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ABSTRACT 

The time-frequency (TF) spectral representation of Auditory Brainstem Response (ABR) signal data 

provides information about their spectral contents. We apply the Spectrogram, Thomson Multitaper  and 

Peak Matched Multiple Window (PM MW) spectral estimation methods to four different number of clicks 

per average (i.e., 1313, 300, 100 and 50 number of clicks per average) of a simulated signal data. For the 

purpose of model selection we simulate sinusoidal signal data which have the same trend as the empirical 

ABR signal data, and then apply the selected model to ABR data from 17 healthy, normal hearing individual 

ears as recorded using SD-BERA, SensoDetect-Brainstem Evoked Response Audiometry. The root mean 

square error (RMSE) is the main tool used to compare the proposed spectral estimation methods. The 

Spectrogram is found to be an appropriate method of spectral estimation for signals with relatively low 

disturbance. In particular, for signals with a white disturbance with standard deviation, �, value in the 

interval �0,15.0�, it is found to be best of the three methods. For 15.0 ≤ � ≤ 30.0, the PM MW method 

performs as good as the spectrogram, if not better. Finally, for � ≥ 30.0 the PM MW continues to be the 

best of the three methods where as the Spectrogram turns out to be worst of them. 

Key Words: TF, Spectrogram, Thomson Multitaper, PM MW, ABR, SensoDetect 
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1. INTRODUCTION 

1.1 Background of the Study 

The field of digital signal processing (DSP) has been in explosive growth during the past four decades, as 

phenomenal advances both in research and application have been made . This is due to the fact that signals 

play an important role in our daily life activities. Speech, music, picture and video are a few examples of 

signals that we encounter frequently [6].  

The nature of signal processes is diverse such that often characterizations and classifications of them are 

challenges. Most of the time, scholars differ among them depending on the nature of the independent 

variables and the value of the functions defining the signals. Mainly, signals could be classified as 

deterministic and stochastic in which deterministic signals are explicitly known and stochastic signals are 

random processes which are represented by a realization and characterized by distributions. Signals could 

also be classified as stationary and non-stationary where a stationary signal has time-invariant properties and 

a non-stationary signal has time-variant properties. A signal process can be either a continuous or a discrete 

function of the independent variable. Moreover, a signal can be either a real-valued or a complex-valued 

function; they can be also either analytical or non-analytical [6].  

The fundamental variable we use to study a signal is time. However, we can also consider other variables. 

One of the most important other variable that we should consider is frequency. In general, time-frequency 

analysis of non-stationary time-varying analytic signals have been a focus of researchers for many years [1]. 

Our study bestows a due emphasis for a such type of signal process, i.e., the human auditory brainstem 

response (ABR) signals.  

The ABR consists of far-field evoked potentials from the auditory nervous system that occur during 10 

milliseconds (ms) after the presentation of a transient sound such as a click sound [21]. According to 

Christopher Emrick, 2008, ABR data are the most frequently used auditory evoked potentials. They consist 

of a series of 5 − 7 peaks in the time-averaged waveform to click stimuli observed in an approximately 10	ms post-stimulus recording. This response reflects auditory activity from the cochlea to the midbrain. By 

convention, the waves are designated by Roman numerals. Clinically, the most significant ABR peaks are 

designated by wave I, III, and V. In reality, waves III and V are often combinations of wave II-III and waves 

IV-V respectively [20]. Typical human ABR recording is shown in Figure 2.1.  

A recent increase of interest in spectral analysis has been prompted by the suggestion that spectral 

components of the ABR may contribute in psychiatric diagnostic investigation [22]. Hence, knowledge of 

the effects of sound stimuli on a spectral representation of the ABR is essential. 
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Figure 2.1 ABR waveform recorded in a normal-hearing adult. 

The aim of spectral analysis is to extract relevant information from a signal process by transforming it. 

Among the classical methods of spectral estimation, Fourier based method are well known. These 

approaches are computationally efficient. In spite of this advantage, they have many inherent drawbacks in 

case of short signals. The most prominent limitation is poor frequency resolution, i.e., low quality of the 

ability to distinguish the spectral responses of two or more signals. Other limitation is windowing leakage in 

the spectral domain where energy in the main lobe of a spectral response leaks into the side-lobes, obscuring 

and distorting other spectral responses that are present [2], [3]. In attempting to overcome these limitations 

many alternative spectral estimation methods have been developed. Hence, the main purpose of this project 

is to discuss  two different approaches: Spectrogram and multitaper spectrograms (the Peak Matched 

Multiple Windows and Thomson methods) as estimators of a spectrum for ABR data.  

1.2 Statement of the Problem 

The brainstem activity can be explained in two-dimensional curves: frequency versus time. The main reason 

to use such types of plots is to find frequencies in different parts of the curve for different number of clicks 

per average. This study tries to use some registered electrophysiological reaction signals (or ABR signal 

data) that originate in the brainstem when click stimuli are presented. Elucidating the ABR data, from 

different people, by means of some non-parametric time-frequency signal process analysis techniques, 

which perhaps is a new approach for SensoDetect, will be the sole purpose of our work. We will focus on  

fitting, comparison and selection of Spectrogram, Thomson Multitaper and Peak Matched Multiple Window 

(PM MW) methods. 

1.3 Objectives 

1.3.1 General Objective 

The general objective of this study is to give a better time-frequency representation of the ABR data using 

one or more of the spectrogram, Thomson Multitaper or PM MW techniques. 
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1.3.2 Specific Objectives 

The specific objectives are: 

� to simulate a sinusoidal signal data that looks like the actual data; 

� to determine a reasonable interval for a phase shift in the simulated function; 

� to fit the simulated data for the three target models at four different number of clicks per averages; 

� to discuss an appropriate modeling approach for some non-parametric time frequency models; 

� to discuss some properties of the spectrogram and multitaper methods; 

� to make some evaluation measures for the fitted models; 

�  to select the best model for the simulated data; 

� to make suggestion on the level of disturbance that should be set in the simulated data to have 

feasible results; 

� to express the actual ABR data in time-frequency representation using the once chosen model and 

investigate the time-frequency composition; 

� creating a model that can be tested and used by SensoDetect and other bodies. 

1.4 Significance of the Study 

The results of the research work could be helpful in: 

� reviewing model construction processes in some non-parametric spectral estimation mechanisms like 

Spectrogram and Multitaper techniques; 

� understanding the importance of spectral analysis in explaining ABR data; 

� investigating the ABR signal data represented in a two-dimensional spectrum; 

� managing frequency content analysis in connection with timing properties in a healthy, and  normal-

hearing recorded ABR data; 

� clinical psychiatric diagnostic investigation; 

� helping in classification of individuals based on their responses to different sound stimuli; 

� providing vital information in relation with improvement of SD-BERA; 

� extending a new approach signal analysis for SensoDetect; 

� helping as a spring board for further studies. 

1.5 Thesis Outline 

The thesis is organized in sequential chapters with different focuses. In chapter two, we give some literature 

reviews and state the previous works in time-frequency analysis of Auditory Brainstem Response (ABR) 

data and related methods.  Special attention is given for the Spectrogram, Thomson Multitaper and Peak 

Matched Multiple Window methods. 

Chapter three provides the essential methodological tools that would be handy for the data analysis. In this 

chapter we supply the necessary technical schemes for time-frequency analysis targeting towards our goal. 
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This chapter explains the need for time-frequency analysis. We then discuss the development of 

Spectrogram method from the short time Fourier transform followed with the formulation of Thomson 

Multitaper and later introduce the key concepts of Peak Matched Multiple Window methods. 

In chapter four, we describe the implementation of our methodology. First, we discuss the nature of our 

observed and simulated data , followed by the spectral estimation of the simulated data using the three 

methods. Second, the strategy for model selection is given. Third, an attempt for application of the selected 

model on our observed data is presented. 

We give a conclusion and summarize our analysis results together with some recommendations in chapter 

five. 
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2. LITRATURE REVIEW  

In an effort to extract more diagnostic information from the ABR, some researchers are beginning to look 

beyond the traditional measures of peak latency and amplitude and are turning their attention to the spectral 

content of the ABR [22].  

Spectral analysis separates the ABR waveform into its time and frequency components allowing the 

investigator to analyze the ABR in the time-frequency domain rather than in the time domain only. Precise 

description and quantification of the normal ABR spectrum has become important as a result of a recent 

interest in the use of ABR spectral analysis tool. A report by Hall (1986) suggested that ABR spectral 

analysis may be useful in differential diagnosis of auditory pathology [22], [23]. 

Mainly, the spectral analysis of the ABR is based on the investigation of frequency components. previous 

studies like Urbach and Pratt (1986) and Malinoff and Spivak (1990) which have examined the spectral 

content of the normal ABR revealed that there are three major energy peaks [22], [24]. Other studies such as 

Laukli and Mair (1981) indicate that the greatest amount of spectral energy is concentrated in the low-

frequency region [25]. 

Under our study, we are trying to apply some spectral estimators of ABR signal data. The simplest spectral 

estimate of the ABR signals is the Periodogram. This spectral estimate suffers from two problems: bias and 

variance. Bias arises because signals at different frequencies are mixed together and “blurred” unless the 

data length is infinite. Even if the data length were infinite, the periodogram spectral estimate would simply 

square the data without averaging. As a result, it would never converge to the correct value and would 

remain inconsistent which is the consequence of variance. Recordings of neural signals are often sufficiently 

limited so that bias and variance can present major limitations in the analysis [26].  

One of the universally applicable solution to solve these two problems is the use of multitapers. Pesaran 

(2008) concludes neural signals, as many other signals, face the problem of bias and variance in their 

periodograms. Finally he suggested applying the multitaper techniques and spectral averages will resolve the 

problems to a considerable level [26]. 

 Our main target in this study is to see the performance of a Spectrogram and two multitaper spectral 

representations of the ABR. Several researchers and scholars have been giving some reviews on the 

performance of multi-taper and single-taper spectral estimation procedures.  

In the choice of an appropriate estimator for a spectrum of a stationary time series from a finite sample of 

the process, the two chronic problems are bias control and consistency, or "smoothing". In attempting to 

overcome these problems, D.J. Thomson (1982) introduced a method called Thomson Multitaper. This 

method is the same as using weighted average of a series of direct spectrum estimates (Periodograms) based 



6 

 

on orthogonal data windows. In this paper he successfully showed that it is possible to control the bias and 

variance and smooth the spectrum to have a better resolution [10]. 

In a research conducted in 1987, J. Park stated that spectral estimation procedures which employ several 

tapers have been shown to yield better results than standard single-taper spectral analysis when used on a 

variety of signal data. In particular, he confirmed that multitaper spectral analysis techniques offer a 

seismologist formal and practical advantages over single-taper techniques [19]. 

The main reason scholars use multiple window methods is that they decrease the variance of the spectrum 

estimate by smoothing it. Particularly, if we consider a peaky spectrum, the variance and bias are relatively 

high. To solve this problem, many researchers have been trying different approaches. For example, M. 

Hansson and G. Salomonsson (1997), showed that a peak matched multiple window method for peaked 

spectra is suitable. The resulting spectrum estimate has low variance and bias in the neighborhood of the 

peak. The proposed method shows, however, a large bias at a notch. This is due to large side-lobes of the 

windows that cause leakage from frequencies outside the resolution width. This leakage is suppressed with 

the use of a penalty function. Finally, they concluded that this method is suitable not only for peaked spectra 

but also for spectra with notches [17]. 
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3. METHODOLOGY  

3.1 Signal Representation as a General Case 

Time frequency signal analysis and processing concerns the analysis and processing of signals with time-

varying frequency content. Such signals are best represented by time-frequency distribution, which is 

intended to show how the energy of the signal is distributed over the two-dimensional time-frequency space. 

Processing the signal may exploit the features produced by the concentration of signal energy in two 

dimensions (time and frequency) instead of only one (time or frequency) [1]. 

The two classical representations of a non-stationary signal process ��� are the time-domain representation �(�) and the frequency-domain representation �(�). In both forms, the variables � and � are treated as 

mutually exclusive: to obtain a representation in terms of one variable, the other variable is "integrated out".  

Consequently, each classical representation of the signal is non-localized with respect to the excluded 

variable. But, in time-frequency distribution �(�, �) the variables � and	� are not mutually exclusive rather 

they are present together. Hence, the time-frequency distribution is localized both in � and � [1]. 

Naturally, any signal can be expressed as a function of time �. This representations results in instantaneous  

power given by |�(�)|�, which shows how the energy of the signal is distributed over time. The total signal 

energy is: 

� = �|�(�)|����
��

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.1) 
The time-domain representation tends to obscure information about frequency, because it assumes that the 

two variables � and � are mutually exclusive. 

Similarly, any  signal �(�) can be represented in frequency domain by its Fourier transform �(�), given by 

�(�) = ℱ��(�)� = � �(�)"�#�$%&���
��

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.2) 
where the symbol ℱ stands for the term 'Fourier transform'. The Fourier transform (FT) is in general 

complex; its magnitude, |�(�)|, is called the magnitude spectrum and its phase is called the phase spectrum. 

The square of the magnitude spectrum,|�(�)|� is the energy spectrum and shows how the energy of the 

signal is distributed over the frequency domain; the total energy of the signal will be 

� = �|�(�)|��� = � �(�)�∗(�)���
��

�
��

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.3) 
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where �∗(�) is the complex conjugate of �(�). The time-domain representation can be recovered from the 

FT by taking the inverse Fourier transformation (IFT): 

�(�) = ℱ�)��(�)� = � �(�)"#�$%&���
��

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.4) 
where the symbol ℱ�) stands for IFT. However, the frequency-domain representation given by	(3.2) 
"hides" the information about timing as �(�) integrates out time �.	
Therefore, the need for a time-frequency distribution as a representation of time-varying signal processes is 

a must in the real world observable facts. For example, our sense of hearing readily interprets sounds in 

terms of variations of frequency with time because representations of a sound signal in the time domain or 

frequency domain only do not facilitate an appealing interpretation. Hereafter, we will discuss some time-

frequency domain representations of signals. But, first it is advisable to make clear what type of signals we 

are going to deal  with. 

3.2 Analytic Signals 

A non-stationary signal process ��(�): �,ℝ�, is real-valued if and only if 

�(−�) = �(�)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.5) 
where �(�)	is the Fourier transform of �(�). This indicates that a real signal is one that shows Hermitian 

Symmetry between the negative- and positive-frequency components, allowing the former to be deducted 

from the latter. Hence, the negative-frequency components of a real signal may be eliminated from the 

signal representation without losing information. In the case of a real low pass signal, removal of negative 

frequencies has a twofold advantage: 

� it halves the total bandwidth, allowing the signal to be sampled at half of the usual Nyquist rate 

without aliasing [3]. 

� it avoids the appearance of interference terms resulted by the interaction of positive and negative 

components in quadratic time-frequency distributions like Wigner-Ville distribution. 

A signal .(�) is said to be analytic if and only if  /(�) = 0	�01	� < 0,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.6) 
In other words, an analytic signal has no negative frequencies; it may have a spectral component at zero 

frequency. 

The signal  .(�) = �(�) + 56(�)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.7) 
where	�(�)and 6(�) are real, is analytic with a real spectral component at zero frequency if  and only if 7(�) = (−89:�)�(�)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.8) 
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where �(�) and 7(�) are the Fourier transforms of �(�)and 6(�), respectively, and 

89:� = <−1			5�	� < 00			5�		� = 01			5�	� > 0 >⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.9) 
If the Fourier transforms of �(�)and 6(�) are related according to (3.8), we say 6(�) is the Hilbert transform 

of �(�) and denoted as 6(�) = ℋA�(�)B⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.10) 
Hence, if one is given a real signal �(�), he/she is able to construct a complex signal as .(�) = �(�) + 5ℋA�(�)B⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.11) 
such that .(�) is analytic, where the Hilbert transform is evaluated from 6(�) = ℋA�(�)B = ℱ�)C(−589:�)ℱ��(�)�D⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.12) 

3.3 Spectrogram and Wigner-Ville  Distribution 

3.3.1 Spectrogram 

Consider a signal �(E) and a real, even window ℎ(E), whose FTs are �(�) and G(�), respectively. To 

obtain a localized spectrum of �(E) at time E = �, multiply the signal by the window ℎ(E) centered at time E = � to obtain 

�(�, E) = �(E)ℎ(E − �)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.13) 
and then take the FT with respect to E, resulting the short-time Fourier transform (STFT) of �(E) given as, 

�(�, �) = ℱ��(�, E)� = � �(�, E)"�#�$%H�E�
��

= � �(E)ℎ(E − �)"�#�$%H�E�
��

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.14) 
The squared magnitude of the STFT, given by 

�I(�, �) = |�(�, �)|�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.15) 
is called the spectrogram, which is used very frequently for analyzing time-varying and non-stationary 

signals.  

Fast implementation using fast Fourier transform (FFT) and easy for interpretation are among the appealing 

advantages of a spectrogram. However, it has also limitations; theoretically, the time slots should be very 

short to give us clear information about when the frequencies start and stop. But, a short time slot gives a 

bad frequency resolution, which causes the problem that we cannot differ closely spaced frequencies. The 

length of the window function ℎ(E) is very important as it determines the resolution in time and frequency: a 

short window gives better resolution in time than in frequency and vice versa.  
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Hence, finding an optimal window length of a spectrogram is another task that we should take into account. 

In addition, to overcome the limitation, we can try other advanced spectral estimation levels like Wigner-

Ville distribution, reassigned spectrogram and multitaper reassigned spectrogram. However, either finding 

an optimal window length or trying other advanced levels  is out of the purpose of this study.  

Since we need the Wigner-Ville distribution without noise and phase shift in the case of spectral estimates' 

comparison, it is indispensable to discuss about its theoretical formulation. Note that we are not going to use 

it as a spectral estimate instead it will serve us as an actual spectrum of a simulated sample signal data. This 

is the reason why we do not impose a disturbance and phase change when we compute it from the simulated 

data. 

3.3.2 Wigner-Ville Distribution 

For a non-stationary analytic signal process ��(�): � ∈ ℝ�, the Wigner-Ville spectrum (WVS) is always 

mentioned first among the various possibilities of defining a time-varying spectrum. The time-varying 

spectral density is defined as 

�I(�, �) = � � K�(� + E2)�∗(� − E2)L∞

�∞

"�#�$%H�E⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.16) 
where  

� K�(� + E2)�∗(� − E2)L = 1I(�, E)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.17) 
is a symmetrical instantaneous autocorrelation function ,IAF, under the two variables � and E and ��. � 
stands for the expectation operator. This formulation is called the Wigner-Ville spectrum (WVS). For a 

nonrandom or deterministic signal, we have 

� K�(� + E2)�∗(� − E2)L = �(� + E2)�∗(� − E2)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.18) 
Substituting (3.18) into (3.16) results the Wigner-Ville distribution (WVD) defined as 

MI(�, �) = � �(� + E2)�∗(� − E2)∞

�∞

"�#�$%H�E⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.19) 
Under normal conditions, from (3.16) and (3.19), we can conclude that the WVS is the ensemble average 

of the WVDs, �I(�, �) = 	��MI(�, �)�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.20) 
The WVD has a better time-frequency (TF) resolution compared to a spectrogram which suffers from a poor 

TF resolution. Especially, it is optimal to analyze signals constituted by a single component. By definition, 

the WVD does present the advantage of depending only on the signal. Its role is central in TF analysis and it 

possesses a number of theoretical properties among which one can mention its ability to be perfectly 

localized in the case of linear frequency-modulated signals. 

 Despite of these advantages, it is not well-suited for application in multi-component signals since, in such 

cases; it will be followed by the presence of interference- or cross-terms. Hence, for multi-component 
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signals, it has weak time and frequency supports, i.e., if �(�) = 0 when � < �)and � > �� then MI(�, �) = 0 

for � < �)	and	� > ��	, and similarly, if �(�) = 0 when � < �)and � > �� then MI(�, �) = 0 for � <�)	and	� > ��. The cross terms are the most troublesome in the representation of time-frequency analysis 

such that outcomes of an analysis could be easily misinterpreted [2], [4].  

3.3.3 WVD as Actual Spectrum 

One serious disadvantage of the WVD is cross-term interference. Cross-terms are artifacts that appear in the 

WVD representation between auto-terms, which correspond to physically existing signal components. These 

cross-terms falsely indicate the existence of signal components between auto-terms. They are strongest at 

the midpoints between the auto-terms. In general, as the number of auto-terms increases, the auto-terms and 

the cross-terms overlap. Consequently, distinguishing the auto-terms from cross-terms can be challenging. 

The time-frequency plane includes positive frequencies and negative frequencies. Signal components 

present at positive frequencies in real-valued signals symmetric components at negative frequencies. The 

cross-terms appear between auto-terms at positive frequencies, between auto-terms at negative frequencies, 

and between auto-terms at positive and negative frequencies. 

If we convert a real-valued signal into a complex-valued analytic signal by removing the auto-terms at 

negative frequencies before we apply the WVD, we can reduce the number of cross-terms in the WVD. The 

analytic frequency signal has the same spectral content at positive frequencies as the original real-valued 

signal but has no spectral content at negative frequencies. By converting the real-valued signal to an analytic 

signal, one removes the cross-terms between auto-terms at negative frequencies and the cross-terms between 

auto-terms at positive frequencies and negative frequencies. However, it is hard to eliminate the cross-terms 

between auto-terms at positive frequencies. 

Suppose we have a non-stationary signal process �.(�): � ∈ ℝ� with two components given as 

.(�) = �(�) + 6(�) + "⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.21) 
where �(�) and 6(�) are other signals which may be the same but differ in frequencies and phase change 

only, and " is an identically and independently distribute white noise with mean 0 and ��. 
For illustration, suppose we ignore the white disturbance and assume the analytic signal is only the sum of 

the two main signal components. The Wigner-Ville distribution will be given as 

MN(�, �) = MI(�, �) +MO(�, �) + 2ℜQMI,O(�, �)R⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.22) 
where MI(�, �) and	MO(�, �), called the auto-terms, are the Wigner distributions of �(�)	and	6(�), 
respectively; and 2ℜQMI,O(�, �)R is called the cross-term, which always presents and is located in the 

midway between the auto-terms oscillating proportionally to the distance between the auto-terms with a 
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direction of oscillation orthogonal to the line connecting the auto-terms. Above this, we can imagine how the 

problem will be aggravated by the addition of the white disturbance term. Generally, the overall readability of 

the WVD is hampered by the cross-terms oscillatory interference phenomena.  

However, considering a theoretical case (for simulated data), we can create a WVD which is clearly readable. Suppose 

we assume that �(�) and 6(�) are from the same function but differ by frequencies only, that is, there is no 

phase shift and white noise imposed on either of them. It is possible to compute the individual WVD of �(�) 
and 6(�) separately and take the sum as :  

MSTIO = MSTI +MSTO⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.23) 
where MSTI and MSTO, the WVD of �(�) and 6(�) computed indipendently, when the signals are free of 

phase changes and disturbances, respectively. MSTIO, is considered as an actual (observed) spectrum which 

helps in spectral estimate validation. This is to mean that we can compare a spectral estimate with MSTIO	to 

check whether it is a good fit or not. 

3.4 Thomson and Peak Matched Multitapers  

3.4.1 Thomson multitapers 

The thought of multiple windows or multitapers came to existence for the first time by David Thomson in 

1982 [8],[10]; in fact, the idea of Multitapers had been exploited earlier in the form of one window shifted in 

time in a method called Welch or WOSA by Welch [11]. The central idea of Multitapers is to diminish the 

variance of a periodogram by averaging several uncorrelated periodograms. The time-shifted window by 

Welch provide uncorrelated periodograms since the window makes non-overlap parts of different data 

sequences for the same window. But, Thomson's approach was to use the same data sequence for all 

periodograms, that is, utilizing the whole data sequence, except changing the shape of the window for 

different periodograms in a way that gives uncorrelated periodograms and thereby reducing variance [12].  

In Thomson's Multitapers approach, if we are given a power spectrum �I(�), of a real-valued stationary 

discrete-time random process �(:), we estimate the spectrum from U samples V = ��(0)	⋯�(U − 1)�W of 

the process by using the estimator, 

�X(�) = YZ[\][(�)^
[_) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.24) 

where  

\][(�) = `Y �(:)hb(n)e�e�fghi�)
j_k `�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.25) 

and Z[ = )̂
. Equation (3.22) is a windowed periodogram obtained by using the Slepian sequences lm =�ℎ[(0)	⋯ℎ[(U − 1)�Was data window [13]. Hence, (3.24) provides a weighted sum of n Periodograms for 
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the Thomson multitaper estimate. The value of n in the Thomson estimator, reduces the variance in the 

estimate by a factor of n if the averaged periodograms are uncorrelated. This implies that n should be as 

large as possible. However large values of n increase  bias [14].  

To fully understand the limitations of the Thomson multitaper method, it is advisable to evaluate the 

variance of the estimated spectrum. The variance of the is given by all combinations of the different 

periodogram covariances, 

So15o:p" q�X(�)r = YYZ[Zsp0t(\][(�), \]s(�))^
s_)

^
[_) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.26) 

Assuming V to be Gaussian and making some simplifications give, 

p0t q\][(�), \]s(�)r = |l[Wuv(�)wVu(�)lx|� + yl[Wu(�)wVu(�)lzy�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.27) 
where u(�) = �5o9�1		"�#�$% 	⋯	"�#�$(i�))%� and wV is the covariance matrix of V. 

According Walden [14], [15] the second term of (3.27) is large only for frequencies near to 0 and 0.5, hence 

one can omit it and have 

p0t q\][(�), \]s(�)r ≈ yl[Wuv(�)wVu(�)lzy�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.28) 
If we choose an evaluation frequency �k at the center of the base band filter, the  variance will be given as, 

So15o:p" q�X(�)r ≈ YYZ[Zsyl[WwV|lzy�^
s_)

^
[_) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.29) 

where wV| represents the covariance function of an identical spectrum modulated so that the evaluation 

frequency is 0 and modulating the spectra according to  wV = u(�k)wV|	uv(�k)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.30) 
The variance will be small if we get rid of every cross-covariance term, that is, if l[WwV|lz = 0, for all 

} ≠ �. This is more or less true for multitapers that are the eigenvectors of the covariance matrix wV|, by 

choosing a covariance function with properties similar to the spectrum shape one can reduce the cross-

covariance terms. In other words, this property is true for processes of similar shape as the baseband filter, 

that is, band-limited white noise and white noise for the Slepian windows. In such a case, the variance will 

be reduced by a factor n compared to the periodogram [14]. 

However, the Thomson Multitapers are not appropriate for spectra with peaks and notches. This is because, 

in such a case, the cross-covariance is no longer zero, and hence then the resulting variance increases. 

3.4.2 Peak Matched Multitapers 

For spectra with peaks and notches other multitaper methods such as the sinusoidal multitapers [16] have 

better properties. The sinusoidal Multitapers have the analytic expression given by 
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ℎ[(:) = � 2U + 1 sin ��}(: + 1)U + 1 � , : = 0,⋯ ,U − 1	o:�	} = 1,⋯ ,n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.31) 
The main reason that these windows have low cross-covariance is that they are orthogonal to the frequency 

plane.  

In a similar manner, using a covariance function corresponding to a template spectrum with a peaked shape 

results in windows that are perfectly orthogonal at the peaks of such spectra. This is the concept of the 

Peaked Matched Multiple Windows (PM MW) [17]. Unfortunately, the property of frequency localization is 

not fulfilled.  

In the case of PM MW, we are expected to design windows ℎ[, } = 1,⋯ ,n giving a small bias as well as a 

low variance estimate of �I(�) in the neighborhood of the peak frequency. Low bias is obtained by 

matching the windows to the peak of �I(�), where as reduction of the variance is established with 

uncorrelated Periodograms \][(�) at the peak. Thus, a frequency local estimate is desired. To prevent 

leakage from regions outside a predetermined interval of width �, the Fourier transforms G[(�) of ℎ[ , } =1,⋯ ,n have to be band-limited to the interval (− �� , ��). The main-lobes of the windows should be inside 

this band, and the side-lobes of each window should be as low as possible [17]. 

The multiple window estimation method can be considered to be a filtering procedure in a filter bank. The 

impulse responses of the sub-filters are ℎ[ , } = 1,⋯ , n. Given the input signal �(:), the power of the 

output signal within the frequency interval (− �� , ��) is 

�� =Y �|G[(�)|��I(�)��
��

���

^
[_) =YZ[l[Ww�l[^

[_) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.32) 
The (U × U) Toeplitz covariance matrix w� has the elements  1�(�) = 1I(�) ∗ �85:p(��), 0 ≤ |�| ≤ U − 1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.33) 
where 1I(�) is the covariance function of �(:), 85:p(�) = �#j($I)$I , and ∗ denotes the convolution operator. In 

(3.29), �� is the power of �(:) within the main-lobe of the windows. Now, we have to find the n window 

functions ℎ[ that maximize ��. The optimization is performed subject to the constraint 

�� =YZ[ �|G[(�)|��N(�)��
)�

�)�

^
[_) =YZ[l[Ww�l[^

[_) = 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.34) 
where �N(�) with the corresponding Toeplitz covariance matrix w� is chosen for suppression of the side-

lobes of the windows. The solution with respect to l[ is the set of eigenvectors of the generalized eigen-

value problem 



15 

 

w��[ = �[w��[, } = 1,⋯ , U⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.35) 
where �) ≥ ��⋯�i. The eigenvectors corresponding to the n largest eigen-values are used as windows l[ = �m, } = 1⋯n; and are known as peak matched multiple windows (PM MW’s). The windows are 

orthogonal to the covariance matrix w�, implying uncorrelated Periodograms \][(�) at the peak frequency. 

The covariance matrix w� is chosen in order to grant certain properties to the estimate \](�). Usually we 

take w� = w�, where w� corresponds to a penalty frequency function. Any window for spectral estimation 

should have low-level side lobes otherwise leakage from high power frequencies could hide important 

information in the spectrum. One possible solution to this problem is including a penalty frequency function, 

\�(�) =
���
���														|�| > � 2�
1															|�| ≤ � 2� > 	⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.36) 

is used to decrease the leakage from the side-lobes. � is such that w� is the corresponding Toeplitz 

covariance matrix, and � is the corresponding bandwidth. The ideal window functions satisfy, 

YZ[|G[(�)|�^
[_) = \��)(�),− 12 ≤ � ≤ 12⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.37) 

If the power � is found to be large in value, the side lobes of |G[(�)|� outside |�| > �� will be suppressed by 

this factor. The weighting factor Z[ is a parameter that can be chosen arbitrarily. We study a matched 

spectrum approach ∑ Z[|G[(�)|�[̂_) = �I(�)	in the local interval − �� ≤ � ≤ �� . The total filter function 

should have the same appearance as the peak to minimize bias as well as give a low variance of the power 

spectrum estimate in the neighborhood of the peak. The PM MW approached is fulfilled with 

Z[ = �[∑ �[[̂_) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.38) 
3.5  Measuring Model Fit 

3.5.1 Nonparametric Regression  

The statistical problem of nonparametric regression is to estimate a function y	 = 	f(x) from data pairs (x�, y�), for j	 = 	1, . . . , n, with the response values y� assumed to be observations from the "signal plus noise" 

model here: 

Y� 	= 	fAx�B +	ε�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.39) 
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It is usually solved by some variation on least squares, which may be motivated by an assumption that the ε� 
variables are independent and Normally distributed. Generalized nonparametric regression replaces the 

Normal distribution with some other distribution, and modifies the model accordingly. 

3.5.2 (Root) Mean Squared Error 

A method of (generalized) nonparametric regression produces at each � an estimate �X(�). A good method is 

one that is likely to make the difference between �X(�) and f(x) small for every relevant value of x. The 

simplest and most widely used way to measure likely difference is mean squared error (MSE) [26]. : 

¡��(�) = � qA�X(�) − �(�)B�r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.40) 
Here E stands for expectation, meaning the theoretical average (mean) over hypothetical repetitions of 

the data-collection process. An extremely important general relation is as follows [26].: ¡�� = So15o:p" +	¢5o8�⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.41) 
The root mean-squared error (RMSE),which is the square root of the MSE, is also a frequently used measure 

of the differences between values predicted by a model or an estimator and the values actually observed. 

Empirically, to compute a RMSE, first the difference between forecast and corresponding observed values 

are each squared and then averaged over the sample. Finally, the square root of the average is taken. Since 

the errors are squared before they are averaged, the RMSE gives a relatively high weight to large errors. 

This means, it is most useful when large errors are particularly undesirable. The RMSE can range from 0 to ∞. But, lower values are indications of better model fit.  

Generally, the RMSE tells us about the fit of the model to the data set used [18]. The sole purpose of our 

study is to find a good spectral estimator of our signal data from the three proposed estimator. In our case, 

the MST without noise and phase-shift is considered as actually observed spectrum. If � is the spectral 

estimate of MST, then MST is expected to be equal to some constant a times � plus an error: 

¤¥¦ = o§ + ¨⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.42) 
where o is a constant (slope) and ¨ is an error. The WVD and S are matrices of the same size of actual and 

estimated values, respectively. Hence, the same size is true for the error ¨. 

Both low variance and small bias can be evaluated with the use of the mean squared error (MSE), as this 

measure includes both variance and squared bias. theoretically, the MSE of ¨ = ¤¥¦ − o§, is defined as 

¡��(¨) = ��¨�� = So15o:p"(¨) + �¢5o8(¨)��.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.43)  
Taking into account the fact that the mathematical operations are conducted under matrix rules, the RMSE is 

defined as 
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©¡�� = ª¡��(¨) = �(¨.∗ ¨)U ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3.44) 
where U is the sample size. Here, we should understand the mathematical operation ¨.∗ ¨ stands for 

element-wise multiplication of the error matrix. 
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4. DATA AND DATA ANALYSIS 

4.1 Data 

4.1.1 Actual Data 

The source of our data is a research center called SensoDetect which has developed the globally patented 

SD-BERA (SensoDetect-Brainstem Evoked Response Audiometry) technology based on over thirty years 

research experiences in Lund University. The SD-BERA technology registers electrophysiological reaction 

patterns that emanate in the brain when specific sound stimuli are presented. 

The data set consists of digital signals from Seventeen individuals provided in excel. Each signal data are 

arranged in 1313 rows and 255 columns such that each row represents a click and each column stands for a 

time point. Hence, our signal data set is a collection of a 1313 × 255 real-valued matrices. However, we 

ignored the first 20 columns as they are too noisy. Hence, we remained with a 1313 × 235 real-valued 

matrix. Figure 4.1 shows only one sample of the Seventeen individuals just to see how the real-valued 

matrix looks like. From part (b) of this figure, we can observe two things: (1) The arithmetic mean vector 

and the three different trimmed mean vectors produce quite alike curves. Thus, in our future analysis, we can 

use any of these mean vectors. (2) Our ABR data has really a sinusoidal nature.  

Note: Trimmed mean is a method of averaging that removes a small percentage of the largest and smallest 

values before calculating the mean. After removing the specified observations, the trimmed mean is found 

using an arithmetic averaging formula. The trimmed mean looks to reduce the effects of outliers on the 

calculated average. This method is best suited for data with large, erratic deviations or extremely skewed 

distributions.  A trimmed mean is stated as a mean trimmed by �%, where � is the sum of the percentage of 

observations removed from both the upper and lower bounds. 

Before we indulge directly to the analysis of the actual signal data, it is better to see the theoretical facts 

using some simulated sinusoidal signal data of the same size as our actual data. A sinusoidal function which 

is expected to have similar trend as the observed data was developed after a rigorous investigation of the real 

data. To check how the sample data and the simulated data looks alike see Figures 4.1-4.3. Particularly, 

Figure 4.3 (b) shows in a more clear way how the empirical and simulated data look like. Hence, it will be 

reasonable if we fit and select an appropriate spectral model using the simulated data, and apply this model 

on the actual data. 
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 (a) 

(b) 

Figure 4.1 Sample plots of one individual ABR signals: (a) original (b) different means 

 

 

 

 



20 

 

4.1.2 Simulated Signals 

For simplification, we will consider the following uncomplicated function, which is a sum of two sinusoidal 

functions which differ with frequencies and a phase-shift only: 

.(:) = sin ¬2� 20500 :­ + sin ¬2� 5500 : + ®­ + "⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4.1) 
where : = 1,2,⋯ ,235, ® is a phase change which is uniformly distributed between 0	and	¯, i.e., ®~±�0, ¯� 
such that 0 < ¯ ≤ 2� and " is  a white noise identically and independently distributed (i.i.d) with mean 0 

and variance ��, i.e., "~5. 5. �(0, ��). Figure 4.2, below, shows the plots of a simulated matrix of size 1313 × 235	and ¯ = � 4�  (a) without noise, (b) with noise. It is expected that a spectrum of this simulated 

sinusoidal signal process has peaks at frequencies � = 20 and � = 5	G..  
This function can be written as .(:) = �(:) + 6(:) + "⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4.2) 
where �(:) = sin q2� �k²kk:r and 6(:) = sin q2� ²²kk: + ®r. Equation (4.2) is in a similar format with 

equation (3.21) of section (3.3.3). Consequently, from equation (3.23) of the same section, the actual 

(observed) spectrum of  .(:) MSTN = MSTI +MSTO⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4.3) 
where MSTI and MSTO are the Wigner-Ville Distributions of �(:) and 6(:), respectively. The reason why 

we call MSTN as an actual spectrum is because we include neither a disturbance nor a phase shift in �(:) 
and 6(:) before we compute MSTI and MSTO, and that the Wigner-Ville distribution has the best possible 

performance of all time-frequency methods. 
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 (a)  

                                                                                                                               

         (b) 
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(c) 

Figure 4.2 Plots of the simulated sinusoidal signals: (a) without noise (b) with noise (c) different column means 

 

 

 (a) 



23 

 

(b) 

Figure 4.3 Comparison between empirical and simulated data: (a) matrix (1313 × 235) (b) the first three columns 

In order to investigate the theoretical facts, it is advisable to study the simulated data in different averages. 

Hence, for each of the spectral estimation methods we see in the next sections, we will take four different 

number of clicks per average, these are: the whole(1313) clicks per average which results in a single vector 

of averages, 300 clicks per average which results in four vectors of averages, 100 clicks per average which 

results in thirteen vectors of averages, and 50 clicks per average which results in twenty-six vectors of 

averages, respectively. In the case of the last three number of clicks per average, after having the spectral 

estimate of each vector, we will take the average spectrum for further investigation. 

 Practically, observed signals are noisy. Therefore, even though the data set is simulated, we will use the one 

which embeds a white noise. Because the spectral estimate from the noisy simulated signal will help us to 

study the observed signals later. 

4.2  Data Analysis and Discussion 

Before we proceed further, it seems reasonable to put a clear interval of the phase shift to have clearly 

visible spectra resolution. As shown in equation (4.1), our signal data is simulated from a sinusoidal 

function with two components which differ only in frequency and phase. In Figure 4.4 (a), we simulated 

three typical signals. Since the resultant data is a matrix, we changed them in to vectors by taking their 

corresponding means along time. In this picture, three differently colored curves are observed. These curves 

stand for no-shift (blue line), 2�-shift (red broken line) and 
$�-shift (magenta line) cases, respectively. The 

no-shift and 2�-shift curves are totally in-phase showing that shifting the data by 2� brings nothing new but 
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repeating the original curve after a complete cycle. Had it not been for the color difference, no one could 

differentiate these two curves. However, it is quite simple to distinguish between the no-shift and	$�-shift 

curves. Hence, unlike the 2�-shift, the 
$�-shift produces a new signal which is different from the original one 

in some senses.  

Similar figures are given in Figure 4.4 (b), except here ® is treated as a random variable which is uniformly 

distributed in some intervals: ®~±�0,2�� (red line),	®~±�0, �/2� (magenta line), ®~±�0, �/4� (green 

line).In these curves the phase shifts, respectively, are 5.5363	1o�	(≈ 316.66°), 0.5267	1o�	(≈30.18°)	o:�	0.1775	1o�	(10.17°). Note that the shift corresponding to ®~±�0,2�� is almost one cycle. 	
The facts that we saw under the phase-shift curves will also be seen on the corresponding spectral 

representations. The left-top spectrograms of Figure 4.4 (c) correspond to a phase shift uniformly 

distributed in the interval �0,2��; in this case the spectrograms show a single component instead of two. This 

is due to the in-phase behavior which results almost complete overlapping of the original signal and the 

shifted one. In the same figure, right-top we have ®~±�0, ��, still the second component is not clearly 

noticeable. The left-bottom and right-bottom spectrograms correspond, respectively, to ®~±�0, �/2� and ®~±�0, �/4�, with the latter one having best frequency resolution. 

 It is palpable that the narrower the interval the better is the spectrogram in frequency resolution and 

showing the components clearly. Hence, in our case, to have a better resolution in frequency, we should 

have ®~±�0, ¯� such that 0 < ¯	and ¯ → 0. This interval is true for all spectra that we are going to see; for 

our convenience,  we will use ®~±�0, �/4� for all our discussion henceforth. 

 Another way to see the frequency-peaks in the spectrogram is to take individual spectrograms of the 

component signals and adding them irrespective of the value of the phase shift. Figure 4.4 (d) left,  

represents the spectrogram of ¶)(:) = .)(:) + .�(:) with .)(:)	and .�(:) defined by Equation (4.1), 

including the phase shifts ®) = 0 and ®� = 2�, respectively. Figure 4.4 (d) right, presents the sum of the 

individual spectrograms of .)(:)	and .�(:), i.e., �·¸(�, �) = �N¹(�, �) + �N¸(�, �), where �N¹(�, �)	and �N¸(�, �), respectively, are the spectrograms of .)(:)	and .�(:), showing the advantage in averaging 

spectrograms for noisy sequences of shifting phase. 

Having found an appropriate interval for the phase shift, an important issue that we have to consider under 

the analysis of spectrogram is the window length, as we discussed in chapter three, the shorter the window 

length the better resolution in time is and the longer the window length the better resolution in frequency is. 

As shown in Figures 4.5-4.16, Appendix A, the time-resolution is getting worse when the window length 

(¡) runs from ¡ = 64 to ¡ = 192; conversely, the frequency-resolution is becoming better when the 

window length varies  from ¡ = 64 to ¡ = 192. This fact will be seen more clearly if we take too small or 

too large window lengths.  
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  (b) 

(c) 
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(d) 

Figure 4.4 (a) plots of the means of the simulated signals for	® = 0, ® = 2�	and ® = � 2⁄ , (b) plots of the means of 

the simulated signals for	® = 0,®~±(0,2�), ®~± q0, $�r		and ®~±q0, $»r, (c) Spectrograms differ due to changes of  

phase shift	®: left-top ®~±�0,2��, right-top ®~±�0, ��, left-bottom ®~±�0, �/2� and right-bottom ®~±�0, �/4�  
for1313 clicks per average, (d)( left) spectrogram of sum of two components with ® = 2� and right sum of 

spectrogram of the components. 

A more careful observation of the different spectral estimates in Figures 4.5-4.16, Appendix A, confers 

better resolutions in some and bad ones in others. Basically, the figures are of three groups: Figures 4.5-4.8, 

Appendix A.1, for Spectrograms, Figures 4.9-4.12, Appendix A.2, for Thomson Multitapers and Figures 

4.13-4.16, Appendix A.3, for PM MW. Better resolutions are observed in the cases of Spectrogram and PM 

MW than that of Thomson Multitapers. This may be a clue towards the good fit of the simulated data, that is 

either the Spectrogram or the PM MW or else both estimates fit well the sinusoidal simulated data. On the 

other hand, this probably means that the Thomson Multitaper estimate is not a good fit for the mentioned 

data. However, we will know the decision in the next section. 

If this is going to be true, one can raise questions like, "why Spectrogram or PM MW or both but not 

Thomson Multitaper?". It is possible to put a seemingly reason over here. Theoretically, to employ Thomson 

Multitaper estimator we assume that the underlying sample data come from a stationary family. Yet, the 

simulated sinusoidal signal sample data are expected to come from a non-stationary family. Consequently, 

this might be one reason which hinders the Thomson Multitaper to look like a good fit of the data. Albeit 

this assumption is also valid for the PM MW estimator, the PM MW method is suitable for peaky spectra 
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which is the case for the simulated data which has high peaks at frequencies � = 5 and � = 20. Hence, this 

might help for the PM MW to have a better resolution compared to the Thomson Multitaper estimator. 

Finally, it is obvious that the Spectrogram is used very frequently for analyzing time-varying and non-

stationary signals. This could be the reason it has better resolution compared to the Thomson Multitaper. 

4.3 Comparison of Estimators 

In section 4.2 above we presented the data analysis along with its discussion based on the three spectral 

estimators namely, Spectrogram, Thomson Multitaper and PM MW. However, it is natural that different 

models outperform differently in diverse situations. For this reason, in this section, we are going to make 

some comparisons amongst these three estimators and select the one which we think fits 'best' the simulated 

sample signal. 

The simplest technique to check whether a spectral estimate fits an actual spectrum or not is to plot both side 

by side or one over the other. A complete similarity (or fit) in shape of the two is a perfect agreement of the 

actual and estimated spectra. In fact, practically, there is no a perfect match between a model and its 

estimate. So, the more they look alike the better the fit will be.  

A cautious surveillance of Figures 4.17-4.19, Appendix B.1, leads one to say that the Spectrogram method 

creates a better fit between the actual spectrum (¤¥¦) and the estimated spectrum (§) (multiplied by a 

constant) than the other two methods. It seems also obvious that the Thomson Multitaper method gives the 

worst fit. 

Once again, in section 4.2, we suggested that the Spectrogram seems to give as equal resolution as the PM 

MW does. Nevertheless, here, we should not be tempted to say the Spectrogram and PM MW equally 

perform just by giving a quick glance at the plots; if we examine their corresponding plots, we can easily 

come out with a conformity that the Spectrogram appears to be better.  

At this time, we need to have a numerical evidence to support our suggestion stating that "the Spectrogram 

method outperforms than the other two," which is based on only the visual plots. Because such visual plots 

may not be accurate. Often, the MSE or RMSE is used to make comparison among different spectral 

estimates. In Tables 4.1-4.3, Appendix C.1, we present the RMSE values for the four different number of 

clicks per average of the three estimates. Generally, we can see easily that the RMSE values of the 

Spectrogram for the first fourteen or fifteen standard deviations of the noise are very low compared to the 

corresponding values of the other two methods. Particularly, the overall mean RMSE of the Spectrogram, 

Thomson Multitaper, and PM MW are 14.30, 21.85 and 16.55, respectively, confirming the fact that the 

spectrogram still has the chance to be best. Yet, there is a doubt whether the supremacy of the spectrogram 

is uniform throughout all values of �, the standard deviation values of the disturbance. This hesitation arises 
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from a careful observation of the RMSE and average RMSE for higher values of �. For illustration, let us 

look the RMSE and mean RMSE corresponding to � = 15,30,	and	40, respectively: 

� Spectrogram 

            σ      clicks 1313 300 100 50 mean 

15 
 

10,3399 15,53 29,6501 36,5119      23,01    

30 
 

15,6375 37,5103 39,4501 45,4913      34,52    

40 
 

19,6915 47,9764 45,234       48.9517      37,63    

mean      15,22         33,67         38,11         41,00         32,00    

     � Thomson Multitaper 

            σ      clicks 1313 300 100 50 mean 

15 
 

19,583 22,7697 29,3849 36,2598      27,00    

30 
 

23,0915 30,7269 38,3026 45,7474      34,47    

40 
 

26,9587 37,074 41,7168 42,9826      37,18    

mean      23,21         30,19         36,47         41,66         32,88    

     � PM MW 

             σ      clicks 1313 300 100 50 mean 

15 
 

13,3143 15,6242 29,4521 35,786      23,54    

30 
 

19,7392 33,2098 44,3804 40,2838      34,40    

40 
 

25,6733 37,9338 41,1894 40,2633      36,26    

mean      19,58         28,92         38,34         38,78         31,40    

     From the above tabular values, it is possible to see how the performance of the Spectrogram method is 

degraded as the � values get  higher. For 15.0 ≤ � ≤ 30.0, the Spectrogram and the PM MW methods have 

more or less the same (mean) RMSE values with a bit lower in PM MW for fewer number of clicks per 

average. This means that around  15.0 ≤ � ≤ 30.0 these two methods perform nearly the same if not PM 

MW better. Note that, for these values of	�,  the Thomson Multitaper method persist to be bad performer. 

But, if we approach to higher � values like � ≥ 30.0, gradually, the Spectrogram method is acquainted with 

higher (mean) RMSE than the rest two methods. For such values of � lower values of (mean) RMSE are 

associated with PM MW. This might be an indication that for highly noisy simulated signals of our case, 

either the Thomson Multitaper or  the M MW method is preferable than the Spectrogram method. The 

highest preference might be given to the PM MW.  

To make things easily and more clear, it is better to plot the mean RMSE values. Making an intense glimpse 

on Figure 4.20, Appendix C.1, provides a concrete evidence in a more obvious way to see the 

performances of the estimators. The strength of the spectrogram estimate lasts only for some interval of  the 

noise-standard deviation values. In this graph, we plot the average RMSE vectors of the three methods of 
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estimation against the noise-standard deviation values. For all values of the standard deviation less or equal 

to 15.0, i.e., 0 ≤ � ≤ 15.0, the average RMSE for the Spectrogram are the lowest. The highest values are 

assigned to the corresponding values of the Thomson Multitaper. Thus, this picture gives unambiguous 

evidence that the Spectrogram performs top in this interval. 

Further investigation of the same graph certifies that for 15.0 ≤ � ≤ 30.0, the PM MW performs as equal as 

the Spectrogram does, if not better. Finally, for � ≥ 30 the PM MW performs best and the Spectrogram 

worst. These observations can be summarized as below, 

Interval for noise-

standard deviation (�) 

Model Performance 

Best Medium Worst 0 ≤ � ≤ 15 Spectrogram PM MW Thomson Multitaper 15 ≤ � ≤ 30 PM MW & Spectrogram 

are nearly equal, if not 

PM MW 

slightly the Spectrogram 

compared with PM MW 

Thomson Multitaper 

� ≥ 30 PM MW Thomson Multitaper Spectrogram 

 

Before we windup this section, we prefer to say a few on  the impact of the intensity ( or strength) of the 

white noise within the simulated signal on the spectral resolution. This strength could be measured using the 

standard deviation values of the noise. Obviously, high-valued standard deviation is followed with strong 

disturbance. This truth is seen if we compare Figure 4.21 (a) and (b), Appendix C.2. The plots  in (a) are 

obtained from a standard deviation value 0.5 and the plots in (b) correspond to 40.0 standard deviation 

value. The deviation of the estimated spectrum from the actual one is very high in the latter case. This 

designates that we should impose a fairly small amount of the white disturbance to the simulated signal. A 

vigilant observation of Figures 4.22-4.24, Appendix C.2 and Figure 4.20, Appendix C.1 shows the 

preferable standard deviation values for the white noise may range from 0.0 to 2.0 to have a  good spectral 

resolution. To this end, we would like to inform that all the other analysis results were done for the white 

noise standard deviation values from this range.  

4.4 Application to Empirical Data 

So far we have been trying to select an appropriate model. Now, we will climb to the last stage of this 

chapter-exploiting the selected model to figure out some facts from an empirical sample signal. The model 

that we are going to use is the spectrogram. This is reasonable because the amount of noise in the empirical 

signals seems as strong as the white disturbance we impose on the simulated signal with � less than 15.0, 

for which the spectrogram is best. In addition to this we use different averages which smooth out 

disturbance. 
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 We will begin our discussion with experimental signal responses as heard by the first ear (as put in the data 

set from the company) of an individual called Sara. Figure 4.25, Appendix D, exhibits Spectrograms with 

four different window lengths (i.e., ¡ = 64, 96, 128	o:�	192) of the four number of clicks per average 

(i.e., 1313, 300, 100	and	50 clicks per average, respectively). 

Though showing time-frequency resolution tradeoff, we can guess that the highest peak is located at around 

frequency point � = 10 and time point � = 0.15.  But, we cannot see the side-lobes clearly, so that 

information leakage my lead us to unwanted conclusions. In order to compensate this problem, we tried to 

have plots of frequency (or time) versus smoothed spectral estimates separately in a such away many peaks 

can be visible easily.  Figure 4.26, Appendix D, contains such plots. In doing so, first, we took higher 

window length for better frequency resolution and then lower window length for better time resolution. 

Finally, we use a robust peak detection mechanism in noisy signals separately for frequency and time. Table 

4.4, Appendix D, demonstrates the four highest peak points along time and frequency of the spectral 

estimate corresponding the four number of clicks per average at appropriate window lengths in relation with 

time and frequency resolutions. In average, the highest peak is situated at � = 0.152 and � = 11.141 along 

time and frequency, respectively, which is quite near to the guess we made from the spectral pictures. 

An overwhelming trend is seen as we decrease the number of clicks per average. In the first two number of 

clicks per average (i.e., 1313 and 300), the strong peak(s) situated in the same position mentioned above. 

But, in the other number of clicks per average (i.e., 100 and 50), there are more strong peaks at around � = 10 and � = 0.45. This might be one way of exposing hidden information in the larger number of clicks 

per average. 

Apparently, employing the estimated Spectrogram to produce all the plots and discussions made for Sara's 

first ear is time and space taking. Above all, if we do the same procedures for all the Seventeen individual 

ears in the data set, this will not be only time and space taking, but also it will be tedious and unmanageable. 

However, in order to see the consistency and performance of the model for our ABR data, we will discuss 

two other ears: Sara's second ear and Stellan's first ear. 

In a similar manner with Sara's first ear case, we can have all the plots and arguments for her second ear too. 

Figure 4.28, Appendix D, reveals the spectral estimates of the four number of clicks per average for 

different window lengths in case of the second ear. These spectrograms have analogous characteristics with 

the first ear corresponding plots except a little shift in peak locations both in time and frequency, in average 

the highest peak is located at around � = 11.1388 and � = 0.187, see Figures 4.29 and 4.30, and Table 

4.5, Appendix D. The same is true for Sellan's first ear, with highest peak at around � = 0.2215 and � = 10.4215, see Figures 4.31-4.33 and Table 4.6, Appendix D.  
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From the spectral representations of these three individual ears we have observed some common trends. 

Concerning peaks in relation with frequencies, higher peaks are commonly situated at the lower frequency 

values, often below 50	G.. In addition, in most cases, the highest peak corresponds to the lowest frequency 

value of frequencies values with peaks, often 9 − 12	G., watch Figures 4.26, 4.29, and 4.32, Appendix D. 

Plots in connection with peak along time slots of Sara's both ears situated at the lower time values. But, for 

Stellan's first ear, the same peaks are firmed towards the middle time values, look Figures 4.27, 4.30, and 

4.33, Appendix D. One last common observation is that the number of peaks along time points increases as 

the number of clicks per average decreases. Number of peaks along time ranges from 4 to 10 as the number 

of clicks per average decreases from 1313 to 50, Figures 4.27, 4.30, and 4.33, Appendix D. In general, 

what we understand from the three ear cases is that the selected model could be  applicable in time-

frequency spectral representation of the ABR signal data from SensoDetect. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this study is to fit a time-frequency representation of the ABR data registered by SD-

BERA from SensoDetect by comparing three spectral estimation methods: Spectrogram, Thomson 

Multitaper, and Peak Matched Multitaper. In doing so, we have passed through several course of actions. 

One of our accomplishments is proposing an apt interval of values for the phase in the function we used for 

simulation. The function we used for simulation is a sum of two sine functions which differ in frequencies 

and a phase only. The spectral estimate from this simulation is expected to have peaks at the two 

frequencies. Nevertheless, these peaks will be noticeably seen for some values of the phase. Hence, it is  

shown that such phase ® exists if ®~±�0, ¯� such that 0 < ¯ ≤ 2� and ¯ → 0. 

Verdict on the interval of the phase value was followed by the core part of the analysis. This stage includes 

all the sections which were established for the purpose of model selection. Broadly viewed, the two sections, 

i.e., sections 4.2	o:�	4.3 contributed some aids for the purpose of model selection out of the three 

speculated models. What we see in these sections could be summarized as, (5) judging against frequency 

resolutions, Figures 4.5-4.16, Appendix A, (55) creating visual plots, Figures 4.17-4.19, Appendix B and (iii) 

measuring goodness of fitness numerically/statistically, Tables 4.1-4.3 and Figure 4.20, Appendix C.1. We 

stated that the Spectrogram and PM MW methods have better frequency resolution than the Thomson 

Multitaper technique. But this will not place us in a position to distinguish the frequency resolutions of the 

first two methods. Visual plots are plots such that the estimated spectra is drawn together with (or over) the 

actual ones. In some cases, they give adequate meaning to give an opinion on the fit of an estimate and its 

estimand. We noticed that the Spectrogram method gives finer fits than the rest two methods, even better 

than the PM MW. Sometimes, conclusions based on figures only may misguide us to unwanted result. 

Therefore, what we observe from graphical facts should be tested statistically for its reliability. The RMSE 

was the  tool we exploited for this purpose. Based on this tool, we found out that the Spectrogram method 

outshines over the other two methods for disturbances with 0 ≤ � ≤ 15.0. Note that this last conclusion is in 

a harmony with the results we encounter at the frequency resolution and visual plot levels. But for higher 

disturbances, 15.0 ≤ � ≤ 30.0, the PM MW performs as good as the Spectrogram, if not better. Finally, for 

even higher disturbances, � ≥ 30.0, the PM MW becomes to be the best and the Spectrogram turned down 

to the ground level, even exceeded by Thomson Multitaper method. Hence, under our study, we conclude 

that all the three methods could work based on the intensity of the disturbance imposed on the signal data.  

Hand in hand with the model selection process, we suggestion on the possible intensity of the white 

disturbance embedded within the simulated data. The amount of noise imposed on a simulated signal could 

have immense impact on the estimated spectral frequency resolution. Thus, a precaution should be taken to 

the degree of noise we need to inflict on the signal. Usually, the level of white disturbance could be 

quantified using its standard deviation. A higher standard deviation is followed by a poor (frequency) 
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resolution in the spectral estimate. That is,  as low as possible standard deviation is required to get a good 

resolution. In our case, we succeeded to show that the favorable range of standard deviation for the white 

nose we apply on the signal is more or less between 0.0 and 2.0, Figures 4.21-4.24, Appendix C.2 and 

Figure 4.20, Appendix C.1. 

A best fitted model using a simulated data should be tested for functionality via a real observed sample. To 

accomplish this, we applied the Spectrogram on observed experimental signals heard through three ears ( 2 

from the first individual and 1 from the second one) of individuals-Sara and Stellan, Figures 25-33, and 

Tables 4.4-4.6, Appendix D. The reason we use the spectrogram for the empirical signal is that the data 

have comparatively low disturbance. In average, highest peaks for Sara's 1st and 2nd ears and Stella's first 

ear are located at (0.1415,11.124), (0.187,11.1388) and (0.2215,10.4215), respectively, where the first 

coordinate stands for time and the second one for frequency. Some common observations seen in all the 

three empirical signals are: (1) higher peaks are located at lower frequency values with peaks, � ≤ 50	G., 
(2) the highest peaks are put in the 9 − 12	G. frequency ranges, etc. To sum up, we dare to say that the 

Spectrogram is the best one of the three methods under the study in representing the ABR data registered by 

SD-BERA. 

Finally, we would like to forward some recommendations concerning future improvement of this modeling 

procedure for ABR data. As it is obvious that there is a tradeoff between resolution and window length of 

the Spectrogram, an improvement should be made. Though it is not part of this study, there is a method of 

finding optimal window length for the spectrogram which gives us better resolution both in time and 

frequency simultaneously. It is also advisable to look for other techniques like time-frequency reassignment 

and multitaper time-frequency reassignment which are recent and efficient in smoothing out the spectral 

estimate to increase readability and decrease variability. Instead of sticking ourselves to nonparametric 

approaches only, sometimes, it might be wise to test parametric approaches too. 
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APPENDICES 

A. Spectral Estimates 

A.1. Spectrogram 

 

Figure 4.5 Spectrograms of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-bottom) and 

M=192 (right-bottom) of the whole clicks per average. 
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Figure 4.6 Spectrograms of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-bottom) and 

M=192 (right-bottom) of the three hundred clicks per average . 
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Figure 4.7 Spectrograms of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-bottom) and 

M=192 (right-bottom) of the one hundred clicks per average. 

 

Figure 4.8 Spectrograms of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-bottom) and 

M=192 (right-bottom) the fifty clicks per average. 
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A.2. Thomson Multitaper 

 

 Figure 4.9 Thomson Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the whole clicks per average. 
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Figure 4.10 Thomson Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the three hundred clicks per average. 

 

Figure 4.11 Thomson Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the one hundred clicks per average. 
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Figure 4.12 Thomson Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the Fifty clicks per average. 
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A.3. Peak Matched Multitapers 

 

Figure 4.13 Peak Matched Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the whole clicks per average. 
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Figure 4.14 Peak Matched Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the three Hundred clicks per average. 

 

  Figure 4.15 Peak Matched Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 

(left-bottom) and M=192 (right-bottom) of the one Hundred clicks per average. 
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Figure 4.16 Peak Matched Multitapers of different window lengths: M=64 (left-top), M=96 (right-top), M=128 (left-

bottom) and M=192 (right-bottom) of the Fifty clicks per average. 
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B. Measure of Goodness-of-fit 

B.1. Visual Plots 

� Spectrograms 

(a)  

 (b)  



47 

 

(c)  

(d)  

Figure 4.17 Comparison between WVD and spectrogram in different forms of the average of (a) total data, (b) three 

hundreds, (c) hundreds and (d)fifties in Spectrograms. 
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� Thomson Multitapers 

(a)  

(b)  
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(c)  

(d)  

Figure 4.18 Comparison between WVD and spectrogram in different forms of the average of (a) total data, (b) three 

hundreds, (c) hundreds and (d)fifties in Thomson Multitapers. 
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� Peak Matched Multitapers 

(a)  

(b)  



51 

 

(c)  

(d)  

Figure 4.19 Comparison between WVD and spectrogram in different forms of the average of (a) total data, (b) three 

hundreds, (c) hundreds and (d)fifties in Peak Matched Multitapers. 

 



 

C. Estimator Comparisons 

C.1. RMSE 

Table 4.1 Different RMSE values of Spectrogram for different 

 

               σ 
 

     clicks 1313 

0 
 

9,4136 9,41

0,5 
 

9,4013 9,4229

1 
 

9,404 9,4285

2 
 

9,4368 9,4087

3 
 

9,4687 9,4851

4 
 

9,4959 9,5913

5 
 

9,505 9,7826

6 
 

9,6531 9,9809

7 
 

9,691 10,1774

8 
 

9,589 10,5874

9 
 

10,4305 11,1626

10 
 

9,9689 11,3172

11 
 

10,6525 11,7476

12 
 

10,295 12,9462

15 
 

10,3399 

30 
 

15,6375 37,5103

40 
 

19,6915 47,9764

mean      10,15         12,34    

Table 4.2 Different RMSE values of Thomson Multitaper 

             σ      clicks 1313 300

0 
 

19,0905 19,0903

0,5 
 

19,0904 19,0918

1 
 

19,0968 19,0974

2 
 

19,0912 19,1222

3 
 

19,0721 19,1216

4 
 

19,0992 19,1302

5 
 

19,2367 19,2146

6 
 

19,1195 19,2367

7 
 

19,1225 19,3627

8 
 

19,1882 19,505

9 
 

19,1551 19,6897

10 
 

19,2023 19,8803

11 
 

19,2652 20,1729

12 
 

19,6959 20,6015

15 
 

19,583 22,7697

30 
 

23,0915 30,7269

40 
 

26,9587 37,074

mean      19,45         20,36    

 

52 

Different RMSE values of Spectrogram for different number of clicks per average. 

300 100 50 

 

mean 

9,4141 9,4133 9,3834 

 

       9,41    

9,4229 9,4178 9,3958 

 

       9,41    

9,4285 9,465 9,4214 

 

       9,43    

9,4087 9,4444 9,6257 

 

       9,48    

9,4851 9,7225 10,145 

 

       9,71    

9,5913 10,1254 11,1283 

 

     10,09    

9,7826 10,6582 12,4978 

 

     10,61    

9,9809 11,6401 14,8772 

 

     11,54    

10,1774 12,4554 17,3322 

 

     12,41    

10,5874 14,3607 19,5042 

 

     13,51    

11,1626 14,3828 23,4474 

 

     14,86    

11,3172 17,3924 26,1213 

 

     16,20    

11,7476 19,0002 24,5224 

 

     16,48    

12,9462 21,6981 27,923 

 

     18,22    

15,53 29,6501 36,5119 

 

     23,01    

37,5103 39,4501 45,4913 

 

     34,52    

47,9764 45,234 48.9517 

 

     37,63    

12,34         15,52         19,21    

 

     14,30    	
Thomson Multitaper for different number of clicks per average

300 100 50 

 

mean 

19,0903 19,09 19,0905 

 

     19,09    

19,0918 19,0952 19,0963 

 

     19,09    

19,0974 19,1013 19,1062 

 

     19,10    

19,1222 19,1279 19,1939 

 

     19,13    

19,1216 19,2083 19,4602 

 

     19,22    

19,1302 19,3297 19,818 

 

     19,34    

19,2146 19,6067 20,6988 

 

     19,69    

19,2367 19,978 21,4417 

 

     19,94    

19,3627 20,5898 23,0456 

 

     20,53    

19,505 21,2185 24,7699 

 

     21,17    

19,6897 22,2892 25,4293 

 

     21,64    

19,8803 23,449 27,64 

 

     22,54    

20,1729 24,1109 29,9563 

 

     23,38    

20,6015 25,4211 31,4519 

 

     24,29    

22,7697 29,3849 36,2598 

 

     27,00    

30,7269 38,3026 45,7474 

 

     34,47    

37,074 41,7168 42,9826 

 

     37,18    

20,36         22,46         25,14    

 

     21,85    

9,41    

9,41    

9,43    

9,48    

9,71    

10,09    

10,61    

11,54    

12,41    

13,51    

14,86    

16,20    

16,48    

18,22    

23,01    

34,52    

37,63    

14,30    

number of clicks per average. 
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Table 4.3 Different RMSE values of Peak Matched  Multitaper  for different number of clicks per average. 

             σ      clicks 1313 300 100 50 

 

mean 

0 
 

12,3052 12,3059 12,3064 12,3053 

 

     12,31    

0,5 
 

12,3091 12,3027 12,3165 12,3088 

 

     12,31    

1 
 

12,2997 12,3156 12,3392 12,3259 

 

     12,32    

2 
 

12,3079 12,3331 12,4527 12,5208 

 

     12,40    

3 
 

12,3234 12,386 12,5652 12,9251 

 

     12,55    

4 
 

12,3244 12,4194 12,8628 14,0022 

 

     12,90    

5 
 

12,3965 12,4247 13,3352 15,063 

 

     13,30    

6 
 

12,4572 12,3733 14,1292 16,8701 

 

     13,96    

7 
 

12,3703 12,8747 15,1721 18,5474 

 

     14,74    

8 
 

12,5555 13,1737 15,5975 21,9181 

 

     15,81    

9 
 

13,2572 13,6331 17,5504 24,5578 

 

     17,25    

10 
 

13,0032 14,1952 18,3457 25,0516 

 

     17,65    

11 
 

12,8281 14,2923 20,7561 28,7086 

 

     19,15    

12 
 

12,8294 15,6783 21,1231 30,8818 

 

     20,13    

15 
 

13,3143 15,6242 29,4521 35,786 

 

     23,54    

30 
 

19,7392 33,2098 44,3804 40,2838 

 

     34,40    

40 
 

25,6733 37,9338 41,1894 40,2633 

 

     36,26    

mean      13,04         14,47         17,79         20,88    

 

     16,55    

 

 

Figure 4.20 vectors of mean RMSE in Spectrogram (blue), PM MW (green) and Thomson Multitaper (red), 

respectively 
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C.2. Noise Standard Deviation 

(b)

(b) 

Figure 4.21 Comparison between WVD and spectrogram in 50 clicks per average of (a) � = 0.5, (b) � = 40. 
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Figure 4.22 Two simulated vectors of RMSE in Spectrogram from averages of total data (Left-top), three hundreds 

(Right-top), hundreds(Left-bottom)  and  fifties(Right-bottom, respectively. 
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Figure 4.23 Two simulated vectors of RMSE in Thomson Multitapers from averages of total data (Left-top), three 

hundreds (Right-top), hundreds(Left-bottom)  and  fifties(Right-bottom, respectively. 

  

  

 Figure 4.24 Two simulated vectors of RMSE in Peak Matched Multitapers from averages of total data (Left-top), 

three hundreds (Right-top), hundreds(Left-bottom)  and  fifties(Right-bottom, respectively. 
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D. Application to Real Data 

 (a) 

 (b) 
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 (c) 

 (d) 

Figure 4.25 Spectrograms with different window lengths (i.e., M=64-top-left, M=96-top-right, M=128-bottom-left, and M=192-

bottom-right) of (a) whole (1313) clicks per average, (b) 300 clicks per average, (c) 100 clicks per average and (d) 50 clicks per 

average of Sara Ear_1. 
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 (a) 

 (b) 
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 (c)  

 (d) 

Figure 4.26 Peaks of spectral estimates along frequencies with window length M=384 and (a) whole clicks per average, (b) 300 

clicks per average, (c) 100 clicks per average and (d) 50 clicks per average for Sara Ear_1. 
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 (a) 

 (b) 
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 (c) 

 (d)  

Figure 4.27 Peaks of spectral estimates along times with window length M=32 and (a) whole clicks per average, (b) 300 clicks 

per average, (c) 100 clicks per average and (d) 50 clicks per average for Sara Ear_1. 
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Table 4.4 Highest Peak points of the spectral estimate of Sara Ear_1. 

¼½¾¿¨À	ÁÂ	ÃxÄÅmÆ	Ç¨À	ÈÉ¨ÀÊË¨	 ↔  Í¨ÊÎ ↓ Ç¨Êm	ÊÐ ↓ ¤lÁx¨	(ÑÒÑÒ) Ò||	 Ñ|| Ó| ÔÄ¾¨	(Ð) 0.144 0.148 0.138 0.136 0.1415 ÕÀ¨�½¨ÎÅÖ	(Â) 11.600 11.410 11.720 09.766 11.124 
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 (a) 

 (b) 
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 (c)       

                  (d) 

Figure 4.28 Spectrograms with different window lengths (i.e., M=64-top-left, M=96-top-right, M=128-bottom-left, and M=192-

bottom-right) of (a) whole (1313) clicks per average, (b) 300 clicks per average, (c) 100 clicks per average and (d) 50 clicks per 

average of Sara Ear_2. 
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                        (a) 

                        (b) 
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                        (c)     

                     (d) 

Figure 4.29 Peaks of spectral estimates along frequencies with window length M=384 and (a) whole clicks per average, (b) 300 

clicks per average, (c) 100 clicks per average and (d) 50 clicks per average for Sara Ear_2. 
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 (a) 

 (b)  
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 (c)                         

 (d) 

Figure 4.30 Peaks of spectral estimates along times with window length M=32 and (a) whole clicks per average, (b) 300 clicks 

per average, (c) 100 clicks per average and (d) 50 clicks per average for Sara Ear_2. 
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Table 4.5 Highest Peak points of the spectral estimate of Sara Ear_2. 

¼½¾¿¨À	ÁÂ	ÃxÄÅmÆ	Ç¨À	ÈÉ¨ÀÊË¨	 ↔  Í¨ÊÎ ↓ Ç¨Êm	ÊÐ ↓ ¤lÁx¨	(ÑÒÑÒ) Ò||	 Ñ|| Ó| ÔÄ¾¨	(Ð) 0.146 0.140 0.140 0.322 0.187 ÕÀ¨�½¨ÎÅÖ	(Â) 12.390 11.840 11.170 09.155 11.1388 
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(a) 

(b) 
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(c) 

(d) 

Figure 4.31 Spectrograms with different window lengths (i.e., M=64-top-left, M=96-top-right, M=128-bottom-left, and M=192-

bottom-right) of (a) whole (1313) clicks per average, (b) 300 clicks per average, (c) 100 clicks per average and (d) 50 clicks per 

average of Stellan Ear_1. 
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(a) 

(b) 
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(c) 

(d)  

Figure 4.32 Peaks of spectral estimates along frequencies with window length M=384 and (a) whole clicks per average, (b) 300 

clicks per average, (c) 100 clicks per average and (d) 50 clicks per average for Stellan Ear_1. 
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 (a) 

 (b) 
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 (c) 

(d) 

Figure 4.33 Peaks of spectral estimates along times with window length M=32 and (a) whole clicks per average, (b) 300 clicks 

per average, (c) 100 clicks per average and (d) 50 clicks per average for Stellan Ear_1. 

 

 

 



77 

 

Table 4.6 Highest Peak points of the spectral estimate of Stellan Ear_1. 

¼½¾¿¨À	ÁÂ	ÃxÄÅmÆ	Ç¨À	ÈÉ¨ÀÊË¨	 ↔  Í¨ÊÎ ↓ Ç¨Êm	ÊÐ ↓ ¤lÁx¨	(ÑÒÑÒ) Ò||	 Ñ|| Ó| ÔÄ¾¨	(Ð) 0.210 0.214 0.228 0.234 0.2215 ÕÀ¨�½¨ÎÅÖ	(Â) 11.170 11.170 10.130 09.216 10.4215 

 

 

 

 

 


