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Abstract
The aim of this thesis was to gain a greater understanding of the processes involved with 
detecting high-energy particles in a drift-tube detector. It is based on an analysis using real  
data from the transition radiation tracker (TRT) of the ATLAS experiment located at CERN.

In the beginning of this analysis the  r-t relation of the detector gas was determined. A 3rd 

degree polynomial approximation was plotted to the  r-t relation and distributions of time-
residuals  and track-to-wire distance  residuals  were  obtained.  These  steps  were performed 
analogous  to  the  way it  is  done in  the  actual  TRT-calibration   currently  implemented  at 
ATLAS.

However,  the  aim  of  this  project  was  to  not  simply  copy  existing  code  but  rather  to 
complement  the TRT-calibration by looking at  a  number  of factors which might  have an 
influence  on TRT-calibration  constants  but  have been neglected  so far.  Thus the residual 
width and mean were plotted as function of the number of primary vertices. It was found that 
the number of primary vertices has an effect of about 1/30 th of the total width on the time-
residual width and that the peak-position varies similarly little. The effect of the number of 
primary vertices can thus be neglected provided a pt-cut is introduced that  excludes all tracks 
<4 GeV.

Further the dependence of the time-residual on time-over-threshold was looked at. It showed 
that the time-residual varies by up to 1 ns with the time-over-threshold, independent of the 
number of primary vertices and detector occupancy. It was thus concluded that this variation 
has to be due to the time-over-threshold correction constant. Such large variation suggests that 
it may be possible to improve this calibration constant in the future.
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Introduction

The Large Hadron Collider experiment (LHC)

The Large  Hadron Collider  is  the  currently  largest  particle  accelerator  in  operation.  It  is 
located  at  the  CERN  site  (Organisation  Européenne  pour  la  Recherche  Nucléaire)  near 
Geneva. Up to 175 m  underground it is housed in the 27 km long, circular tunnel which 
formerly contained the LEP (Large Electron-Positron) collider.

Figure 1: shematic of the LHC accelerator chain, picture taken from:  
http://en.wikipedia.org/wiki/File:LHC.svg

The need for the LHC arose out of the wish of the particle physics community to probe energy 
ranges  not  accessible  to  previous  collider  experiments  like  Tevatron  and  LEP.  The 
construction of the LHC was considered crucial to the advance of particle physics, because it 
probes an energy range that  has  been inaccessible  so far.  One reason why probing these 
energy scales is so important to physics is that limits from previous experiments, expect to 
find or exclude the Higgs- boson there.

The Higgs-mechanism is a model that was incorporated into the current 'standart model of 
particle physics'. It describes how, through spontaneous, electroweak symmetry-breaking and 
Yukawa coupling, gauge bosons and fermions respectively, acquire mass. The Higgs-boson 
would  be  the  easiest  way  to  complete  the  Higgs-mechanism,  but  Higgsless  models  are 
possible, too. Except for its mass, all properties of the standard-model Higgs are fixed. Hence 
possible  decay/production  channels  of  the  Higgs  could  be  predicted  and  verified  against 
experiment. LEP statistics set a lower limit for the Higgs-mass at MH>58 GeV/c2 because the 
following decays could not be observed.

(1)  Z0 → H0 + l+ + l- 

(2)  Z0 → H0 + νl + νl
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This lower limit  was further raised to MH>114 GeV/c2. Fermion colliders tried to observe 
mainly the so-called Higgs-radiation

(3) e+ + e- → Z0 → H0 + Z0 

whereas hadron colliders try to produce Higgs by two gluons via a quark loop (mostly top-
quark):

(4) g + g → t + t → H0

Other modes contribute as well.

An upper limit of the standard model Higgs-mass is generally thought to be ~1TeV/c2 since at 
higher energies the Higgs would have higher order loop contributions to processes like e.g. 
the scattering of W and Z bosons which would lead to deviations  in  the observed cross-
sections from perturbative calculations.

The LHC allows to produce Higgs-bosons at energies of up to 1TeV. Dominant for MH > 2MZ 

would be the channels 

(5) H0 → Z0 + Z0 and 

(6) H0 → W- + W+ 

This decay is most clearly visible when the two Z0's decay into two lepton pairs:

(7) H0 → Z0 + Z0 → l++l-+l++l-

Below  MH < 2MW the most dominant channel would be

(8) H0 → b + b         {1}{3}

On December 13th 2011 it was announced that the combined data collected by ATLAS and 
CMS  make  a  discovery  of  the  Higgs  boson  most  likely  in  the  range  of  124-126  GeV. 
However, by that time there was not enough data to claim a discovery. {14}{15}

Another  predicted  model  one  hopes  to  verify  with  the  LHC is  Supersymmetry  (SUSY). 
Supersymmetry is actually a whole set of possible models that attempt to (at least partially) 
solve open physics problems such as  the hierarchy problem, proton lifetime, weak mixing 
angles, dark matter (WIMPs) and grand unification of all forces (including gravity)  at the 
Planck mass of ~1019 GeV/c2. It predicts a relation between bosons and fermions, so that each 
boson has a fermionic 'partner' and vice versa. These so called 'super partners' have the same 
internal quantum numbers as their  counterpart,  but a spin different by 1/2. This implies a 
whole new set of particles, which obviously have to exist at higher energies than previously 
accessible for probing, since none have been found so far. Hence Supersymmetry must be 
broken – how and why depends on the specific model. {4}

The LHC will be used to further research in a great number of other fields like heavy-ion 
physics, including the study of the quark-gluon plasma. Furthermore it is looking for clues on 
string theory and extra dimensions as well as CP-violation.

The accelerator is a storage-ring type accelerator. It is capable of accelerating two counter 
rotating proton beams to collide with a nominal center-of-mass energy √s of up to 14 TeV (7 
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TeV per proton beam). Besides proton-proton (p-p) collisions it is designed to perform lead-
lead  (Pb-Pb)  collisions  as  well  as  lead-proton  (Pb-p)  collisions,  where  lead  ions  can  be 
accelerated up to 5.5 TeV per nucleon pair.

Before injection into the LHC, protons are being accelerated by a successive chain of other 
accelerators: the LINear ACcelerator LINAC-2 (up to 50 MeV), Proton Synchrotron Booster 
PSB (up to  1.4 GeV),  the  Proton Synchrotron  PS (up to  26 GeV) and the Super  Proton 
Synchrotron SPS (up to 450 GeV). Lead-ions undergo similar stages of acceleration, except 
that they originate in LINAC-3. (see figure 1)

There are  four beam-crossing points with seven scientific  experiments  located  around the 
detector 

The main storage ring consists of  1 232 superconductive dipole bending-magnets that keep 
the particles in a circular path, as well as 392 quadrupole magnets for beam-focusing and 
beam- position fine adjustment. Nominal bunch-crossing interval is every 25 ns with 2 808 
bunches at any one time in the ring. The nominal luminosity for p-p collisions is 1034 cm-2s-1, 
for  Pb-Pb  collisions  it  is  1027 cm-2s-1.  These  extreme  values  are  necessary  to  produce 
sufficiently many particle collisions so that statistical uncertainties become smaller. This is 
necessary because hadron collisions are intrinsically very 'messy';  meaning that due to the 
composite  nature  of  the  hadrons,  every  collision  produces  an  enormous  background  of 
'unwanted' collisions/decays. This introduces, as opposed to single fermion collisions, huge 
statistical errors which can only be ruled out by a much increased quantity of collisions.

A luminosity-upgrade for the LHC called ther Super LHC is proposed for the time after 2018. 
It would mainly involve upgrades of the injection system and a better fixation of the LHC 
dipole magnets. The upgrade has been widely studied, but has not been approved jet.
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The ATLAS   detector:  

The ATLAS (A Toroidal LHC ApparatuS) is a multi-purpose particle detector of 44 m length, 
25 m height and an approximate weight of 7000 t. 

It was primarily designed for proton-proton collisions but is also being used for heavy-ion 
research. Together with the Compact Muon Solenoid (CMS), which is of radically different 
design, the two detectors carry the main load of high energy particle physics research at the 
LHC. A major reason why CMS and ATLAS were designed so differently while focusing on 
the  same  research  is  because,  in  case  of  a  discovery  (or  exclusion),  one  detector  can 
independently  verify  the  other's  results.  Meanwhile  both  can  complement  each  other's 
statistics in the early low-luminosity phase as well as for low-probability events.

The ATLAS machine  consists  of  a  great  many different  kinds  of  particle-detectors,  data 
acquisition-,  power  supply-,  magnet-  and  cooling-systems.  It  is  divided  into  three  sub-
detectors:  the  inner  detector,  the  calorimeter  system  and  the  muon  system  (ordered  by 
increasing distance from the collision-point).

The inner detector consists of a semiconductor pixel detector, a silicon micro-strip detector 
(SCT)  and  a  transition  radiation  drift-tube  detector  (TRT).  The  pixel-  and  micro-strip 
detectors  deliver  more  accurate  tracking  information  but  lower  hit-rates  (~  3 
hits/detector/track). The pixel detector has an accuracy of 10 μm (φ) and 115 μm (z & R) , the 
SCT has an accuracy of 17 μm (φ) and 580 μm (z & R) . The semiconductor detectors are 
rather expensive. The TRT is cheaper, could thus be built bigger and delivers more hits per 
track (~36 hits/track), which compensates for its lower accuracy of ~130 μm (φ) per straw . A 
precise tracking system is  of great  importance,  especially when dealing with hadron- and 
heavy-ion  collisions  which  produce  a  lot  more  secondary  particles  than  single  lepton 
collisions and thus require more accurate track-reconstruction. The transition radiation allows 
for a better electron-identification and the precise measurement of the pixel detectors at close 
proximity to the collision-point allows for primary vertex measurement. In order to enable 
momentum and charge measurement, the inner detector is immersed in a 2 T strong magnetic 
field. This field is produced by a toroidal solenoid around the inner detector, which makes it 
fairly homogeneous and parallel to the beam axis in the barrel-region (less so in the end-cap 
region). Charge and momentum are measured by determining the handedness and curvature of 
a track. 

(9) F=q (E+v×B)=
m v2

R
⋅R̂

One can determine the particle velocity by measuring the particle energy in the calorimeters 
and subsequently infer the mass using the above equation for the Lorentz-force.
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Figure 2: Computer model of the ATLAS inner detector including pixel detector, SCT and  
TRT, picture taken from: The ATLAS-Collaboration: “The ATLAS Experiment at the CERN 
Large Hadron Collider ”, page 6, {10}

The calorimeter system consists of liquid argon (LAr) electromagnetic calorimeters as well as 
hadronic calorimeters  which are either  tile-calorimeters,  LAr end-cap calorimeters  or LAr 
forward calorimeters. The electromagnetic calorimeter has a higher resolution and is used to 
measure the energy deposited by electrons and photons through bremsstrahlung. It consists of 
accordion-shaped  lead  absorber  plates  interchanging  with  liquid  argon  scintillator  layers 
which  act  as  samplers  measuring  the  penetration  depth  of  the  particle.  The  hadronic 
calorimeters have less resolution but are sufficient to identify hadronic jets and measure their 
energy. The tile calorimeters consist of interchanging layers of steel-absorber and scintillator 
samplers. The hadronic LAr end-caps use copper as radiator while the forward calorimeters 
use copper and tungsten. The thickness of the calorimeters is calculated so that they cover the 
ranges of most  electromagnetic-  and hadronic jet-absorption,  respective  EM and hadronic 
calorimeter. They have to be thick enough to minimize penetration of these showers into the 
muon system.  The EM calorimeter  has  a  thickness  of  >22 radiation  lengths  (X0)  and the 
hadronic calorimeter covers >24 X0. The radiation length is the relation between penetration 
depth and energy loss due to bremsstrahlung for a charged particle, given approximately by:

(10)  
1
X 0

=4 ( ℏ
m c )

2

Z (Z+1)α
3 na ln( 183

Z1 /3 )                taken from {11}

where m is the particle mass, c is the speed of light in vacuum, Z is the atomic number of the 
medium, na is the density of atoms per cm3 in the medium and α is the fine-structure constant.

The Muon system is a spectrometer-type detector with the sole purpose of identifying muons 
and measuring their momentum. Muons are, due to their high mass, the only particles (except 
neutrinos) that are expected to make it through all the other detectors without being drained of 
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their kinetic energy. Since they are vital in order to determine energy losses in the original 
collision and to deduce the decay of the primary reactants they have to be identified. Three 
superconducting toroidal solenoids around the muon system provide a very strong magnetic 
field which bends the muon path in a circular motion. Within the solenoids four layers of 
monitored drift tubes (MDT), cathode strip chambers (CSC),  resistive plate chambers (RPC) 
and thin gap chambers (TGC) provide position measurement and triggering.

Important for the later consideration of the ATLAS inner detector is the coordinate system 
applied to the detector. 

• origo = nominal collision point / beam crossing point
• positive x-axis points radially towards centre of LHC-ring
• positive y-axis points upwards
• z axis = beam-axis
• azimuthal axis = x-axis
• azimuthal angle φ rotates around beam-axis
• inclination θ is angle from beam-axis           {10}

Figure 3: Computer model of the ATLAS detector including inner detector, EM- and hadronic  
calorimeters and the muon spectrometer, shows ATLAS coordinate system, picture taken 
from: The ATLAS-Collaboration: “The ATLAS Experiment at the CERN Large Hadron  
Collider ”, page 4, {10}
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Transition Radiation Tracker (TRT)

The ATLAS TRT is a kind of drift-tube detector. The feature that distinguishes it from earlier 
models is that it consists of drift tubes (straws) which are surrounded by polypropylene fibres 
and foils. In a conventional drift tube detector, the faster particles traverse it, the lower the 
interaction cross-section gets and the less ionization-electrons are created in the gas. On the 
polypropylene surface however, highly relativistic charged particles emit transition-radiation. 
By  passing  an  interface  between  two  materials  with  different  dielectric  permittivity,  the 
particle wave-function has to change homogeneously from one inhomogeneous solution to 
Maxwell's equations in the first material to another in the second material. The difference in 
homogeneous and inhomogeneous solution is emitted as transition radiation. The transition 
radiation intensity is roughly proportional to the particle gamma factor:

(11) I ≈ mrest⋅γ=
mrest

√1−( v
c )

2
                 taken from {6}

The transition radiation photons then cause secondary ionisation in the drift tubes. Measuring 
the charge and ionization-time allows already for a limited momentum, charge and particle 
identification in the inner tracking detector.

The TRT is made of 298304 straws which are bunched together and arranged so that 52544 of 
them form a cylinder around the collision point. The straws are oriented parallel to the beam 
axis  and  split  in  the  middle  forming  two  segments.  Each  side  of  the  straw  is  read  out  
separately  so  that  there  are  105088 read-out  channels  in  the  barrel-section.  One segment 
stretches from the collision point over the positive part of the beam axis (barrel A) and the 
other covers the negative part of the beam axis (barrel C). The barrels each have 3 layers, 
radially stacked on top of each other, counting outwards from 0-6 (0-2 upper half, 3-6 lower 
half). Each layer is further subdivided into 32 triangular modules per layer and 73 cylindrical 
straw layers in total.

The other straws are arranged in end-caps A & C each containing 122880 straws. In the end-
caps, the straws are oriented orthogonal to the beam axis pointing radially outward from it. 
Each  end-cap  consists  of  20  wheels  (layers)  with  8  straw-layers  each.  That  makes  160 
consecutive straw layers per end-cap. The layers are counted from the inside-out 0-19.

In  the  entire  detector  each  straw  is  made  of  a  carbon-fibre  and  Aluminium  reinforced 
polimide-tube with an inner diameter of 4 mm. It holds a 31 μm thick gold-plated tungsten 
wire at its centre. The wire acts as anode and there is an electric potential of –1530V between 
it and the conductive inner coating of the straw. The used ionization gas mixture is 70% Xe, 
27% CO2 and 3% O2. It promotes the detection of low-energy transition radiation photons 
which allows for better electron-muon distinction and high gain, resulting in more hits.

{5}{7}{8}
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Figure 4: Section through the ATLAS inner detector showing the position of barrel-sections  
and end-caps of the pixel detector, SCT and TRT, picture taken from: The ATLAS-
Collaboration: “The ATLAS Experiment at the CERN Large Hadron Collider ”, page 54,  
{10}

Read-out of the 350848 TRT -channels is performed by two subsequent radiation hard chips. 
The  first  one  (ASDBLR)  performs  amplification,  shaping  and  baseline  restoration  and 
contains two discriminators that register if the energy deposited in the straw exceeds a low 
threshold of ~250 eV and a high threshold of ~6 keV. The low threshold will be triggered by 
particles  with  lower  speeds (usually  the  ones  with  higher  mass  due  to  conservation  of 
momentum, e.g. hadrons), the high threshold is triggered by particles with highly relativistic 
speeds (low mass, e.g. electrons/positrons) that create a lot of transition radiation. Measuring 
the threshold is thus an additional (rough) tool for particle identification.

The second chip (DMTROC) measures drift-time. It has 24 bins each of 3.125 ns length so 
that it covers a total of 75 ns. {2}{9}{8}

Figure 5: working schematic of the TRT front-end electronics, picture taken from: 
http://www.hep.lu.se/atlas/electronics/trt/electronics_images/trt_electronics_block.gif
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Procedure
The analysis  and figures that will be presented in the following chapters are based on so 
called “ntuple-files”. “ntuple-files” contain data dumped from the ATLAS-TRT track-fitter, 
assigning to each hit registered in the TRT, information about the event number, straw-, chip-, 
module-  and detector-location,  which track it  belongs to, measured drift-time,  drift-radius, 
unbiased drift-time and drift-radius from the fitted track, calibration constants and all sorts of 
information about the respective track it was assigned to.

Two datasets were used containing 7.6 GB track data from run 186923 and 10.5 GB from run 
187219.

Looping  over  such  large  amounts  of  data  requires  a  simple  intermediate  or  low-level 
programming language like C++ or perhaps Python. The here used analysis was written by 
the author in C++ and compiled with GCC 4.6.2 20111027 (Red Hat 4.6.2-1). It utilized the 
ROOT 5.30/06 analysis framework which was developed by a department at CERN that is 
uniquely dedicated to the creation of tools for efficient data processing, analysis and storage 
in high-energy particle physics.

Because looping over the data in one of the files requires about 20 min, the task was split in  
two parts. First the program (“analysis1.cpp”) fills all required histograms with data from the 
“ntuple-files” and saves the histograms in a ROOT-tree file. This step has to be performed 
only once for each dataset.  Then a number of other  programs import  the histograms and 
common variables from the tree file and further process and plot the data, each focusing on 
another aspect of the analysis. Because reading histograms goes rather fast the second step 
can be repeated more often, thus saving time when doing adjustments to the program.

The following C++ programs were used and can be found in the appendix:

• “analysis1.cpp” - program which loops over all track-data, fills and saves histograms 
and common variables

• “analysis_rt.cpp” - program to fit 3rd degree polynomials to the  r-t relation and plot 
results

• “analysis_res.cpp” - program which finds and plots the time-and space-residuals

• “analysis_nvx.cpp” - program that plots sigma and peak of residuals as function of 
nvx

• “analysis_tot.cpp”  -  program that  plots  the time-residual  peak as function of time-
over-threshold and nvx

• “analysis_rtnvx.cpp” -  program that plots  the derivative of the  r-t relation at  point 
[18,1] as function of nvx

• “pt_nvx.cpp” - program that plots pt vs. nvx and the mean of pt vs. nvx 
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Calibration of the TRT
The ATLAS-TRT is part of the inner detector,  which was predominantly built as tracking 
device. Hence the most important information gained from the TRT is the reconstruction of 
all  particle  paths  in  spatial  coordinates  as  well  as  a  timing  of  the  same.  It  is  of  utmost  
importance to deliver these quantities as precise as possible in order to later derive the exact 
point of origin of the particle, its mass, momentum, charge, etc. The straws themselves have a 
diameter of 4 mm. This spatial uncertainty can be vastly improved upon by measuring drift-
time. Drift-time is the time it takes the ionisation-electrons to drift from their point of creation 
in the straw to the anode wire. The primary electrons get accelerated by the strong, radial  
electric field between anode-wire and tube wall. They create secondary electrons on the way 
by scattering on the gas atoms. This avalanche effect only occurs at sufficient electric field 
strengths. Since the electric field-strength is proportional to the inverse of the distance to the 
anode wire, this effect only occurs at a distance < 0.2 mm from the anode wire. The avalanche 
effect further amplifies the signal in a way that the resultant charge depends linearly on field-
strength  and  exponentially  on  the  number  of  primary  electrons  and  drift  length  (in  the 
avalanche region).

At distances > 0.2 mm to the wire, the drift-time is almost linearly dependent on drift length.  
This is because the constant acceleration by the E-field and deceleration by scattering leads to 
a fairly constant drift-speed that depends on field-strength and the electron mean-free-path in 
the used gas-mixture. The relation between drift-time and drift-length is called r-t relation. By 
measuring the drift-time and knowing the  r-t relation very well, it is possible to calculate a 
radius around the anode wire that should in principle have the ionisation-track as tangent. 
After calculating these radii for all hit straws, one can best-fit a track through the radii which 
are ideally identical to the original particle track. This method of track reconstruction is used 
in the ATLAS-TRT and reduces the spatial uncertainty to about 0.12 mm.

The way this uncertainty is determined, is by calculating the time- and space-residuals: Once 
the 'best fit' track is determined one can calculate its minimum distance to each of the anode-
wires  at  the  centre  of  the  straw.  This  'ideal  drift-length'  is  compared  to  the  drift  length 
obtained from the measured drift-time and r-t relation. Their absolute difference is the space-
residual. Equivalently one can determine an 'ideal drift-time' using the  r-t relation and the 
calculated  'ideal  drift-length'.  The  absolute  difference  between  measured  drift-time  and 
calculated  drift  time  constitutes  the  time-residual.  The  space-  and  time-residuals  can  be 
determined for each straw. This gives a statistical distribution which should be centred around 
zero and possess ideally Gaussian shape. The FWHM (Full Width at Half Maximum) of the 
space-residual  and  time-residual  distributions  is  defined  to  be  the  spatial  and  temporal 
resolution of the detector respectively. The calculation of the residuals will be explained more 
thoroughly in the next two chapters.
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The r-t relation

The  r-t relation  is  not  precisely the  same for  all  straws.  Small  variations  in  the  making,  
alignment and front-end electronics of the straws as well as variations in the magnetic field 
(especially in the end-caps) lead to slightly different relations for every one of the 298304 
straws. It is possible to calibrate the r-t relation for every read-out chip, each typically serving 
16 straws.

The  r-t relation  (figure 6)  is  determined by plotting  all  hits  of  a run on a  2-dimensional 
histogram. Conventionally outliers are then removed from the histogram if the error in drift-
radius exceeds 0.5 mm. The histogram is then sliced in vertical slices parallel to the track-to-
wire distance  axis.  Each slice  has  the  width of  a  histogram-bin (1 ns).  Then a Gaussian 
function is fitted to each slice and the maximum is plotted on a scatter-graph. A 3rd order 
polynomial  can  be  fitted  through  the  maxima  in  the  scatter-graph  which  gives  the  best 
approximation of the r-t relation.

Figure 6: r-t histogram for run 187219 (entire detector); plotted on top are the maxima of the  
Gaussian fits to each vertical slice and a 3rd order polynomial fitted to the maxima

However, fitting a Gaussian to these slices might be difficult especially for drift times shorter 
than 10 ns. If the particle passed close to the anode-wire, the primary ionisation vertexes may 
lie at very different distances to the anode-wire. This in turn leads to very different drift times 
and thus  a  large  drift-time  uncertainty  for  short  drift-lengths.  In  addition,  for  short  drift-
lengths the ion-velocity does not behave quite as linearly as in the rest of the drift-tube due to 
the avalanche effect. The result being that slices through the r-t histogram at drift-times below 
~10 ns are less Gaussian-shaped. Thus slices below 10 ns are iteratively fitted with a Gaussian 
in the range of ±0.8×σ to fit the peak more accurately (figure 7), while the slices above 10 ns 
drift-time are fitted to ±1.5×σ (figure 8).

To later  accurately  fit  the  polynomial  through the  scatter-graph of  the  peak-positions,  an 
uncertainty has to be associated with each peak. In my analysis this is the χ2 fit-uncertainty of 
the Gaussian. Formally more correct would be to choose the sigma of the Gaussian. However 
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this  uncertainty is  way too large and leads  to  bad fits  of the polynomial.  In the ATLAS 
calibration code this  is  circumvented by a complicated analysis  of the variance of the  r-t 
relation  under  a  change  of  circumstance  such as  time,  run,  straw selection,  etc.  For  this 
analysis the fit-error shall suffice, keeping in mind that at very short and very long drift-times 
the error is probably larger than shown in the graphs.

Figure 7: slice at drift-time = 6 ns through 
rt-histogram (see figure ), fitted Gaussian to  
±0.8×σ 

Figure 8: slice at drift-time = 20 ns through 
rt-histogram (see figure ), fitted Gaussian to  
±1.5×σ 

To compare the different r-t relations of different detector sections, the 3rd order polynomials 
were plotted on the same graph and shifted so that they meet in the point [18 ns,1 mm]. This 
point was chosen because it lies in the fairly linear central region of the  r-t relation which 
represents the average gradient and has the best statistics (most hits).

Figure 9: 3rd order polynomials obtained from the rt-relations of different detector sections,  
polynomials are shifted to intersect in point [18,1],  run  187219
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From the above figure the following constants were obtained describing the polynomial:

(12) f (x )=b0+b1⋅x+b2⋅x2
+b3 x3

detector 
section

b0 b1 b2 b3 Derivative  at 
point [18,1]

barrel A 0.0589517 0.0551607 -8.73151e-05 -4.03892e-06 0.0480916

barrel C 0.0589063 0.0552515 -9.49279e-05 -3.88835e-06 0.0480546

inner  end-cap 
A (layer 0-5)

0.0307229 0.0562958 -5.24595e-05 -4.63816e-06 0.0498989

inner  end-cap 
C (layer 0-5)

0.0369077 0.0554797 -1.81009e-05 -5.08879e-06 0.0498818

outer  end-cap 
A (layer 6-13)

0.0148576 0.0543889 0.000158332 -7.743e-06 0.0525626

outer  end-cap 
C (layer 6-13)

0.03427 0.0516473 0.000279416 -9.33683e-06 0.0526309

From figure 9 it is apparent, that for the same track-to-wire distance the electrons drift longest 
in the barrel region, less long in the inner end-cap region and shortest in the outer end-caps. 
The magnetic field causes the electron-clusters not to drift directly towards the anode-wire but 
rather to describe a slight circular motion due to the Lorentz force. Hence the actual drift-
length  is  longer  than  the  perpendicular  track-to-wire  distance.  This  circular  motion  is 
strongest in the barrel-region where electric field and magnetic field are always orthogonal to 
each other (Lorentz force acting on electrons is always maximum).

The curvature of the electron path and thus the increase in drift length depends on the angle of 
the magnetic field in respect to the electric field in the drift-tube. The dependency can be 
derived from the equation of motion:

(13) m
∂ v̄
∂ t

=q ( Ē+ v̄×B̄)−k v̄ (eq. 2.1 in {12})

where  m is the electron mass,  v is the electron velocity vector,  t is time,  q is the electron 
charge,  E is the electric field,  B is the magnetic field and  k is the friction constant of the 
electrons in the gas.

Since it is known that the electron-velocity is fairly constant in this case, the acceleration due 
to electric field and the friction can be assumed to balance each other. What remains is the 
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v×B term. This is the force component causing the path curvature. It is proportional to the 
field strength (|B|) and the sinus of the angle between E-field (nominally v||E) and B-field. 

In the end-caps the drift tube is orthogonal to the z-axis. This means that the electric field can 
be at any angle to the magnetic field, depending on where the track goes through the drift 
tube. The further out an end-cap wheel lies and the further away the hit is situated from the 
beam axis, the more the solenoid field is inclined to the plane of the E-field in the tube. Hence 
statistically drift-times should increase the further out an end-cap is and the further the hit is 
away from the beam-axis. However the solenoid field also becomes less uniform and thus less 
strong the further out the end-cap lies.  This leads to a smaller  curvature and counteracts, 
apparently dominating the previous effect.

What should be kept in mind from this is that the magnetic field has an influence on the r-t 
relation and that the position and orientation of the straw tube in the field leads to variations in 
drift-length.  Hence it  is  advisable  to  calibrate  detector  layers  or  if  possible  single  straws 
individually.
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The time- and space-residuals

The time between a triggered event and the first 0→1 transition of the low threshold of a 
straw-tube is called the leading-edge time (tLE). This is a quantity actually measured in the 
TRT. It comprises of:

• the time between collision and actual event triggering (tcollision)

• time-of-flight of the particle from the collision to the straw-tube (tToF)

• the time it takes the signal to propagate along the anode wire (tSP)

• drift time of electrons in the straw-tube (t)

The first  three quantities  are about  the same for all  straws and thus are  combined to the 
quantity T0. Subtracting T0 from the leading-edge time gives the desired drift-time. In addition 
two corrections have to be applied: the high-threshold correction and the time-over-threshold 
correction. They assume a common shape for the charge-time distribution measured at the 
anode-wire. This allows to correct the leading edge time so that one obtains not the time when 
the distribution reaches the lower threshold but the actual beginning of the pulse (first root).

Because the signal propagates along the anode wire in both directions and gets reflected off 
the end which is not connected to the read-out electronics, the detected signal is actually a 
superposition of two Gaussians. The long tail comes from the slow drift-speed of the positive 
ions. This gives a pulse shape as shown in figure 10. The pulse-shaper removes the tail to 
avoid pileup of consecutive pulses.

Figure 10: sketch showing how the ToT- 
correction value is obtained for a common 
charge vs time distribution

Figure 11: sketch showing how the HT-  
correction value is obtained for a common 
charge vs time distribution

The projected drift-time (ttrackunbias) is the drift-time calculated from a track fit through all hits 
except the one which the value is being calculated for and the  r-t relation.  Excluding the 
current  hit  from the fit  excludes  a possible  bias  if  the current  hit  is  an 'outlier'  or  noise. 
Subtracting the measured and corrected drift-time from ttrackunbias gives the time-residual.
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Because the time-residual is the statistical uncertainty of the drift-time measurement, it should 
be normally distributed and centred around zero. By incrementally changing the calibration 
constants (T0, HT-correction, ToT-correction) and checking the time- and space-residuals one 
can minimize their variance and move the peaks to zero. This is the method to verify and 
optimize the calibration constants.

Figure 12: time-residuals for different detector sections, y-axis drawn normalized, HT and  
ToT correction are applied, peak and σ determined by iteratively fitting Gaussians to a range  
of peak ± 1.5 σ, run 187219

From figure 12 it is apparent that the high-threshold residual has a greater uncertainty than the 
low-threshold one. This is because there are more than two orders of magnitude more low-
threshold hits than high-threshold hits. This means there is a much better signal-to-noise ratio 
for low-threshold hits, which in turn means their  r-t relation can be determined with greater 
accuracy.
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Figure 13: space-residuals for different detector sections, y-axis drawn normalized, peak and  
σ determined by iteratively fitting Gaussians to a range of peak ± 1.5 σ, run 187219

The space-residual (figure 13) is the track-to-wire distance analogue to the time-residual. It is 
calculated by subtracting the track-to-wire distance obtained from the measured drift-time and 
the r-t relation, minus the track-to-wire distance obtained from an unbiased fit through all hits 
of a track except the hit it is calculated for. 
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The number of primary vertices 

An  important  part  of  the  ATLAS  analysis  framework  “Athena”  is  the  primary  vertex 
reconstruction. This algorithm uses the previously reconstructed tracks and jets of an event to 
find their  common point of origin in the beam-crossing area.  This is extremely important 
because many of the particles  ATLAS is looking for are  extremely short-lived high-mass 
particles (H, Z, W, exotics, etc.). These particles will have decayed long before they reach the 
tracker  or  calorimeters  leaving  only secondary decay-products  to  identify.  By tracing  the 
tracks to common clusters of origin one can then infer the nature of the primary particles or 
perhaps realize where momentum was 'lost' to non-interacting ('invisible') particles.

Because not single protons but rather bunches of protons (~1011 protons/bunch) are collided at 
the LHC, often several protons will interact in the same bunch crossing.

Multiple  short-lived  decay-products  and  the  number  of  p-p  interactions  per  event  both 
contribute to the number of primary vertices (nvx).

Figure 14: dependence of TRT occupance on number of primary vertices, picture taken from: 
“Public TRT Plots for Collision Data”  
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TRTPublicResults {13}

The number of primary vertices can have an effect on the track-fitter performance, because 
hit-occupancy varies linearly with the number of primary vertices (figure 14).
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The hit-occupancy is  the  average  number  of  straws registering  a  hit  divided by the  total 
number of straws for an event. High occupancy thus means it becomes increasingly difficult 
for the track-fitter to assign single hits to the right track and to recognize and remove noise.

The difference in the slope between data and simulation in figure 14 represents the vertex-
finding efficiency.  Obviously  the  vertex  finding efficiency is  a  lot  worse  for  the  highest  
occupancy both in barrel and end-caps than for the lowest occupancy.

Figure 15: distribution of number of hits as function of the number of  
primary vertices, logarithmic scale, run 187219

For this dataset the number of primary vertices culminates around 5 per event and sufficient 
statistics to evaluate detector performance exists in the range of approximately 2 ≤ nvx ≤ 11.

22



Figure 16: sigma of time-residual as a function of number of primary vertices, separate for  
detector sections, no pt-cut, run 187219

Plotting the sigma of the time-residual in this range shows that there is a significant, linear 
increase of width and thus uncertainty in the drift-time measurement with increasing number 
of primary vertices. (figure 16) However this is only valid if no pt-cut is introduced.

pt is  the  transverse  momentum  -  the  momentum  of  particles  measured  in  the  x-y plane 
transverse to the beam axis. Due to conservation of momentum the transverse momentum 
vectors of all particles originating in the same collision have to cancel each other. Missing pt 

in some direction can point to non-interacting particles. If the two protons collide head-on 
this  will  usually  yield  a  maximum  pt.  This  also  means  that  a  maximum  of  energy  was 
available  for  reactions  at  the  collision-point,  making  high-pt particles  generally  the  more 
interesting ones. Low pt can be due to edge-on scattering of the protons where only a small 
fraction of the protons (few partons) was involved in the scattering. This type of collisions 
will usually lead to jets which retain a high longitudinal momentum, where the risk is high for 
particles to escape the detector due to a small θ. These events are thus not favoured for further 
analysis. Low pt can also be because the particles originate from a low-momentum primary 
collision product, which is not so interesting either.

However,  low-momentum particles  interact  differently  with  the  ionization  gas  than  high-
momentum ones.  High-momentum particles  scatter  on single points in  the gas (ionization 
clusters), loosing energy very slowly,  retaining most of their momentum and thus also the 
track  direction  (unless  bent  by  B-field).  The  low-momentum  particles  undergo  multiple-
scattering, leading to larger deviations from a free-flight path. This makes it impossible for 
the track-fitter to accurately fit their path, leading to much larger residuals (figure 17). Since 
low pt particles introduce such large errors they have to be purged from parts of the analysis.  
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A pt-cut at 4 GeV narrowly excludes all those particles with extremely high residuals > 0.118 
mm.

Figure 17: dependence of the space-residual width on transverse-momentum,  
barrel-region, picture taken from: “Public TRT Plots for Collision Data”  
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TRTPublicResults {13}
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Figure 18: sigma of time-residual as a function of number of primary vertices, separate for  
detector sections, excluding tracks with pt< 4 GeV, run 187219

Figure 18 shows that the introduction of the pt-cut generally reduced the sigma of the time-
residuals by about 0.2 ns. The dependence on the number of primary vertices became slightly 
less pronounced but is still obvious. It appears to increase in the range from 2 to11 primary 
vertices by  ≤ 0.1 ns. Since this is only about 1/30th of the overall uncertainty, the dependence 
on the number of primary vertices  is of little importance. This comparison was done for high-
threshold (transition radiation) tracks separately yielding the same result (figures 24 & 25), 
though  at  a  higher  average  sigma.  The  same  can  be  said  for  the  track-to-wire  distance 
residual. Its sigma increases by about 0.002 - 0.005 mm as nvx goes from 2 to 11 (figures 26 
& 27).  This is again 1/25th to 1/60th of the residual uncertainty.

In all cases the difference between the calibrations of different detector-sections seems to be 
much more important though. This emphasizes the previous conclusion that calibration has to 
be done for detector-sections separately. The difference between different types of detector-
sections  like  barrel  and outer  end-cap is  partially  due  to  magnetic  field  and coverage  of 
different inclinations. The difference between the same detector-types like barrel A and C can 
not be explained this way and should be possible to eliminate though.

In order to evaluate how the ToT- and T0-corrections perform as a function of the number of 
primary vertices, it is possible to plot the peak of the residuals as a function of nvx.

Again one analysis was done with pt-cut (figure 20) and one without (figure 19).
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Figure 19:  peak of time-residual as a function of number of primary vertices, separate  
for detector sections, no pt-cut, run 187219

Figure 20: peak of time-residual as a function of number of primary vertices, separate for  
detector sections, excluding tracks with pt< 4 GeV, run 187219
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Again there is a slight dependence of time-residual peak position on the number of primary 
vertices. However when introducing the pt-cut this dependence vanishes completely. Also the 
pt-cut seems to reduce the peak-deviation from 0 by 0.2-0.3 ns to ~1.75 ns for the barrels.

That the dependence of the time-residual mean on nvx vanishes as a  pt-cut is introduced, 
could be explained by a  dependence  of the number  of low-pt tracks  on nvx. To test  this 
hypothesis, the mean of pt was plotted as function of nvx.

Figure 21: pt mean vs number of primary vertices, no pt-cut, run 187219

Figure 21 shows that without a pt-cut there is indeed a dependence of the mean of pt on nvx. 
The mean is always below 4 GeV which means that the majority of hits are in the regime 
where  residual  depends  on  momentum.  As  nvx  increases  the  pt mean  decreases,  which 
explains why the width of the residuals grows with nvx as well. This is because more low-pt 

tracks introduce a larger uncertainty. If the pt-cut at 4 GeV is introduced, all tracks have more 
or less the same residual and thus the nvx-dependence is lost.
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Another property one could test against the number of primary vertices is the inclination of 
the r-t relation in the central section.

Figure 22: first derivative of the r-t relation at point [18,1] as function of the number of  
primary vertices, no pt-cut, run 187219

The  above  figure  does  not  reveal  any  dependence  on  the  number  of  primary  vertices 
whatsoever and looks the same with a pt-cut introduced.

It  is  good  that  there  is  no  such relation,  because  the  number  of  primary  vertices  or  the 
transverse-momentum which was previously linked to nvx should not have an influence on 
the diffusion properties of the detector gas.
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Performance of the time-over-threshold correction

As  explained  in  the  chapter  about  residuals,  the  time-over-threshold  correction  should 
compensate for a change in ion-pulse shape at different pulse-lengths. The performance of 
this correction can be readily evaluated by plotting the peak of the time-residual as a function 
of time-over-threshold.

Figure 23: time-residual mean as a function of time-over-threshold in barrel A, separately  
plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV

Apparently the time-over-threshold correction works best for intermediate pulse-lengths of 8 
ns. However in the region of ~ 18 ns the time-residual is shifted by 0.5 to 1 ns. As a reminder: 
The peak of the time-residual should be at 0. A shifted peak means there is a bias to the error 
in drift-time measurements. It should be possible to remove this bias by a better calibration of 
the ToT-correction. In this case the drift-time measurements tend to be longer than projected. 
The fact that the shift is about the same for each number of primary vertices indicates that this 
shift  is  indeed due to  the performance of  the  ToT-correction and has  nothing to  do with 
detector occupancy. Because a pt-cut was applied at pt > 4 GeV, the behaviour is not likely to 
come from the different scattering behaviour of low-momentum tracks, either.
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Conclusion

In the course  of  this  thesis,  the  performance of  the  current  ATLAS TRT-calibration  was 
evaluated. By testing relations between different calibration constants and data delivered by 
the track-fitter, the attempt was made to find dependencies of some calibration constants on 
quantities like the number of primary vertices, occupancy or time-over-threshold.

The consideration of such dependencies in the calibration might allow for higher resolutions 
in the future.

Quite generally it was found that the gradient of the r-t relation increases with distance from 
the  collision-point  along  the  z-axis  and distance  to  the  z-axis.  This  is  mainly  due  to  the 
inhomogeneity of the solenoid field in the end-cap region. Different detector sections should 
thus be calibrated separately.

The number of primary vertexes at the collision-point was tested against time- and space-
residual  width  and  peak-positions,  central  gradient  of  the  r-t relation  and  transverse 
momentum.  It  was  found  that  below  4  GeV,  the  mean  of  the  transverse-momentum  is 
inversely proportional to the number of primary vertices. Because low-momentum tracks have 
a residual width which depends on their momentum, a small dependence of residual width and 
peak-position can be found. This dependence can be removed by a removal of all tracks with 
a transverse-momentum below 4 GeV from the calibration.

The mean of the time residual was found to significantly vary with the time-over-threshold. 
After excluding a dependence on the number of primary vertices and detector occupancy it is 
probable that the time-over-threshold correction does introduce this bias.

Most of these results were presented via video-link to a meeting of the TRT calibration group 
at CERN on August 17th, 2011.

Luminosity  upgrades  performed in the  last  months  at  the LHC already demonstrated  that 
especially the number of primary vertices/ detector occupancy pose an increasing challenge to 
the  TRT-calibration.  With  further  LHC  luminosity-upgrades  planned  in  the  near  future, 
ATLAS detector calibration will remain a challenging field within the collaboration for years. 

Apart  from that,  particle  physics  moves  to  increasingly  higher  energy  regimes.  Building 
bigger accelerators than the LHC will hardly be possible. Hence more luminosity,  stronger 
bending fields and other collision particle-types will have to serve as ways to push back the 
frontier  of  the  unknown.  This  also  demands  more  precise  measurements  making  good 
calibration as vital as ever.
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Appendix

Additional Figures

Figure 24: sigma of high-threshold time-residual as a function of number of  
primary vertices, separate for detector sections, no pt-cut, run 187219

Figure 25: sigma of high-threshold time-residual as a function of number of  
primary vertices, separate for detector sections, excluding tracks with pt< 4 
GeV, run 187219
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Figure 26: sigma of space-residual as a function of number of primary vertices, separate  
for detector sections, no pt-cut, run 187219

Figure 27: sigma of space-residual as a function of number of primary vertices, separate  
for detector sections, excluding tracks with pt< 4 GeV, run 187219
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Figure 28: sigma of high-threshold space-residual as a function of number of primary  
vertices, separate for detector sections, no pt-cut, run 187219

Figure 29: sigma of high-threshold spacee-residual as a function of number of primary  
vertices, separate for detector sections, excluding tracks with pt< 4 GeV, run 187219
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Figure 30: peak of space-residual as a function of number of primary vertices, separate  
for detector sections, no pt-cut, run 187219

Figure 31: peak of space-residual as a function of number of primary vertices, separate  
for detector sections, excluding tracks with pt< 4 GeV, run 187219
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Figure 32: peak of high-threshold space-residual as a function of number of primary 
vertices, separate for detector sections, no pt-cut, run 187219

Figure 33: peak of high-threshold space-residual as a function of number of primary 
vertices, separate for detector sections, excluding tracks with pt< 4 GeV, run 187219
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Figure 34: peak of high-threshold time-residual as a function of number of primary  
vertices, separate for detector sections, no pt-cut, run 187219

Figure 35: peak of high-threshold time-residual as a function of number of primary  
vertices, separate for detector sections, excluding tracks with pt< 4 GeV, run 187219
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Figure 36: transverse-momentum vs. number of primary vertices in the lower pt region, no pt-
cut, run 187219 
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Figure 37: time-residual mean as a function of time-over-threshold in barrel A,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV

Figure 38: time-residual mean as a function of time-over-threshold in barrel C,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV
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Figure 39: time-residual mean as a function of time-over-threshold in inner end-cap A,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV

Figure 40: time-residual mean as a function of time-over-threshold in inner end-cap C,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV
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Figure 41: time-residual mean as a function of time-over-threshold in outer end-cap A,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV

Figure 42: time-residual mean as a function of time-over-threshold in outer end-cap C,  
separately plotted for each number of primary vertices, run 187219, pt -cut at pt > 4GeV
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Figure 43: time-over-threshold distribution, run 187219, pt -cut at pt > 4GeV

Tube-hits

Tube-hits are by definition hits where the difference between measured track-to-wire distance 
and track-to-wire distance calculated by the track-fitter exceeds 2.5×σ of the space-residual 
(~0.5 mm). These hits are considered 'outliers' and are not used for calibration. In the track-
fitter their drift-radius measurement is discarded and replaced by the straw-centre position. 
They are assigned a large error of 4mm/√2 so that they do not bias the track-fitter.
The  following  figures  44-47  show  the  difference  between  drift-time  and  time-residual 
distribution for tube-hits and non-tube-hits in the region close to the anode-wire where the 
avalanche effect becomes relevant (changing the  r-t relation). Figure 48 shows the tube-hit 
distribution over the bins of the DTMROC close to the anode-wire. These distributions are as 
expected  and were  only  created  as  extra  assignment  to  check  how things  behave  in  the 
avalanche region.
Figure 49 shows the distribution of the ratio of tube-hits by total number of hits as a function 
of primary vertices.  This  figure is  interesting  because the fraction  of tube-hits  can be an 
indication of track-fitter performance but it bares little relevance to the calibration since tube-
hits are generally excluded from the calibration.
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Figure 44: drift-time distribution (t) for hits close to anode-wire but no tube-hits, no  
corrections applied, run 187219, no pt -cut

Figure 45: drift-time distribution (t) for hits close to anode-wire but only tube-hits, no  
corrections applied, run 187219, no pt -cut
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Figure 46: time-residual distribution for hits close to anode-wire but no tube-hits, run 
187219, no pt -cut

Figure 47: time-residual distribution for hits close to anode-wire but only tube-hits, run  
187219, no pt -cut
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Figure 48: time-bin distribution (t+ephase) only for tube-hits, run 187219, no pt -cut

Figure 49: fraction of tube-hits by total number of hits as function of the number of  
primary vertices, run 187219, no pt -cut
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Computer code used for the analysis

“analysis1.cpp” - program which loops over all track-data, fills and saves histograms and 
common variables:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TTimeStamp.h> 
#include <TObjArray.h> 

using namespace std; 

//###secondary functions### 

//###main function### 
void analysis1(){ 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; //# of id cases 
const float frac = 1; //fraction of data to be read 
const bool q_htcor = 1; //ht-correction on/off 
const bool q_totcor = 1; //ToT-correction on/off 
const bool q_ptcut = 1; //pt-cut on/off 
const int n_nvx = 14; //max # of primary vertexes to be analyzed 

//declare variables 
TTimeStamp time1; //get starting time 
float r_drift,t_drift,r_res,t_res; 
float ephase,t0,t,ttrackunbias,r,dr,rtrackunbias; //variables imported from ntuple 
float HT,HTCorrection,ToT,ToTCorrection,nvx,pt; //variables imported from ntuple 
float det, lay, mod, brd, chp; //identifiers imported from ntuple 
int i,j; //iterators used in loops 
int iterations; 
int xbound [3]= {50,0,50}; //bounds of histograms 
int ybound [3]= {100,0,2}; 
int rresbound [3]= {200,-2,2}; 
int tresbound [3]= {200,-20,20}; 
int totbound [3]= {24,0,75}; //tot bin width is 3.125ns 
char buf[50]; //textbuffer for naming 

vector <TH2F*> rt_vec(nid); //vectors storing histograms 
vector <TH1F*> rres_vec(nid), tres_vec(nid), htrres_vec(nid), httres_vec(nid); 
vector <TH2F*> rres_nvx_vec(n_nvx), tres_nvx_vec(n_nvx), htrres_nvx_vec(n_nvx), httres_nvx_vec(n_nvx); 
vector<vector<TH2F*> > tres_tot_vec(n_nvx,vector<TH2F*>(nid)); 
vector<vector<TH2F*> > rt_nvx_vec(n_nvx,vector<TH2F*>(nid)); 
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int idcase[nid][5] ={ //idcases used in hit-identifiers 
//{det,lay,mod,stl,stw} 

{-3, -1, -1, -1, -1}, //entire detector 0 

{ 1, -1, -1, -1, -1}, //barrel A 1 
{ 1,  0, -1, -1, -1}, //barrel A layer  0 2 
{ 1,  1, -1, -1, -1}, //barrel A layer  1 3 
{ 1,  2, -1, -1, -1}, //barrel A layer  2 4 

{-1, -1, -1, -1, -1}, //barrel C 5 
{-1,  0, -1, -1, -1}, //barrel C layer  0 6 
{-1,  1, -1, -1, -1}, //barrel C layer  1 7 
{-1,  2, -1, -1, -1}, //barrel C layer  2 8 

{ 2, -2, -1, -1, -1}, //endcap A outer 9 
{ 2, -1, -1, -1, -1}, //endcap A inner 10 
{ 2,  0, -1, -1, -1}, //endcap A layer  0 11 
{ 2,  1, -1, -1, -1}, //endcap A layer  1 12 
{ 2,  2, -1, -1, -1}, //endcap A layer  2 13 
{ 2,  3, -1, -1, -1}, //endcap A layer  3 14 
{ 2,  4, -1, -1, -1}, //endcap A layer  4 15 
{ 2,  5, -1, -1, -1}, //endcap A layer  5 16 
{ 2,  6, -1, -1, -1}, //endcap A layer  6 17 
{ 2,  7, -1, -1, -1}, //endcap A layer  7 18 
{ 2,  8, -1, -1, -1}, //endcap A layer  8 19 
{ 2,  9, -1, -1, -1}, //endcap A layer  9 20 
{ 2, 10, -1, -1, -1}, //endcap A layer 10 21 
{ 2, 11, -1, -1, -1}, //endcap A layer 11 22 
{ 2, 12, -1, -1, -1}, //endcap A layer 12 23 
{ 2, 13, -1, -1, -1}, //endcap A layer 13 24 

{-2, -2, -1, -1, -1}, //endcap C outer 25 
{-2, -1, -1, -1, -1}, //endcap C inner 26 
{-2,  0, -1, -1, -1}, //endcap C layer  0 27 
{-2,  1, -1, -1, -1}, //endcap C layer  1 28 
{-2,  2, -1, -1, -1}, //endcap C layer  2 29 
{-2,  3, -1, -1, -1}, //endcap C layer  3 30 
{-2,  4, -1, -1, -1}, //endcap C layer  4 31 
{-2,  5, -1, -1, -1}, //endcap C layer  5 32 
{-2,  6, -1, -1, -1}, //endcap C layer  6 33 
{-2,  7, -1, -1, -1}, //endcap C layer  7 34 
{-2,  8, -1, -1, -1}, //endcap C layer  8 35 
{-2,  9, -1, -1, -1}, //endcap C layer  9 36 
{-2, 10, -1, -1, -1}, //endcap C layer 10 37 
{-2, 11, -1, -1, -1}, //endcap C layer 11 38 
{-2, 12, -1, -1, -1}, //endcap C layer 12 39 
{-2, 13, -1, -1, -1}, //endcap C layer 13 40 
}; 

//load data file containing ntuple 
//TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_186923_merged_basic.root"); 
//TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_187219_merged_basic.root"); 
TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/mergeMC.root"); 

TTree *Tree = (TTree*) datafile.Get("ntuple"); 

//create data file containing histograms 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root","RECREATE"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root","RECREATE"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root","RECREATE"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo2.root","RECREATE"); 

//pointing branches to variables 
Tree->SetBranchAddress("ephase", &ephase); 
Tree->SetBranchAddress("t0", &t0); 
Tree->SetBranchAddress("t", &t); 
Tree->SetBranchAddress("ttrackunbias", &ttrackunbias); 
Tree->SetBranchAddress("r", &r); 
Tree->SetBranchAddress("dr", &dr); 
Tree->SetBranchAddress("rtrackunbias", &rtrackunbias); 
Tree->SetBranchAddress("HT", &HT); 
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Tree->SetBranchAddress("ToT", &ToT); 
Tree->SetBranchAddress("HTCorrection", &HTCorrection); 
Tree->SetBranchAddress("ToTCorrection", &ToTCorrection); 
Tree->SetBranchAddress("pt", &pt); 
Tree->SetBranchAddress("nvx", &nvx); 
Tree->SetBranchAddress("det", &det); 
Tree->SetBranchAddress("lay", &lay); 
Tree->SetBranchAddress("mod", &mod); 
Tree->SetBranchAddress("brd", &brd); 
Tree->SetBranchAddress("chp", &chp); 

//create text output-file 
ofstream ofile; 
ofile.open ("/home/tingeltangel/Studies/b_thesis/datafiles/rt_output.txt"); 

//preparing vectors of histograms 
for(i=0;i<nid;i++){ 

sprintf(buf,"rt %d",i); 
rt_vec[i]= new TH2F (buf,buf,xbound[0],xbound[1],xbound[2],ybound[0],ybound[1],ybound[2]); 
sprintf(buf,"rres %d",i); 
rres_vec[i]= new TH1F (buf,buf,rresbound[0],rresbound[1],rresbound[2]); 
sprintf(buf,"tres %d",i); 
tres_vec[i]= new TH1F (buf,buf,tresbound[0],tresbound[1],tresbound[2]); 
sprintf(buf,"ht rres %d",i); 
htrres_vec[i]= new TH1F (buf,buf,rresbound[0],rresbound[1],rresbound[2]); 
sprintf(buf,"ht tres %d",i); 
httres_vec[i]= new TH1F (buf,buf,tresbound[0],tresbound[1],tresbound[2]); 

} 

//preparing vectors of histograms for nvx dependence 
for(i=0;i<n_nvx;i++){ 

sprintf(buf,"rres_nvx %d",i); 
rres_nvx_vec[i]= new TH2F (buf,buf,nid+1,0,nid+1,rresbound[0],rresbound[1],rresbound[2]); 
sprintf(buf,"tres_nvx %d",i); 
tres_nvx_vec[i]= new TH2F (buf,buf,nid+1,0,nid+1,tresbound[0],tresbound[1],tresbound[2]); 
sprintf(buf,"htrres_nvx %d",i); 
htrres_nvx_vec[i]= new TH2F (buf,buf,nid+1,0,nid+1,rresbound[0],rresbound[1],rresbound[2]); 
sprintf(buf,"httres_nvx %d",i); 
httres_nvx_vec[i]= new TH2F (buf,buf,nid+1,0,nid+1,tresbound[0],tresbound[1],tresbound[2]); 

//preparing 2d vector for tres vs tot dependence 
for(j=0;j<nid;j++){ 
sprintf(buf,"tres_ToT %d %d",i,j); 
tres_tot_vec[i][j]= new TH2F (buf,buf,totbound[0],totbound[1],totbound[2],tresbound[0],tresbound[1],tresbound[2]); 

//preparing 2d vector for dr/dt vs nvx dependence 
sprintf(buf,"rt_nvx %d %d",i,j); 
rt_nvx_vec[i][j]= new TH2F (buf,buf,xbound[0],xbound[1],xbound[2],ybound[0],ybound[1],ybound[2]); 

}} 

//fetch entries from tree and put them into histogram 
iterations = round(Tree->GetEntries()*frac); 
for(i=0; i<= iterations; i++){ 

Tree->GetEntry(i); 
//remove outliers 
if ((dr<0.5)&&(pt>4000*q_ptcut)){ 
//loop over all id-cases 
for(j=0;j<nid;j++){ 

if(((idcase[j][0]==det)&&(idcase[j][1]==lay))|| //det fits && lay fits 
((idcase[j][0]==det)&&(fabs(idcase[j][0])==1)&&(idcase[j][1]==-1))|| //det fits && det is barrel && lay is 

whole barrel 
((idcase[j][0]==det)&&(fabs(idcase[j][0])==2)&&(idcase[j][1]==-1)&&(lay<6))| //det fits && det is 

endcap && lay is inner endcap 
((idcase[j][0]==det)&&(fabs(idcase[j][0])==2)&&(idcase[j][1]==-2)&&(lay>=6))||//det fits && det is endcap && lay is 

outer endcap 
(idcase[j][0]==-3)){ //all detectors together 

//calculate drift-time/radius & residuals 
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t_drift = t+ephase-t0-ToTCorrection*q_totcor+HTCorrection*q_htcor; 
t_res = t+ephase-t0-ttrackunbias-ToTCorrection*q_totcor+HTCorrection*q_htcor; 
r_drift = fabs(rtrackunbias); 
r_res = r-rtrackunbias; 

//fill r-t histo 
rt_vec[j]->Fill(t_drift,r_drift); 
//fill rt histos in respect to nvx 
if(nvx<=n_nvx){ 
rt_nvx_vec[nvx-1][j]->Fill(t_drift,r_drift); 
} 

//fill tres vs tot histogram 
if(nvx<=n_nvx){ 
tres_tot_vec[nvx-1][j]->Fill(ToT,t_res); 
} 

if(HT){ 
//fill HT space-residual histograms 
htrres_vec[j]->Fill(r_res); 
//fill HT time -residual histograms; 
httres_vec[j]->Fill(t_res); 
//fill htrres_nvx and httres_nvx histograms 
if(nvx<=n_nvx){ 

htrres_nvx_vec[nvx-1]->Fill(j+0.5,r_res); 

httres_nvx_vec[nvx-1]->Fill(j+0.5,t_res); 
} }else{ 
//fill space-residual histograms 
rres_vec[j]->Fill(r_res); 
//fill time -residual histograms 
tres_vec[j]->Fill(t_res); 
//fill rres_nvx and tres_nvx histograms 
if(nvx<=n_nvx){ 
rres_nvx_vec[nvx-1]->Fill(j+0.5,r_res); 
tres_nvx_vec[nvx-1]->Fill(j+0.5,t_res); 
} }}}} 

} 

datafile.Close(); 

//dump histos & constants in root-file 
i=nid; 
j=n_nvx; 
TTree *c_tree = new TTree("c_tree","constants from analysis1"); 
c_tree->Branch("nid", &i); 
c_tree->Branch("n_nvx", &j); 
c_tree->Branch("xbound", xbound,"xbound[3]/I"); 
c_tree->Branch("ybound", ybound,"ybound[3]/I"); 
c_tree->Branch("rresbound", rresbound,"rresbound[3]/I"); 
c_tree->Branch("tresbound", tresbound,"tresbound[3]/I"); 
c_tree->Branch("totbound", totbound,"totbound[3]/I"); 
c_tree->Branch("idcase", idcase,"idcase[nid][5]/I"); 
c_tree->Fill(); 

histfile.Write(); 
histfile.Close(); 

//get & print runtime 
TTimeStamp time2; 
cout<<"runtime [min]:"<<(time2.GetSec() - time1.GetSec())/60<<endl; 

}
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“analysis_rt.cpp” - Program to fit 3  rd   degree polynomials to the r-t relation and plot results:  

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TLegend.h> 

using namespace std; 

//###secondary functions### 
//fit gauss to histogram 
void itgausfit(TH1F &histo,float &peak,float &peakerror,float &sigma,float &sigmaerror,float &range){ 

peak = histo.GetMean();//starting-values for iterative gauss fit 
sigma = histo.GetRMS(); 
int n = 0; 
TF1* ffit = new TF1("ffit","gaus"); 
for(n=0;n<10;n++){ 

histo.Fit("ffit", "Q","",peak-range*sigma,peak+range*sigma); 
peak = ffit->GetParameter(1); 
sigma = ffit->GetParameter(2); 
n++; 

} 
peak = ffit->GetParameter(1); 
peakerror = ffit->GetParError(1); 
sigma = ffit->GetParameter(2); 
sigmaerror = ffit->GetParError(2); 
cout<<ffit->GetChisquare()<<endl; 

} 

//###main function### 
void analysis_rt() { 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; 
const float polyfix[2] ={18,1}; //point at which rt-fits are shifted to intersect 

//declare variables 
int i,x,y; 
int xbound [3]; 
int ybound [3]; 
int rresbound [3]; 
int tresbound [3]; 
int totbound [3]; 
int idcase[nid][5]; 
int nslice = 6; //bin no. of the slice which is shown 
float x_curr; 
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float a0,a1,a2,a3,b0,b1,b2,b3,s; 
float peak,peakerror,sigma,sigmaerror,range; 
char buf[50]; 
char printout[900]; 

vector <TH2F*> rt_vec(nid); 
vector <TGraphErrors*> max_vec(nid); 
vector <TF1*> fitfunc(nid); 

TH1F *slice; 

//load data file 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo.root"); 
TTree *c_tree = (TTree*) histfile.Get("c_tree"); 

//set branch addresses & extract variables from tree 
c_tree->SetBranchAddress("xbound", xbound); 
c_tree->SetBranchAddress("ybound", ybound); 
c_tree->SetBranchAddress("rresbound", rresbound); 
c_tree->SetBranchAddress("tresbound", tresbound); 
c_tree->SetBranchAddress("totbound", totbound); 
c_tree->SetBranchAddress("idcase", idcase); 
c_tree->GetEntry(0); 

//fill rtvec with histograms 
for(i=0;i<nid;i++){ 

sprintf(buf,"rt %d",i); 
rt_vec[i] = (TH2F*)histfile.Get(buf); 
max_vec[i]= new TGraphErrors(); 
sprintf(buf,"fitfunc %d",i);  
fitfunc[i]= new TF1(buf,"pol3",xbound[1],xbound[2]); 

} 

//create canvas 
TCanvas *canvas1 = new TCanvas("canvas1","rt-histogram",1300,800); 

TCanvas *canvas2 = new TCanvas("canvas2","fitted rt's for all detectors",1300,800); 
TLegend *legend2 = new TLegend(0.1,0.75,0.3,0.9); 

TCanvas *canvas3 = new TCanvas("canvas3","rt's for all detectors with errors",1500,800); 
canvas3->Divide(3,2); 
TPad* canvas3_1 = (TPad*)(canvas3->GetPrimitive("canvas3_1")); 
TPad* canvas3_2 = (TPad*)(canvas3->GetPrimitive("canvas3_2")); 
TPad* canvas3_3 = (TPad*)(canvas3->GetPrimitive("canvas3_3")); 
TPad* canvas3_4 = (TPad*)(canvas3->GetPrimitive("canvas3_4")); 
TPad* canvas3_5 = (TPad*)(canvas3->GetPrimitive("canvas3_5")); 
TPad* canvas3_6 = (TPad*)(canvas3->GetPrimitive("canvas3_6")); 
 
TCanvas *canvas4 = new TCanvas("canvas4","slice through rt-histogram",800,600); 

//draw rt histo 
canvas1->cd(); 
rt_vec[0]->SetXTitle("drift time [ns]"); 
rt_vec[0]->SetYTitle("track-to-wire distance [mm]"); 
rt_vec[0]->SetDirectory(0); 
rt_vec[0]->Draw("COLZ"); 

//textoutput 
  ofstream ofile; 
  ofile.open ("/home/tingeltangel/Studies/b_thesis/datafiles/rt_output.txt"); 

//slicing rt histo parallel to y and fitting gauss iteratively to slices 
TH1F *sliceHisto = new TH1F ("sliceHisto","sliceHisto",ybound[0],ybound[1],ybound[2]); 

canvas2->cd(); 
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for (i=0; i<nid;i++){ //loop over id-cases 
for(x=1;x<=xbound[0];x++){ //loop over drift-time bins 

for(y=1;y<=ybound[0];y++){ //loop over drift-length bins 
sliceHisto->SetBinContent(y,rt_vec.at(i)->GetBinContent(x,y)); 

} 

if(sliceHisto->GetEntries() > 0){ 
//set range for gauss-fit (1.5; 0.8 close to origo) 
if(x<10){ 

range = 0.8; 
}else{ 

range = 1.5; 
} 

 //iteratively fit gaussian to slice 
itgausfit(*sliceHisto,peak,peakerror,sigma,sigmaerror,range); 
x_curr = xbound[1]+x*(xbound[2]-xbound[1])/xbound[0];  
max_vec[i]->SetPoint(x-1,x_curr,peak); 
max_vec[i]->SetPointError(x-1,0,peakerror); 

} 
//copy selected slice 
if((x==nslice)&&(idcase[i][0]==-3)){ 

slice = (TH1F*)sliceHisto->Clone(); 
slice->SetName("slice"); 

} 

sliceHisto->Reset(); 
} 

fitfunc[i]->SetLineWidth(1); 
fitfunc[i]->SetLineColor(kBlack); 
sprintf(buf,"fitfunc %d",i); 
max_vec[i]->Fit(buf,"QSame"); 
max_vec[i]->SetMinimum(ybound[1]); 
max_vec[i]->SetMaximum(ybound[2]); 
max_vec[i]->GetHistogram()->GetXaxis()->SetTitle("drift-time [ns]"); 
max_vec[i]->GetHistogram()->GetYaxis()->SetTitle("track-to-wire distance [mm]"); 

//maxGraph->SaveAs("/home/tingeltangel/Studies/b_thesis/root_thesis_project/rotplot.root"); 
//maxGraph->SaveAs("/home/tingeltangel/Studies/b_thesis/root_thesis_project/rotplot_excllow7.root"); 
sprintf(printout,"id: % 3d  % 3d  % 3d  % 3d  % 3d   pol3 param: % 5g  % 5g  % 5g  % 5g   entries: % 5g",idcase[i]

[0],idcase[i][1],idcase[i][2],idcase[i][3],idcase[i][4],fitfunc[i]->GetParameter(0),fitfunc[i]->GetParameter(1),fitfunc[i]-
>GetParameter(2),fitfunc[i]->GetParameter(3),rt_vec[i]->GetEntries()); 

ofile <<printout<<endl; 
} 

//create canvas with rt-fits for inner & outer endcaps as well as barrels 
canvas2->cd(); 
fitfunc[1]->SetLineColor(kBlue-4); 
fitfunc[1]->Draw(); 
fitfunc[5]->SetLineColor(kBlue+2); 
fitfunc[5]->Draw("Same"); 
fitfunc[10]->SetLineColor(kGreen-4); 
fitfunc[10]->Draw("Same"); 
fitfunc[26]->SetLineColor(kGreen+2); 
fitfunc[26]->Draw("Same"); 
fitfunc[9]->SetLineColor(kRed-4); 
fitfunc[9]->Draw("Same"); 
fitfunc[25]->SetLineColor(kRed+2); 
fitfunc[25]->Draw("Same"); 

legend2->SetHeader("pol3 fits shiftet to pass [18,1]"); 
legend2->AddEntry(fitfunc[ 1],"barrel A","L"); 
legend2->AddEntry(fitfunc[ 5],"barrel C","L"); 
legend2->AddEntry(fitfunc[10],"inner endcap A","L"); 
legend2->AddEntry(fitfunc[26],"inner endcap C","L"); 
legend2->AddEntry(fitfunc[ 9],"outer endcap A","L"); 
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legend2->AddEntry(fitfunc[25],"outer endcap C","L"); 
legend2->Draw(); 

//create canvas with rtfits with errors 
canvas3_1->cd(); 
max_vec[1]->Draw("A*"); 
max_vec[1]->SetMarkerStyle(1); 
max_vec[1]->SetTitle("barrel A"); 
canvas3_4->cd(); 
max_vec[5]->Draw("A*"); 
max_vec[5]->SetMarkerStyle(1); 
max_vec[5]->SetTitle("barrel C"); 
canvas3_3->cd(); 
max_vec[9]->Draw("A*"); 
max_vec[9]->SetMarkerStyle(1); 
max_vec[9]->SetTitle("outer endcap A"); 
canvas3_2->cd(); 
max_vec[10]->Draw("A*"); 
max_vec[10]->SetMarkerStyle(1); 
max_vec[10]->SetTitle("inner endcap A"); 
canvas3_6->cd(); 
max_vec[25]->Draw("A*"); 
max_vec[25]->SetMarkerStyle(1); 
max_vec[25]->SetTitle("outer endcap C"); 
canvas3_5->cd(); 
max_vec[26]->Draw("A*"); 
max_vec[26]->SetMarkerStyle(1); 
max_vec[26]->SetTitle("inner endcap C"); 

//shifting rt-functions on canvas 2 so that they meet in polyfix={18,1} 
for(i=0;i<nid;i++){ 

a0= fitfunc[i]->GetParameter(0); 
a1= fitfunc[i]->GetParameter(1); 
a2= fitfunc[i]->GetParameter(2); 
a3= fitfunc[i]->GetParameter(3); 

s= fitfunc[i]->GetX(polyfix[1],xbound[1],xbound[2])-polyfix[0]; 
b0= a0+a1*s+a2*pow(s,2)+a3*pow(s,3); 
b1= a1+2*s*a2+3*pow(s,2)*a3; 
b2= a2+3*s*a3; 
b3= a3; 
cout<<"fitfunc"<<i<<"  b0:"<<b0<<"  b1:"<<b1<<"  b2:"<<b2<<"  b3:"<<b3; 

fitfunc[i]->SetParameter(0,b0); 
fitfunc[i]->SetParameter(1,b1); 
fitfunc[i]->SetParameter(2,b2); 
fitfunc[i]->SetParameter(3,b3); 
fitfunc[i]->GetHistogram()->GetXaxis()->SetTitle("drift-time [ns]"); 
fitfunc[i]->GetHistogram()->GetYaxis()->SetTitle("track-to-wire distance [mm]"); 

cout<<"  derivative at [18,1]"<<fitfunc[i]->Derivative(polyfix[0])<<endl; 
 }  

//draw selected slice 
canvas4->cd(); 
slice->SetDirectory(0); 
slice->Draw(); 
slice->GetXaxis()->SetTitle("track-to-wire distance [mm]"); 
slice->GetYaxis()->SetTitle("# of hits"); 

//draw fit plot on color histo 
canvas1->cd(); 
max_vec[0]->Draw("PSame"); 

}
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“analysis_res.cpp” - Program which finds and plots the time-and space-residuals:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TLegend.h> 

using namespace std; 

//###secondary functions### 
//fit gauss to histogram 
void itgausfit(TH1F &histo,float &peak,float &peakerror,float &sigma,float &sigmaerror,float &range){ 

peak = histo.GetMean();//starting-values for iterative gauss fit 
sigma = histo.GetRMS(); 
int n = 0; 
TF1* ffit = new TF1("ffit","gaus"); 
for(n=0;n<10;n++){ 

histo.Fit("ffit", "NQ","",peak-range*sigma,peak+range*sigma); 
peak = ffit->GetParameter(1); 
sigma = ffit->GetParameter(2); 
n++; 

} 
peak = ffit->GetParameter(1); 
peakerror = ffit->GetParError(1); 
sigma = ffit->GetParameter(2); 
sigmaerror = ffit->GetParError(2); 
cout<<ffit->GetChisquare()<<endl; 

} 

//###main function### 
void analysis_res() { 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetOptStat(0); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; 

//declare variables 
int i; 
int xbound [3]; 
int ybound [3]; 
int rresbound [3]; 
int tresbound [3]; 
int totbound [3]; 
int idcase[nid][5]; 
float peak,peakerror,sigma,sigmaerror,range; 
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float rres_results[nid][8],tres_results[nid][8]; //[rres_peak,rres_err,tres_peak,tres_err,ht_rres_peak,ht_rres_err,ht_tres_peak,ht_tres_err] 
vector <float> peaks, errors; 
vector <TGraphErrors*> max_vec(nid); 
vector <TF1*> fitfunc(nid); 
vector <TH1F*> rres_vec(nid), tres_vec(nid), htrres_vec(nid), httres_vec(nid); 
vector <TPad*> canvas1(7),canvas2(7); 
vector <TLegend*> legend(nid), legend2(nid); 
int ids[7] = {0,1,5,10,26,9,25}; 
char buf[50]; 

//load data file 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo.root"); 

TTree *c_tree = (TTree*) histfile.Get("c_tree"); 

//set branch addresses 
c_tree->SetBranchAddress("xbound", xbound); 
c_tree->SetBranchAddress("ybound", ybound); 
c_tree->SetBranchAddress("rresbound", rresbound); 
c_tree->SetBranchAddress("tresbound", tresbound); 
c_tree->SetBranchAddress("totbound", totbound); 
c_tree->SetBranchAddress("idcase", idcase); 
c_tree->GetEntry(0); 

//fill rtvec with histograms 
for(i=0;i<nid;i++){ 

sprintf(buf,"rres %d",i); 
rres_vec[i]= (TH1F*)histfile.Get(buf); 
sprintf(buf,"tres %d",i); 
tres_vec[i]= (TH1F*)histfile.Get(buf); 
sprintf(buf,"ht rres %d",i); 
htrres_vec[i]= (TH1F*)histfile.Get(buf); 
sprintf(buf,"ht tres %d",i); 
httres_vec[i]= (TH1F*)histfile.Get(buf); 

} 

//loop over all histograms for all idcases 
for (i=0; i<nid;i++){ 

//iteratively fitting gaus to residuals saving results 
range = 1.5; 
itgausfit(*rres_vec[i],peak,peakerror,sigma,sigmaerror,range); 
rres_results[i][0]= peak; 
rres_results[i][1]= peakerror; 
rres_results[i][2]= sigma; 
rres_results[i][3]= sigmaerror; 
itgausfit(*tres_vec[i],peak,peakerror,sigma,sigmaerror,range); 
tres_results[i][0]= peak; 
tres_results[i][1]= peakerror; 
tres_results[i][2]= sigma; 
tres_results[i][3]= sigmaerror; 
itgausfit(*htrres_vec[i],peak,peakerror,sigma,sigmaerror,range); 
rres_results[i][4]= peak; 
rres_results[i][5]= peakerror; 
rres_results[i][6]= sigma; 
rres_results[i][7]= sigmaerror; 
itgausfit(*httres_vec[i],peak,peakerror,sigma,sigmaerror,range); 
tres_results[i][4]= peak; 
tres_results[i][5]= peakerror; 
tres_results[i][6]= sigma; 
tres_results[i][7]= sigmaerror; 

} 

//draw residuals 
legend[1] = new TLegend(0.1,0.5,0.4,0.9,"barrel A"); 
legend[5] = new TLegend(0.1,0.5,0.4,0.9,"barrel C"); 
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legend[10] = new TLegend(0.1,0.5,0.4,0.9,"inner endcap A (layer 0-5)"); 
legend[26] = new TLegend(0.1,0.5,0.4,0.9,"inner endcap C (layer 0-5)"); 
legend[9] = new TLegend(0.1,0.5,0.4,0.9,"outer endcap A (layer 6-13)"); 
legend[25] = new TLegend(0.1,0.5,0.4,0.9,"outer endcap C (layer 6-13)"); 
legend2[1] = new TLegend(0.1,0.5,0.4,0.9,"barrel A"); 
legend2[5] = new TLegend(0.1,0.5,0.4,0.9,"barrel C"); 
legend2[10] = new TLegend(0.1,0.5,0.4,0.9,"inner endcap A (layer 0-5)"); 
legend2[26] = new TLegend(0.1,0.5,0.4,0.9,"inner endcap C (layer 0-5)"); 
legend2[9] = new TLegend(0.1,0.5,0.4,0.9,"outer endcap A (layer 6-13)"); 
legend2[25] = new TLegend(0.1,0.5,0.4,0.9,"outer endcap C (layer 6-13)"); 

TCanvas *canv1 = new TCanvas("canv1","track-to-wire distance residuals",800,1000); 
canv1->Divide(2,3); 
TCanvas *canv2 = new TCanvas("canv2","drift-time residuals",800,1000); 
canv2->Divide(2,3); 
for(i=1;i<=6;i++){ 

sprintf(buf,"canv1_%d",i); 
canvas1[i] = (TPad*) (canv1->GetPrimitive(buf)); 
sprintf(buf,"canv2_%d",i); 
canvas2[i] = (TPad*) (canv2->GetPrimitive(buf)); 
} 

for(i=1;i<=6;i++){ 
canvas1[i]->cd(); 

rres_vec[ids[i]]->SetXTitle("r-r_trackunbias [mm]"); 
rres_vec[ids[i]]->SetYTitle("normalized # of hits"); 

rres_vec[ids[i]]->SetDirectory(0); 
rres_vec[ids[i]]->SetLineColor(kRed-4); 
rres_vec[ids[i]]->DrawNormalized(); 

htrres_vec[ids[i]]->SetDirectory(0); 
htrres_vec[ids[i]]->SetLineColor(kRed+2); 
htrres_vec[ids[i]]->DrawNormalized("Same"); 

legend[ids[i]]->AddEntry(rres_vec[ids[i]],"residual","L"); 
sprintf(buf,"peak: % 5g",rres_results[ids[i]][0]); 
legend[ids[i]]->AddEntry(rres_vec[ids[i]],buf,""); 
sprintf(buf,"sigma: % 5g",rres_results[ids[i]][2]); 
legend[ids[i]]->AddEntry(rres_vec[ids[i]],buf,""); 
legend[ids[i]]->AddEntry(htrres_vec[ids[i]],"HT residual","L"); 
sprintf(buf,"peak: % 5g",rres_results[ids[i]][4]); 
legend[ids[i]]->AddEntry(htrres_vec[ids[i]],buf,""); 
sprintf(buf,"sigma: % 5g",rres_results[ids[i]][6]); 
legend[ids[i]]->AddEntry(htrres_vec[ids[i]],buf,""); 
legend[ids[i]]->Draw(); 

canvas2[i]->cd(); 

tres_vec[ids[i]]->SetXTitle("T0-T_trackunbias + HT & ToT correction [ns]"); 
tres_vec[ids[i]]->SetYTitle("normalized # of hits"); 

tres_vec[ids[i]]->SetDirectory(0); 
tres_vec[ids[i]]->SetLineColor(kGreen-4); 
tres_vec[ids[i]]->DrawNormalized(); 

 
httres_vec[ids[i]]->SetDirectory(0); 
httres_vec[ids[i]]->SetLineColor(kGreen+2); 
httres_vec[ids[i]]->DrawNormalized("Same"); 

legend2[ids[i]]->AddEntry(tres_vec[ids[i]],"time-residual","L"); 
sprintf(buf,"peak: % 5g",tres_results[ids[i]][0]); 
legend2[ids[i]]->AddEntry(tres_vec[ids[i]],buf,""); 
sprintf(buf,"sigma: % 5g",tres_results[ids[i]][2]); 
legend2[ids[i]]->AddEntry(tres_vec[ids[i]],buf,""); 
legend2[ids[i]]->AddEntry(httres_vec[ids[i]],"HT time-residual","L"); 
sprintf(buf,"peak: % 5g",tres_results[ids[i]][4]); 
legend2[ids[i]]->AddEntry(httres_vec[ids[i]],buf,""); 
sprintf(buf,"sigma: % 5g",tres_results[ids[i]][6]); 
legend2[ids[i]]->AddEntry(httres_vec[ids[i]],buf,""); 
legend2[ids[i]]->Draw(); 
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} }

“analysis_nvx.cpp” - Program that plots sigma and peak of residuals as function of nvx:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TLegend.h> 

using namespace std; 

//###secondary functions### 
//fit gauss to histogram 
void itgausfit(TH1F &histo,float &peak,float &peakerror,float &sigma,float &sigmaerror,float &range){ 

peak = histo.GetMean();//starting-values for iterative gauss fit 
sigma = histo.GetRMS(); 
int n = 0; 
TF1* ffit = new TF1("ffit","gaus"); 
for(n=0;n<10;n++){ 

histo.Fit("ffit", "Q","",peak-range*sigma,peak+range*sigma); 
peak = ffit->GetParameter(1); 
sigma = ffit->GetParameter(2); 
n++; 

} 
peak = ffit->GetParameter(1); 
peakerror = ffit->GetParError(1); 
sigma = ffit->GetParameter(2); 
sigmaerror = ffit->GetParError(2); 

// cout<<ffit->GetChisquare()<<endl; 

} 

//###main function### 
void analysis_nvx() { 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetOptStat(0); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; 
const int nvxbound [2] = {1,11}; //1<nvx<=12; range of primary vertexes considered 

//declare variables 
int i,j,x,y; 
int xbound [3]; 
int ybound [3]; 
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int rresbound [3]; 
int tresbound [3]; 
int totbound [3]; 
int idcase[nid][5]; 
int ids[6] = {1,5,10,26,9,25}; 
Color_t idscol[6] = {kBlue-4,kBlue+2,kGreen-4,kGreen+2,kRed-4,kRed+2}; 
float range = 1.5; //fitting gaussian to +- range × sigma 
float peak,peakerror,sigma,sigmaerror; 
vector<vector<TGraphErrors*> > max_vec(nid,vector<TGraphErrors*>(8)); 
vector <vector<TH2F*> > res_nvx_vec(nvxbound[1],vector<TH2F*>(4)); 
vector <TCanvas*> canvas(8); 
vector <TH1F*> sliceHisto(4); 
char buf[50]; 

//load data file 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo.root"); 

TTree *c_tree = (TTree*) histfile.Get("c_tree"); 

//set branch addresses 
c_tree->SetBranchAddress("xbound", xbound); 
c_tree->SetBranchAddress("ybound", ybound); 
c_tree->SetBranchAddress("rresbound", rresbound); 
c_tree->SetBranchAddress("tresbound", tresbound); 
c_tree->SetBranchAddress("totbound", totbound); 
c_tree->SetBranchAddress("idcase", idcase); 
c_tree->GetEntry(0); 

//fill vectors of 2d residual histograms for nvx dependence; [# of prim. vertex][rres,tres,htrres,httres] 
for(i=nvxbound[0];i<nvxbound[1];i++){ 

sprintf(buf,"rres_nvx %d",i); 
res_nvx_vec[i][0]= (TH2F*)histfile.Get(buf); 
sprintf(buf,"tres_nvx %d",i); 
res_nvx_vec[i][1]= (TH2F*)histfile.Get(buf); 
sprintf(buf,"htrres_nvx %d",i); 
res_nvx_vec[i][2]= (TH2F*)histfile.Get(buf); 
sprintf(buf,"httres_nvx %d",i); 
res_nvx_vec[i][3]= (TH2F*)histfile.Get(buf); 

} 

//create vector of graphs; [detector id][peak rres, sigma rres, peak tres,...] 
for(i=0;i<nid;i++){ 

for(j=0;j<8;j++){ 
max_vec[i][j] = new TGraphErrors(); 

} 
} 

for(i=0;i<2;i++){ 
sprintf(buf,"sliceHisto %d",i*2); 
sliceHisto[i*2] = new TH1F (buf,buf,rresbound[0],rresbound[1],rresbound[2]); 
sprintf(buf,"sliceHisto %d",i*2+1); 
sliceHisto[i*2+1] = new TH1F (buf,buf,tresbound[0],tresbound[1],tresbound[2]); 

} 

//get residuals for all detectors in relation to nvx 
//loop over all # of primary vertexes 
for (i=nvxbound[0]; i<nvxbound[1];i++){ 

//loop over all detector idcases 
for (x=0;x<nid;x++){ 

//loop over all y - filling slice histograms 
for(y=1;y<=rresbound[0];y++){ 
for(j=0;j<2;j++){ 
sliceHisto[j*2]->SetBinContent(y,res_nvx_vec[i][j*2]->GetBinContent(x+1,y)); 
}} 
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for(y=1;y<=tresbound[0];y++){ 
for(j=0;j<2;j++){ 
sliceHisto[j*2+1]->SetBinContent(y,res_nvx_vec[i][j*2+1]->GetBinContent(x+1,y)); 
}} 
//iteratively fitting gaus to residuals saving results 
for(j=0;j<2;j++){ 

itgausfit(*sliceHisto[j*2],peak,peakerror,sigma,sigmaerror,range); 
max_vec[x][j*4]->SetPoint(i-nvxbound[0],i+1,peak); 
max_vec[x][j*4]->SetPointError(i-nvxbound[0],0,peakerror); 
max_vec[x][j*4+1]->SetPoint(i-nvxbound[0],i+1,sigma); 
max_vec[x][j*4+1]->SetPointError(i-nvxbound[0],0,sigmaerror); 
itgausfit(*sliceHisto[j*2+1],peak,peakerror,sigma,sigmaerror,range); 
max_vec[x][j*4+2]->SetPoint(i-nvxbound[0],i+1,peak); 
max_vec[x][j*4+2]->SetPointError(i-nvxbound[0],0,peakerror); 
max_vec[x][j*4+3]->SetPoint(i-nvxbound[0],i+1,sigma); 
max_vec[x][j*4+3]->SetPointError(i-nvxbound[0],0,sigmaerror); 
sliceHisto[j*2]->Reset(); 
sliceHisto[j*2+1]->Reset(); 

} 
}} 

canvas[0] = new TCanvas("canvas1","peak of space residual vs. nvx",1000,800); 
canvas[1] = new TCanvas("canvas2","sigma of space residual vs. nvx",1000,800); 
canvas[2] = new TCanvas("canvas3","peak of time residual vs. nvx",1000,800); 
canvas[3] = new TCanvas("canvas4","sigma of time residual vs. nvx",1000,800); 
canvas[4] = new TCanvas("canvas5","peak of HT space residual vs. nvx",1000,800); 
canvas[5] = new TCanvas("canvas6","sigma of HT space residual vs. nvx",1000,800); 
canvas[6] = new TCanvas("canvas7","peak of HT time residual vs. nvx",1000,800); 
canvas[7] = new TCanvas("canvas8","sigma of HT time residual vs. nvx",1000,800); 

TLegend* legend = new TLegend(0.65,0.1,0.9,0.25,""); 
legend->AddEntry(max_vec[ids[0]][0],"barrel A","L"); 
legend->AddEntry(max_vec[ids[1]][0],"barrel C","L"); 
legend->AddEntry(max_vec[ids[2]][0],"inner end-cap A layer 0-5","L"); 
legend->AddEntry(max_vec[ids[3]][0],"inner end-cap C layer 0-5","L"); 
legend->AddEntry(max_vec[ids[4]][0],"outer end-cap A layer 6-13","L"); 
legend->AddEntry(max_vec[ids[5]][0],"outer end-cap C layer 6-13","L"); 

max_vec[ids[0]][0]->GetHistogram()->GetYaxis()->SetTitle("peak space-residual [mm]"); 
max_vec[ids[0]][1]->GetHistogram()->GetYaxis()->SetTitle("sigma space-residual"); 
max_vec[ids[0]][2]->GetHistogram()->GetYaxis()->SetTitle("peak time-residual [ns]"); 
max_vec[ids[0]][3]->GetHistogram()->GetYaxis()->SetTitle("sigma time-residual"); 
max_vec[ids[0]][4]->GetHistogram()->GetYaxis()->SetTitle("peak HT space-residual [mm]"); 
max_vec[ids[0]][5]->GetHistogram()->GetYaxis()->SetTitle("sigma HT space-residual"); 
max_vec[ids[0]][6]->GetHistogram()->GetYaxis()->SetTitle("peak HT time-residual [ns]"); 
max_vec[ids[0]][7]->GetHistogram()->GetYaxis()->SetTitle("sigma HT time-residual"); 

for(i=0;i<8;i++){ 
canvas[i]->cd(); 
max_vec[ids[0]][i]->GetHistogram()->GetXaxis()->SetTitle("number of primary vertexes"); 
max_vec[ids[0]][i]->SetLineColor(idscol[0]); 
max_vec[ids[0]][i]->SetMarkerColor(idscol[0]); 
max_vec[ids[0]][i]->Draw("AL*"); 
for(j=1;j<6;j++){ 

max_vec[ids[j]][i]->SetLineColor(idscol[j]); 
max_vec[ids[j]][i]->SetMarkerColor(idscol[j]); 
max_vec[ids[j]][i]->Draw("L*"); 

} 
legend->Draw(); 

} 

for(i=0;i<nid;i++){ 
for(j=0;j<8;j++){ 

max_vec[i][j]->SetMinimum(-10); 
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max_vec[i][j]->SetMaximum(10); 
} 

} }

“analysis_tot.cpp” - Program that plots the time-residual peak as function of time-over-
threshold and nvx:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TLegend.h> 

using namespace std; 

//###secondary functions### 
//fit gauss to histogram 
void itgausfit(TH1F &histo,float &peak,float &peakerror,float &sigma,float &sigmaerror,float &range){ 

peak = histo.GetMean();//starting-values for iterative gauss fit 
sigma = histo.GetRMS(); 
int n = 0; 
TF1* ffit = new TF1("ffit","gaus"); 
for(n=0;n<10;n++){ 

histo.Fit("ffit", "Q","",peak-range*sigma,peak+range*sigma); 
peak = ffit->GetParameter(1); 
sigma = ffit->GetParameter(2); 
n++; 

} 
peak = ffit->GetParameter(1); 
peakerror = ffit->GetParError(1); 
sigma = ffit->GetParameter(2); 
sigmaerror = ffit->GetParError(2); 

// cout<<ffit->GetChisquare()<<endl; 

} 

//###main function### 
void analysis_tot(){ 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetOptStat(0); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; 
const int nvxbound [2] = {1,11}; //1<nvx<=12; range of primary vertexes considered 

//declare variables 
int i,j,x,y; 
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Color_t colors[24] = 
{kPink,kRed,kOrange,kYellow,kSpring,kGreen,kTeal,kCyan,kAzure,kBlue,kViolet,kMagenta,kPink+2,kRed+2,kOrange+2,kYellow+2,kSpr
ing+2,kGreen+2,kTeal+2,kCyan+2,kAzure+2,kBlue+2,kViolet+2,kMagenta+2}; 
int xbound [3]; 
int ybound [3]; 
int rresbound [3]; 
int tresbound [3]; 
int totbound [3]; 
int idcase[nid][5]; 
int ids[6] = {1,5,10,26,9,25}; //idcases used for graphical output 
float peak,peakerror,sigma,sigmaerror,range; 
vector <float> peaks,errors; 
vector<vector<TH2F*> > trestot_vec(nvxbound[1],vector<TH2F*>(nid)); 
vector<vector<TGraphErrors*> > max_vec(nvxbound[1],vector<TGraphErrors*>(nid)); 
vector <TCanvas*> canvas(6); 
vector <TLegend*> legend(6); 
char buf[50]; 

//load data file 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo.root"); 
TTree *c_tree = (TTree*) histfile.Get("c_tree"); 

//set branch addresses 
c_tree->SetBranchAddress("xbound", xbound); 
c_tree->SetBranchAddress("ybound", ybound); 
c_tree->SetBranchAddress("rresbound", rresbound); 
c_tree->SetBranchAddress("tresbound", tresbound); 
c_tree->SetBranchAddress("totbound", totbound); 
c_tree->SetBranchAddress("idcase", idcase); 
c_tree->GetEntry(0); 

//fill vectors with histograms of tres vs tot dependence 
for(i=nvxbound[0];i<nvxbound[1];i++){ 

for(j=0;j<nid;j++){ 
sprintf(buf,"tres_ToT %d %d",i,j); 
trestot_vec[i][j]= (TH2F*)histfile.Get(buf); 
max_vec[i][j] = new TGraphErrors(); 

}} 

canvas[0] = new TCanvas("canvas0","tres vs. ToT barrel A",1000,800); 
canvas[1] = new TCanvas("canvas1","tres vs. ToT barrel C",1000,800); 
canvas[2] = new TCanvas("canvas2","tres vs. ToT inner endcap A layer 0-5",1000,800); 
canvas[3] = new TCanvas("canvas3","tres vs. ToT inner endcap C layer 0-5",1000,800); 
canvas[4] = new TCanvas("canvas4","tres vs. ToT outer endcap A layer 6-13",1000,800); 
canvas[5] = new TCanvas("canvas5","tres vs. ToT outer endcap C layer 6-13",1000,800); 

//   slicing rotated histo parallel to y and fitting gauss to slices 
TH1F *sliceHisto = new TH1F ("sliceHisto","sliceHisto",tresbound[0],tresbound[1],tresbound[2]); 
//loop over all histograms for all idcases 
range = 1.5; 
for (i=nvxbound[0]; i<nvxbound[1];i++){ 

for(j=0;j<nid;j++){ 
for(x=1;x<=totbound[0];x++){ 

for(y=1;y<=tresbound[0];y++){ 
sliceHisto->SetBinContent(y,trestot_vec[i][j]-

>GetBinContent(x,y)); 
} 

itgausfit(*sliceHisto,peak,peakerror,sigma,sigmaerror,range); 
max_vec[i][j]->SetPoint(x,x,peak); 
max_vec[i][j]->SetPointError(x,0,peakerror); 
sliceHisto->Reset(); 

}}} 
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legend[0] = new TLegend(0.9,0.5,1,0.9,"barrel A"); 
legend[1] = new TLegend(0.9,0.5,1,0.9,"barrel C"); 
legend[2] = new TLegend(0.9,0.5,1,0.9,"inner endcap A layer 0-5"); 
legend[3] = new TLegend(0.9,0.5,1,0.9,"inner endcap C layer 0-5"); 
legend[4] = new TLegend(0.9,0.5,1,0.9,"outer endcap A layer 6-13"); 
legend[5] = new TLegend(0.9,0.5,1,0.9,"outer endcap C layer 6-13"); 

for(j=0;j<6;j++){ 
canvas[j]->cd(); 

for(i=nvxbound[0];i<nvxbound[1];i++){ 
max_vec[i][ids[j]]->SetLineColor(colors[i]); 
max_vec[i][ids[j]]->SetMarkerColor(colors[i]); 
sprintf(buf,"nvx %d",i+1); 
legend[j]->AddEntry(max_vec[i][ids[j]],buf,"P"); 
if(i==nvxbound[0]){ 
max_vec[i][ids[j]]->Draw("AL*"); 
max_vec[i][ids[j]]->GetHistogram()->GetXaxis()->SetTitle("ToT [ns]"); 
max_vec[i][ids[j]]->GetHistogram()->GetYaxis()->SetTitle("time residual 

[ns]"); 
max_vec[i][ids[j]]->SetMinimum(-10); 
max_vec[i][ids[j]]->SetMaximum(10); 
} 
max_vec[i][ids[j]]->Draw("L*"); 
legend[j]->Draw(); 

}} 

}

“analysis_rtnvx.cpp” - program that plots the derivative of the r-t relation at point [18,1] as 
function of nvx:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TLegend.h> 

using namespace std; 
 
//###secondary functions### 
//fit gauss to histogram 
void itgausfit(TH1F &histo,float &peak,float &peakerror,float &sigma,float &sigmaerror,float &range){ 

peak = histo.GetMean();//starting-values for iterative gauss fit 
sigma = histo.GetRMS(); 
int n = 0; 
TF1* ffit = new TF1("ffit","gaus"); 
for(n=0;n<10;n++){ 

histo.Fit("ffit", "NQ","",peak-range*sigma,peak+range*sigma); 
peak = ffit->GetParameter(1); 
sigma = ffit->GetParameter(2); 
n++; 

} 
peak = ffit->GetParameter(1); 
peakerror = ffit->GetParError(1); 
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sigma = ffit->GetParameter(2); 
sigmaerror = ffit->GetParError(2); 

// cout<<ffit->GetChisquare()<<endl; 

} 

//###main function### 
void analysis_rtnvx() { 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetPalette(1); 

//declare constants 
const int nid = 41; 
const int nvxbound [2] = {1,11}; //1<nvx<=12; range of primary vertexes considered 
const float polyfix[2] ={18,1}; 

//declare variables 
int i,j,x,y; 
int xbound [3]; 
int ybound [3]; 
int rresbound [3]; 
int tresbound [3]; 
int totbound [3]; 
int idcase[nid][5]; 
int ids[6] = {1,5,10,26,9,25}; 
float x_curr; 
float a0,a1,a2,a3,b0,b1,b2,b3,s; 
float peak,peakerror,sigma,sigmaerror,range; 
char buf[50]; 
Color_t idscol[6] = {kBlue-4,kBlue+2,kGreen-4,kGreen+2,kRed-4,kRed+2}; 

vector<vector<TH2F*> > rt_nvx_vec(nvxbound[1],vector<TH2F*>(nid)); 
vector<vector<TGraphErrors*> > max_vec(nvxbound[1],vector<TGraphErrors*>(nid)); 
vector<vector<TF1*> > fitfunc(nvxbound[1],vector<TF1*>(nid)); 
vector<TGraphErrors*> drdt_vec(nid); 

//load data file 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_histo.root"); 
TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_no_ptcut_histo.root"); 
//TFile histfile("/home/tingeltangel/Studies/b_thesis/datafiles/MC_histo.root"); 

TTree *c_tree = (TTree*) histfile.Get("c_tree"); 

//set branch addresses 
c_tree->SetBranchAddress("xbound", xbound); 
c_tree->SetBranchAddress("ybound", ybound); 
c_tree->SetBranchAddress("rresbound", rresbound); 
c_tree->SetBranchAddress("tresbound", tresbound); 
c_tree->SetBranchAddress("totbound", totbound); 
c_tree->SetBranchAddress("idcase", idcase); 
c_tree->GetEntry(0); 

//fill vectors with histogram pointers 
for(i=nvxbound[0];i<nvxbound[1];i++){ 

for(j=0;j<nid;j++){ 
//preparing 2d vector for dr/dt vs nvx dependence 
sprintf(buf,"rt_nvx %d %d",i,j); 
rt_nvx_vec[i][j]= (TH2F*)histfile.Get(buf); 
max_vec[i][j] = new TGraphErrors(); 
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sprintf(buf,"fitfunc %d %d",i,j); 
fitfunc[i][j] = new TF1(buf,"pol3",xbound[1],xbound[2]); 

} 
} 

for(i=0;i<nid;i++){ 
drdt_vec[i]= new TGraphErrors(); 
} 

//   slicing rt histo parallel to y and fitting gauss to slices 
TH1F *sliceHisto = new TH1F ("sliceHisto","sliceHisto",ybound[0],ybound[1],ybound[2]); 
//loop over all histograms for all idcases 
for (i=nvxbound[0];i<nvxbound[1];i++){ 

for(j=0;j<nid;j++){ 
for(x=1;x<=xbound[0];x++){ 
for(y=1;y<=ybound[0];y++){ 
sliceHisto->SetBinContent(y,rt_nvx_vec[i][j]->GetBinContent(x,y)); 
} 
if(sliceHisto->GetEntries() > 0){ 
//set range for gauss-fit (1.5; 0.8 close to origo) 
if(x<10){ 

range = 0.8; 
}else{ 

range = 1.5; 
} 
//iteratively fit gaussian to slice 
itgausfit(*sliceHisto,peak,peakerror,sigma,sigmaerror,range); 

x_curr = xbound[1]+x*(xbound[2]-xbound[1])/xbound[0]; 
max_vec[i][j]->SetPoint(x-1,x_curr,peak); 
max_vec[i][j]->SetPointError(x-1,0,peakerror); 

} 
sliceHisto->Reset(); 
} 

fitfunc[i][j]->SetLineWidth(1); 
fitfunc[i][j]->SetLineColor(kGreen); 
sprintf(buf,"fitfunc %d %d",i,j); 
max_vec[i][j]->Fit(buf,"QSame"); 
max_vec[i][j]->SetMinimum(ybound[1]); 
max_vec[i][j]->SetMaximum(ybound[2]); 
max_vec[i][j]->GetHistogram()->GetXaxis()->SetTitle("drift time [ns]"); 
max_vec[i][j]->GetHistogram()->GetYaxis()->SetTitle("trackt-to-wire distance [mm]"); 

}  
} 

//shifting rt-functions on canvas 2 so that they meet in polyfix={18,1} 
for(i=nvxbound[0];i<nvxbound[1];i++){ 

for(j=0;j<nid;j++){ 
a0= fitfunc[i][j]->GetParameter(0); 
a1= fitfunc[i][j]->GetParameter(1); 
a2= fitfunc[i][j]->GetParameter(2); 
a3= fitfunc[i][j]->GetParameter(3); 

s= fitfunc[i][j]->GetX(polyfix[1],xbound[1],xbound[2])-polyfix[0]; 
b0= a0+a1*s+a2*pow(s,2)+a3*pow(s,3); 
b1= a1+2*s*a2+3*pow(s,2)*a3; 
b2= a2+3*s*a3; 
b3= a3; 

peakerror = max_vec[i][j]->GetErrorY(round(fitfunc[i][j]
->GetX(polyfix[1],xbound[1],xbound[2]))); 

fitfunc[i][j]->SetParameter(0,b0); 
fitfunc[i][j]->SetParameter(1,b1); 
fitfunc[i][j]->SetParameter(2,b2); 
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fitfunc[i][j]->SetParameter(3,b3); 
fitfunc[i][j]->GetHistogram()->GetXaxis()->SetTitle("measured drit time [ns]"); 
fitfunc[i][j]->GetHistogram()->GetYaxis()->SetTitle("trackt-to-wire distance [mm]"); 

//get derivative at point polyfix 
drdt_vec[j]->SetPoint(i-nvxbound[0],i+1,fitfunc[i][j]->Derivative(polyfix[0])); 
drdt_vec[j]->SetPointError(i-nvxbound[0],0,peakerror); 

// cout<<i<<"  "<<j<<"  "<<fitfunc[i][j]->Derivative(polyfix[0])<<endl; 
} 

}  

//create canvas 
TCanvas *canvas1 = new TCanvas("canvas1","d(rres)/d(tdrift) vs nvx",1300,800); 
canvas1->cd(); 

drdt_vec[ids[0]]->SetLineColor(idscol[0]); 
drdt_vec[ids[0]]->SetMarkerColor(idscol[0]); 
drdt_vec[ids[0]]->Draw("AL*"); 
drdt_vec[ids[0]]->GetHistogram()->GetXaxis()->SetTitle("nvx"); 
drdt_vec[ids[0]]->GetHistogram()->GetYaxis()->SetTitle("d(rres)/d(tdrift) at point [18,1]"); 
drdt_vec[ids[0]]->SetMinimum(0.04); 
drdt_vec[ids[0]]->SetMaximum(0.08); 

for(i=1;i<6;i++){ 
drdt_vec[ids[i]]->SetLineColor(idscol[i]); 
drdt_vec[ids[i]]->SetMarkerColor(idscol[i]); 
drdt_vec[ids[i]]->Draw("*L"); 

} 

TLegend* legend = new TLegend(0.1,0.75,0.3,0.9); 
legend->AddEntry(drdt_vec[ids[0]],"barrel A","L"); 
legend->AddEntry(drdt_vec[ids[1]],"barrel C","L"); 
legend->AddEntry(drdt_vec[ids[2]],"inner end-cap A layer 0-5","L"); 
legend->AddEntry(drdt_vec[ids[3]],"inner end-cap C layer 0-5","L"); 
legend->AddEntry(drdt_vec[ids[4]],"outer end-cap A layer 6-13","L"); 
legend->AddEntry(drdt_vec[ids[5]],"outer end-cap C layer 6-13","L"); 
legend->Draw(); 

}

“pt_nvx.cpp” - Program that plots pt vs. nvx and the mean of pt vs. nvx:

#include <math.h> 
#include <vector> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <TH2F.h> 
#include <TF1.h> 
#include <TROOT.h> 
#include <TStyle.h> 
#include <TChain.h> 
#include <TFile.h> 
#include <TTree.h> 
#include <TCanvas.h> 
#include <TPad.h> 
#include <TColor.h> 
#include <TGraph.h> 
#include <TGraphErrors.h> 
#include <TTimeStamp.h> 
#include <TObjArray.h> 
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#include <TLegend.h> 

using namespace std; 

//###main function### 
void pt_nvx(){ 
//reset CINT 
gROOT->Reset(); 
gROOT->SetStyle("Plain"); 
gStyle->SetOptFit(1111); 
gStyle->SetPalette(1); 

float ephase,t0,t,ttrackunbias,r,dr,rtrackunbias,HT,ToT,HTCorrection,ToTCorrection,nvx,pt; //variables imported from ntuple 
float det, lay, mod, brd, chp; //identifiers imported from ntuple 
float frac = 1; 

//TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/run1_186923_merged_basic.root"); 
TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/run2_187219_merged_basic.root"); 
//TFile datafile("/home/tingeltangel/Studies/b_thesis/datafiles/mergeMC.root"); 

TTree *Tree = (TTree*) datafile.Get("ntuple"); 

//point branches to variables 
Tree->SetBranchAddress("ephase", &ephase); 
Tree->SetBranchAddress("t0", &t0); 
Tree->SetBranchAddress("t", &t); 
Tree->SetBranchAddress("ttrackunbias", &ttrackunbias); 
Tree->SetBranchAddress("r", &r); 
Tree->SetBranchAddress("dr", &dr); 
Tree->SetBranchAddress("rtrackunbias", &rtrackunbias); 
Tree->SetBranchAddress("HT", &HT); 
Tree->SetBranchAddress("ToT", &ToT); 
Tree->SetBranchAddress("HTCorrection", &HTCorrection); 
Tree->SetBranchAddress("ToTCorrection", &ToTCorrection); 
Tree->SetBranchAddress("pt", &pt); 
Tree->SetBranchAddress("nvx", &nvx); 
Tree->SetBranchAddress("det", &det); 
Tree->SetBranchAddress("lay", &lay); 
Tree->SetBranchAddress("mod", &mod); 
Tree->SetBranchAddress("brd", &brd); 
Tree->SetBranchAddress("chp", &chp); 

TGraphErrors *mean = new TGraphErrors (); 
TGraphErrors *meanptcut = new TGraphErrors (); 
TH2F *histo = new TH2F ("histo","pt vs nvx",14,1,15,600,0,60000); 
TH2F *histoptcut = new TH2F ("histoptcut","pt vs nvx (ptcut at 4GeV)",14,1,15,600,0,60000); 

for(int i =0;i<Tree->GetEntries()*frac;i++){ 
Tree->GetEntry(i); 
histo->Fill(nvx,pt); 
if(pt>4000){ 

histoptcut->Fill(nvx,pt); 
} 

} 

for(int j=1;j<15;j++){ 
mean->SetPoint(j-1,j,histo->ProjectionY("_py",j,j,"")->GetMean()); 
meanptcut->SetPoint(j-1,j,histoptcut->ProjectionY("_py",j,j,"")->GetMean()); 

} 

TCanvas* canvas = new TCanvas("canvas1","pt vs nvx distribution",900,800); 
canvas->cd(); 

histo->SetXTitle("nvx"); 
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histo->SetYTitle("pt [Mev]"); 
histo->SetDirectory(0); 
histo->Draw("COLZ"); 

TCanvas* canvas2 = new TCanvas("canvas2","pt-mean vs nvx distribution",900,800); 
canvas2->cd(); 

TLegend* legend = new TLegend(0.7,0.75,0.9,0.9); 
//legend->SetHeader("mean of pt vs nvx:"); 
legend->AddEntry(mean,"without pt-cut","P"); 
legend->AddEntry(meanptcut,"with pt>4GeV","P"); 

mean->GetHistogram()->GetXaxis()->SetTitle("nvx"); 
mean->GetHistogram()->GetYaxis()->SetTitle("pt-mean [Mev]"); 
mean->SetMinimum(0); 
mean->SetMaximum(20000); 
mean->Draw("A*"); 
mean->SetMarkerStyle(20); 
//meanptcut->Draw("*"); 
meanptcut->SetMarkerStyle(20); 
meanptcut->SetMarkerColor(kRed); 
//legend->Draw(); 
} 
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