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Abstract 

In the future an increasing number of  industries will have to comply with greenhouse gas reduction directives. 

Plans and projects that aim to reduce CO2-emissions are associated with multiple sources of  uncertainty and 

the use of  point estimates could lead to misjudgements and erroneous decisions. Within other fields of  

science uncertainty analysis is a commonly used tool to improve a decision basis. The aim of  this report has 

been to assess the advantages of  performing an uncertainty analysis of  a corporate CO2-reduction project 

Well-applied theories and methodologies for uncertainty analysis have been applied to Posten Norge AS plan 

for reducing CO2-emissions. The results gained by the uncertainty analysis were found to be more informative 

than the results obtained when only ‘best estimates’ were used to calculate the effect of  the action plan. 

Explicit treatment of  uncertainty increases transparency, quantification of  a confidence interval for the 

outcome of  the plan improves communication and the identification of  the most sensitive input variables 

increases the corporation’s possibilities to avoid risk scenarios and enables it to steer towards opportunities. 
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Summary 

In the future an increasing number of industries will have to comply with greenhouse gas reduction directives. 

For a project to effectively and efficiently reduce emissions, relevant alternatives and their associated risks and 

opportunities needs to be analysed. A CO2-reduction plan is associated with various sources of  uncertainties, 

both related to the true value of  activity data and conversion factors used to calculate emissions, and sources 

of  uncertainty related to emission reduction projects in general. These may be categorized into parameter 

uncertainties and uncertainty drivers.  

Parameter uncertainties represent the uncertainty in the most significant parameters that determine the 

effect of the measures included in the project plan.  

Uncertainty drivers represent external and internal factors that may have an influence on the corporation’s 

ability to implement the measures laid out in the project plan.  

When the effect of  a CO2-reduction plan is calculated based on “best estimates” it results in an exclusion of  

possibly valuable information. Deterministic values could cause the decision maker to choose a less favourable 

option or to settle with a plan that is highly uncertain. An uncertainty analysis enables inclusion of  

information that would otherwise be lost and is frequently used as a tool to improve the decision basis within 

other fields of  science. However, during this study no information was found of  it ever before being used as a 

tool to improve corporate CO2 management. 

Posten Norge AS (Posten) has set an ambitious CO2-reduction goal and developed action plans for how the 

corporation as a whole is to reduce their emissions. To assess the advantages of performing an uncertainty 

analysis of a corporate CO2-reduction plan two models, in the report referred to as DNV’s Uncertainty 

Analysis Model and DNV’s Effect Calculation Model, were merged to create a model that enabled a 

quantitative uncertainty analysis of Posten’s action plan. 

DNV’s Effect Calculation Model treats parameter uncertainties associated with the action plan. The model 

was developed by DNV to handle interaction between individual measures. It accounts for the interaction 

between individual measures, which ensures that interplay between uncertain input parameters is considered. 

The parameter uncertainties are propagated through the model by means of @Risk, which enables 

quantification of their effect on the project outcome. 

DNV’s Uncertainty Analysis Model enables explicit treatment of uncertainty drivers. Common practice is 

to evaluate their effect implicitly after a point value for the action plan’s emission reduction has been 

calculated. Explicit analysis of external and internal factors increases the corporations understanding of how 

external actors may affect the project outcome.  

This study shows that it is possible to perform an uncertainty analysis of a project aimed at reducing CO2 

emissions. The results gained by the uncertainty analysis are more informative than the results obtained when 

only ‘best estimates’ are used to calculate the effect of the action plan. Quantification of confidence intervals 

for the outcome of a project allows the decision maker to make informed decisions between alternatives and 

explicit treatment of uncertainty increase transparency. Most importantly, an uncertainty analysis enables 

identification of the most influential input variables which improves the corporation’s ability to avoid risk 

scenarios and to steer towards opportunities. 



 

vi 
 

Sammanfattning 

I framtiden kommer ett ökat antal industrier att behöva rätta sig efter nya växthusgasdirektiv. För att ett 

projekt ska leda till effektiv reduktion av utsläpp så måste relevanta alternativ och associerade risker samt 

möjligheter analyseras. En handlingsplan för reduktion av CO2-utsläpp är förknippad med flera källor till 

osäkerhet, dels relaterade till det verkliga värdet av de faktorer som används till att beräkna 

utsläppsreduktionen, och de som är kopplade till projekt i allmänhet. Dessa kan delas in i två kategorier, 

parameterosäkerhet och osäkerhetsdrivare. 

Parameterosäkerhet representerar osäkerheten i de mest betydelsefulla ingångsparametrarnas verkliga värde. 

När effekten av en åtgärd beräknas används en eller flera parametrar som är osäkra 

Osäkerhetsdrivarna representerar externa och interna faktorer som kan ha en inverkan på företagets 

möjligheter att implementera de åtgärder som ligger i handlingsplanen.  

När effekten av ett CO2-reduktionsprojekt beräknas med hjälp av deterministiska värden eller 

punktskattningar så utesluts information. Beslutsfattaren står då med ett bristfälligt beslutsunderlag och 

riskerar att ta felaktiga beslut. En osäkerhetsanalys möjliggör tillvaratagande på all tillgänglig information och 

är ett verktyg som allt oftare används för att förbättra beslutsunderlag. Vid genomförandet av den här studien 

hittades ingen information om att metodiken tidigare använts som verktyg för att förbättra CO2 hantering 

inom företag.  

Posten Norge AS (Posten) har satt ett ambitiöst mål för reduktion av CO2-utsläpp innan 2015. För att 

undersöka fördelarna med att utföra en osäkerhetsanalys på ett företags plan för reducering av CO2-utsläpp 

kombinerades två modeller, DNV’s Osäkerhetsanalysmodell och DNV’s Effektberäkningsmodell, och en 

kvantitativ osäkerhetsanalys utfördes på Posten’s handlingsplan. 

DNV’s Effektberäkningsmodell hanterar parameter osäkerheter som är förknippade med åtgärderna i 

handlingsplanen. Modellen är utvecklad för att ta tillvara på samverkan mellan åtgärder och tar på så sätt även 

hänsyn till samverkan mellan parameterosäkerheter. Parameterosäkerheterna propageras genom modellen med 

hjälp av @Risk vilket gör det möjligt att beskriva deras effekt på projektets utfall.   

DNV’s Osäkerhetsanalysmodell möjliggör explicit hantering av osäkerhetsdrivare. I vanliga fall så evalueras 

effekten av externa och interna faktorer efter det att ett punktvärde har beräknats för handlingsplanens effekt. 

Explicit hantering av osäkerhetsdrivare ökar företagets förståelse för hur externa aktörer kan komma att 

påverka projektets utfall.  

Det är möjligt att utföra en osäkerhetsanalys av ett projekt för reducering av koldioxid. Resultaten som fås 

genom osäkerhetsanalysen är mer informativa än när endast punktestimat används för att beräkna projektets 

effekt. Kvantifiering av konfidensintervall för projektets utfall förbättrar beslutsfattarens förutsättningar till att 

ta informativa beslut gällande alternativa åtgärder och explicit hantering av osäkerhet ger ökad transparens. 

Framförallt möjliggör osäkerhetsanalysen identifiering av de mest betydelsefulla ingångsvariablerna., vilket 

förbättrar företagets möjligheter att undvika risk scenarier och förbättrar deras förmåga att styra mot 

möjligheter.  
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1. Introduction 

This master thesis comprises 30 hp, which corresponds to 20 weeks full time studies. It was carried out by a 

student from the Risk Management program at the Department of  Fire Safety Engineering and Systems 

Safety at Lund University. The initiative to the thesis was taken by Det Norske Veritas (DNV) as DNV wanted 

to investigate the possibilities of  strengthening corporate CO2-reduction projects through uncertainty analysis. 

Currently, DNV are supporting Posten Norge AS (Posten) in the development and implementation of  the 

corporation’s plans to reduce CO2 emissions. This thesis is based on information gathered through 

collaboration between DNV and Posten.  

According to guidelines from the department of  Fire Safety Engineering and Systems Safety the thesis must 

maintain a certain risk profile. In this context, the risk endpoint is defined as the CO2-reduction project not 

reaching its carbon dioxide reduction goal. Possible risk sources are technologies not being as efficient as 

expected or that part of  the organisation is incapable of  fulfilling its commitments. The term uncertainty 

analysis is used to highlight that there also is a possibility that the risk sources might increase the chance of  

success, i.e. positive risks.  

This introductory chapter will explain why it is interesting to perform an uncertainty analysis on an 

environmental plan. It will also be specifying the aim of  the thesis. 

1.1 Background 

1.1.1 Posten Norge AS 
Posten is owned by the Norwegian State through the Norwegian Ministry of Transport and is presently one of 

the largest shipping and logistical companies within the Nordic region. It comprises three divisions; Logistics, 

Logistical Solutions and Mail. Each division is divided into a number of smaller business units.  

1.1.2 Posten’s CO2 reduction plan 
In the fall of  2009 Posten to developed a revised environmental strategy. The most important objective of  

this strategy was to reduce carbon dioxide emissions by 30% from a 2008 baseline within 2015.  

In 2010 corporate wide CO2-reduction action plans were developed and implemented. The action plans were 

developed in each business unit, and comprised the following carbon dioxide reducing measures: 

 Efficient energy use 

 Route optimization 

 Ecodriving courses for drivers  

 Technical measures for vehicles 

 Increased use of  alternative vehicles 

 Increased use of  alternative fuel 

 Modal shifts 

 Decreased business travels 

The action plans were consolidated for each division within Posten and contain information on the planned 

environmental measures that are to be implemented towards 2015, including their CO2-reduction potential 

and Net Present Value (NPV). (Posten Norge AS, 2010) 
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To evaluate the effect of  a project aimed at reducing CO2 emissions it is necessary to develop an analytical 

model that can account for interaction between individual measures. For this purpose DNV has developed an 

Effect Calculation Model for Posten’s CO2 reduction project. Within the model point values (‘best estimates’) 

have been used to calculate the amount CO2 reduced and net present value of  the project. (Posten Norge AS, 

2010) 

The effect of  the action plans was first calculated for each measure at the business unit level. Subsequently the 

effects of  all the measures within the business units were summed up on to the divisional level. Finally, the 

effects on the divisional level were consolidated to show the effect and the cost of  the CO2-reduction plan at 

corporate level, see figure 1. (Posten Norge AS, 2010)  

 

Figure 1 – Conceptual description of the action plan hierarchy in Posten Norge AS (Posten Norge AS, 2010). 

1.1.3 The need to consider uncertainty 
In the future, it is likely that an increasing number of industries will have to comply with greenhouse gas 

reduction directives. As an example, the transport sector within each Member State of the European Union 

should reach a 10% share of energy from renewable sources before 2020 (Renewable Energy Directive, 

2009/28/EC). To effectively and efficiently reduce emissions a plan or project that is outlined to decrease 

GHG emissions needs to be thoroughly analysed, both with respect to relevant options and their associated 

risks and opportunities (Sentjens, Deakin, & Goudappel, 2011).  
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Historically, the most common means of handling uncertainty has been to use ‘best estimates’. In recent years 

the field of uncertainty analysis has undergone large changes (Granger-Morgan & Henrion, 1990) and instead 

of ignoring uncertainty through the use of best estimates, different methods of uncertainty analysis have been 

developed; including qualitative, semi-quantitative and purely quantitative approaches (Austeng, Torp, Midtbø, 

Helland, & Jordanger, 2005b). In their book “Uncertainty – A guide to Dealing with Uncertainty in 

Quantitative Risk and Policy Analysis” Granger-Morgan and Henrion give four main reasons to why it is 

important to consider uncertainty: 

 Considerable empirical evidence suggests that cognitive biases can cause errors in “best estimates” 

produced by experts. Subsequently, if ‘best estimates’ are used as a basis for calculation, the result 

could be erroneous. The ‘best estimate’ can be improved significantly if the expert is forced to 

consider uncertainty. 

 A project or a decision process involves multiple actors and various decisions are made over an 

extended period of time. If uncertainty is treated explicitly it enables the actors to evaluate the 

conclusions and limitations of the analysis better than if uncertainty had merely been taken into 

account implicitly by the analyst. 

 A separation of uncertainty due to disagreement over issues of value and issues of fact may help to 

improve the decision process. 

 An analyst should state the implications and limitations of the results. An uncertainty analysis could 

help the analyst to detect external factors that should be taken into account during the decision 

process.  

Lindley (2000) believes that it is necessary to consider uncertainty if good decisions are to be made. He argues 

that if it is possible, the combined uncertainty in reaching a desired goal should be quantified. An uncertainty 

analysis can be defined as a comparison of how the uncertainty in a models input parameters affect the 

uncertainty of  the model output (Granger-Morgan & Henrion, 1990). By assigning probability distributions to 

uncertain input parameters all available information can be taken into account. It is then possible to propagate 

the uncertainty through the initial model by means of  an uncertainty propagation method. Through 

quantification of  uncertainty an uncertainty analysis of  a CO2-reduction project could lead to increased 

confidence in the strategy and may reveal new opportunities through better management of  uncertainty 

(Sentjens, Deakin, & Goudappel, 2011).  

1.2 Purpose and Objectives 
The aim of  this master thesis is to assess the advantages of  performing an uncertainty analysis of  a corporate 

CO2-reduction project. For this purpose a quantitative uncertainty model for Posten’s CO2-reduction project 

was developed, where project success is defined as the achievement of  a 30% reduction by 2015. 

The following question formulations are to be answered: 

 Is it possible to perform a quantitative uncertainty analysis of  a CO2-reduction project? 

 What uncertainties are associated with the plans and how may they affect project success?  

 What additional information is gained by performing an uncertainty analysis of  a corporate CO2-

reduction project and how may this information improve the corporation’s decision making process? 
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1.3 Specifications and Delimitations 
The model and the analysis have been limited to only include the division Logistics within Posten. This 

division has the most and complex (in terms of number of measures) action plan for reducing CO2-emissions 

and it is assumed that if the analysis can be performed for Logistics, it will be possible to expand the model to 

include the whole corporation at a later stage.  

The action plans include planned measures that will be implemented during the period 2010 to 2020. Due to 

Posten’s aim of reducing the corporations CO2-emissions by 30% before 2015 the uncertainty analysis is only 

covering the measures performed during these five years 

Posten’s action plans are currently being revised. The analysis is thus performed on plans that are out of date. 

Consequently, the results should not be interpreted as an indication of Posten’s upcoming environmental 

performance.  
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2. Methodology 

This chapter give details upon the methods used to develop the uncertainty analysis model and to carry out 

the analysis of Posten’s project to reduce CO2-emissions. First it is explained how the literature review was 

carried out, then the uncertainty identification and estimation methodology is described. The chapter ends 

with a short description on how the uncertainty analysis model was developed.  

2.1 Literature Review 
The literature review was performed to develop ideas for how an uncertainty model could be designed as well 

as on how the analysis could be performed. Another important aim of the review was to gather information 

on key concepts that need to be considered during the analysis process. The model for uncertainty analysis of 

large public investment projects that DNV has developed (DNV’s Uncertainty Analysis Model) in 

collaboration with the Norwegian Ministry of Finance and NTNU’s Concept Research programme was given 

additional consideration. Understanding uncertainties related to other projects, as well as the various methods 

used for uncertainty analysis, was important input for performing an uncertainty analysis of a project aimed at 

reducing CO2 emissions. 

The literature review was conducted through searches of bibliographic databases as well as through general 

searches on the internet and library searches of books. The following search engines and libraries where 

searched: Lund University’s search engine LibHub, the search engine SciVerse Scopus, the Civil Engineering 

Library at LTH and Malmö City Library. In the beginning of 2012 LibHub was replaced by a new search 

engine, Summons, which was also used. Summons enables literature searches through all of Lund University’s 

digital resources, articles, databases, e-books and library text books.  

In order to find relevant literature the following combinations of key words were used to limit the search 

results; ‘uncertainty analysis’, ‘GHG emissions’, ‘expert judgement’, ’sustainable transportation’ ‘uncertainty 

identification’ and ‘uncertainty propagation’. Information regarding the concepts related to uncertainty 

analysis was mainly gathered through library searches of books and the use of SciVerse Scopus. Information 

regarding DNV’s Uncertainty Analysis Model was gained through discussions with experts at DNV, KGS 

reports and reports published by the Concept Research programme at NTNU.  

2.2 Uncertainty Identification and Estimation 

By gaining access to documentation concerning the CO2-reduction project initiated by Posten, an uncertainty 

identification process could be initiated. Due to lack of data a subjective perspective on probability was taken, 

see chapter 3.2.  

The uncertainty identification was conducted in 3 steps. Initially a small brainstorming session was held with 

experts at DNV. Different types of uncertainties with a potential to affect the outcome of the project were 

identified and subsequently divided into two groups; uncertainties related to external and internal factors 

(uncertainty drivers, in literature also commonly referred to as ‘model uncertainty’) and uncertainty in the true 

value of parameters employed within the effect calculation model (parameter uncertainty). The second step 

comprised of a more thorough identification of the uncertain parameters used in the effect calculation model. 

Each step of the calculation model was surveyed for parameters that were associated with a large degree of 

uncertainty and had a high potential to affect the outcome. Finally, the main uncertainty drivers which could 
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have an effect on the outcome of the project were identified through a brainstorming session with the 

Corporate Environmental Manager at Posten Norge AS.  

To find literature estimates (minimum, most likely and maximum values) of uncertainties transport statistics 

compiled in reports by Statistics Norway and the Norwegian Public Roads Administration were searched but 

also Norwegian and Swedish literature on sustainable transport. Expert judgements on uncertainties were 

gathered through discussions with experts within the fields of fuel technology and transport sustainability at 

DNV and LTH. To the extent possible, the 3-point expert elicitation method described in chapter 3.3 was 

used, but with a predefined confidence interval for the estimate. Posten provided information regarding the 

cost elements and a plus/minus 10% variation was put upon the original point estimates to account for 

parameter uncertainty. No information was available for the cost of modal shifts but to implicate their 

potential effect on the cost of the project these parameters were assigned large values and broad uncertainty 

intervals. 

2.3 Development of Model and Uncertainty Analysis 
The developed uncertainty analysis model is a based on DNV’s well-applied Microsoft Excel and @Risk 

based Uncertainty Analysis Model that is used to conduct uncertainty analysis of public investment projects, 

described in chapter 3.7. It has been combined with the effect calculation model, previously used to calculate a 

single point value for the CO2-mitigation effect of Posten’s CO2-reduction project. DNV’s Effect Calculation 

Model designed for calculating the effect of Posten’s CO2-reduction project is briefly described in chapter 3.8. 

During the value chain analysis for identification of uncertainties, interplay between measures that had not 

been accounted for was found. The Effect Calculation Model was expanded to account for this interplay and 

the expansion of the model is described in chapter 5.1.  

The uncertainty analysis was performed in @Risk, a Risk Analysis and Simulation Add-In for Microsoft Excel, 

and the results are presented in chapter 6. Within the model each uncertain parameter was defined in a 

separate excel sheet to avoid sampling of different values for the same parameter. @Risk was used to assign 

probability distributions to the uncertain variables. All uncertain variables were estimated with a maximum, 

minimum and most likely value and assigned the non-parametric Trigen-distribution. Non-parametric 

distributions are discussed in chapter 3.4.1. 

If nothing else is stated, @Risk treats all variables as independent. Therefore the parameter uncertainties and 

uncertainty drivers were reviewed to identify dependency relationships between variables. Correlation was 

built into the uncertainty model by means of conditional branching. The method used for building in 

correlation into the uncertainty model is described in chapter 6.4. 

Parameter uncertainty was propagated through the model by means of Monte Carlo simulation. Based on the 

information gathered during the literature review, the sampling method Latin Hypercube sampling was used, 

see chapter 3.5. A sensitivity analysis on the output of interest was performed to identify the most significant 

input parameters and uncertainty drivers. The methodology of performing a sensitivity analysis in @Risk and 

the results gained is described in chapter 3.6.  
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3. Literature Review 

How an uncertainty analysis is performed depends on the aim of the analysis and upon whom it is made for, 

but also on the sources of input available. A variety of different methods have been developed but all methods 

have some basic elements in common. It is thus possible to define a basic procedure for an uncertainty 

analysis: 

1. Define the aim of the analysis  

2. Identification of uncertain elements – a qualitative assessment of different factors that could 

introduce uncertainty to the project outcome.  

3. Quantification of identified uncertainties – enables quantification of the effect of the identified 

uncertain elements. 

4. Propagation of uncertainty – Calculation procedure to quantify the total uncertainty induced by the 

identified uncertain elements. Is often managed either through simulation or by means of 

statistical methods.  

5. Compilation of the results  

This chapter includes a literature study of theories related to step 2-4 of the uncertainty analysis procedure. 

3.1 Uncertainty Identification 
Uncertainty could be described as a measure that expresses our lack of knowledge about an event or an 

unknown quantity (Aven T. , 2011). Depending on what kind of knowledge we lack different kinds of 

uncertainty arise. For example, in project management, uncertainty could arise due to lack of information, 

overview of the project or be connected to planning and the ability of employees. Most projects are also 

affected by uncertainties caused by changes in the world such as the political situation or economic 

development. Project uncertainty can be divided into four main categories; conceptual uncertainty, operational 

uncertainty, contextual uncertainty and scenario uncertainty. (Austeng, Midtbø, Jordanger, Magnussen, & 

Torp, 2005a) 

Conceptual uncertainty – Conceptual uncertainty is uncertainty associated with the methods used to solve 

the problem at hand. It could arise due to lack of knowledge of which model to use. It could also be 

uncertainty in if the model that is being used is applied correctly. When parameter values are estimated 

subjectively it is also a question of if the right tools are being used for elicitation of expert judgement.  

Operational uncertainty – Operational uncertainty could be conceived as inner uncertainty and is mainly 

related to project execution. To improve operational uncertainty the organisation needs to expand its 

information basis or improve the methods used to gather information. This will help the organisation 

to create a clearer image of the true situation and will therefore improve the precision of the decisions 

that are made. 

Contextual uncertainty – In contrast with operational uncertainty, contextual uncertainty arise due to 

factors that the organisation has little or no control over. Consequently it is often difficult to assess 

their effect on the project. Some external factors will be more important than others and it is important 

to identify and define those that could have the largest impact on the success of the project, these 

factors are also known as uncertainty drivers. 
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Scenario uncertainty – Scenario uncertainty arise due to the possibility of a change in project objectives 

and decision criteria owing to an unanticipated event. During the uncertainty identification process it is 

important to identify events that could have a significant impact on the success of the project. 

There are several methods for uncertainty identification and they are built upon the same principles as the 

methods for risk or hazard identification (Aven T. , 2010). The aim is to identify all external and internal 

aspects that may affect the outcome of the project. A common identification method is to perform a 

brainstorming workshop with external experts and project participants. (Austeng, Torp, Midtbø, Helland, & 

Jordanger, 2005b). 

It is impossible to ensure complete coverage of all uncertain elements but measures could be taken to 

structure and improve the identification procedure (Austeng, Torp, Midtbø, Helland, & Jordanger, 2005b). 

When identifying uncertainties in an organisation it is useful to survey its value chain. In a project, focus 

should instead be put on its processes and stages. In both projects and organisations a holistic approach is 

favourable and a checklist could help to maintain a holistic view. The checklist should consist of a wide 

spectrum of areas and elements to ensure an as complete identification procedure as possible. (Binz, 2011) 

One way to structure the identification procedure is to place the identified uncertain elements in a matrix; the 

x-axis representing different aspects of the project and the y-axis describing the perspective. The advantage of 

placing the uncertain elements within different categories is that it makes it possible to identify if the 

brainstorming group has a skewed focus. If uncertainties are overrepresented in one area of the matrix it 

could be an indication of the need to invite additional individuals with expertise on the areas that are lacking. 

It is also important to define how the identified uncertain elements may affect the project in question. 

Arranging them into the four main categories of project uncertainty gives the analyst an indication of how the 

different uncertain elements should or could be modelled. (Austeng, Torp, Midtbø, Helland, & Jordanger, 

2005b) 

3.2 Uncertainty Representation 
Most analysts consider probability to be the preferred mean of quantifying uncertainty. However, there is 

disagreement on the methodology for obtaining uncertainty estimations and on what the probability estimates 

should be based upon. The disagreement is caused by different views on the characteristics of uncertainty and 

can be divided into two main perspectives, an objective and a subjective. (Covello & Merkhofer, 1993) 

3.2.1 The objective perspective 
The objective perspective defines probability as a measure of the frequency with which an event will occur 

(Covello & Merkhofer, 1993). An uncertainty analysis that implements the objective perspective will rely on 

the classical theory of probability and statistics. The classical probability theory relates the probability of an 

event to its frequency in a large number of repetitions, a relation also known as the law of large numbers. The 

law of large numbers requires that an event can be repeated over and over again and that its frequency 

converges as the number of trials increases. With this perspective, probability is in fact a property of the 

physical system that generates the events. (Granger-Morgan & Henrion, 1990) 
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3.2.2 The subjective perspective 
An analyst who adopts the subjective perspective will rely on the Bayesian theory of statistics.  According to 

Bayes theorem, uncertainty about an event is dependent on the event itself as well as on the current 

information available to the analyst assessing it. It could be seen as a measure of the state of knowledge which 

depends on the information and experience of the analyst. These subjective probability estimates are not 

arbitrary but follow the same basic axioms as the classical probabilities. (Covello & Merkhofer, 1993) 

3.2.3 Choosing perspective 
The choice of perspective is critical since it affects not only the meaning assigned to a probability but also the 

interpretation of the results (Covello & Merkhofer, 1993). When empirical data is scarce, or the properties of 

the system are not well understood, the analyst who adopts an objective perspective will find it difficult to 

estimate uncertainty (Covello & Merkhofer, 1993). The subjective perspective is more flexible and allows for 

uncertainty representation also when there is lack of empirical data; it provides methods that make use of past 

experience and expert judgement (Megil, 1984). Many analysts and researchers avoid referencing to different 

types of perspective, instead they choose to consider all uncertainties as subjective (Aven T. , 2011). 

3.3 Expert Judgement and Heuristic Biases 
If the analysis contains an uncertain quantity, about which data or understanding is scarce, expert judgements 

can provide useful information (Granger-Morgan & Henrion, 1990). The larger part of the literature reviewed 

seem to agree that when performing an uncertainty analysis it is very difficult, if not impossible, to gather 

enough data to accurately determine the uncertainty of all variables. Conclusively, expert judgement is often 

necessary. 

By definition the subjective perspective is able to make use of methods for elicitation of expert opinion. When 

using such methods it is necessary to understand how experts make judgements that involve uncertainty 

(Granger-Morgan & Henrion, 1990). Experts frequently employ heuristic procedures when trying to provide 

subjective estimates, these procedures may be assistive but they can also lead to biased outcomes or large 

errors (Vose, 2000).  

One example of a heuristic procedure is availability, which means that the expert recalls past occurrences of 

an event and makes use of this information to provide an estimate. This heuristic is helpful when the 

experience of past occurrences correspond fairly well with the actual frequency of the event. Many factors can 

influence the availability heuristic and cause over- or underestimates of the events true probability. (Granger-

Morgan & Henrion, 1990)  

According to Vose (2000) the most important heuristic is adjustment and anchoring. It means that an 

individual who is trying to estimate a probability distribution usually starts with a single, often the most likely, 

value. Based on this value, adjustments are made to find the minimum and maximum value. Such a procedure 

frequently results in overconfidence in the estimate. 
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3.3.1 Strategies to minimize heuristic biases 
There are several other heuristic processes and biases that cause inaccuracy in estimates and the elicitation 

process should be designed as to minimize their influence (Speirs-Bridge, Fidler, McBride, Flander, Cumming, 

& Burgman, 2010). The strategies put forward in the literature can be divided into three groups; motivational, 

technological and cognitive. Motivational strategies try to reduce biases by creating incentives for the expert to 

produce good estimates. Research suggests that these methods are inefficient and there is no proof that they 

would improve the elicitation process. Technological strategies try to reduce biases by the use of different 

technological means. Cognitive strategies are generally more effective than motivational strategies and are 

more frequently used than technological strategies. (Kirkebøen, 2009) 

One extensively applied cognitive strategy is the Delphi-method which is a Bayesian structured group process. 

A panel of experts give numerical uncertainty estimates including the information upon which they have 

deduced these estimates. A facilitator gathers the results and provides the group of experts with an 

anonymous summary. The experts are then asked to reconsider their estimates in light of the new knowledge 

that they gained from the summary. This process is repeated until the experts answers converge towards a 

final estimate. Other cognitive strategies include; increasing the expert’s awareness of heuristic procedures, to 

train the expert in logic and probability theory or to re-formulate the decision problem. (Kirkebøen, 2009) 

One common way to elicit expert judgement is to ask the expert to provide an interval which he, with a 

specific confidence level, is certain contains the true value. There are several different ways for an analyst to 

elicit such an interval from an expert. For example, the analyst could specify a confidence level for which the 

expert should assign an interval or the analyst could specify an interval for which the expert should assign a 

confidence level. When only an interval is specified the elicitation process is sometimes referred to as a 2-step 

procedure, if the expert is asked to provide a most likely value as well, it is called a 3-step procedure. 

(Hammonds, Hoffman, & Bartell, 1994) 

A simple cognitive approach to reduce heuristic biases when using a 3-step procedure is to ask the expert to 

provide the lowest or highest estimate first. If the expert gets to decide the order himself he tends to provide 

the most-likely value first, thus increasing the use of the availability heuristic. Studies have shown that by 

making the expert provide one of the other estimates first, overconfidence is reduced. (Vose, 2000) 

Speirs-Bridge et al (2010) have developed a cognitive strategy called the 4-step procedure. It re-formulates the 

decision problem by decreasing the statistical information given to the expert. The expert is first asked to 

provide a 3-point estimate, including a best, worst and most-likely value, and then to provide a confidence 

level for that estimate. Studies have shown that a three point estimate clearly reduces the overconfidence of a 

two point estimate, which includes only a worst and best-case estimate. A study of the 4-point estimate 

procedure found it to be even more accurate. This suggests that the elicitation procedure improves by the 

number of considerations the expert has to make during the elicitation process. (Speirs-Bridge, Fidler, 

McBride, Flander, Cumming, & Burgman, 2010) 

 

 



Uncertainty Analysis as a Tool to Improve Corporate CO2 Management 

11 
 

 

3.4 Assigning Probability Distributions to Expert Judgements 
The precision of an uncertainty analysis is dependent on the appropriate use of probability distributions. 

When describing the uncertainty of a parameter using expert judgement one appropriate way of categorizing 

probability distributions is to divide them into parametric and non-parametric distributions. (Vose, 2000) 

The shape of a parametric distribution is determined by one or more distribution parameters and its shape is 

generated by a mathematical function. Most probability distributions are parametric, including the lognormal, 

normal and beta distributions. If such a distribution is to be used to model expert judgment appropriately, 

both the analyst and the expert must have great knowledge of the underlying assumptions of the distribution. 

(Vose, 2000) 

The shape of non-parametric distributions is instead directly determined by its parameters, its distribution 

function being a simple mathematical description of its shape. As a result these distributions are more intuitive 

and changes of one or more parameters create predictable responses. The most common non-parametric 

distributions are the uniform and the triangular distributions. (Vose, 2000) 

Vose (2000) believes that it is more appropriate to use non-parametric distributions to model expert opinion. 

In his view, parametric distributions should only be used when one of the following statements is true: 

 The theory behind the distribution applies to the problem at hand. 

 It has been generally accepted that the distribution is very accurate for modelling that specific 

variable.  

 The distribution represents the opinion of the expert and there is no requirement of high accuracy.  

3.4.1 Non-parametric distributions 
The uniform distribution requires two input variables, a minimum and a maximum value. All values within 

this range are assigned equal probability densities. Vose (2000) notes that it is rare that an expert only has an 

opinion about the minimum- and maximum values of an event and none on its most likely. He also states that 

the probability density function of a uniform distribution drops in an unnatural way at its endpoints and that 

this makes it a poor modeller of expert opinion. 

The Triangular distribution is often used to model expert opinion due to its intuitive appeal and flexible shape. 

It is defined by three input parameters; a minimum (a), most likely (b) and maximum (c) value. From these 

parameters the mean and standard deviation of the distribution can be determined: 

      
(     )

 
     (1) 

                    √
(                 )

  
   (2) 

The parameters   and   represents the estimated absolute minimum and maximum values of a variable. 

Equations (1) and (2) tell that the mean and standard deviation is equally sensitive to all input variables.  

For some parameters it is difficult to estimate the maximum or minimum value since they could be virtually 

unbounded. In such cases it is more appropriate to use a distribution whose mean and standard deviation is 

less sensitive to the extreme estimates. The mean of the PERT distribution is four times more sensitive to the 

most likely estimate than to the extremes and its standard deviation is systematically lower than that of a 

Triangular distribution. It could therefore, in some cases, be successfully used to model expert judgement. The 
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PERT distribution is a modified version of the Beta-distribution which is a parametric distribution. It is not as 

intuitive as the Triangular and should therefore be used with care. (Vose, 2000) 

The estimates  ,   and   of a Triangular distribution represents absolute values and absolute values are often 

difficult for an expert to estimate. To avoid this problem a Trigen distribution, which is also triangularly 

shaped, can be used. It makes absolute estimates unnecessary by adding a confidence level [p, q] to the 

estimated values: 

 the probability that the parameter value is below   ( ) 

 the probability that the parameter value is below   ( ) 

This distribution is compatible with the 4-step procedure developed by Speirs-Bridge et al (2010) which 

produces a 3-point estimate and a confidence level for that estimate.   

Vose (2000) argues that a Triangular distribution’s sharp peak and straight lines produce a definite shape that 

is inappropriate to use when there is little knowledge to base the estimation on. In contrast Granger-Morgan 

and Henrion (1990) consider the sharp edges of a Triangular distribution to appropriately communicate that 

the precise shape of the distribution is unknown. They argue that its unnatural shape help to reduce over 

interpretation of results and prevent a false sense of confidence. 

3.5 Methods for Uncertainty Propagation 
Methods for uncertainty analysis are used to compare the importance of  the input uncertainties in terms of  

their relative contributions to uncertainty in the outputs (Granger-Morgan & Henrion, 1990). As mentioned in 

chapter 3.4 on uncertainty representation, there are two schools on how uncertainty should be represented. If  

a subjective perspective is taken, most probability distributions would be elicited directly from experts but 

some could also be generated from frequency data. In this way uncertainties due to natural variability and lack 

of  knowledge are combined and a quantitative measure of  the overall uncertainty in the output is obtained. 

Alternatively, an objective perspective is chosen where only probability distributions generated from frequency 

data are propagated through the model. Uncertainty due to lack of  knowledge is instead superimposed on the 

output and is hence not propagated through the original model. (Covello & Merkhofer, 1993) 

Several methods for uncertainty propagation have been developed and these can be divided into two main 

groups, analytical and numerical methods (Hammonds, Hoffman, & Bartell, 1994). Which method that is 

appropriate to use depends on the model, the problem at hand and the resources available. (Granger-Morgan 

& Henrion, 1990) 

3.5.1 Analytical methods 
Exact analytical methods for propagating uncertainty are applicable when all uncertainties in a model can be 

described with probability functions that can be combined algebraically (Vose, 2000). Such methods are 

applicable only to the simplest models; however a number of  approximate analytical techniques based on 

Taylor series expansions have been developed. These are also known as Method of  Moment techniques since 

they use the mean, variance and sometimes higher order moments to propagate and analyse uncertainty 

(Granger-Morgan & Henrion, 1990). 

The Taylor series expansion techniques express the uncertainty in the output as a function of  rates of  change 

in input variables by exchanging the models functional relationship between input and output variables with a 

simpler form (e.g. a linear, quadratic, or cubic equation). For these relationships it is possible to express the 
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mean and variance of  the output in terms of  the input moments. When the moments of  the output have 

been calculated a probability distribution can be assigned to describe it. (Covello & Merkhofer, 1993) 

First-order techniques are widely used in engineering and the physical sciences. Higher order approximations 

have been used to analyse more complex models. The Method of  Moments technique has two important 

advantages: 

 The necessary numerical calculations are often relatively simple once the algebraic analysis has been 

completed. 

 It is an instinctive approach, providing a direct way of  summing up the uncertainty contributions of  

the input variables to describe the total uncertainty of  the output.   

(Granger-Morgan & Henrion, 1990) 

However, Granger-Morgan and Henrion (1990) note that it has three disadvantages: 

 The complexity of  the algebraic analysis may increase rapidly with the complexity of  the model. 

 Because uncertainty in the output is described only by the moments of  a distribution it is difficult to 

get reliable estimates of  the tails of  the output distribution.  

 The approach uses deviations from the nominal value of  the input variables to describe the 

uncertainty in the output. It is therefore a local approach and will not be accurate when the parameter 

is associated with large uncertainties.  

3.5.2 Numerical methods 
One way of  overcoming the disadvantages of  analytical methods is to use numerical methods for uncertainty 

propagation; Monte Carlo simulation being the most important (Hammonds, Hoffman, & Bartell, 1994). 

Monte Carlo analysis is a random sampling based method for uncertainty propagation. It computes a 

probability distribution for the output variable through simulation of  multiple sets of  different input 

combinations (Covello & Merkhofer, 1993). Several different random samplings methods have been 

developed through the years, of  which Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) 

are the most commonly applied (Hammonds, Hoffman, & Bartell, 1994). 

Simple Random Sampling, also known as Monte Carlo sampling is the most basic Monte Carlo simulation 

approach. It allows input values to be drawn at random from the input value’s specified distributions. For each 

run of  the model, one value will be assigned to each input variable and these values will be used to calculate 

the corresponding output value. One run defines an input scenario and its corresponding output response. In 

a Monte Carlo analysis several runs are made and the input probability distributions will induce a probability 

distribution for the model output variable. (Covello & Merkhofer, 1993) 

The Simple Random Sampling method is entirely random; this means that samples are more likely to be drawn 

from areas with a high probability. If  too few runs are made, values in the outer ranges of  the input 

probability distributions may be underrepresented or not represented at all. Stratified sample techniques, such 

as Latin Hypercube Sampling, have been developed to ensure the inclusion of  extreme values. (Palisade 

Corporation, 1996)  

In standard Latin Hypercube Sampling, each input distribution is divided into equally large and probable 

sections. Instead of  sampling from the distribution as a whole, input values are obtained by random sampling 

from each of  these sections. The number of  sections that the distribution is divided into depends on the 

number of  iterations that are to be made during the Monte Carlo simulation. If  m iterations will be performed, 



Literature Review 

14 
 

the input distributions will be divided into m sections. Once a random number is selected from a section, no 

number will be drawn from that section again. (Hammonds, Hoffman, & Bartell, 1994)  

Due to the stratification technique used in Latin Hypercube Sampling the input values created by this method 

tend to represent the input distributions better than those obtained through Simple Random Sampling. This 

makes the LHS technique more efficient and it requires less runs for the output distribution to become stable. 

However, in cases when there are many uncertain inputs contributing to the uncertainty in the output or when 

the model is highly nonlinear, the difference in efficiency between LHS and SRS is negligible. (Granger-

Morgan & Henrion, 1990) 

The advantage of using Simple Random Sampling instead of a stratified sampling method, such as LHS, is 

that the former technique ensures independence between the input variables (Granger-Morgan & Henrion, 

1990). In @Risk independence between variables are maintained also for the Latin Hypercube Sampling 

method. For each input variable one interval is randomly selected and a value is drawn from within that 

interval. For example, when a value is drawn from interval x for variable a it does not mean that variable b is 

drawn from that interval; it is equally probable that variable b is drawn from any of the other available 

intervals. Thus, by letting the intervals be randomly selected unwanted correlation between variables is 

avoided. (Palisade Corporation, 1996) 

3.6 Sensitivity Analysis in @Risk 
In case of multiple uncertain parameters and factors it can be difficult to directly assess which of these that 

has the largest influence on the variance of the output. Sensitivity analysis is therefore an important part of the 

overall uncertainty analysis as it enables identification of the uncertain parameters or factors that drive the 

variability in the project outcome. (U.S. Environmental Protection Agency, 2001) 

Several statistical techniques can be applied to a Monte Carlo simulation to evaluate the relative importance of 

different input parameters. These techniques are collectively known as correlation and regression analysis. 

(U.S. Environmental Protection Agency, 2001) In @Risk sensitivity analysis is either performed by 

multivariate stepwise regression or by calculating Spearman rank correlation coefficients (Palisade 

Corporation, 1996).  

Multivariate stepwise regression is a technique for calculating regression values for multiple input data sets. 

The data sets are fitted to a planar equation that can generate the output data set. In @Risk, one normalized 

regression coefficient is calculated for each input variable. The regression coefficient can have any value 

between -1 and 1. A regression coefficient of 0 indicates no significant relationship between the input and the 

output. A regression coefficient of 1 (alternatively -1) indicates that 1 standard deviation change in the input 

causes a standard deviation change of 1 (alternatively -1) in the output. The goodness of fit can be tested by 

means of the squared multiple correlation coefficient (R2), which in @Risk represents the percentage of 

variation in the output that can be explained by the linear relationship. If R2 is lower than 0.60 the multivariate 

stepwise regression technique does not satisfactorily explain the relationship between the inputs and outputs. 

(Palisade Corporation, 1996) 

If R2 is less than 0.60 this is an indication of non-linearity. The use of Spearman rank correlation coefficients 

is often more robust when the relationship between the inputs and the output are non-linear (U.S. 

Environmental Protection Agency, 2001). By calculating Spearman rank correlation coefficients @Risk 

returns rank order correlation values ranging from -1 to 1. Zero indicates no correlation between the input 

and the output. Minus one indicates complete negative correlation and +1 complete positive correlation. The 
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higher the correlation between the input and the output, the more significant is the input in determining the 

output’s value. (Palisade Corporation, 1996) 

3.6.1 Graphical representation of sensitivity 
In @Risk scatterplots are used to display the relationship between the inputs and simulated output. Sensitivity 

results are presented graphically by means of tornado graphs. A tornado graph displays the input parameters 

that have the largest impact on the variability of the output results. @Risk version 5.0 allows for display of 

tornado graphs based on three different kinds of data sets – Regression coefficients, Regression (Mapped 

values) and Correlation coefficients. (Palisade Corporation, 2010) 

Correlation coefficients are based on the Spearman rank correlation coefficients and the regression 

coefficients are calculated by Multivariate stepwise regression technique. The length of the bar in the tornado 

graph represents the size of the regression or correlation coefficient. A tornado graph that shows mapped 

values is also based on the multivariate stepwise regression technique but instead of displaying regression 

coefficients between -1 and 1 it shows the amount of change in the output due to a +1 standard deviation 

change in the input. (Palisade Corporation, 2010) 
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4. Introduction to the Two Underlying Models 

This chapter gives an introduction to the two models upon which the uncertainty analysis of Posten’s CO2 

reduction project is based. DNV’s effect calculation model developed for calculating the effect of Posten’s 

CO2 reduction project is described and the chapter closes with an overview of Det Norske Veritas (DNV) 

methodology for uncertainty analysis of public investment projects. 

4.1 Effect Calculation Model 
The division Logistics is divided into three business units; Cargo, Supply Chain and PTT, see figure 2. Each 

business unit within Logistics has a separate action plan for how CO2-emissions are to be reduced. The same 

general model is applied to each action plan creating one effect calculation model for each division. (Posten 

Norge AS, 2010) 

 

Figure 2 – General structure of the effect calculation model for Posten's project to reduce CO2 emissions. 

Initially, the effect is calculated for each respective business area. Calculations are performed in excel and a 

separate spread sheet is used to share input parameters to the model. The three models only differ in the 

planned degree of implementation. Finally, the amount CO2 reduced within the division Logistics is gained by 

calculating the sum of the results for the three business areas. (Posten Norge AS, 2010) 

4.1.1 General calculation procedure 
Generally, the effect of the measures is calculated in the following order: 

1. Efficiency measures that reduce the transport demand (eg. Route optimization) 

2. Optimization measures that reduce the average fuel consumption (eg. Ecodriving) 

3. Operational or technological measures that reduce CO2 emissions (eg. Alternative vehicles) 

Efficiency measures may either be assumed to reduce average fuel consumption or to decrease the number of 

vehicles in the vehicle fleet. The total effect of each measure is calculated as the difference between the 

baseline and the altered emission level after implementation of the planned measures. (Posten Norge AS, 2010) 



Uncertainty Analysis as a Tool to Improve Corporate CO2 Management 

17 
 

 

4.1.2 Interplay between actions 
The measures are implemented at different rates over a certain time period. To simulate reality as accurately as 

possible it is important to consider interplay between measures. By calculating the effect of each measure 

successively, co-variation between measures is accounted for and overestimation of effects is evaded. (Posten 

Norge AS, 2010)  

 

Figure 3 - Interplay between measures that reduce fuel consumption and measures that cause changes to the vehicle fleet. 
Baseline data is put into the first measure that decreases the average fuel consumption. The baseline data is then 
successively altered as it is used as an input for the upcoming measures. 

The DNV Effect Calculation model is based on MS Excel and calculates the effect of the individual measures 

over a five year period. Figure 3 shows an example of how interplay between measures that reduce fuel 

consumption and measures that cause changes to the vehicle fleet have been accounted for. The effect of each 

measure is calculated successively, making continuous changes to the input parameters on average fuel 

consumption and the number of vehicles. This means that if the number of vehicles or the average 

consumption is changed by one measure, baseline data is re-calculated and used as input data for the next 

measure. As the baseline data is propagated through the model, overestimation of the effect of measures that 

cause changes to the vehicle fleet is evaded. The effect of the individual measures is summed up to calculate 

the effect on a business unit level. (Christiansen, 2012) 

4.1.3 Net Present Value 
In addition, the DNV Effect Calculation model accounts for operational and capital expenses. Profits and 

expenditures are estimated and calculated for each individual measure creating cash flows for the five year 

period. These are used as an input to calculate the Net Present Value (NPV) of the individual measures. The 

total NPV of the action plan is calculated as the sum of the NPV’s of the individual measures.  
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4.2 Uncertainty Analysis of Public Investment Projects 
Det Norske Veritas, Advansia and Samfunns- og næringslivsforskning AS (KSG) has entered into a 

framework agreement with the Norwegian Ministry of Finance regarding the performance of quality assurance 

assessments of major public investment projects (NTNU - Concept programme, 2012). In line with this 

agreement DNV has developed a MS Excel model for uncertainty analysis of project investments. The model 

can be adjusted to fit the project in question and treats uncertainty in three steps at two different levels of 

detail, see figure 4.  

 
Figure 4 – General structure of the DNV’s MS Excel model for uncertainty analysis of project investments. 

Uncertainty is propagated through the model by means of two different methods; Monte Carlo simulation in 

@Risk and a simplified version of the Successive calculation method. The latter, an analytical method, is being 

used as a built in self-check of the model. The identified parameter uncertainties, uncertainty drivers and event 

uncertainties are assigned probability distributions and the size of the project investment is calculated as a sum 

of the contribution from the different uncertainty sources. (KGS, Rapport nr: 2009‐0680) 

4.2.1 Parameter uncertainty 
Parameter uncertainty falls into the category of operational uncertainty described in chapter 3.3 and step 1 of 

the model accounts for uncertainty in input parameters. In the case of uncertainty analysis of project 

investments parameter uncertainty refers to the uncertainty in the true value of cost elements within the 

project budget. Each cost unit is assigned a 3-point estimate that is represented by a Trigen-distribution in 

@Risk. If the cost element is dependent on both the number of units and cost per unit, a 3-point estimate is 

assigned to each respectively. The total uncertainty in the cost element is obtained through multiplication of 

the two probability distributions. (KGS, Rapport nr: 2009‐0680) 
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4.2.2 Uncertainty drivers 
The cost of the defined cost elements is estimated under a set of assumptions about external and internal 

circumstances. These assumptions can be based on experience or on other sources of information that 

strengthens the belief that reality will behave in a certain way. Any uncertainty associated with the assumptions 

is simulated by means of uncertainty drivers. (KGS, Rapport nr: 2009‐0680) 

Uncertainty drivers represent external or internal factors that affect either the whole or parts of the project. It 

is certain that they will affect the project outcome but it is unknown how large the effect will be. The 

uncertainty drivers affect the cost elements with a percentage variation – an increase or a decrease depending 

on if there is a risk for going over budget or possibility to decrease project cost. (KGS, Rapport nr: 2009‐0680) 

To quantify the effect of an uncertainty driver it is important to thoroughly describe the external and/or 

internal factors it represents. A best, worst and most-likely scenario for each uncertainty driver should be 

described as well as its potential effect on the project. As an uncertainty driver may affect several cost 

elements simultaneously it is a way of modeling co-variation into the model. (Austeng, Midtbø, Jordanger, 

Magnussen, & Torp, 2005a) 

4.2.3 Event uncertainty 
Uncertainty drivers with low probability of occurrence are treated as events in the third step of the model. 

Event uncertainty represents events that would affect revenue or costs should they occur. The probability of 

the event occurring is described by a binary distribution while the uncertainty in consequence is described by a 

3-point estimate, represented by a Trigen-distribution. Event uncertainty is not assumed to affect the cost 

elements directly but is instead evaluated through a possible total effect on the project. This value is then 

added to the total project cost. (KGS, Rapport nr: 2009‐0680) 

4.2.4 Correlation 
The model may contain two or several input variables that are related to each other. For example, when a 

‘high’ value is sampled from one distribution, another input variable is also likely to return a ‘high’ value. To 

avoid illogical results, it is important to correlate these input variables. @Risk provides methods for 

correlating probability distributions using rank-order correlation coefficient values. (Palisade Corporation, 

2010) The methods provided often generate errors when simulations are run and correlations should therefore 

be built into the model to the extent possible. One method used at DNV to build correlation into a model is 

conditional branching. (Binz, 2012) This technique makes use of simple logical statements and variable input 

arguments to define an input distribution function that is correlated or dependent on another input. (Palisade 

Corporation, 2010) 
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5. An Uncertainty Analysis Model for Posten’s CO2 Reduction 
Project 

This chapter describes the steps taken to merge DNV’s Uncertainty Analysis model with DNV’s Effect 

Calculation model to create an Uncertainty Analysis model for Posten’s CO2-reduction project.  

 

Figure 5 – Changed structure of the Uncertainty Analysis Model where the Effect Calculation Model replaces step 1 in the 
original model. Step 3 has been excluded and event uncertainties have instead been incorporated into the general 
uncertainty drivers. 

The first section presents the identified uncertainties associated with the action plan, parameter uncertainties 

and uncertainty drivers. Section two describes the modifications done to DNV’s Effect Calculation model to 

account for additional interplay. The last section describes how DNV’s Uncertainty Analysis model has been 

adjusted to account for the identified uncertainties and how it has been combined with DNV’s Effect 

Calculation model to account for interplay between individual measures. 
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5.1 Identification and Categorization of Uncertainties 
Uncertainty associated with Greenhouse gas (GHG) reductions can be categorized into either “scientific 

uncertainty” or “estimation uncertainty”. Scientific uncertainty could be described as lack of knowledge on the 

true value of an emissions factor or of the processes involved, while estimation uncertainty arises due to 

monitoring and/or quantification errors. (The GHG Protocol, 2003) In a CO2-reduction project additional 

sources of uncertainty arise, these are connected to the corporation’s and subcontractor’s ability to implement 

measures as well as to various external factors.  

Chapter 3.1 presents four different sources of project uncertainty which should be considered when 

identifying uncertainty related to a project. Considerable advantage could be gained by combining knowledge 

of uncertainty associated with GHG reductions with sources of uncertainty within project management. Due 

to the many sources of uncertainty the identification process has been performed in two steps; starting with an 

identification of key parameter uncertainties followed by an assessment of external and internal factors that 

could have an overall effect on the outcome of the project. The identified uncertainties have been summarized 

in table 1. 

Table 1 – Summary of the identified parameter uncertainties and uncertainty drivers with a potential to affect the outcome 
of the project. 

Effect calculation parameters 
(Estimate and Operational  
uncertainty) 

Cost parameters 
(Estimate and Operational 
uncertainty) 

Uncertainty drivers 
(Contextual, Operational and 
Scenario uncertainty) 

Effect of Ecodriving Course cost Ecodriving Biofuel availability and  

Effect of Speed Limitation Cost Nitrogen filling facility infrastructure 

Effect of Nitrogen Tires Fuel price Diesel Market structure  

Emission reduction B30 Fuel price B30 Technological development 

Emission reduction B100 Leasing cost B30 Infrastructure – Modal shift 

Emission reduction Biogas Maintenance cost B30 Political framework 

Emission reduction Biogas hybrid Fuel price B100 Posten’s ability to implement  

Emission reduction El-hybrid Leasing cost B100 measures 

Emission reduction Electric vehicles Maintenance cost B100 Subcontractors ability to  

Emission reduction Modular Lorries 

Emission Electricity 

Emission District Heating 

Emission Heating Oil 

Emission Propane 

Emission per tonkm Air Domestic 

Emission per tonkm Air European 

Emission per tonkm Air International 

Emission per tonkm Rail Electric 

Emission per tokm Rail Diesel 

Emission per tonkm Container ships 

Increased consumption B30 

Increased consumption B100 

Increased consumption Biogas 

Increased consumption Biogas hybrid 

Fuel price Biogas 

Leasing cost Biogas 

Maintenance cost Biogas 

Fuel price Hybrid 

Leasing cost Hybrid 

Maintenance cost Hybrids 

Fuel price Electric  

Leasing cost Electric 

Maintenance cost Electric  

Cost Electricity 

Cost District heating 

Cost Heating Oil 

Cost Propane 

Capex Modal Shift 

Opex Modal Shift 

implement measures 
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5.1.1 Uncertain parameters in the effect calculation model 
An example of a measure whose reduction potential is subject to multiple types of uncertainty is Ecodriving. 

Ecodriving is subject to operational uncertainty as the achieved effect is dependent on the driver’s driving 

style before taking a course in Ecodriving and on the type of engine within the car. Additionally, it is 

dependent on contextual uncertainty since the reduction potential depends on whether or not the traffic 

conditions allow the driver to adapt its driving style, if the traffic density is high the reduction potential of 

Ecodriving decrease (Statens vegvesen, 2010). As it is difficult to measure the effect of Ecodriving it is also 

subjected to estimate uncertainty.  

The effect calculations of each measure include one or several parameters subjected to scientific, estimation 

and/or operational uncertainty. Focus has been put into identifying key uncertain parameters that play a 

crucial role in determining the final effect of a measure. These parameters represent the parameter uncertainty 

within the model and include the scientific and estimate uncertainty as well as parts of the operational 

uncertainty. Parameter uncertainty may be reduced if the organisation expands its information basis. The input 

values for the identified parameter uncertainties are given in Appendix F. 

5.1.2 External and internal factors that induce uncertainty 
When assessing the probability of project success it is necessary to look beyond the parameter uncertainty and 

to make use of the current knowledge within the field of uncertainty analyses of project investments. Just as a 

political decision or the market structure can affect the profitability of a project investment, factors such as the 

availability of biofuels or future political decisions may have a large effect on the CO2-reduction potential of a 

CO2-reduction project. Contextual, operational and scenario uncertainty that affects implementation has been 

incorporated into uncertainty drivers with an overall effect on the project outcome. 

Operational uncertainty connected to uncertainty drivers is made up by internal factors that determine the 

organisations ability to implement measures. By careful management, involvement and engagement of 

employees this uncertainty can be reduced.  

External factors make up the contextual and scenario uncertainty related to the project. The organisation in 

charge of the CO2-reduction project has limited or no control over the external factors and its ability to 

reduce such uncertainty is very limited.  

The identified internal and external factors have been grouped into 7 generalized uncertainty drivers with a 

potential to impact different parts of the project plan, see Appendix E. 

5.1.3 Uncertainty in implementation costs 
The degree of implementation of any CO2-reducing measure is also highly dependent on implementation 

costs. Consequently, parameter uncertainty and uncertainty drivers related to project costs have also been 

identified.   
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5.2 Modifications to the Original Effect Calculation Model 
An analysis of interplay between measures was performed to investigate if any simplifications made during the 

development of DNV’s Effect Calculation model could have a significant impact on the project outcome.  

5.2.1 Analysis of Interplay between Measures 
The analysis was performed through a semi-quantitative study of the results generated when the input 

parameters to one measure were altered. By changing the degree of implementation of one measure its effect 

with respect to each of the other measures was analysed. If it was found that there was an effect a number one 

(1) was set to indicate that interplay existed and had been accounted for, no effect was symbolized with zero 

(0) and interplay that had not been accounted for was instead assigned minus one (-1). The results of the 

analysis are shown in figure 6.  

 
Figure 6 – The results of the analysis of interplay between measures. The effect of each action was reviewed with respect to 
each of the other measures. If no interplay was found the coordinate in the matrix representing the relationship was 
assigned a zero. If interplay was found it was assigned 1 or -1 depending on whether or not the interplay had been 
accounted for in DNV’s Effect Calculation model. 

In the model it is assumed that efficiency measures and optimization measures related to the vehicle fleet 

decrease the average fuel consumption of vehicles. Column A1 in figure 6 indicate the effect of Ecodriving 

(A1) on measures A2-A14 respectively if the effect or degree of implementation of A1 changes. As the effect 

or degree of implementation of Ecodriving changes, the successive calculation methodology propagates the 

effect causing a lower (alt. higher) CO2-emission reduction for the consecutive measures in the model. Figure 

3 in chapter 4.1.2 describes how the effect calculation model accounts for the effect of reduced average fuel 

consumption (measures A1-A4) on measures that cause changes to the vehicle fleet (A5-A10 and A12-A13). 

Similarly, column A5 in figure 6 examines the interplay between the introduction of B30 (A5) and measures 

A1-A4 and A6-A14. If additional vehicles are converted into B30 vehicles it would result in a decreased effect 

of the efficiency and optimization measures. In the DNV Effect Calculation model the baseline data on the 

number of vehicles and average fuel consumption is set as an input to the first efficiency measure within the 

action plan. This means that the effect of efficiency and optimization measures is calculated based on the 

initial number of vehicles in the vehicle fleet. As the operational and technological measures are implemented, 

the actual number of diesel vehicles in the vehicle fleet decreases with time. Hence, there is a risk that the 

effect calculation model causes misleadingly high results on the reduction potential of the project. 
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5.2.2 Modifications to Account for Additional Interplay 
DNV’s Effect Calculation model has been expanded to more accurately account for interplay between 

measures that cause changes to the vehicle fleet and measures that decrease average fuel consumption. 

Baseline data on the number of vehicles in the vehicle fleet has been set as an input to the first measure within 

the action plan that cause changes to the vehicle fleet, see figure 7.  

 

Figure 7 – Modified structure of the Effect Calculation model. The modified structure accounts for the effect of measures 
that cause changes to the vehicle fleet on measures that reduce fuel consumption. 

Data on the number of vehicles is successivly altered as the following measures are implemented. The effect 

of the efficiency and optimization measures is then calculated based on the number of vehicles in the vehicle 

fleet after the implementation of measures that cause changes to it.  

In order not to underestimate the effect of the efficiency and optimization measures the number of 

introduced alternative vehicles is summarised. The effect of the efficiency and optimization measures is then 

calculated for diesel and alternative fuels/vehicles separately. An example of the structure of the effect 

calculation procedure for a measure that reduces average fuel consumption is given in Appendix G. 
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5.3 The Structure of the Model 
The general structure of the Uncertainty Analysis Model for Posten’s CO2-reduction project is described by 

figure 8. It is based on a merger of DNV’s Effect Calculation Model, developed to calculate the effect of 

Posten’s CO2-reduction project, and DNV’s Uncertainty Analysis model, a well-applied MS Excel model for 

uncertainty analysis in @Risk. 

  

Figure 8 – The general structure of the uncertainty analysis model for Posten’s CO2-reduction project for the division 
Logistics. The effect is calculated based on baseline data in 2010. Parameter uncertainties are incorporated into the three 
effect calculation models, for the business units PTT, Cargo and Supply Chain respectively. The effect of the uncertainty 
drivers is superimposed on the calculated effect of the measure within the three Effect Calculation models.  

At the first level of the merged model, parameter uncertainties are incorporated into the Effect Calculation 

Model for each business unit. The parameter uncertainties induce uncertainty into the effect of each individual 

measure and the output effect is represented by a distribution instead of a point value. 

At the second level, the identified uncertainty drivers are superimposed on the effect distribution of each 

measure as calculated by the business unit’s Effect Calculation Model. In contrast, when performing an 

uncertainty analysis of a project investment, the effect of the uncertainty drivers is directly superimposed on 

the parameter uncertainties. 

Finally, the results of the measures and the uncertainty drivers are combined and an expression of the 

distribution for the CO2-reduction potential of the division Logistics’ action plan is derived.  
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5.3.1 Handling parameter uncertainty  
The calculation of the CO2-reduction potential of the action plan includes several uncertain parameters. To 

get an accurate image of the uncertainty connected to the outcome of the project, this uncertainty needs to be 

propagated through the effect calculation model. Instead of estimating the uncertainty of each measure, as is 

done with the cost elements in DNV’s Uncertainty Analysis model for project investments, the uncertainty in 

each parameter is defined and then applied within the effect calculation model. The effect calculation model 

replaces step 1 in DNV’s Uncertainty Analysis model. Thus, the effect calculation model treats parameter 

uncertainty at the lowest level practically possible. The parameter uncertainty is propagated through the model 

by means of Latin Hypercube sampling. By propagating parameter uncertainties through each Effect 

Calculation Model effects induced by interplay between uncertain parameters is accounted for. 

5.3.2 Handling uncertainty drivers 
Uncertainties that are not related to any specific parameter in the effect calculation model are superimposed 

on the results from the Effect Calculation Model; these represent the uncertainty drivers in DNV’s 

Uncertainty Analysis model. An example of an uncertainty driver is ‘Biofuel Availability and Infrastructure’, 

which affects the implementation potential of alternative fuels and vehicles. The seven main identified 

uncertainty drivers and their relation to the different measures is summarized in figure 9. A more thorough 

description of each uncertainty driver and their potential impact on the different measures is given in 

Appendix E.  

 

Figure 9 – The uncertainty drivers affect different parts of the project plan. The matrix describes which and to what degree 
the uncertainty drivers affect the different measures. Biofuel Availability and Infrastructure is for example assumed to have 
an effect on all measures that introduce alternative fuels and vehicles to the vehicle fleet. 

As in DNV’s Uncertainty Analysis model the uncertainty drivers are affecting the results from step 1 in the 

model by a percentage change. A matrix, see figure 10, containing the factors in figure 9 describes which and 

to what degree the different uncertainty drivers affect the implementation of a certain action.  
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Figure 10 – Extract from the Uncertainty Analysis Model for Posten’s CO2-reduction project. The matrix shows that the 
uncertainty drivers U.3 and U.6 may affect the implementation and effect of Ecodriving. 

To calculate the projects total CO2-reduction potential the percentage change induced by the uncertainty 

drivers is added to the results from the Effect Calculation Model, see equation 3. 

                                  ( ) 

Where   represents the effect due to the implementation of an action,   is the percentage change induced by 

the uncertainty driver and   is the factor in the matrix describing to what degree the action is affected by the 

uncertainty driver.  

5.3.2 Assigned probability distributions  
According to Vose (2000) parametric distributions should only be used when information on the behaviour of 

a parameter comports with the theory behind the distribution. Information that supports the use of a specific 

parametric distribution has not been attained for any of the identified uncertainties. Consequently, non-

parametric distributions have been used throughout the model. 

The most commonly used non-parametric distribution is the triangular distribution. It sets the probability of 

occurrence for the estimated best and worst case to zero (Palisade Corporation, 1996). Hence, if input 

parameters are defined by the triangular distribution extreme values are not taken into account during 

simulation. To avoid this problem all of the identified parameter uncertainties and uncertainty drivers have 

been described by the non-parametric Trigen-distribution in @Risk.  

As described in chapter 3.4 the Trigen-distribution complements the uncertainty estimate with a confidence 

interval. In addition to including best and worst cases the confidence interval takes height for the risk that 

heuristics biases has caused overconfidence in the attained expert judgements. Equation 4 describes how the 

Trigen-distribution is assigned to an estimate in @Risk. In this case, the first three entries into the @Risk 

Trigen-function represent the minimum, most likely and maximum effect of Ecodriving. The last two entries 

represent the confidence interval [p,q]. 

                               (              )      ( ) 

A confidence level of 80% has been set to all of the attained uncertainty estimates. Thus, during simulation 

the Trigen-distribution will account for a 10% lower minimum and a 10% higher maximum value than would 

the triangular distribution. Estimates based on values found in the literature have been assigned the same 

confidence interval. 
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By means of the function RiskTruncate in @Risk, distributions within the model have been truncated not to 

include unrealistic values. For example, the effect of Ecodriving has been truncated not to include negative 

values since it is unlikely to increase CO2-emissions, see equation 5. 

                               (                           (  ))      ( ) 

A list of all parameter uncertainties taken into account and their input value into the effect calculation model 

can be found in Appendix F. Correspondingly, input values for the uncertainty drivers are found in Appendix 

E. 

5.3.4 Handling correlation between variables  
The developed model contains a number of parameters and uncertainty drivers that needs to be correlated. 

For example, the input parameter ‘emission reduction B30’ is dependent on the outfall of ‘emission reduction 

B100’ and the uncertainty driver ‘Biofuel availability and infrastructure’ (U1) is highly dependent on the 

uncertainty diver ‘Political framework’ (U5). For example, political decisions and subsidies can increase 

investor confidence by creating financial incentives for investments in biofuel production and infrastructure.  

Correlation between parameter uncertainties and uncertainty drivers have been built into the model by means 

of conditional branching. The distributions for parameters that are dependent on another variable have been 

divided into two distributions, e.g. the uncertainty driver U1 has been divided into two distribution; U.1.1 and 

U.1.2, see figure 11. Distribution U.1.1 represents U1 when the political conditions are disadvantageous; U.1.2 

on the other hand represents U1 when political conditions are favourable. 

 

Figure 11 – The two distributions, U.1.1 and U.1.2, describing the uncertainty driver ‘Biofuel Availability and Infrastructure’ 
(U.1). Dividing the probability distribution in two enables conditional branching. 

By means of an ‘if statement’ the two probability distributions are correlated to U5: 

             (                )     ( ) 

                (  (                ))      ( ) 

When U5 (equation 6) is negative the cost of the measures it affects decrease. When implementation costs 

decrease it is likely that the degree of implementation increases. The ‘if statement’ implies that if U5 is positive 

then a value from distribution U.1.1 should be sampled, see equation 7.  
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6. Results and Analysis 

The uncertainty analysis was performed in @Risk by means of Latin Hypercube Sampling. As Posten’s aim is 

to reduce CO2 emissions with 30% before 2015 the analysis endpoint has been set to be the percentage 

reduced emissions in 2015. The squared multiple correlation coefficient (R2) was found to be above 0.6 for all 

outputs and throughout the analysis multivariate stepwise regression was used to analyse the sensitivity of 

input variables. This chapter presents the results of the uncertainty analysis and ends with a discussion about 

the possibilities of improving project efficiency and effectiveness. 

6.1 Percentage Reduced Emissions in 2015 
Inserting point estimates into the model results in an expected CO2-reduction of 12.58% in 2015 while the 

total uncertainty model results in a mean of 10.4% reduced with a standard deviation of 3.5%. When only 

parameter uncertainties are considered the mean percentage reduced increases to 13.4%, with a standard 

deviation of 2.89%. Results of the partial and total uncertainty analysis respectively are shown in figure 12.  

 

Figure 12 – The red full curve displays results of the uncertainty analysis when uncertainty drivers have been accounted for 

and the blue dotted line the results when only parameter uncertainty is considered. The red full line is statistically dominant 

over the blue dotted line. In this case it means that the uncertainty drivers have an overall negative impact on the results. 

To improve project results, Posten should strive to decrease the effect of external and internal factors. 

The dashed line displays the result of the partial model, when uncertainty drivers are excluded, while the full 

line displays the result of the total model. A comparison between the partial and the total uncertainty analysis 

show that the uncertainty drivers have an overall negative impact on the CO2-reduction potential of the 

project. Unless more efficient measures are developed or new political incitements for investments in green 

technology are created, the results of the project will not be higher than the results gained by the partial model.  
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6.1.2 Sensitivity analysis  
To identify the most influential uncertainty drivers and parameter uncertainties a sensitivity analysis was 

performed on the output. According to the tornado diagram, see figure 13, the most sensitive input 

parameters and uncertainty drivers are ‘Emission reduction B30’ (E.1), ‘Subcontractor’s ability to implement 

measures’ (U.7), ‘Biofuel availability and infrastructure’ (U.1), ‘Technological development’ (U.3) and ‘Effect 

of Ecodriving’ (A.1). A full list of ID’s for the input parameters is found in Appendix E and F. 

 

Figure 13 – The tornado graph displays the input parameters that have the largest impact on the variability of the 

percentage reduced emissions in 2015. The mapped regression value for E.1 means that if E.1 is changed with a +1 standard 

deviation the reduced emissions in 2015 will increase by 1.94%. If, on the other hand, the standard deviation of E.1 is 

changed by a -1 standard deviation the reduced emissions in 2015 will decrease by 1.94%. The same reasoning applies to all 

of the other variables in the tornado graph, except for G.1 (Emission reduction Electric vehicles). An increase in G.1 will 

instead cause a decrease in the percentage reduced emissions. The difference depends on how the variables have been 

defined in the model. E.1 is defined as the percentage reduced if a vehicle is converted; hence an increase of this factor 

would cause an increased reduction. G.1 is instead defined as the emissions per consumed kWh and an increase of this 

parameter will therefore cause a decreased reduction. 

6.2.3 Output target scenario analysis 
By looking at a worst and a best case scenario it is possible to get an idea of what makes the difference 

between project success and failure. This method of scenario analysis should not be confused with the way 

event uncertainty is modelled in the DNV Uncertainty Analysis model. It is simply a technique of finding out 

what parameters or uncertainty drivers to monitor and control in order to reach a desirable result or avoid a 

certain risk scenario.  
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The aim of the scenario analysis is to find the input variables that are significant if the output is to meet the 

entered scenario. Two scenarios were analysed; the first one setting the output target to below 7.50% and the 

second to above 12,73% reduced emissions in 2015, see figure 14. 

 

Figure 14 – The percentage reduced emissions in 2015 with the 25th and 75th percentiles marked. The 25th percentile is 

7.50% while the 75th percentile is 12.73%. Two scenarios were analysed, one where the target was set to the output being 

lower than the 25th percentile (between 2.48% and 7.50% CO2 emissions reduced) and the other where the target was set to 

the output being higher than the 75th percentiles (between 12.73% and 23% emissions reduced). 

The worst case scenario has been defined as the percentage reduced in 2015 being lower than its 25th 

percentile, which is equal to an emission reduction lower than 7.50%. Figure 15 shows the key inputs affecting 

the output in the worst case scenario. When the percentage reduced annual emissions is below 7.50% the key 

inputs affecting the output are the ‘Subcontractors ability to implement measures’ (U.7), ‘Posten’s ability to 

implement measures’ (U.6), ‘Biofuel Availability and Infrastructure’ (U.1), ‘Infrastructure – Modal Shift’ (U.4) 

and ‘Technological development’ (U.3). 

To avoid the worst case scenario Posten needs to ensure that the Subcontractors fulfil their commitments and 

that the own organization implement the measures that are in their control. It is also important that Posten 

communicates with external shareholders about their need of biofuel and modal shift infrastructure. The 

worst case scenario is also affected by technological development which is an uncertainty driver that Posten 

has very limited control over. 
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Figure 15 – Tornado graph for the worst case scenario where the output target has been set to result being lower than the 

25th percentile value. The input percentiles that risk causing this scenario are a percentile below 14.96% for U.7, 18.93% for 

U.6, 16.42% for U.1, 19.38% for U.4 and 19.71% for U.3. 

 

Figure 16 – Tornado graph for the best case scenario when the output target has been set to results being higher than the 

75th percentile value. The input percentiles needed to create the scenario of an emission reduction between 12,73% and 

23%  are a percentile above 79.4% for E.1, 72,21% for U.3, 73.78 for U.1, 69,01% for U.1 and 74.27% for U.7. 
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The best case scenario has been defined as the percentage reduced emissions in 2015 being higher than its 75th 

percentile. Figure 16 shows the input variables which must attain values in their respective upper percentile if 

the percentage reduced emissions in 2015 is to be above 12.73%. The key inputs affecting the best case 

scenario are ‘Emission reduction B30’ (E.1), ‘Technological development’ (U.3), ‘Biofuel Availability and 

Infrastructure’ (U.1), ‘Infrastructure – Modal Shift’ (U.4) and ‘Subcontractors ability to implement measures’ 

(U.7). 

6.2.4 Project costs 
Costs are presented as negative values and profits as positive values. The mean cost per ton CO2-reduced 

during the period 2010 to 2015 is -257 NOK, with a standard deviation of 2 456 NOK. The 90% confidence 

level for the cost per ton CO2-reduced is -4 354 to 3 620 NOK, see figure 17. 

 

Figure 17 – Cost per ton CO2-reduced during the period 2010 to 2015. The mean cost per ton CO2-reduced is -256 NOK with 

a standard deviation of 2 456 NOK. The expected cost of the project is slightly shifted towards a net loss. 

Sensitivity analysis results for cost per ton CO2-reduced is shown in figure 18. The most sensitive factors are 

‘Fuel price Diesel’ (CE.1), ‘Fuel price B30’ (CE.12), ‘Effect of Ecodriving’ (A.1), ‘Capital Expenses Modal 

Shift Air to Road’ (CI.4), ‘Fuel price B100’ (CE.23), ‘Operational Expenses Road to Rail’ (CI.7) and ‘Effect of 

Nitrogen Tires’ (C.1) 
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Figure 18 – The tornado graph displays the input parameters that have the largest impact on the variability of the cost per 

ton CO2-reduced during the period 2010 to 2015. The most influential factors are the fuel price for diesel (CE.1), fuel price 

for B30 (CE.12) and the effect of Ecodriving (A.1). If the effect if Ecodriving is increased by one standard deviation the cost 

per reduced ton CO2 is decreased by 539 NOK, resulting in a net profit per ton CO2-reduced. If instead the fuel price for 

B30 is increased by one standard deviation the cost per ton CO2 is increased by 1 356 NOK resulting in an increased net 

cost per ton CO2-reduced. 

The cost effectiveness of the project increases with the fuel price of diesel, the effect of Ecodriving and 

Nitrogen Tires. Cost effectiveness is instead reduced if the fuel price for B30, the capital expenses for modal 

shifts from air to road, the fuel price of B100 and the operational expenses for modal shifts from road to rail 

is increased. 
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6.1.1 Effect of uncertainty drivers 
Table 2 shows the total effect of the uncertainty drivers that affect the amount CO2-reduced. 

Table 2 – The effect and standard deviation in ton CO2 of the uncertainty drivers that affect the amount CO2 reduced 
during the time period 2010 to 2015. 

Uncertainty driver Mean effect 
(ton CO2) 

Standard deviation 
(ton CO2) 

Biofuel Availability and Infrastructure (U.1) -19 998 15 825 

Technological Development (U.3) 7 660 6 644 

Infrastructure – Modal Shift (U.4) -4 073 2 843 

Posten’s ability to implement measures (U.6) 

Subcontractor’s ability to implement measures (U.7) 

-1 150 

-22 726 

2 560 

18 747 

Total effect -40 287  

 

Table 3 shows the total effect of the uncertainty drivers that affect project costs.  

Table 3 – The total effect and standard deviation in NOK of the uncertainty drivers on project costs during the time period 
2010 to 2015. 

Uncertainty driver Mean effect 
(NOK) 

Standard deviation 
(NOK) 

Market structure (UC.2) -1 243 700 9 278 188 
Political framework (UC.5) 3 133 410 11 910 149 

Total effect 1 889 710  

 

6.1.3 Effect of B30 and Ecodriving 
The tornado graph for the output ‘Percentage reduced emissions in 2015‘ displayed E.1 and A.1 as the most 

sensitive parameter uncertainties. Both E.1 and A.1 are positively correlated with the output with Pearson 

Correlation coefficients of 0,956 and 0,361 respectively. In agreement with the sensitivity analysis results, the 

correlation coefficients imply that the percentage reduced emissions in 2015 is more dependent on E.1 than 

on A.1.  

Figure 19 shows the total effect, in ton CO2 reduced, of measures E.1 and A.1 during the period 2010 to 2015. 

The red and blue curves represent A.1 with and without the influence of uncertainty drivers, whereas the 

green and lilac curves show the effect of E.1 with and without the influence of uncertainty drivers.   

The differences in effect between the two curves for A.1 and E.1, respectively, indicate that E.1 is affected by 

additional external and internal factors. Hence, the implementation of E.1 is associated with a higher degree of 

uncertainty and will be harder for Posten to steer than A.1. 
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Figure 19 – Total amount of CO2-reduced due to measures B30 (E.1) and Ecodriving (A.1). The red curve represents the 

effect of A.1 when influenced by uncertainty drivers as well as parameter uncertainties and the blue curve shows the effect 

of A.1 when only parameter uncertainties are accounted for. Similarly, the blue curve represents the total effect of E.1 when 

uncertainty drivers are accounted for while the lilac curve shows the effect of E.1 when only parameter uncertainties are 

taken into account. 
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6.2 A Biogas Scenario 
The maximum percentage reduced emissions that can be achieved by the initial action plan is 22.7%, as 

indicated by figure 12. Posten’s goal is to reduce CO2 emissions by 30% in 2015. Hence, it is interesting to 

explore alternative designs of the action plan to see if there is a more effective way to reduce emissions.  

The effect of B30 has been identified as one of the key parameters affecting the percentage reduced emissions 

in 2015. B30 has a relatively low reduction potential and the effectiveness of converting vehicles to use 

biodiesel as a fuel has been tested by altering the project plan. The number of vehicles converted to B30 in the 

initial project plan was converted to biogas hybrids and the vehicles previously converted to use B100 as a fuel 

was converted to biogas vehicles.   

6.3.1 Percentage reduced emissions in 2015 
The change of the action plan results in a mean of 17.6% reduced emissions in 2015 with a standard deviation 

of 7.02%. With a confidence level of 90% the reduced emission will be between 7.32% and 29.47%, see figure 

20. This is an increase compared to the percentage reduced according to the initial project plan. 

 

Figure 20 – Percentage reduced emissions in 2015 when the measures for biodiesel are repleced by biogas measures. The 
mean persentage reduced is 17.6% and the standard deviation is 7.02%. This corresponds to a 69% higher mean, a 98% 
higher maximum and a 22% higher minimum compared to the percentage reduced emissions in 2015 caused by the initial 
project plan (from 10.5% to 17.6%, 22,7% to 45% and 2.89% to 3.53% respectively). 

Figure 21 shows the sensitivity analysis results for the biogas scenario. The most sensitive input parameters 

and uncertainty drivers are ‘Emission reduction Biogas’ (E.4), ‘Subcontractors ability to implement measures’ 

(U.7), ‘Biofuel Availability and Infrastructure’ (U.1), ‘Technological development’ (U.3) and ‘Posten’s ability to 

implement measures’ (U.6). 
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Figure 21 – The tornado graph displays the input parameters that have the largest impact on the variability of the 
percentage reduced emissions in 2015 for the Biogas scenario. E.4 is displayed as the most sensitive parameter. The 
mapped regression value for E.4 means that if E.4 is increased by one standard deviation the reduced emission in 2015 will 
increase by 4.04%. If, on the other hand, the standard deviation of E.1 is decreased by one the output will decrease by 
4.04%. The same reasoning applies to all of the other input variables shown in the graph, except ‘Emission electricity’ (H.1) 
which if it is increased by one standard deviation causes a decrease instead of an increase of the output. 

6.3.1 Project costs 
The Biogas scenario results in a mean profit of 2 142 NOK per ton CO2-reduced with a standard deviation of 

1 974 NOK. With a confidence level of 90% the cost per ton CO2-reduced is between -518 and 5 745 NOK, 

see figure 22. The confidence level represents both a decrease in loss and an increase in profit compared to 

the initial plan.  

Sensitivity analysis results for cost per ton CO2-reduced of the changed project plan is shown in figure 23. The 

most sensitive factors are ‘Fuel price Diesel’ (CE.1), ‘Fuel price Biogas hybrid’ (CE.45), ‘Subcontractors ability 

to implement’ (U.7), ‘Emission reduction Biogas hybrid’ (E.4), ‘Biofuel Availability and Infrastructure’ (U.1), 

‘Fuel price Biogas’ (CE.34), ‘Emission reduction Ecodriving’ (A.1) and ‘Capex Air to Road’ (CI.4). 

As the fuel price for diesel increases the cost effectiveness of the project increases, if instead the fuel price for 

biogas is increased this causes a higher cost, alternatively lower profit, per ton CO2-reduced. The estimates for 

the capital and operational expenses for modal shift measures are very rough estimates and the tornado graph 

indicate the importance of specifying these costs further. 
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Figure 22 – Cost per ton CO2 reduced for the Biogas scenario during the period 2010 to 2015. The mean cost per ton CO2-
reduced is a profit of 2 142 NOK with a standard deviation of 1 974 NOK. The expected cost of the project is shifted towards 
a net profit. The standard deviation for cost of the altered project plan is decreased by 482 NOK and the mean cost is 
increased by 2 399 NOK which results in a net profit per ton CO2 reduced. 

 

Figure 23 – The tornado graph displays the input parameters that have the largest impact on the variability of the cost per 
ton CO2 reduced during the period 2010 to 2015. The most influential factors are the fuel price for diesel and biogas hybrids. 
If the fuel price for diesel is increased by one standard deviation it would result in an increased profit of 1 127 NOK per ton 
CO2-reduced. An increase of one standard deviation of the fuel price for biogas hybrids would instead increase costs per ton 
CO2-reduced by 1 118 NOK. 
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6.3 Analysis of Results 
In contrast to a point estimate of the effect of the project, the uncertainty analysis gives additional information 

about the confidence of the estimate and of which factors that have the largest influence on the outcome of 

the project.  

The comparison between the partial and the total model indicate that the uncertainty drivers induce a mean 

decrease of 3% on the overall project results. It is therefore important for Posten to identify the most 

influential uncertainty drivers and to monitor and steer them in the right direction. This observation is 

strengthened by the fact that throughout the uncertainty analysis the uncertainty drivers were displayed as 

influential factors with high potential to impact the outcome of the project.  

Project efficiency could be improved by decreasing uncertainty in the results. To decrease uncertainty in the 

results Posten should focus on gathering more information about the parameter uncertainties and uncertainty 

drivers that the tornado graphs revealed to be the most significant. It could, for example, mean that Posten 

takes the following measures to reduce uncertainty: 

 Sets demands for the Subcontractors environmental performance.  

 Further engages employees in working towards overall enhanced environmental performance.  

 Make efforts to influence the market by communicating their need for biofuel infrastructure. 

 Investigate possible suppliers for biofuels to determine production pathway. 

To improve project effectiveness Posten should monitor external factors and keep the project plan flexible. 

The gathering of more information is unlikely to improve the outcome by more than 3.5% (one standard 

deviation) while making changes to the project plan could have a far greater effect. As new information 

becomes available it is probable that the project plan needs to be reviewed in order to ensure that the 

measures that are implemented are effective.  

The analysis showed that mean percentage reduced emissions in 2015 was 10.4% with a minimum percentage 

of 2.89 and a maximum of 22.7%. As Posten aims at reducing CO2-emissions by 30% before 2015 the plan 

needs to be re-evaluated. When the initial project plan was altered to exclude biodiesel alternatives the overall 

effect of the project increased. The Biogas Scenario shows that there might be alternative options that both 

increase cost effectiveness and the probability that the CO2-reduction goal for 2015 is reached.  

It is important to monitor the implications of future environmental policies and directions, for example, it is 

possible that future policies for better air quality demands that Posten uses gas and biogas when active in city 

centres. By keeping track of which renewable alternatives that are likely to be subjected to future subsidies the 

effect of the external factors may be reduced.  

According to the EU directive on renewable energy (2009/28/EC) biofuels will only be allowed to be counted 

as renewable if their GHG reduction is 35% or higher compared to fossil fuels. The EU directive will most 

probably affect local authorities in their decisions. To increase the probability of project success it is 

recommended that Posten evaluates EU’s and the Norwegian government’s long-term strategy for renewable 

fuels. As it is questionable whether or not B30 will be accepted as a renewable fuel it is of utmost importance 

for Posten to perform an analysis of alternatives and, if a more efficient alternative is found, to change the 

action plan accordingly. 
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7. General Discussion 

In this chapter the added value of  performing an uncertainty of  a CO2-reduction project is discussed.  

7.1 Uncertainty Analysis of CO2 Reduction Projects 
When the effect of  a CO2-reduction project is calculated based on “best estimates” it results in an exclusion 

of  possibly valuable information. An uncertainty analysis enables inclusion of  information that would 

otherwise be lost. The four main reasons for performing an uncertainty analysis, as described by Granger-

Morgan and Henrion (1990), applies to CO2-reduction projects just as well as to decision and optimisation 

problems within other fields of  science.  

7.1.1 Increased transparency 
Point estimates tend to be conservative as it is common that risks that are identified are incorporated into the 

estimate. This is indicated by the results from the case study of  Posten’s CO2-reduction project where the 

point estimate showed a lower percentage reduced than the mean value gained by the partial uncertainty 

analysis model. The deterministic model fails to take positive risks into account. 

It is important for a decision maker to know the assumptions upon which an analysis relies. Normally, it is not 

the decision maker who performs the analysis, but the analyst. This means that the decision maker is 

dependent on the analyst who must keep track of  and communicate identified risks and opportunities. 

Assigning a distribution to each input parameter helps the analyst to keep track of  this information. As the 

distributions are used as an input to the model the risks and opportunities will not disappear into a report, but 

will be shown clearly in the results of  the analysis.  

Explicit instead of  implicit treatment of  uncertainty increases transparency and enables the decision maker to 

evaluate the conclusions and limitations of the results. In addition, it will be easy for the analyst to update the 

results in light of  new information. 

7.1.2 Optimising the action plan 
An uncertainty analysis can also be used to optimize an action plan. Two action plans may result in the same 

mean reduction potential but be associated to different degrees of  uncertainty. If  a deterministic model, with 

point estimates, was used to analyze the effect of  the two action plans the difference in confidence level would 

not be apparent to the decision maker.  

When the exact value of  a parameter is unknown a lot could be gained by specifying the different sources of  

uncertainty affecting its value. Information on the sources of  uncertainty could help in specifying an interval 

which most likely comprises the true value of  the sought parameter. By identifying the most important 

parameter uncertainties and specifying the probability intervals for these, it is possible to take all available 

information into account.  

Propagation of  uncertainty through a model enables quantification of  a confidence level for the emission 

reduction of  the project. The quantification of confidence intervals for the percentage and total reduction in 

ton CO2 will give a more accurate image of the effect that can be expected by the implementation of the 

planned measures. When choosing between two alternative actions plans, such information could be 

invaluable to the decision maker. 
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Project costs will have a huge effect on the degree of implementation of a measure and is subject to large 

uncertainties. It is thus of utmost importance to specify costs and profits related to the measures when 

designing an action plan. As most emission reduction measures are connected to a profit opportunity it should 

be possible to design an action plan which both meets the corporate reduction goal and agree with the 

corporation’s financial risk appetite. 

7.1.3 Communication 
When an action plan has been chosen the confidence interval provides information of how certain it is that 

the project will lead to the targeted reduction. This in turn, could improve the corporation’s ability to 

communicate their environmental strategy to customers, employees and other stakeholders. How successful 

the corporation is in communicating their strategy is dependent on their risk communication skills. 

Communicating statistics with the public can be difficult and the uncertainty analysis is probably more useful 

in improving internal communication and communication with authorities. 

7.1.4 Strategic planning 
A sensitivity analysis examines which input variables that matter the most in determining the value of a certain 

output parameter. It gives the decision maker information about which measures in the project plan that 

conduce the most to the uncertainty in the results. This enables the corporation to direct future efforts on the 

parts of the project plan that contribute the most to the uncertainty in the results, thereby, increasing the 

probability of achieving the target. In this way strategic planning is enabled and the analysis can be used as a 

basis for decisions as well as to give grounds for the efforts taken.  

As illustrated for Posten’s CO2-reduction project it is possible to analyse which input variables matter the 

most if the project is to achieve a specific target. The results of such an analysis show what percentile values 

the input parameters must take on if the scenario is to be actualised. By looking at the percentile values 

needed for the different input parameters the decision maker gains additional information of the feasibility of 

the scenario. 

7.1.5 A wider perspective 
The success of a corporate CO2 management plan is not only dependent on the technical reduction potential 

of the measures within the action plan. External and internal factors will have a large influence on the 

outcome as they influence the corporation’s ability to implement the measures laid out in the plan. Common 

practice is to evaluate their effect implicitly after a point value for the project’s emission reduction has been 

calculated, if their effect is evaluated at all. When performing an uncertainty analysis the effect of various 

external and internal factors is evaluated before the analysis starts. This makes it possible to take their 

influence into account explicitly, as uncertainty drivers.  

In the analysis of Posten’s action plan the uncertainty drivers had a large negative impact on the outcome but 

they affected certain measures more than others. Such, information can help the corporation to decide upon 

when the different measures are to be implemented. It could be a good idea to start implementing measures 

that the own corporation has a large influence over.  

Knowledge about external and internal factors is also important when setting corporate reduction goals. 

Explicit treatment of uncertainty drivers increases the corporations understanding of how actors outside the 

own organization may affect the project outcome. It helps the corporation to avoid being dependent on 

external actors to succeed. It also enables the corporation to communicate how factors that they cannot 
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influence affect their possibilities to succeed. If managed correctly such information could be used as leverage 

to influence authorities. 

When the effect of both uncertainty drivers and parameter uncertainties is quantified the sensitivity analysis 

enables comparisons between all uncertainties affecting the output. A more holistic analysis is gained which 

further strengthens the decision maker’s ability to steer the project in a direction which minimizes uncertainty 

and optimises the probability of success. 

7.4 Simplified Model for Increased Usability 
To perform an uncertainty analysis can be time consuming and costly and the added value must be weighed 

against the costs for the analysis. It is therefore interesting to look upon aspects of the uncertainty analysis 

that may be generalised or simplified.  

What level of detail is needed for the analysis to be of aid in the decision process? It is in essence determined 

by what kind of questions the analysis is to answer. It may not be necessary to specify the uncertainty in the 

input parameters to the Effect Calculation Model. Instead, the Effect Calculation Model could be used, as 

before, to calculate the expected effect by means of ‘best estimates’. The uncertainty in each measure could 

then be superimposed on the results from the Effect Calculation Model.  

Such a simplified version of the model would not account for interaction between uncertain parameters and 

its ability to determine the effectiveness of different options would be weakened. However, the model would 

still provide the decision maker with valuable information on how external factors may affect project outcome.   
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8. Conclusions 

Well-applied theories and methodologies for uncertainty analysis can be applied to CO2-reduction projects. 

The results gained by an uncertainty analysis are more informative than if only point estimates are used to 

calculate the effect of the project. Three main sources of new information have been identified: 

 Increased transparency and a strengthened decision basis – Conservative point estimates are avoided as the 

uncertainty analysis takes all available information into account and treats uncertainty explicitly. This 

increases transparency and enables the decision maker to evaluate the conclusions and limitations of 

the results. 

 Improved project control and steering – Sensitivity analyses enable identification of the input variables that 

are the most influential in determining a certain project outcome. Knowledge of the most influential 

input parameters improves project control and steering as well as enhances multi-criteria decision 

making. 

 Enhanced credibility – Uncertainty analyses enable quantification of confidence intervals for the 

expected emission reduction. Communication of results with quantified uncertainty leads to increased 

credibility and improves the corporation’s ability to communicate their environmental strategy with 

employees and authorities.  

It can be time consuming and costly to perform an uncertainty analysis. If the methodology is to be used as a 

tool to aid corporate CO2 management, the added value must be weighed against the cost of performing the 

analysis. 
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9. Suggestions for Future Work 

The uncertainty analysis model for Posten’s CO2-reduction project was established to review the additional 

information that could be gained by an uncertainty analysis of a CO2-reduction project. During the 

development process five opportunities for improvement were identified: 

Include modelling of trends – The uncertainty analysis model for Posten’s CO2-reduction project uses 3-point 

estimates to simulate the uncertainty in fuel prices. As the fuel price for diesel and the fuel prices for biofuels 

are likely to follow different trends this is not a very accurate way of modelling their effect on the cost of the 

project. Simultaneously, these parameters were displayed as the most sensitive in determining the cost per ton 

CO2-reduced. The analysis of project costs could therefore be considerable improved if the 3-point estimates 

where replaced by projected price trends. 

Modelling of Environmental policies – The uncertainty analysis displays that external and internal factors have a 

substantial effect on the project outcome. It is concluded that these factors are ultimately determined by the 

political framework. Further effort should therefore be put into modelling the effect of alternative political 

environmental strategies. For example, the three most likely strategies could be identified and their effect on 

the project could be simulated as three separate events.  

Optimise model design for the analysis endpoint – How an uncertainty analysis model should be built depends on the 

analysis endpoint. The results of the sensitivity analyses show the influence of parameter uncertainties and 

uncertainty drivers on the selected output parameter. The parameter uncertainties are defined at a high level of 

detail and from the analysis results it is difficult for the corporation to see which measure, within the division’s 

action plan, that is subjected to the largest degree of uncertainty. It should therefore be evaluated if it is 

preferable to display uncertainty in measures or in the parameters that determine the uncertainty connected to 

the measures. 

Expand the scope of analysis - Environmental effect of other greenhouse gases than CO2 has not been considered; 

neither does the analysis cover emissions of particulate matter. These emissions could have a profound effect 

on how the CO2-reduction project should be designed. It is therefore recommended that the model is 

expanded to include these effects or that they are analysed implicitly. 

Generalisation of model – To limit analysis costs the opportunities of developing a generalised model should be 

explored. One uncertainty analysis model, applicable to CO2-reduction projects within different business 

categories, would improve efficiency and decrease analysis costs. 
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11. Appendices 

Appendix A – Abbreviations 
GHG – Greenhouse gas 

DNV – Det Norske Veritas 

NTNU – Norges Teknisk-Naturvitenskaplige Universitet 

KSG - Det Norske Veritas AS, Advansia AS and Samfunns- og næringslivsforskning AS 

RED – The Renewable Energy Directive 

 

Appendix B – Measures Included in the Project Plan 
 Ecodriving 

 Speed Limitation 

 Nitrogen Tires 

 Route Optimization 

 Alternative fuel B30 

 Alternative fuel B100 

 Alternative fuel Biogas 

 Biogas hybrids 

 Electrical hybrids 

 Electric vehicles 

 Energy efficiency 

 Modal Shift Road to Sea 

 Modal Shift Road to Rail 

 Modal Shift Air to Sea 

 Modal Shift Air to Rail 

 Modal Shift Air to Road 

 Modular Lorries 

 Business Travel 
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Appendix C – Calculation Example of Efficiency and Optimization 

Measures  
Efficiency and Optimization measures reduce the average fuel consumption of vehicles. Table 4 show the 

measures belonging to this category (category 1). 

Table 4 - Efficiency and Optimization measures. 

Reduction of fuel 
consumption 

Ecodriving 

Speed limitation 

Nitrogen Tires 

Route Optimization 

In the model the effect of these measures is calculated according to equation 8: 

                                  
            

 
   ( ) 

   is the change in average consumption, see equation 9: 

              ( ) 

    is the average consumption per vehicle before the measure is implemented and      is the average 

consumption per vehicle after the measure has been implemented.  

Because the measures in category 1 reduce the average consumption of a vehicle their implementation results 

in a lower average consumption input for the next measure. Consequently they are linked and the     -values 

for the first measure become the    -values for the next measure. The outgoing average consumption is 

calculated by equation 10. 

         (                                              )   (  ) 

Where the degree of implementation represents the degree to which Posten has implemented the action. For 

the different measures in in category 1 this means; the percentage of drivers that has taken the course in 

Ecodriving, the percentage of vehicles not driving faster than a certain speed limit, the percentage of vehicles 

which have nitrogen filled tires or a percentage of the maximum possible distance reduction through route 

optimization.  
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Appendix D – Calculation Example of Technical and Operational 

Measures 
Technical and Operational measures make changes to the vehicle fleet; either by the introduction of 

alternative types of fuel or by the exchange of vehicles into more environmentally friendly alternatives. Modal 

shifts from road to rail and road to sea are also included in this category as the implementation of these 

measures results in fewer vehicles in the vehicle fleet. Table 5 shows a list of the measures belonging to this 

category (category 2). 

Table 5 - Technical and Operational measures. 

Alternative fuel and vehicles 

B30 

B100 

Biogas 

Biogas hybrid 

Hybrids 

Electric vehicles 

Modular lorries 

Modal shift - Road to sea 

Modal shift - Road to rail 

 

The effect of the category 2 measures is calculated by equation 11: 

                 
            

        
                      (  ) 

Where,    is the change in vehicle fleet and   is the average consumption per litre fuel. The emission 

reduction is calculated differently dependent on which of the category 2 measures that is implemented. For 

example, if the vehicle fleet is decreased due to a modal shift from road to sea the emission reduction is 

estimated to be the difference in emission between transport by sea and transport by road. 

The change in vehicle fleet is calculated by equation 12.  

              (  ) 

Where     represents the number of vehicles in the vehicle fleet after the previous measure has been 

implemented and      is the number of vehicles after the current action has been implemented.      is 

calculated by equation 13 and is used as an input to the next measure. 

                              (  ) 
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Appendix E – Uncertainty Drivers 
 

U1 Biofuel availability and infrastructure 

Definition: 

Irregular or uncertain supply of renewable fuel. The availability of renewable fuel and 
electricity is crucial if Posten is to introduce alternative fuels and vehicles to their vehicle 
fleet successfully.  

Opportunities: Increased production of renewable energy results in an increased availability at 
the market thus, lowering the implementation barrier. Increased production of biogas and 
biodiesel from waste could lead to an increased mitigation potential.  

Risks: Not enough renewable fuel available to implement all measures. 

Effect: GHG 

Mean result:  -19 998 Standard deviation:  15 825 

Estimate 
uncertainty: 

P10 Mode P90 

-40% -20 % 0 % 

Risks Most likely Opportunities 

Affects 
measures: 

Alternative fuel (B30, B100, Biogas) and Alternative vehicles (Biogas hybrids, El-hybrids)  

  

 

 U2 Energy prices 

Definition: 

The energy prices for different fuels will have a large influence on the degree to which 
Posten will be able to implement measures that introduce alternative fuels; the measures 
must be financially viable.   

Opportunities: Technological development, refined procurement methods, extended 
infrastructure and increased resource availability results in a decreased cost for renewable 
fuels. An increase in cost for conventional energy will also increase cost efficiency.  

Risks: Increased cost of renewable energy/fuels due to increased demand and limited 
availability, decrease in cost for conventional energy/fuels: results in decreased cost 
efficiency. 

Effect: Cost 

Mean result:  -1 243 700 Standard deviation:  9 278 188 

Estimate 
uncertainty: 

P10 Mode P90 

-30 % 0 % 30 % 

Opportunities Most likely Risks 

Affects 
measures: 

Alternative fuel (B30, B100, Biogas) and Alternative vehicles (Biogas hybrids, El-hybrids), 
Energy Efficiency 
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U3 Technological development 

Definition: 

Technological development within the upcoming years could potentially have a large impact 

on the CO2-reduction potential of alternative vehicles and other technological mitigation 

measures.  

Opportunities: More efficient biofuel production methods or the development of new 
renewable fuels and/or mitigation measures could further reduce carbon dioxide emissions.  

Risks: There is a slight risk that we find out that some measures are not as efficient as 
expected.  This uncertainty driver could also reduce costs for technologies that are expensive 
today, but this is not accounted for in the model.  

Effect: GHG 

Mean result:  7 660 Standard deviation:  6 644 

Estimate 
uncertainty: 

P10 Mode P90 

-1% 3 % 10 % 

Risks Most likely Opportunities 

Affects 
measures: 

Ecodriving, Nitrogen Tires, Speed Limitation, Route optimization, Alternative Fuel(B30, 
B100, Biogas), Alternative Vehicles(Biogas hybrid, El-hybrid)  

        

U4 Modal Shift - Infrastructure 

Definition: 

When the environmental plan was set up it was assumed that required infrastructure would 
be in place when needed. However, the required infrastructure might not be in place. 
Investments might be needed to provide new sea and rail infrastructure as well as to 
establish adequate infrastructure for the distribution of renewable fuel.  

Opportunities: It is possible to implement all of the planned modal shifts measures 

Risks: Inadequate transport infrastructure to implement modal shifts. Lack of infrastructure 
necessary to integrate and maintain new technologies. Results in measures being 
implemented to a lesser degree than expected. 

Effect: GHG 

Mean result:  -4 073 Standard deviation:  2 843 

Estimate 
uncertainty: 

P10 Mode P90 

-40 % -20 % 0 % 

Risks Most likely Opportunities 

Affects 
measures: 

Alternative Fuel(B30,B100, Biogas), Alternative Vehicles(Biogas hybrids, El-hybrids), Modal 
shift (road to sea, road to rail, air to sea, air to rail) 
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U5 Political framework 

Definition: 

Transport and energy policies could have a large impact on capital and operational costs.  
Policies could also affect third party investment choices, hence affecting the uncertainty 
drivers: availability, technological development and infrastructure.  

Opportunities: Fee systems and biofuel tax systems that provide tax relief for biofuels would 
increase cost efficiency. By introducing biofuels mandates lack of fuel production and/or 
delivery infrastructure could be avoided.  

Risks: Market barriers or uncorrected market "failures" could impede the adoption of new 
technologies. 

Effect: Cost/GHG 

Mean result:  3 133 410 Standard deviation:  11 910 149 

Estimate 
uncertainty: 

P10 Mode P90 

-40 % 0 % 20 % 

Opportunities Most likely Risks 

Affects 
measures: 

Modal shift, Alternative vehicles, Alternative fuel, (Resource availability, Technological 
development, Infrastructure)  

 

U6 Posten's ability to implement measures 

Definition: 

For measures to be implemented they must be prioritised within the organisation. Measures 
such as Ecodriving, Route optimization and business travel are more influenced by the 
organisation than others. The degree of implementation of these measures is largely 
dependent on the willingness of the management and employees to act according to the 
environmental plan.  

Opportunities: Posten implements more measures than planned 

Risks: Lack of trained personnel capable of maintaining, operating or managing a technology 
and lack of education or training resources. Aversion of high upfront costs or lack of 
awareness of benefits results in limited uptake of a product of service. 

Effect: GHG 

Mean result:  -1 150 Standard deviation:  2 560 

Estimate 
uncertainty: 

P10 Mode P90 

-10 % 0 % 2 % 

Risks Most likely Opportunities 

Affects 
measures: 

Ecodriving, Route optimization, Business travel, Energy efficiency, Speed Limitation, 
Nitrogen Tires, Subcontractors  



Appendices 

54 
 

 
 

 
 
 

 
U7 Subcontractor’s ability to implement measures 

Definition: 

Subcontractors account for 79% of the corporate groups emissions. The degree to which the 
contractors implement their environmental plan will therefore be of great importance if the 
reduction goal is to be reached.  

Opportunities: Subcontractors implement more measures than planned 

Risks: Lack of trained personnel capable of maintaining, operating or managing a technology 
and lack of education or training resources. Aversion of high upfront costs or lack of 
awareness of benefits results in limited uptake of a product of service.  

Effect: GHG 

Mean result:  -22 726 Standard deviation:  18 747 

Estimate 
uncertainty: 

P10 Mode P90 

-50 % -20 % 0 % 

Risks Most likely Opportunities 

Affects 
measures: 

Alternative fuel, Alternative vehicles, Ecodriving, Nitrogen Tires, Speed Limitation, Route 
Optimization 
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Appendix F – Input Values for Parameter Uncertainties 
 

CO2 Reduction Parameters 

ID Parameter Unit P10 Mode P90 

A Ecodriving         

A.1 Effect of Ecodriving % 3,00 % 4,00 % 10,00 % 

B Speed Limitation         

B.1 Effect of Speed Limitation % 1,00 % 2,00 % 5,00 % 

C Nitrogen Tires         

C.1 Effect of Nitrogen Tires % 1,00 % 2,00 % 3,00 % 

E Alternative fuel         

E.1 Emission reduction B30 % 5,70 % 13,50 % 24,90 % 

E.2 Emission reduction B100 % 19,00 % 45,00 % 83,00 % 

E.3 Emission reduction Biogas % 53,00 % 80,00 % 90,00 % 

E.4 Emission Biogas hybrid % 15,90 % 40,00 % 63,00 % 

F Hybrids         

F.1 Emission reduction from hybrids kg CO2/l fuel 30,00 % 50 % 70 % 

G Electric vehicles         

G.1 Emission Reduction Electric kg CO2/kWh 0,089 0,099 0,109 

H Energy Efficiency         

H.1 Emission Electricity kg CO2/kWh 0,09 0,10 0,11 

H.2 Emission District heating kg CO2/kWh 0,09 0,10 0,11 

H.3 Emission Heating Oil kg CO2/kWh 0,25 0,27 0,30 

H.4 Emission Propane kg CO2/kWh 0,19 0,21 0,23 

I Modal Shift         

I.1 Emission tonkm Air Domestic kg CO2/tonkm 2,0034 2,226 2,4486 

I.2 Emission tonkm Air European kg CO2/tonkm 1,326501 1,47389 1,621279 

I.3 Emission tonkm Air International kg CO2/tonkm 0,551916 0,61324 0,674564 

I.4 Emission tonkm Rail Electric kg CO2/tonkm 0,000441 0,00049 0,000539 

I.5 Emission tonkm Rail Diesel kg CO2/tonkm 0,0378 0,042 0,0462 

I.6 Emission tonkm Water Container ships kg CO2/tonkm 0,014328 0,01592 0,017512 

J Modular Lorries         

J.1 Emission reduction Modular Lorries % 11 % 12 % 13 % 

M Joint parameters         

M.1 Increased consumption B30 % 5,40 % 6,00 % 6,60 % 

M.2 Increased consumption B100 % 5,40 % 6,00 % 6,60 % 

M.3 Increased consumption Biogas % 0,00 % 0,00 % 0,00 % 

M.4 Indcreased consumption Biogas hyb % 0,00 % 0,00 % 0,00 % 

M.5 Increased consumption Hybrids % 0,00 % 0,00 % 0,00 % 

M.6 Increased consumption Electric % 0,00 % 0,00 % 0,00 % 

M.7 Increased consumption Modular Lorries % 5,40 % 6,00 % 6,60 % 
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CO2 Reduction Parameters 

ID Source 

A 
 

A.1 (Statens vegvesen, 2010) 

B   

B.1 (Statens vegvesen, 2010) 

C   

C.1 (Statens vegvesen, 2010) 

E   

E.1 30% of the 3-point estimate for B100 

E.2 
Best estimate: rape seed biodiesel  Estimates: typical values for biofuels if produced with no net carbon 
emissions from land-use change. (Renewable Energy Directive, 2009/28/EC) 

E.3 
Best estimate: municipal organic waste.  Estimates: typical values for biofuels if produced with no net 
carbon emissions from land-use change. (Renewable Energy Directive, 2009/28/EC) 

E.4 Mean 50% Min 30% and Max 70% of the 3-point estimate for Biogas 

F   

F.1 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

G   

G.1 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

H   
H.1 - 
H.4 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

I   

I.1 -I.6 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

J   

J.1 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

M   
M.1 - 
M.3 

A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

M.4 Since posten has estimated the increansed consumption for biogas/electric vehicles to be 0%, it is assumed 
that biogas hybrid and el-hybrids vehicles have a 0% increase as well 

M.5 

M.6 A +/- 10% variation put upon the estimate used in the original Effect Calculation Model 

M.7 Assumed to be the same as for B30 and B100 
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Costs Parameters 

ID Parameter 
CA Ecodriving 

CA.1 Course cost Ecodriving 

CA.2 Drivers PTT 

CA.3 Drivers Supply Chain 

CA.4 Drivers Supply Chain (SC) 

CA.5 Drivers Cargo 

CA.6 Drivers Cargo (SC) 

CB Speed Limitation 

CC Nitrogen Tires 

CC.1 Cost Nitrogen filling facility 

CC.2 Nitrogen filling facilities PTT 

CC.3 Nitrogen filling facilities Cargo 

CC.4 Nitrogen filling facilities Cargo (SC) 

CD Route Optimization 

- - 

CE Alternative fuel 

CE.1 Fuel price Diesel 

CE.2 Leasing Cost Diesel Cars and vans (< 3.5 tons) 

CE.3 Leasing Cost Diesel Trucks (< 7.5 tons) 

CE.4 Leasing Cost Diesel Trucks (< 19 tons) 

CE.5 Leasing Cost Diesel Trucks (< 27 tons) 

CE.6 Leasing Cost Diesel Trucks (50-60 tons) 

CE.7 Maintenance Cost Diesel Cars and vans (< 3.5 tons) 

CE.8 Maintenance Cost Diesel Trucks (< 7.5 tons) 

CE.9 Maintenance Cost Diesel Trucks (< 19 tons) 

CE.10 Maintenance Cost Diesel Trucks (< 27 tons) 

CE.11 Maintenance Cost Diesel Trucks (50-60 tons) 

CE.12 Fuel price B30 

CE.13 Leasing Cost B30 Cars and vans (< 3.5 tons) 

CE.14 Leasing Cost B30 Trucks (< 7.5 tons) 

CE.15 Leasing Cost B30 Trucks (< 19 tons) 

CE.16 Leasing Cost B30 Trucks (< 27 tons) 

CE.17 Leasing Cost B30 Trucks (50-60 tons) 

CE.18 Maintenance Cost B30 Cars and vans (< 3.5 tons) 

CE.19 Maintenance Cost B30 Trucks (< 7.5 tons) 

CE.20 Maintenance Cost B30 Trucks (< 19 tons) 

CE.21 Maintenance Cost B30 Trucks (< 27 tons) 

CE.22 Maintenance Cost B30 Trucks (50-60 tons) 

CE.23 Fuel price B100 

CE.24 Leasing Cost B100 Cars and vans (< 3.5 tons) 

CE.25 Leasing Cost B100 Trucks (< 7.5 tons) 

CE.26 Leasing Cost B100 Trucks (< 19 tons) 

CE.27 Leasing Cost B100 Trucks (< 27 tons) 

CE.28 Leasing Cost B100 Trucks (50-60 tons) 

CE.29 Maintenance Cost B100 Cars and vans (< 3.5 tons) 

CE.30 Maintenance Cost B100 Trucks (< 7.5 tons) 

CE.31 Maintenance Cost B100 Trucks (< 19 tons) 

CE.32 Maintenance Cost B100 Trucks (< 27 tons) 

CE.33 Maintenance Cost B100 Trucks (50-60 tons) 
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ID Parameter 

CE Alternative fuel (Continued) 

CE.34 Fuel price Biogas 

CE.35 Leasing Cost Biogas Cars and vans (< 3.5 tons) 

CE.36 Leasing Cost Biogas Trucks (< 7.5 tons) 

CE.37 Leasing Cost Biogas Trucks (< 19 tons) 

CE.38 Leasing Cost Biogas Trucks (< 27 tons) 

CE.39 Leasing Cost Biogas Trucks (50-60 tons) 

CE.40 Maintenance Cost Biogas Cars and vans (< 3.5 tons) 

CE.41 Maintenance Cost Biogas Trucks (< 7.5 tons) 

CE.42 Maintenance Cost Biogas Trucks (< 19 tons) 

CE.43 Maintenance Cost Biogas Trucks (< 27 tons) 

CE.44 Maintenance Cost Biogas Trucks (50-60 tons) 

CE.45 Fuel price Biogas hybrid 

CE.46 Leasing Cost Biogas hybrid Cars and vans (< 3.5 tons) 

CE.47 Leasing Cost Biogas hybrid Trucks (< 7.5 tons) 

CE.48 Leasing Cost Biogas hybrid Trucks (< 19 tons) 

CE.49 Leasing Cost Biogas hybrid Trucks (< 27 tons) 

CE.50 Leasing Cost Biogas hybrid Trucks (50-60 tons) 

CE.51 
Maintenance Cost Biogas hybrid Cars and vans (< 3.5 
tons) 

CE.52 Maintenance Cost Biogas hybrid Trucks (< 7.5 tons) 

CE.53 Maintenance Cost Biogas hybrid Trucks (< 19 tons) 

CE.54 Maintenance Cost Biogas hybrid Trucks (< 27 tons) 

CE.55 Maintenance Cost Biogas hybrid Trucks (50-60 tons) 

CF Hybrids 

CF.1 Fuel price Hybrid 

CF.2 Leasing Cost Hybrid Cars and vans (< 3.5 tons) 

CF.3 Leasing Cost Hybrid Trucks (< 7.5 tons) 

CF.4 Leasing Cost Hybrid Trucks (< 19 tons) 

CF.5 Leasing Cost Hybrid Trucks (< 27 tons) 

CF.6 Leasing Cost Hybrid Trucks (50-60 tons) 

CF.7 Maintenance Cost Hybrid Cars and vans (< 3.5 tons) 

CF.8 Maintenance Cost Hybrid Trucks (< 7.5 tons) 

CF.9 Maintenance Cost Hybrid Trucks (< 19 tons) 

CF.10 Maintenance Cost Hybrid Trucks (< 27 tons) 

CF.11 Maintenance Cost Hybrid Trucks (50-60 tons) 
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ID Parameter 

CG Electric vehicles 

CG.1 Fuel price Electric vehicles 

CG.2 
Leasing Cost Electric Cars and vans (< 3.5 
tons) 

CG.3 Leasing Cost Electric Trucks (< 7.5 tons) 

CG.4 Leasing Cost Electric Trucks (< 19 tons) 

CG.5 Leasing Cost Electric Trucks (< 27 tons) 

CG.6 Leasing Cost Electric Trucks (50-60 tons) 

CG.7 
Maintenance Cost Electric Cars and vans (< 
3.5 tons) 

CG.8 Maintenance Cost Electric Trucks (< 7.5 tons) 

CG.9 Maintenance Cost Electric Trucks (< 19 tons) 

CG.10 Maintenance Cost Electric Trucks (< 27 tons) 

CG.11 Maintenance Cost Electric Trucks (50-60 tons) 

CH Energy Efficiency 

CH.1 Cost Electricity 

CH.2 Cost District heating 

CH.3 Cost Heating Oil 

CH.4 Cost Propane 

CI Modal Shift 

CI.1 Capex Road to Sea 

CI.2 Capex Road to Rail 

CI.3 Capex Air to Rail 

CI.4 Capex Air to Road 

CI.5 Capex Air to Sea 

CI.6 Opex Road to Sea 

CI.7 Opex Road to Rail 

CI.8 Opex Air to Rail 

CI.9 Opex Air to Road 

CI.10 Opex Air to Sea 

CI.11 Difference in freight costs 

CJ Modular Lorries 

- - 

CK Business Travel 

CK.1 Investment in video conference equipment 

CK.1.1 Savings due to reduced travel costs 

CL Fossils phase out 

- - 
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Appendix G – Extract from the Effect Calculation Model 
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Appendix H – Extract from Uncertainty Analysis Model 
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