency conversion

Under the management view in FOCS, where fuel prices at airports can be

entered, the user can choose which currency the price is going to be. The

problem is that there is no implementation in FOCS which makes it possible to

convert a currency into another yet. Because of this, the user is forced to use

the same currency at every airport in order to make fuel tankering calculations.

There is a lot of work that needs to be done to implement this successfully,

probably so much work that this problem could be a thesis on its own.

6.2 CO2 emission tax

With extra weight comes extra fuel consumption. With extra fuel consumption

comes increased CO2 emissions. These emissions are tax-based on how large

they are and so as they increase with fuel tankering they are relevant to the

profit made with it. Although the difference in profit may be small, it is still a

feature that other competing software maybe does not account for. This tax

27

varies between countries so there is probably a lot of investigation needed into

this one to find out where and how you can retrieve this data.

6.3 Three or more flight legs

Under What data is required it is mentioned a way to make extra profit when

having multiple flight legs planned. This is something that there was no time

to implement but is something that can greatly improve the accuracy of profit

made. The problem with this kind of implementation is that it requires the

pilot to tanker the exact amount of fuel specified as optimal or else the

calculations will be rendered obsolete for the following flights.

6.4 Mask fuel-prices in tripkit

Because fuel-prices are very secret for an airline company it is important to

protect this kind of information. The route used and profit gained is enough

information to make out hints as to what the fuel price can be, certain

information needs to be hidden or encrypted somehow, for example like a

price index. With this method the pilot has a table of different indexes that are

tied to prices, so in the trip kit there will only be an index which the pilot

needs to look up in his table to see the actual profit.

6.5 Optimization

The problem with the speed of our solution was discussed with the system

architect. The conclusion was reached that it should be no problem. The

calculations may seem slow, but when running on a standalone server the

calculations is much faster than if you run the client and server at the same

computer and our computer did not meet the recommended amount of

memory for running the server.

Although, it was noticed that on longer routes the calculation time for the

solution can take longer time than the original calculation (one iteration can

take almost 1 second). This is not good and right now there is no good

solution. After some investigations into this it was concluded that this has to

do with the performance calculations that the algorithm is iterating through,

which gives us all the data that we need to do our tankering calculations.

There are two options; go deeper into the performance calculation methods

and remove parts that is not necessary, or make less iterations.

Making less iterations is not the easiest thing to implement, and it should not

make a big difference because the aim is to always make at least five iterations

(if possible) so there are five different tankering values in the results. This

would only have an effect on bigger airplanes such as Boeing 737, where the

MTOM/MLM and fuel capacity is far greater. There was an idea before where

it could start iterating at maximum tankering value, and then decrease until it

28

has got five results. This is not possible, because in order to find out the

maximum tankering amount, a mean trip fuel gain value is used which finds

out on how much on average the trip fuel increases per tankering amount and

this value is not accurate before there are a couple of different tankering

amounts. It would be possible to make 3-4 tankering values when starting

from zero, and then find out the mean trip fuel gain value, then finding out the

maximum tankering amount and then go further down from that amount. But

this method would not be pretty and would certainly lead to many new bugs.

It was decided not to optimize any further, because it is not within this projects

scope and due to time constraints other features were prioritized.

29

7 Terminology

FOCS – Flygprestandas flight planning software.

NOTAM – Notices To Airmen, messages created and transmitted by

government agencies and airport operators to alert pilots of any hazards.

Payload – the carrying capacity of an aircraft including cargo and extra fuel.

DAD – Flygprestanda's database containing information about everything

from overflight charges to how much fuel is required at a certain

weight/altitude to maintain cruise flight and so on.

MTOM – Maximum Take-Off Mass, the highest mass allowed for an airplane

to take off on an airports runway.

ATOM – Actual Take-Off Mass, the actual mass off the airplane when taking

off.

MLM – Maximum Landing Mass, the highest mass allowed for an airplane to

land on an airports runway.

ALM – Actual Landing Mass, the actual mass off the airplane allowed when

landing on an airports runway.

NM – Nautical Miles, unit for measuring flight distance. 1 nautical mile =

1.852 kilometers.

Leg – A route between two airports

Performance Corrections - These are calculations based on the same flight

but at different flight levels, therefore the amount of trip fuel burned and the

time for the trip are different.

Tripkit – A document that is handed to the pilot that contains all the

information for a certain flight. Our results are presented in the tripkit.

Segment – A route is built using Route Segments where a route is comprised

of many route segments. These route segments contains performance data

about the actual flight.

phpMyAdmin – A tool that is used to maintain the database that is run

through the web browser.

30

8 References

[1] Quarles & Brandy LLP: Jet Fuel Consortiums

Retrieved February 2, 2012 from

http://www.quarles.com/jet_fuel_consortiums/

[2] Flygprestanda AB: Flygprestanda AB Performance Engineering.

Retrieved February 2, 2012 from

http://www.flygp.se/

[3] Transport Canada: Theory and Aircraft Performance

Retrieved February 4, 2012 from

http://www.tc.gc.ca/eng/civilaviation/publications/tp10643-chapter2-theory-

203.htm

[4] IATA: Airport and Air Traffic Control (ATC) Charges. Retrieved February

13, 2012 from

 http://www.iata.org/whatwedo/airport-ans/charges/pages/airport-atc-

charges.aspx

[5] Eurocontrol: Frequently Asked Questions (FAQ). Retrieved February 13,

2012 from

http://www.eurocontrol.int/faq/route-charges/

[6] Federal Aviation Administration: Aeronautical Information Manual.

Retrieved February 2, 2012 from

http://www.faa.gov/air_traffic/publications/atpubs/aim/

[7] PPrune: Discussions about fuel tankering formulas

Retrieved February 8, 2012 from

http://www.pprune.org/tech-log/148577-fuel-tankering-formula.html

http://www.quarles.com/jet_fuel_consortiums/
http://www.flygp.se/
http://www.tc.gc.ca/eng/civilaviation/publications/tp10643-chapter2-theory-203.htm
http://www.tc.gc.ca/eng/civilaviation/publications/tp10643-chapter2-theory-203.htm
http://www.iata.org/whatwedo/airport-ans/charges/pages/airport-atc-charges.aspx
http://www.iata.org/whatwedo/airport-ans/charges/pages/airport-atc-charges.aspx
http://www.eurocontrol.int/faq/route-charges/
http://www.faa.gov/air_traffic/publications/atpubs/aim/
http://www.pprune.org/tech-log/148577-fuel-tankering-formula.html

31

9 Appendix

9.1 Prototype 2

Figure 7 – Our results for prototype 2, presented in the tripkit. Our solution is

presented in the highlighted area.

32

9.2 Prototype 3

Figure 8 – Our results for prototype 3, presented in the tripkit. Our solution is

presented in the highlighted area.

