
ISSN 0280-5316
ISRN LUTFD2/TFRT--5893--SE

A Graphical User Interface for
Polyethylene Production Grade Changes

Max Stenmark

Lund University
Department of Automatic Control

December 2011

Lund University
Depar tment of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS
Date of issue
December 2011
Document Number
ISRN LUTFD2/TFRT--5893--SE

Author (s)

Max Stenmark
Supervisor
Per-Ola Larsson, Dept. of Automatic Control, Lund
University, Sweden
Johan Åkesson, Dept. of Automatic Control, Lund
University, Sweden
Tore Hägglund, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsor ing organization

Ti tle and subti t le
A Graphical User Interface for Polyethylene Production Grade Changes (Ett grafiskt användargränssnitt för
kvalitetsomställningar I polyeterproduktion).

Abstract
To compete globally, the European process industry needs to increase its cost effectiveness by minimizing
waste and maximizing revenue. This can be achieved by adapting to the market demand and always produce
the most profitable products. To minimize the cost, the production changes needs to be as effective as possible.
By optimizing the product or grade change, the time spent producing inexpensive products outside of the
specifications is limited. As part of a PIC-LU project, optimization methods for polyethylene production grade
changes have been developed at Lund University. The optimization methods use a calibrated Modelica model
of a polyethylene production plant and the optimization problems are solved with JModelica.org, an open
source software platform for modeling, simulation and optimization. The Master’s thesis was carried out
within the PIC-LU project and in coordination with an industrial partner, Borealis. This Master’s thesis
investigates the possibility of combining calibration and optimization methods into a graphical user interface.
The goal of the graphical user interface is to make the technology and research results more available. By
creating a graphical user interface the engineers at Borealis can test and evaluate optimal strategies for grade
changes. The objective is that the graphical user interface can be used as an aid in the planning and decision
making. The result of the Master’s thesis is a graphical user interface capable of solving grade change
optimization problems, and allowing the user to evaluate the calculations by comparing the optimization
results with measurement data.

Keywords

Classi fication system and/ or index terms (i f any)

Supplementary bibl iographical information

ISSN and key ti t le
0280-5316

ISBN

Language
English

Number of pages
1-54

Recipient’s notes

Secur i ty classi fication

ht tp://www.control.l th.se/publ icat ions/

Abstract

To compete globally, the European process industry needs to increase its
cost effectiveness by minimizing waste and maximizing revenue. This can be
achieved by adapting to the market demand and always produce the most prof-
itable products. To minimize the cost, the production changes needs to be as
effective as possible. By optimizing the product or grade change, the time spent
producing inexpensive products outside of the specifications is limited.

As part of a PIC-LU project, optimization methods for polyethylene produc-
tion grade changes have been developed at Lund University. The optimization
methods use a calibrated Modelica model of a polyethylene production plant
and the optimization problems are solved with JModelica.org, an open source
software platform for modeling, simulation and optimization. The Master’s
thesis was carried out within the PIC-LU project and in coordination with an
industrial partner, Borealis.

This Master’s thesis investigates the possibility of combining calibration and
optimization methods into a graphical user interface. The goal of the graphical
user interface is to make the technology and research results more available. By
creating a graphical user interface the engineers at Borealis can test and evaluate
optimal strategies for grade changes. The objective is that the graphical user
interface can be used as an aid in the planning and decision making.

The result of the Master’s thesis is a graphical user interface capable of
solving grade change optimization problems, and allowing the user to evaluate
the calculations by comparing the optimization results with measurement data.

Acknowledgment

I am grateful for all the support I have received during my work on my Master’s
thesis. I want to thank my supervisors, Johan Åkesson and Per-Ola Larsson for
their endless patience. I also want to thank Niklas Andersson for all the help
I have received. I am also grateful for all the valuable feedback from people
working for Borealis, especially Staffan Skålen.

Special thanks to friends and family members who remained supportive and
pushed me to complete my Master’s thesis despite my best efforts to avoid
finishing it.

i

Contents

1 Introduction 1

1.1 PIC-LU and Borealis . 1
1.2 Scope . 2

1.2.1 Problem Formulation . 3
1.2.2 Limitations . 3
1.2.3 Interaction and Feedback 3

1.3 Structure of the Report . 4

2 Background 5

2.1 Plant Model . 5
2.1.1 JModelica.org . 6

2.2 Calibration . 6
2.3 Optimization . 7
2.4 Python . 9

2.4.1 Graphical User Interfaces in Python 9
2.4.2 wxPython . 11
2.4.3 Matplotlib and NumPy 12

3 Work Flow and Specifications 13

3.1 Work Flow . 13
3.2 Specifications . 13

4 Graphical User Interface 17

4.1 Main Window . 17
4.1.1 Grade Selection . 18
4.1.2 Calibration . 18
4.1.3 Optimization Settings . 19
4.1.4 Optimization . 20
4.1.5 Plotting . 21

4.2 Features and Settings . 24
4.2.1 Edit Grades . 24
4.2.2 Menus . 24
4.2.3 Settings . 25

ii

5 Implementation 29

5.1 Model Modifications . 29
5.1.1 Constraints . 29
5.1.2 Initial Trajectory . 30
5.1.3 Changing Model Values 31

5.2 Compiling . 32
5.3 Threads and Processes . 33

5.3.1 Threads . 33
5.3.2 Processes . 34

5.4 IP21 Communication . 36
5.5 Saved Files . 36
5.6 Design of the Graphical User Interface 37

5.6.1 Restricting User Input . 37
5.6.2 Increasing flexibility . 37

5.7 Program Structure . 38

6 Epilogue 40

6.1 Discussion . 40
6.1.1 Code Structure . 41

6.2 Conclusions . 41
6.3 Future Work . 42

6.3.1 Dynamic Calibration . 42
6.3.2 Expanding the Model . 42
6.3.3 Output to Operators . 42
6.3.4 Economic Cost Function 42

iii

Chapter 1

Introduction

During the past decade European companies have moved more and more of the
production to countries with lower cost. The increased competition from low
wage countries has forced the European industry to specialize and to produce
more advanced products. Other countries are rapidly catching up and moving
from bulk items to more advanced products. In a few years even specialized
products can be made abroad.

To compete with cheap labor and lower raw material cost, Sweden and other
European countries have to keep innovating. One attempt to increase the com-
petiveness of Swedish industry is a research program called Process Industry
Centre at Lund University or PIC-LU. The collaboration is funded by the
Swedish Foundation for Strategic Research with the objective to increase the
competence level both in academia and industry.

One PIC-LU project studies optimal grades changes in the chemical process
industry. In order to ensure that the most profitable product is produced the
manufacturing process is flexible and it is possible to produce different products
or grades in the same plant. This makes it possible to produce specialized
products and to adjust the production after the customer demand.

During the transitions between different products material is produced that
does not fulfill the specifications. This material is sold at a lower price or
thrown away. By optimizing the grade change the cost can be minimized and
the revenue increased. The goal of the thesis is to develop a graphical user
interface for optimizing polyethylene production grade changes.

1.1 PIC-LU and Borealis

The goal of PIC-LU is to create an interdisciplinary center focusing on research
as well as education together with the Swedish process industry. In Lund the
departments of Chemical Engineering and Automatic Control participate. In
addition, several companies take part as well. One of the companies is Borealis.

Borealis is an international company headquartered in Vienna (Borealis AG,

1

2011). An investment fund from Abu Dhabi holds a controlling interest in the
company. Borealis has a plant in Stenungsund producing the widely used plastic
polyethylene.

Borealis is currently expanding both in Sweden but, maybe more impor-
tantly, in Abu Dhabi. The raw material cost in Abu Dhabi is negligible because
unused byproducts from the oil industry can be used to make plastic. In com-
bination with low labor cost, investments in Abu Dhabi are very profitable.
Despite the competition from abroad, the Swedish plants have continued to
remain profitable. This has been accomplished by producing more advanced
products of higher quality.

The increased flexibility and higher quality has been achieved by having
years of experience and knowledgeable employees. This is also the reason why
an investment company from Abu Dhabi owns a Swedish plant. Abu Dhabi has
cheap raw material but lacks the know-how. The continued expansion of the
Swedish plant is explained by the proximity to an experienced workforce. After
a Swedish factory has been built and is operational key personnel is moved to
Abu Dhabi to help launch identical factories.

To keep the edge, and to ensure that Sweden remains competitive in the
future, several research projects exist. One of them is together with Lund Uni-
versity within the PIC-LU framework. The focus of this project is to study
optimal grade changes.

The goal of the collaboration between PIC-LU and Borealis is to develop a
tool to aid Borealis’ process engineers in the planning and decision-making. By
having a tool, new, unknown transitions can be explored and it becomes easier
to test new products and concepts.

Furthermore, the tool should also have the ability to put a monetary cost on a
transition. Today only back of the envelope calculations exist over the monetary
efficiency of the transition. A tool makes it possible to investigate how changed
raw material cost or product prices effect the optimal grade change. By having a
better understanding of the price of a transition a more informed decision can be
made and the planning becomes more straightforward. Even the environmental
impact can be studied. By putting a cost on emissions and minimizing waste
the manufacturing process can be made more environmentally friendly.

1.2 Scope

As a part of the PIC-LU project researchers in Lund are developing methods for
model calibration and grade change optimization in collaboration with Borealis.
The collaboration between industry and academia has many advantages. The
project can work as a forum for knowledge transfers while academia get access
to challenging real world research problems. In order to make the results of
the research more accessible, the result can be packaged in a graphical user
interface. The purpose of this thesis is to develop a graphical user interface that
combines the calibration and optimization methods into a tool that can be used
in the production planning process by Borealis.

2

1.2.1 Problem Formulation

The aim of the thesis is to develop a graphical user interface for grade change
optimization. The goal is to design an interface that works as a bridge between
the research results produced in the project and the engineers at Borealis. The
core functionality of the graphical user interface is:

• Define and edit grade data.

• Provide a graphical interface for model calibration of a polyethylene plant.

• Incorporate functionality to optimize grade changes in a polyethylene
plant.

• View, plot, compare and save the results from the optimization.

• Import, save and plot measurement data from the IP21 database.

• Provide functionality to validate the results from the optimization by com-
paring it to real measurement data.

• Provide a graphical user interface for changing optimization settings, con-
straints, raw material prices and product prices.

1.2.2 Limitations

The goal of this thesis is not to develop a commercial product. The graphical
user interface is only one part of a larger project, a project that is still ongoing.
Therefore a lot of work still remains. The graphical user interface developed
as a part of the thesis lacks several key components. A simplified optimiza-
tion algorithm is used instead of an economic optimization method that relies
on product prices, grade specifications and raw material cost to calculate the
optimal grade change. Additionally only a basic calibration method is used.

The goal of the thesis is not to develop a flawless application; the goal is to
show the potential of the methods developed in the project.

1.2.3 Interaction and Feedback

The graphical user interface has been developed in close collaboration with
engineers at Borealis. The objective was to create a useful graphical interface
and therefore the input from Borealis has been influential and the specifications
for the user interface have been produced together with engineers at Borealis.
The objective is that the end product should be determined by what Borealis
requires. To ensure that Borealis needs are meet, engineers at Borealis have
been continuously testing the interface and feedback was used throughout the
project to update requirements and amend the features list.

3

1.3 Structure of the Report

In Chapter 2 the tools, methods and software used in this thesis will be de-
scribed. The thesis will continue with a brief description of the design process
and the requirements of the graphical user interface in Chapter 3. Chapter 4
describes the graphical user interface and Chapter 5 the implementation. The
thesis will end with Chapter 6 containing a discussion and conclusions. In ad-
dition Chapter 6 contains a brief description of future work.

4

Chapter 2

Background

In this chapter the methods and tools used to formulate and solve the grade
change optimization and model calibration problems are discussed. The reasons
why these tools are used are motivated. In addition there is a thorough descrip-
tion of the available technologies for making graphical user interfaces. Out of
several toolboxes a few were chosen. The intention and motivation behind the
selections are also reflected upon.

2.1 Plant Model

The Borstar® process consists of three reactors, one pre-polymerization reac-
tor, a loop reactor and a gas phase reactor as shown in Figure 2.1. Polymers
with different molecular weight distributions can be achieved by changing the
operating conditions of the reactors. The weight distribution of the molecules
determines the material properties of the produced plastic. The flexibility of
the Borstar® process ensures that a wide range of different products or grades
can be made.

The model of the plant is based on model currently used by Borealis in a
model predictive controller. The model is written in Modelica, a high level mod-
eling language developed to encode large complex physical systems. The model
is not completely finished and an older version lacking the recycling system is
therefore used in the graphical user interface. This means that optimization
results are not comparable with real measurement data, although the procedure
for computing them is realistic.

Modelica is a suitable language for modeling but it does not provide a good
platform for integration with numerical algorithms used for solving optimiza-
tion problems. In order to solve optimization problems the model has to be
transformed in a multistep process. For a description of how Modelica models
can be used for solving optimization problems, see (Åkesson et al., 2009).

5

Pre-poly.

Loop GPR

Catalyst

Monomer

Diluent

Gas to
recovery

Flash

Polymer
Product

outlet

Monomer

Co-monomer

Diluent

Figure 2.1: Pre polymerization reactor, loop reactor and gas phase reactor.

2.1.1 JModelica.org

One set of tools able to transform and connect a Modelica model with state of
the art optimizations algorithms is gathered in a toolbox labeled JModelica.org
(The Modelica Association, 2011). JModelica.org is an open source platform
based on the Modelica language. To be able to define optimization problems
an extension to the Modelica language called Optimica is used. The goal of
the JModelica.org project is to create platform capable of being used both in
industry and in academic research. JModelica.org provides a Python interface
to run simulations and optimizations. The Python interface makes it easy to
script the optimization process and to visualize the results. In this project,
JModelica.org is used to solve both the model calibration and the grade change
optimization.

2.2 Calibration

A model calibration is used to minimize discrepancies between model output
and real data when known outflows are used. Originally the model has been
calibrated with a combination of process know-how, empirical data and trial and
error. By using measurement data to calibrate the model the model accuracy
could increase significantly.

The used calibration method is a steady state calibration algorithm that
tries to minimize the deviation to measurement data. For a more thorough
description of the calibration algorithm see (Andersson et al., 2011).

If u denotes the inputs, y the outputs, x the dynamic variables and w the
algebraic variables, the model in its differential algebraic equation (DAE) form
can be formulated as

6

0 = F (z, u, p)

y = g(z, u, p)

zT = [ẋT xT wT],

(2.1)

where p denotes the calibrated model parameters. The calibration can then be
formulated as an optimization problem in the following way

minimize
p,u

(ŷz − yz)T W z(ŷz − yz) + (ŷu − yu)T W u(ŷu − yu)

subject to F0(z, u, p) = 0,

ẋ = 0,

yz = gz(z),

yu = gu(u),

(2.2)

where ŷz and ŷu are state and input measurements and Wz and Wu are diag-
onal weight matrices. The calibrated model parameter are later be used in the
optimization.

2.3 Optimization

The optimization can be divided into three steps. In the first step, two stationary
solutions are calculated, one for the start grade and one for the end grade. In
the steady state the grade has to fulfill certain measurement benchmarks to
ensure that the produced plastic is within specifications. Normally this means
that the melt flow rates (MFR), the split factors as well as the density are
within predefined limits. The split factors determine how much of the plastic
is produced in the different reactors and the MFR describes the properties of
the plastic. In the plant model used in this thesis the MFR models where not
completed and the hydrogen-ethylene ratio where used instead of MFR.

If dynamic variables are denoted x, inputs u, outputs y and the algebraic
variables w, the model can be written as

0 = F (ẋ, x, w, u)

y = g(x, w, u). (2.3)

In the steady state solution the input u is an algebraic variable and an extended
algebraic vector z = [w u] can be constructed, see (Larsson et al., 2011).
The steady state problem can then be formulated as

0 = F̃ (ẋ, x, z)

0 = ẋ

0 = g̃(x, z) − yspec,
(2.4)

7

where yspec contains grade definitions and F̃ and g̃ corresponds to F and g

without the input u. The initialization problem can be solved by JModelica.org
and the stationary solutions can be used in the next step.

The second step is to simulate a trajectory between the two steady states.
The trajectory is used to initialize the optimization algorithm. A crude initial
trajectory is created by creating a ramp of the inputs between the start and end
values and simulating the plant model with the inputs as seen in Figure 2.2.

Figure 2.2: Ramp between the start and end values.

The last step is the optimization. The trajectory is the initial guess to
the optimization algorithm and the values from the steady state solution for the
start grade are used as a starting point. The optimization then tries to minimize
a cost function. The cost function used here is quadratic. The cost function as
well as the problem formulation is described in greater detail in (Larsson et al.,
2011).

The deviation vectors are

∆y = y − yB, ∆u = u − uB, ∆w = w − wB, (2.5)

where the steady state solution for the end grade provides the end values yB,
uB and wB.

Between the start time t = t1 and end time t = t2 the optimization problem
can be formulated as

8

minimize
u

∫ t2

t1













∆y

∆u

∆w

u̇













T 











Q∆y 0 0 0

0 Q∆u 0 0

0 0 Q∆w 0

0 0 0 Q∆u̇

























∆y

∆u

∆w

u̇













dt

subject to 0 = F (ẋ, x, w, u),

y = g(x, w, u),

ymin ≤ y ≤ ymax, umin ≤ u ≤ umax,

wmin ≤ w ≤ wmax, u̇min ≤ u̇ ≤ u̇max,

xmin ≤ x ≤ xmax,
(2.6)

where the weight matrices Q∆y, Q∆u,Q∆w,and Qu̇, are diagonal. By assigning
different values to the weights it is possible to change the importance of different
variables.

The minimization problem is translated to a nonlinear program (NLP) by
JModelica.org. The resulting NLP problem is solved by the interior point solver
IPOPT (Wächter and Biegler, 2006).

2.4 Python

The graphical user interface is written in Python (Python Software Foundation,
2011). In the early stages of the project different approaches where discussed
mainly because the integration between IP21 database and other technology
from Borealis lack Python interfaces. In the end Python was selected. The
main reason for selecting Python is that the JModelica.org framework has a
Python interface.

Python is a high level, general purpose, objects oriented programing lan-
guage. One of the main goals of Python is to create an easy to read syntax.
The result is a programming language very similar to pseudo code and the syn-
tax is closer to human needs instead of computer instructions. The syntax is
not only easy to read, it is generally fast to develop in and easy to use and learn.

The usability has a cost. The language is slower than compiled languages and
not suited for demanding computations. To counteract this drawback Python
makes it easy to integrate code written in other languages. Generally anything
in need of high execution speed is written in other languages and later integrated
into Python. The main reason to still use Python is that processor cycles are
cheap while developer salaries are expensive.

2.4.1 Graphical User Interfaces in Python

Python has several toolkits for creating graphical user interfaces. The de-facto
standard toolkit is Tkinter. Tkinter is often regarded as old, boring and feature

9

poor. To fulfill the role as the standard toolkit Tkinter focuses on multiplatform
support as well as stability. The requirement to work flawlessly on multiple
platforms might be a reason for the slow progress.

The main advantage of Tkinter is that it works. It works on multiple plat-
forms and the few things it is capable of it does very well. Because of the limits
of Tkinter several other toolkits have emerged. The main ones are wxPython,
PyQt and PyGTK.

The first step of creating a user interface in Python is always to choose which
toolkit to use. They all have strengths and weakness. All four major contenders
have an impressive list of features, everything from HTML-rendering to widgets.
The amount is large enough not to limit the choice. In fact, all of the mentioned
toolkits can be used to create the graphical user interface used in this project.
The final decision was made by elimination.

Tkinter is eliminated because of the look and feel. The older versions of
Tkinter have a particular none native look. In newer versions it has improved
but there is no compelling reason to still use Tkinter.

PyQt has some impressive development tools like Qt Designer. Qt Designer
provides a drag and drop interface for creating applications. This is not some-
thing that is useful in this project since the flexibility of the graphical user
interface require that a considerable amount of the code it is written manually.
The drawback of PyQt is the restrictive license. To develop closed source ap-
plication a license fee has to be paid by each developer both for PyQt and the
underlining framework Qt. The added bureaucracy is the reason for eliminating
PyQt.

The creator of PyGTK is a developer for GNOME so naturally the Linux
integration is great. If the interface was meant to be used on Linux PyGTK
would have been the natural choice. However this is not the case. Borealis uses
Windows and while it is possible to make PyGTK work on Windows it is not
worth the added trouble.

The last toolkit is wxPython. wxPython has an active community resulting
in plenty of available support and tutorials. The active community is a great rea-
son to choose wxPython. As a consequence of the large community wxPython
is feature-rich. The community also guarantees that most of the problems a
developer might face have already been solved before by someone else and the
solutions are easily found online. wxPython is by many regarded as the toolkit
that should replace Tkinter as the standard toolkit for creating graphical appli-
cations in Python. To ensure that the graphical user interface works on multiple
platforms wxPython uses local graphic engines on different operative systems.
On Linux wxPyhton uses the GTK+ engine. The engine is also used by PyGTK
and the results are similar application on Linux. PyGTK has a more Python
like interface resulting in pleasant Python integration. wxPython on the other
hand is closer to the source written in C++. The preference is arbitrary and in
the end the preferred syntax is a very subjective choice.

The main reason to select wxPython is in the end the Windows implementa-
tion because the application written as part of this thesis is in the end going to
be used mostly on Windows. By using different graphical engines on different

10

Toolkit Look and feel License Windows support

Tkinter % " "
PyQt " % "

PyGTK " " %
wxPython " " "

Table 2.1: Toolkit elimination

operative systems wxPython creates applications with a native look and feel.
Applications look and behave as other applications and the result is a more
intuitive behavior. A summary of the reason for choosing wxPython is shown
in Table 2.1.

A more thorough comparison of the main graphical toolkits can be found in
(Polo, 2008).

2.4.2 wxPython

wxPython is a wrapper around wxWidgets which is a graphical user interface
toolkit written in C++ (wxPython, 2011). Graphical user interfaces are gen-
erally very dependent on performance to respond quickly to user input. This
is why wxPython as well as the majority of other toolkits are written in other
languages and not in Python. Instead a wrapper is provided to incorporate
graphical elements or widgets into Python applications.

wxPython consists of a collection of widgets. A widget is a basic building
block such as a button, slider, panel or a text field. By placing the widgets on
panels or in windows the graphical user interface is created. wxPython has a
large library of widgets covering everything from basic functionality to custom
made widgets.

wxPython also supports several ways to order and position widgets in a
window. Often it is not desirable to determine the position of widgets by hand.
Instead several different tools can be used to place objects and items in grids or
along the sides of the window. When creating an advanced user interface it is
important to not only place the widgets in the preferable place but also make
them behave properly when something is changed or a window is resized.

wxPython is used to provide the link between widgets and the Python code
of the application. The core functionality of the application, created as a part
of the thesis, is written in Python. While wxPython provides the tools to create
plots it is often easier to use already existing toolkits specializing in the area.
Matplotlib is such a library and is specially made for plotting.

11

2.4.3 Matplotlib and NumPy

Matplotlib is a Python library used to make plots. The goal of matplotlib is to
provide functionality similar to the plotting capabilities of Matlab. Matplotlib
supports several backends, one of them is wxPython. This means that plots in
matplotlib can easily be integrated into graphical application made in wxPython
or other GUI toolkits. Matplotlib is not the only plotting library in Python but
it is mature and provides most of the required functionality. Matplotlib is used
extensively in the application to compare and visualize data.

NumPy is an extension to Python that provides support for high level math-
ematical functions. NumPy supports multidivisional arrays and matrices as well
as a wide collection of mathematical functions. NumPy is an essential package
needed for scientific computing and is used extensively in the application.

12

Chapter 3

Work Flow and

Specifications

3.1 Work Flow

The functionality of the application can be divided into a hierarchal structure as
seen in Figure 3.1. The different modules contain related functionality. Depend-
ing on the user choices different modules needs to be accessed. The user can for
example select between comparing and display old data or running a new opti-
mization. The reason for not using the structure in Figure 3.1 as model for the
graphical user interface is that a natural order between actions exists. Changes
to optimization settings or model calibrations should be performed before the
grade change optimization is started.

To increase the usability of the user interface a typical work flow has been
used as a model for the application. The interface restricts the user from pre-
forming actions in the incorrect order by limiting the choices presented to the
user. This has resulted in a linear work flow. The work flow is described in
Figure 3.2.

From the start display the user can edit a grade or bypass the optimization
process and instead directly plot results. This is useful if the user wants to plot
old optimization results. After the initial selection of either plotting old data or
making a new optimization the process is linear. First the start and end grade
is selected to define the grade change. When the optimization is finished the
results can be plotted or the process can be repeated for a new optimization.

3.2 Specifications

The intension with the graphical user interface is to connect process data with
optimization and calibration algorithms. The goal is to create a graphical user
interface able to configure optimization settings, selecting a grade transition

13

Figure 3.1: Schematic structure of the graphical user interface.

Figure 3.2: Schematic structure of the work flow.

as well as plotting the results from optimizations. The following specifications
where used when creating the graphical user interface.

Start Display

The graphical user interface should have a start display welcoming the user.
From the start display the user should be able to select the transition by selecting
the start and end grade used in the optimization. The user should also be able to
define new products or edit existing ones. The start display and the functionality
to edit grades are shown on the top and top left side of Figure 3.1.

Grades

The grade has to fulfill certain specifications to ensure that the produced plastic
is within tolerance limits as described in Section 2.3. The grade specifications
as well as necessary flows, operating conditions and measurement values needed

14

in the calibration are used to define a grade. Each product should be storable
as a text file and when needed loaded in to the graphical user interface were the
parameters defining the grade can be edited.

Calibration

In the case of the static model calibration, measurement data stored in the
grade specifications are used to calibrate the model. The graphical user interface
should have the ability to import measurement data from the IP21 database and
display the data to the user. As the static calibration only calibrates against
steady state measurement values it only needs the average value of the mea-
surements over a time period. The user interface should therefore calculate and
display the average measurement values.

The graphical user interface should also have the ability to perform calibra-
tions for different predefined parameter sets and the interface should have the
ability to display the calibrated parameters.

Optimization Settings

The goal of the user interface is to move all the necessary optimization settings
from script files to the application. Settings such as number of elements and
maximum number of iterations should be changeable from the user interface.
In addition it should be possible to change the diagonal elements in the opti-
mization weight matrices described in Section 2.3 from the user interface. The
graphical user interface should have the ability to edit and display maximum
and minimum values used during the grade change optimization. The user in-
terface should also be able to solve the grade change optimization problem with
the defined weights and constraints.

Product prices and raw material cost should also be displayed to the user
and the user should have the ability to change and edit the data. It should also
be possible to save the product prices to a file and later import the data to the
graphical user interface.

Importing Process Data

The graphical user interface should permit the user to import process data
from the IP21 database containing measurement data. The timespan for the
measurement values should be selectable by the user and a mean value displayed
in the user interface. It should be possible to edit the displayed values and if
necessary the user should be able to manually input every value needed to define
a grade or to do a static calibration.

The measurement data is given to the graphical user interface as an ASCII
text file. The user interface should have the ability to define the start time and
duration for the data import before importing the data from the database. It
should be possible to save the imported data, use it to specify a grade, calibrate
the model with it or compare the data to optimization results.

15

Plotting and Comparing Results

A crucial part of the user interface is the ability to visualize data. Not sur-
prisingly, a long list of specifications details the plotting capabilities of the user
interface.

First of all, the graphical user interface should have the ability to plot the
results from the grade change optimizations. The graphical user interface should
also have the ability to plot old data from previous optimizations to enable the
user to compare results from different optimizations. This can be achieved
by letting the user save the results and later load it into the user interface.
Additionally, the user interface needs functionality allowing the user to load
process data to assist the user in comparing the optimized results with real
grade transition data. The user interface should assist in comparing data from
different sources by plotting similar data in the same plots. To improve the
ability to compare real data with optimized results the graphical user interface
should be able to shift the data along the time axis. Furthermore the graphical
user interface needs to support having several variables plotted in the same plot.

16

Chapter 4

Graphical User Interface

In Chapter 3 the specifications for the user interface are described. The chapter
contains an impressive list of features. Although the required functionality is
thoroughly described nothing about the design is mentioned. The artistic work
was deliberately unspecified. This chapter is dedicated to explaining the user
interface. Both the design and functionality is described in detail. The chapter
starts with a description of the main window and how the functionality is divided
between different panels that are displayed to the user during different steps in
the optimization process. The last section is dedicated to settings as well as
external windows and dialogs.

4.1 Main Window

At startup the main window is opened. The main window contains core func-
tionality and is used to open secondary windows. The main window consists of
several panels containing sets of buttons and controls. The different panels are
used to group similar functionality together and to select what is displayed to
the user. To navigate between the different panels the buttons in the bottom
corners are used.

The process is inspired by the standard installation procedure in Windows
where the user clicks next a few times and then does something else while a
progress bar slowly moves forward. The reason for using a familiar concept is
to decrees the learning curve and make the interface more intuitive. The goal
of the user interface is to convey information in an effective manner and not to
test new innovative ways to display data. This is the reason for using standard
ideas and why established concepts are preferred.

At startup the main window contains two panels as seen in Figure 4.1. On
the left the grade selection panels is displayed. To the right the plot panel is
shown. By using functionality from the different panels it is possible for the
user to either do a new optimization or plot old or saved data. The New button
in the lower right corner is used to open the next panel. The button on the

17

Figure 4.1: Main window at startup.

bottom left is usually used to go back to the previous panel but can also be
used to close the application. The panels have the following order:

1. Grade selection panel/Plot panel

2. Calibration panel larger

3. Optimization settings panel

4. Optimization panel

5. Plot panel

4.1.1 Grade Selection

The grade selection panel is shown when the user interface is started. From the
grade selection panel the transition is determined by selecting the appropriate
start and end grade from the drop down lists. A new grade can be created
by pressing the New button and old grades can be edited by pressing the Edit
button. Before moving to the next panel both a start and end grade has to
be selected. By pressing the New button in the bottom right corner the start
and end grades are saved and the first step in the optimization procedure is
completed. When the New button is pressed the calibration panel appears and
both the plot panel and the grade selection panel vanish.

4.1.2 Calibration

The calibration panel is the first panel to appear after the initial grade selection
panel. In the calibration panel the user can select to run a calibration by

18

pressing the Calibrate button. The calibration is optional but it might increase
the accuracy of the results from the optimization.

The calibration uses grade data to calibrate the selected model variables. In
the default configuration a steady state calibration is done with grade data from
the start grade. The model variables used in the calibration can be selected from
the settings window. A few predefined cases are available. The model variables
that are selected are shown in the user interface with their current value as
shown in Figure 4.2.

When the calibration is started the status bar at the bottom of the window
will be used to display the current action. After the calibration is done the
new values will be shown in the user interface. After an optional calibration
the user can move to the next panel by pressing the Optimization button. This
will open the settings panel where optimization settings are chosen before the
optimization takes place.

Figure 4.2: Calibration panel.

4.1.3 Optimization Settings

Before the optimization starts it is important to select appropriate optimization
variables, constraints and weights. This can be done directly in the optimization
settings panel shown in Figure 4.3. By clicking on the tabs at the top a different
selection of settings are displayed. The box on the right indicates the selected
start and end grade. At any time before the optimization has started the user
can go back to the initial panel or calibration panel by pressing the Back button.

The optimization is started by pressing Run. The only way to abort an
optimization is by closing the application. It is imperative that the settings are
selected before the optimization is started. The Back button is not available
during the optimization.

19

Figure 4.3: Optimization settings panel.

The time requirement for the optimization is dependent on the machine as
well as the installed solver. The optimization can be made faster by selecting
fewer collocation points as well as a smaller number of elements. Lowering the
number of elements or changing collocation points will influence the results.
The first time the optimization runs the model will be compiled which will also
increase the optimization time.

4.1.4 Optimization

During the optimization the progress is indicated by the gauge at the bottom
of the screen. The gauge values are updated when the user moves between
panels to give a visual representation of the position of the current panel in the
optimization progress. During the optimization the gauge values are updated
when different steps are finished. The status bar at the bottom of the window
describes the current action. Table 4.1 describes gauge values as well as the
corresponding action. The final optimization is the most time demanding step
in the optimization process. Because of the unpredictable nature of the time
requirement of the optimization algorithm it is impossible to give accurate time
estimations. The gauge values can therefore only be used to indicate the progress
and does not reveal how long the optimization will take.

During the optimization the print stream from the optimization algorithm
can be captured. The printed text can be shown in the optimization panel de-
scribed in Figure 4.4. From the printed text it is possible to decipher information
about the progress of the optimization.

20

Action Gauge value (%)

Calibration panel 5

Calibrating 6

Calibration done 10

Optimization settings panel 10

Optimization panel 15

Compiling static start point 25

Calculating static start point 30

Compiling static end point 35

Calculating static end point 40

Simulating trajectory 45

Compiling optimization model 50

Calculating optimal grade change 60

Done 100

Table 4.1: Gauge values.

4.1.5 Plotting

When an optimization is finished the plot panel will automatically appear. The
plot panel is identical to the plot panel shown when the main window is started.
The only exception is that after the optimization the optimization results are
already loaded into the From field. Figure 4.5 shows the plot panel as it is
displayed after an optimization.

To create a plot the user has to define the plotted variables and select from
which file the data should be collected. There are several predefined plots al-
ready in the Plot View list. User defined plots can also be added. The plots are
divided into the following groups: Loop, GPR and MyPlots. If Loop is selected
every plot in the Loop group is added.

Data can be plotted from several different sources. New data, saved data
and measurement data can be compared and studied side by side. If the same
data is plotted from different sources it will appear in the same plot.

Measurement data from the IP21 database can be loaded by pressing the
IP21 button. When the button is pressed a new window appears. The IP21
window is shown in Figure 4.6. In the IP21 import window the user has to
specify the time interval for the data importation. By pressing Import the data
is loaded and is added to the From list in the plot panel.

To increase the ability to compare transitions with measurement data the
IP21 data can be shifted sideways. Instead of reloading IP21 data to get a perfect
match the slider can be used to slightly move the IP21 data. The intension is
to decrees the amount of times the user has to reload IP21 data by ensuring
the initial selection does not have to be precise. Instead a rough time estimate

21

Figure 4.4: Optimization panel.

can be used and the fine tuning can be done later when the data is already
imported.

Saved data can be loaded by pressing the Load button next to the IP21
button. Data is loaded by choosing the data file and pressing Open in the file
dialog window. It might take a few seconds to import the loaded data. The
progress of the import is visualized by the gauge at the bottom of the window.
When the gauge reaches 100% the data is fully imported.

When data is loaded or a new optimization has been completed the data
can be plotted. A plot is created by selecting the plotted variables from the
View list and also selecting the data source from the From drop down list. By
pressing Add the plot is added to the compare list. The selected plot can be
removed by pressing Remove or the entire list cleared by pressing Clear.

In the plot panel the buttons will become available when the corresponding
action is a valid choice. The Plot button becomes accessible only when entries
are present in the compare list. Similarly the Add button can only be selected
when both a set of model variables and a source file is selected. The reason for
restricting the user behavior is to limit errors caused by missing data or not
fully imported files. By only allowing plotting when entries have been added it
becomes impossible to plot data before the data has been imported.

When the Plot button is pressed one or several windows will appear depend-
ing on the number of entries in the compare list. If several plots are added they
all emerge simultaneously. An example plot is shown in Figure 4.7. The plots
are created using the matplotlib toolbox. In the plot window the plots can be
saved or the user can zoom in to a selected section.

The entire plot procedure can be summarized in the following steps:

1. Import data or run an optimization

22

Figure 4.5: Plot panel after an optimization.

Figure 4.6: Window for importing IP21 data.

2. Select source file / Select model variables

3. Add plots

4. View Plots

When the optimization is finished the data can be saved by pressing the Save
button in the plot panel. In the save dialog the default file ending is .res. The
file type is arbitrary and is only used to aid the user in distinguish saved data
from other files. In the plot panel the Back button is also available. The Back
buttons opens the inital panel and can be used to do a new optimization.

23

Figure 4.7: Example plot.

4.2 Features and Settings

4.2.1 Edit Grades

At startup all grades saved in the Grades folder are imported. A new grade can
be created either by editing an old grade or by creating an entire new grade.
Grades can be edited or created from the main window by pressing the Edit or
New buttons on the select grade panel. To edit an already existing grade the
grade has to be selected as either start or end grade from the drop down lists.
The Edit button opens the grade window. Figure 4.8 shows an empty grade
created by pressing the New button.

In a new grade all parameter values are zero. To facilitate the creation
of a new grade, data can be imported from IP21. Instead of entering every
value by hand a suitable parameter set can be imported by selecting a time
interval where the grade was used and then importing measurement data. When
data is imported the mean value is calculated over the time interval to get a
more representative value and minimize the impact of measurement noise. The
imported data is also used to calibrate the model. The data can be saved by
pressing the Save button. To change the name of an existing grade or create a
new grade with an old grade as base the Save As button can be used instead.

4.2.2 Menus

The menu in the main window has two sub menus. From the File menu it
is possible to load an old optimization by pressing Load. The menu option is
comparable to using the Load button in the plot panel. Figure 4.9 shows the

24

Figure 4.8: Grade window.

save option in the File menu. Although the Save option can be accessed at all
times it is only possible to save the latest completed optimization and it is not
possible to save an ongoing optimization to continue at a later time. It is also
possible to close the application by pressing Quit in the File menu. The Tools
menu can be used to access the settings window.

Figure 4.9: File menu in the main window.

4.2.3 Settings

The settings window is opened from Settings in the Tools menu. The Settings
window is shown in Figure 4.10. The box on the left side of the settings window
is a tree controller and by clicking a label the corresponding settings are shown
to the right. If an item in the tree controller has child items it can be expanded
by double clicking it.

In the settings window settings of similar type are grouped together in dif-

25

ferent panels. In panels with large amount of data, tabs are used to divide the
information. Additional information is accessed by selecting the appropriate
tab. In the tree controller a specific tab can be selected by clicking on a sub
item.

Settings can be saved and shared. Settings can be saved by pressing the Save
button and selecting a name in the save dialog. The default folder for saved
settings files is the Settings folder. Old settings can be imported by pressing
Import and selecting the saved settings file in the open file dialog. By pressing
OK the settings are saved. Cancel will close the window.

Figure 4.10: Settings window.

Calibration

In the calibration settings panel it is possible to select the parameter set used in
the calibration. Only a few predefined cases are available. The predefined cases
can only be changed by editing the default values in the Data.py file. When the
selection is saved by pressing OK in the settings window the calibration panel
in the main window is automatically updated.

Constraints

The constraint panel has five tabs with constraints. Both minimum and maxi-
mum values can be changed. For the feeds the maximum and minimum values
for the derivative are also selectable. It is important to carefully select the
constraints. By selecting values for the constraints that are located inside the
range defined by the start and end values of the variable the optimization algo-
rithm might fail to converge. If an end or start value is located outside of the
constraints it can only be reached if the constraints are breached. If the opti-
mization algorithm obeys the constraints the start or end values can therefore
never be reached and a solution cannot be found.

26

Optimization

The optimization setting panel has four options. The number of collocation
points and number of elements influences the accuracy of the optimization.
More being better but also requiring a longer execution time. The final time
option sets the end time for the optimization. The change of the final time
requires a recompilation of the model. This will increase the execution time the
first time the chosen value is used in an optimization. The maximum number
of iterations makes it possible to limit the time it takes to run an optimization.
The maximum number of iterations should only be reached if the optimization
fails to converge.

Plotting

In the plot settings panel the user can edit existing plots or create new cus-
tomized plots. At startup, predefined plots are loaded. Predefined plots can
only be permanently saved by changing the Data.py file. New plots are added
by typing a new in the name text box and selecting a primary and secondary plot
variable. New plots will be added to the MyPlots group. The Remove button
will remove the selected plot. Predefined plots cannot be removed permanently
from the user interface.

The grouped plots checkbox decides how plots are positioned on the screen.
If several plots are added, the default behavior is to divide the screen equally
among the plots. If there are a square number of plots they will be placed in a
square formation. Additional plots will be placed in an extra column to adapt to
common screen resolutions. By unchecking the check box, the plots will instead
be positioned on top of each other, as shown in the Figure 4.11.

Figure 4.11: Plot options.

Product and Raw Material Prices

From the user interface product and raw material prices can be changed. These
values are currently not used in the optimization algorithm. The prices will
therefore not effect the results from the optimization. The product prices are

27

stored separately in a file in the Settings folder. They are loaded when the
application is started. Saved files can be shared between users by copying the
Product prices file in the Settings folder. By selecting a grade from the drop
down menu the product prices can be edited. The Save button will save the
values to the Product prices file.

Weight Functions

In the current optimization algorithm a quadratic cost function is used. Weights
are used in the quadratic cost function to determine the influence of different
variables. The default value for the weights is 10 but it can be changed from
the user interface. The default value has no significance only the ratio between
the weights is important. By increasing a weight the cost of the deviation from
the end value will increase for the selected variable.

28

Chapter 5

Implementation

In this chapter the implementation of the graphical user interface is described.
During the development, several complex problems were discovered. This chap-
ter describes the solutions as well as the motivation for the resulting implemen-
tation. The chapter starts with a description of the model changes performed to
ensure that the model can be used for arbitrary grade changes. The chapter also
contains a description of how threads and processes are used in the graphical
user interface. The chapter ends with a section detailing the underlying design
principles and the interaction between classes.

5.1 Model Modifications

The model of the polythene production plant used in the thesis is only tested on
a small number of hard coded grade transitions. To ensure that arbitrary grade
transitions can be optimized, the Modelica model has been slightly rewritten.
Additionally several modifications need to be made to the model to make sure
that model parameters can be changed from the user interface.

5.1.1 Constraints

Every variable in the model has a maximum and minimum value. The default
values are tailored after a few studied transitions. New transitions might have
variable values outside of the default limits. This will cause the optimization
algorithm to fail to converge. In bad cases the stationary solutions used to
calculate the start and end points for the optimization algorithm will fail. Oc-
casionally the optimization of the grade transition will fail as well. The reason
for the convergence failure is that the solution is outside of the boundary limits
and therefore it can never be reached. An example is shown in Figure 5.1.

The solution is to expand the default maximum and minimum values to
encompass every typical value used by the different grades. Changing the default
values will not effect the results from the optimization because an additional

29

Figure 5.1: The end value cannot be reached because it violates the constraints.

set of constraints exist to ensuring that parameter values remain within safety
margins.

Minimum and maximum values set in the Modelica model cannot be changed
after the model has been compiled. While recompiling the model to change the
boundary values is an option, the extra time required is unnecessary. Instead a
different approach can be used to ensure that the user can set constraints from
the user interface without the need to recompile the model. Constraints can
be moved from the Modelica model to the Optimica extensions used to define
the optimization problem. In the Optimica extension the constraints can be
changed even after the model has been compiled. The drawback of having two
sets of constrains is that they might interfere with each other and the Optimica
constraints have to be within the limits determined by the values in the Modelica
model.

5.1.2 Initial Trajectory

The initial trajectory used as a start guess for the optimization algorithm is
created by using a simple ramp function between the start and end points as an
input to a simulation. The trajectory generation is described in more detail in
Section 2.3. In the original model the ramp function was created by using an
if-statement. The ramp was constructed by defining the derivative. After the
maximum value was reached the if-statement changed the derivative to zero.

The initial trajectory was conceived by simulating the model in Dymola with
the ramp as an input to the simulation. While Dymola support discontinuous
functions, JModelica.org does not. If-statements, sign functions or similar con-
structions can therefore not be used to create the ramp function. Instead a
continuous approximation of the derivative was used to ensure that JModel-
ica.org could be used to create the initial guess of the trajectory. Instead of an
if-statement the following equation was used to create the ramp:

30

y = 1 − 1/(1 + e−k(t−tend)) (5.1)

At the time tend the approximation will change value from one to zero. A
larger k value results in a sharper curve as seen in Figure 5.2. The derivative of
the ramp is calculated by multiplying (5.1) with the slope of the ramp.

Figure 5.2: Continuous approximation used to calculate the derivative of a ramp.

5.1.3 Changing Model Values

The optimization process can be divided into three steps. In each step changes
are made to the model. In the first step the model is initialized by calculating
stationary solutions for both the start and end grade. Before the first step
parameters defining the grades are saved to the model. Additionally calibrated
model parameters are saved as well. The calibrated parameters have to be saved
to the model before each of the three steps.

The start and end values calculated in the first step are used in both the
initial trajectory estimate and in the final optimization. They are saved to
the model before either the trajectory generation or optimization takes place.
Before the optimization weights and constraints also need to be saved to the
model. A schematic description of the changes to the model files is presented
in Figure 5.3.

31

Figure 5.3: The model files are changed before each step in the optimization
process.

5.2 Compiling

The compilation of model files takes a considerate amount of time. By limiting
the need for compilation the total optimization time can be minimized. This
is achieved by reusing compiled files as often as possible. Every optimization
requires the presence of four compiled model files. The model files for the
stationary solution for both the start and end grade needs to be compiled.

The model includes a few different grades with slightly different parameter
values. When a new grade is created a preexisting grade is used as a mold for the
new grade. A new grade will therefore not technically require a recompilation
of the model files because it is based on an already existing grade. As a legacy
feature every grade has a corresponding compiled model file despite the fact
that need for one is limited. The grade specific files only need to be compiled
once for every grade. After that they are reused.

Two other compiled files are necessary. The model for simulation of the
initial trajectory generation and the optimization model need to be present.
Both models only need to be compiled once with one exception. The change
of the optimization interval requires a recompilation of the optimization files.
This is caused by the fact that the optimization interval cannot be changed in
the compiled model.

The first time an optimization or calibration is started all needed model
files will be compiled. This will significantly increase the execution time. If a
compiled version of a model file is present it will be detected by the application
and reused. The reason for not providing precompiled model files is that they are
operative system dependent. Precompiled model files will not work on different
platforms.

32

5.3 Threads and Processes

To be able to ensure that the graphical user interface remains responsive while
resource heavy calculations are running in the background, the execution of the
user interface and the calculations need to be separated. In Python this can be
done in several different ways. When external code is used the solution often
involves either threads or processes. Both threads and processes are used in
different parts of the implementation.

5.3.1 Threads

Threads within the same process share a common data space. The shared data
space minimizes memory overhead and ensures that threads can communicate
and share information. The simplified communication is the main advantage
of using threads. Threads have a few disadvantages as well. The support for
threads in Python is limited. It is not possible to easily prioritize, interrupt or
terminate threads. Usually different creative implementations can be used to
overcome most of the limitations.

The standard solution for combining a long running task with a user interface
is to run the tasks in a separate thread see (Bolen, 2004). To communicate with
the main thread events can be utilized. In graphical user interfaces events are
used to react to user input. When a button is pressed an event is created and the
MainLoop() will respond to the event by calling the predefine handler function.
Similarly the sub-threads can generate a custom event that the main thread is
listening to. This is used throughout the application to update the status of
the calculations and to indicate when a task is finished. This is also described
in Figure 5.4.

Figure 5.4: Schematic description of the communication between threads.

Using threads instead of processes makes the implementation easier but a
few issues arise. One of them is that after the optimization has been started it
is not possible to abort it. This has to do with the fact that killing threads is
an inherently bad idea because the thread might be accessing a critical resource
that needs to be closed properly. This is the reason why Python lacks an official

33

way to kill threads. Despite this there are several ways to terminate Python
threads. Unfortunately none of the workarounds can be used to abort a Python
thread while it is running external code. The only way to abort an optimization
is therefore to kill the process running the application.

More problems arise from the fact that JModelica.org uses a Java Virtual
Machine (JVM) to compile model files. Compiling has to be done in the thread
containing the JVM. Trying to use JModelica.org to compile files outside of the
thread containing the JVM will cause Python to crash. The solution is obvious
but the implementation is not intuitive.

Usually a Python script starts with a list of modules to be imported. When
JModelica.org components are imported the JVM is also started. The result
is a JVM running in the main thread despite the fact that the JModelica.org
functions are used in a different thread. To ensure that the JModelica.org
functions always are used in the same thread as the JVM the JModelica.org
components should only be imported when they are used. Importing the same
module twice will not cause problems as Python remembers imported modules
and only imports the module if it is missing. Figure 5.5 has a more in-depth
description.

Figure 5.5: The JVM is started when a JModelica.org module is imported. The
import statement has to be in the same thread as the JModelica.org commands.

The difficulties in using the JVM is also a reason why it is not possible to
run two different optimizations simultaneously as all the JModelica.org functions
have to run in the same thread.

5.3.2 Processes

The mentioned difficulties with using threads can be solved by using processes
instead. Processes can be terminated and because they are independent it would
be possible to run JModelica.org functions in several different processes.

Processes are not superior in every way. They have a large disadvantage. A
large amount of data has to be transferred between the user interface and the
thread or process running JModelica.org code. With threads this is a trivial

34

task. Communication between different processes is nontrivial and as a result
processes are only used in two special cases.

Processes are used to run external code and to capture printed text from
IPOPT. In both cases text files are used to communicate between processes.
In the latter case a process in only used as a last resort. The optimization
algorithm uses external print commands to print text to a console. The only
way to capture the printed text is to listen to the output from a process. By
running the entire graphical user interface as a separate process it is possible to
capture the printed text and save it to a log file or otherwise integrate it into
the graphical user interface. A schematic description of how process output can
be saved is shown if Figure 5.6.

Figure 5.6: To save the printouts from the optimization algorithm an external
process has to be used.

Another advantage of using processes is that after the optimization is finished
the process can be terminated and the memory cleared. The memory footprint
from using JModelica.org functions increase after several uses. This is caused by
memory leaks. Running several large optimizations repeatedly might cause out
of memory problems. By using processes the theoretical problem is eliminated.

Using processes instead of threads is often a superior solution. The reason
for still using threads in certain situations is that the implementation becomes
easier. The only current limitation to core functionality is the fact that an
optimization cannot be aborted. Every other drawback is either limited to
theoretical problems or solved by changing the structure of the code.

35

5.4 IP21 Communication

Borealis uses a database for measurement data called IP21. IP21 contains both
historic and current measurement and target values. Measurement data from
the IP21 database is used to define grades, calibrate the model and compare opti-
mization results with real transitions. To communicate with the IP21 database,
an external program written in Fortran is used. The reason for using an external
program is that IP21 lacks a Python interface. The Fortran program developed
by Borealis requires input in the form of a text file with a list of tag names. The
text file has the following format:

01-MAR-11 00:00:00.0 01-MAR-11 20:00:00.0

FK442101-16_IP

AI470113-308E

FT443101-18

The first line contains the start and end time for the import. The time
interval is followed by a list of tag names indicating variables to be imported.
When the program is executed a result file is created containing values for every
variable with a tag name. The following format is used to describe the returned
file:

23-JAN-11 22:57:00.0 23-JAN-11 23:59:00.0

FK442101-16_IP AI470113-308E FT443101-18

51.9893875 9.6282234 87.8617325

51.9892812 9.6304234 87.7236432

51.9893765 9.6365324 87.6727221

The format is similar to the input file. The top row is a time interval
followed by a list of tag names. For every minute one set of values are returned.
The values are imported to the graphical user interface by reading the text file
containing the data.

5.5 Saved Files

Both grade data and user settings are or can be saved as text files. There are a
few requirements for the format used to save the data. The saved files need to
be editable by hand and it should be easy to create and import the files.

Both grade data and settings are internally stored as large dictionaries filled
with entries. A dictionary in Python is a data structure with pairs of keys and
values. The following structure is used to create a dictionary in Pyhton:

Dictionary = {’key’: 1, ’key2’: 2}

By using an identical format to save data the saved files can be created by
simply converting the dictionary to a string and writing the string to a text file.
Even importing is straightforward. The eval() function can be used to convert
the string of text to a dictionary. Using the eval() function can be dangerous
because it allows the user to run arbitrary code by changing the saved files.

36

This is not a problem in the application because if the user has the ability to
edit files and run python scripts arbitrary code can be executed anyway.

By using a format identical to a Python data structure both saving and
importing data becomes trivial. The drawback is that the format is not designed
to be easy to edit when dealing with a large dictionary. The saved data is still
saved in plain text so the option to edit the data still exists.

5.6 Design of the Graphical User Interface

The user interface is designed to be easy to change and upgrade. While the
user interface is flexible it still has to be robust and the input from the user
needs to be limited to only allow permitted behavior. A great challenge when
creating a user interface is the ability to limit and screen user input without
being intrusive. If it is possible for a user to input data in the wrong format it
is only a matter of time before a mistake is made.

5.6.1 Restricting User Input

The user interface has to make sure that user mistakes will not propagate to
the application and be saved. As a result default values are used every time the
graphical user interface is started. While it is possible to change and save the
values the changes will not be loaded automatically to minimize the risk that
a mistaken value is used repeatedly without the knowledge of the user. The
only exception is grade data that is entirely user defined and as such loaded on
startup.

User input is also limited by using widgets that only allow input in certain
formats. An example is the optimization settings. By using spin controls with
maximum and minimum values instead of a normal text control the user can only
input integers within the predefined limits. Another example is the date and
time input used when importing data from IP21. Time input is problematic
because different formats are used worldwide and a clear consensus has not
been reached allowing dates to be defined in different formats depending on the
context.

In the user interface the time format has to be both easy for the user to
recognize and the input has to be checked for validity. This is achieved by
allowing the user to only choose valid dates by selecting the year, month and
day from drop down menus. The values in the drop down menus are updated
after a selection is made. If the year 2012 and the month February are selected
there will be 29 days in the drop down menu.

5.6.2 Increasing flexibility

To increase the flexibility of the user interface and allow changes to be easily
made, the majority of the interface is not hard coded. Instead the interface is
built from predefined lists of model variables when the application is started.

37

At startup, the user interface reads data from a file conveniently called Data.py.
The data defined in the file is the cornerstone of the user interface. Data.py
contains lists of variables used in different parts of the user interface.

A simple list of variable names is transformed into a grid filled with text
controls. The variable values can be edited and when necessary imported from
IP21 or saved to the model. By changing a name of a variable in the list the
user interface will be updated, connections to IP21 database or model files will
be automatically made and the new variable can be plotted. The reason for
using this type of approach is to simplify routine maintenance and prepare the
interface for future upgrades. The result is that the user interface only needs
to be updated in one place to accommodate model changes. The Data.py file is
the DNA of the graphical user interface and changes to the file will propagate
throughout the application.

By having a centralized source of information regarding names, tags and
corresponding model names the graphical user interface can be easily updated
without the need to rewrite core functionality. In addition to default values, pre-
defined plot options and unit conversion factors are also defined in the Data.py
file. Default values can therefore be changed even by a novice user without any
deeper knowledge about Python or the user interface.

5.7 Program Structure

The core of the application is the main window. From the main window all
other windows are opened. The main window is the center of the application
from both the perspective of the user and the code. A graphical description of
all the classes can be seen in Figure 5.7.

The main window consists of five panels. Every panel is a separate class
responsible for both displaying a part of the graphical interface as well as im-
plementing the underlining functionality. The main window, as well as the entire
user interface, is created in the main thread.

Several parts of the interface can be opened in separate windows. All sec-
ondary windows are separate classes. They are all independent of the main
window. To transfer information between classes, a dictionary containing data
is used. The dictionary is called settings. The settings dictionary is created
from the content of Data.py file and updated when changes are made by the
user. The settings dictionary is used to save data and user settings throughout
the entire application and is a central source for storing or transferring infor-
mation. The settings dictionary works as a database for measurement values,
grade data and settings. Almost every module can access it.

The settings window consists of seven panels where each of the panels is a
separate class. The reason for dividing the settings into different classes is that
several of the setting classes are reused in the main window. Both the settings
window class and the grade window class can save and load data from text files.
The writing and reading of text files is separated into two classes, one class for
reading and one class for writing.

38

Figure 5.7: Graphical representation of the connection between classes.

From the main thread responsible for the user interface a worker thread is
also started. The worker thread is made for running heavy calibration and op-
timization calculation without disturbing the user interface. The worker thread
is a separate class. To save changes to model files before compiling them the
worker thread also uses the write to file class. The connection between the
classes is shown in Figure 5.7.

The Data.py file is loaded by the main window and passed down to the other
windows and to the worker thread. This ensures that all major parts of the user
interface share the data contained in the Data.py file. The main window is
responsible for opening secondary windows and responsible to listen to events
from the worker thread or user input in the main window. The secondary win-
dows will respond to events created within the own window and occasionally call
the main window to update the graphical user interface. The settings window
will for example call the main window when a new set of settings are saved. The
main window will then respond by updating its panels or redoing the layout to
accommodate the settings changes.

39

Chapter 6

Epilogue

6.1 Discussion

In the end the usefulness of the application is determined by the results from
the model calibrations and grade change optimizations. If the results are not
comparable with real measurement data the graphical user interface loses its
usefulness. Not only does the results need to be accurate they need to be
reliable as well. A user of a graphical user interface take for granted that the
underlying methods work and expects a result in every case regardless of input
or user settings. This is a very challenging problem to solve as the optimization
and calibration methods have been tested only on a few cases.

The optimization algorithms for the model without recycling are surprisingly
robust. The optimization relies on good start and end values. If it is possible
to calculate stationary solution for the start and end values the final optimiza-
tion problem has a very high probability of succeeding even when weights are
changed. In essence the problem is limited to calculating good stationary so-
lutions. For the six grades that where studied as part of the thesis, stationary
solutions where found for every grade. Every possible grade change between
the existing grades where therefore theoretically possible to solve with the op-
timization algorithm.

The possibility to optimize a grade change does not guarantee that the so-
lution is good. By changing the weights the performance can be increased by
selecting the importance of variables but in the end the performance of the opti-
mization is limited by the quadratic cost function. The quadratic cost function
tries to minimize the cost by reaching the end point as fast as possible. No
economic values are considered and the transition can therefore be wasteful.

In addition the model accuracy limits the performance. The accuracy of the
model can of course be improved by performing a calibration before the opti-
mization is started. The calibration can improve the model but not dramatically
change it. In the end the results cannot be better than the underlying model.

The task of creating the user interface that combines the calibration and

40

optimization algorithms is trivial. The difficulties lie in the implementation
of the optimization and calibration algorithms themself. The step between
solving a few selected grade transitions to solving all of them is huge. For
the user interface to be usable the optimization and calibration have to be
reliable. Achieving a high success rate on the optimizations is a demanding
task, especially when the calibration can change the behavior of the model by
changing model parameters. If only a few selected cases can be solved there is
no point in having a user interface.

6.1.1 Code Structure

One of the goals when making the user interface was to make it flexible and
easy to change. To achieve the high flexibility this user interface was built
around a central source containing data and the changes to the central data
would propagate throughout the program. This has the advantage that smaller
changes can easily be made but there are several disadvantages as well. One
of them is that the application becomes less modular as everything depends on
the central source of information. Fundamental changes to the core data also
become difficult as several different modules can depend on the same data. The
central data source can therefore cause unpredictable problems when changed
carelessly because the changes will effect the entire application.

The lesson to learn is that everything has a tradeoff. The sacrifice of making
smaller changes easy is that the modules become dependent on each other.
The general idea of having a central data source is on the other hand a very
proven concept. Databases are present almost in every larger application and the
prospect of hard coding everything is not very appealing. The result of having a
data source similar to a database is that every module can easily access variable
names or default values. It also becomes easy to translate between different
forms of names such as model names and display names.

The system that is used to make the graphical user interface might not be
ideal but it is very convenient. A new part of the graphical user interface can
be created from a basic for loop and three rows of code that is reused from
somewhere else.

6.2 Conclusions

The goal of the Master’s thesis was to create a graphical user interface showcas-
ing calibration and optimization methods developed at Lund University. This
goal has been achieved. A graphical user interface has been created, capable of
solving grade change optimization problems on a calibrated plant model. The
graphical user interface can be used to change optimization constraints and opti-
mization weights and the optimized trajectories can be visualized and compared
to real measurement data.

41

6.3 Future Work

The scope of the work described in this thesis is limited and the user interface
is by no means a final product. As such a lot of work remains. The model
used in the optimization is not complete and to increase the accuracy of the
optimization results the model needs to be expanded to include systems that
where left out in the initial version of the user interface. In addition to changing
the model additional features can be added to the graphical user interface. A
few of those features are described below.

6.3.1 Dynamic Calibration

As part of the thesis only a static calibration method was included in the graph-
ical user interface. A dynamic calibration method could be included as well.
The dynamic calibration method minimizes the difference between measure-
ment data and model simulations over a time period instead of only calibrating
against measurement values from a steady state.

6.3.2 Expanding the Model

A crucial future step is to expand the model to also include the recycling sys-
tem. To minimize waste and raw material consumption the plant in Stenung-
sund cleans and recycles materials. The recycling system is not used by the
optimization in the work done as part of the thesis. By including the recycling
in the model the results should be closer to measurement data and the accuracy
of the optimization results should increase.

6.3.3 Output to Operators

When the model has been expanded to include the recycling new opportunities
arise. The results from the optimization could be transformed to instructions
that the plant operators can use. One idea is to parameterize the input feeds
that the optimization algorithm manipulates to achieve the optimal trajectory.
By making the inputs piecewise linear it would be easier for an operator to im-
plement the optimal trajectory. By having the graphical user interface produce
a list of values and times when inputs should be changed the application could
be directly used to produce instruction for the operators. This would drastically
increase the usability of the graphical user interface. The reason for not imple-
menting the idea in the early phase of the project is that results from the grade
change optimization methods will only be used on the real plant after extensive
testing and after ensuring that the underlying model is good enough.

6.3.4 Economic Cost Function

The quadratic cost function has several disadvantages. One of them is that
economic impact is not measured and the results from the quadratic cost func-

42

tion do not change depending on market prices. Instead the user has to change
the weights manually to change the optimized trajectories. The quadratic cost
function is not aware of the limits of the grade specifications and the drastic
reduction in income when products outside of the specifications are produced is
not included in the cost function. A remarkable improvement to the quality of
the results could be achieved by using an economic cost function instead. An
economic cost function that measures the profit as an expression of income and
expenses could be used instead.

43

Bibliography

J. Åkesson, T. Bergdahl, M. Gäfvert, and H. Tummescheit. Modeling and
Optimization with Modelica and Optimica Using the JModelica.org Open
Source Platform. In Proceedings of the 7th International Modelica Conference
2009. Modelica Association, Sept. 2009.

N. Andersson, P.-O. Larsson, J. Åkesson, S. Haugwitz, and B. Nilsson. Cal-
ibration of a polyethylene plant for grade change optimisations. In In 21st
European Symposium on Computer-Aided Process Engineering., 2011.

D. Bolen. Long running tasks, 2004. http://wiki.wxpython.org/

LongRunning/Tasks.

Borealis AG. Borealis Home Page, 2011. http://www.borealisgroup.com.

P.-O. Larsson, J. Åkesson, S. Haugwitz, and N. Andersson. Modeling and op-
timization of a grade change for multistage polyethylene reactors. In 18th
IFAC World Congress, Leuven, Belgium, July 2011.

G. Polo. Pygtk, pyqt, tkinter and wxpython comparison. The Python Papers,
2, 2008.

Python Software Foundation. Python Programming Language - Official Web-
site, 2011. http://www.python.org.

The Modelica Association. The Modelica Association Home Page, 2011. http:

//www.modelica.org.

A. Wächter and L. T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–58, 2006.

wxPython. wxPython Home Page, 2011. http://wxpython.org.

44

	5893_Titelsida.pdf
	Polyethylene Production Grade Changes

	5893_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

