
Synthesized textures in 3D rendering

Sam Persson

Examensarbete för 15 hp
Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds universitet

Thesis for a diploma in Computer Science, 15 ECTS credits
Department of Computer Science, Faculty of Science, Lund University

Abstract

In 3D rendering a common task is to render large textured surfaces, such as walls and
terrains. Ideally you would want a texture that is not obviously repeating itself, but
memory limits often work against this goal. This thesis explores a method using texture
synthesis that aims to reduce visual repetition and memory usage at the cost of a pre-
processing step and higher run time performance requirements. Various optimizations for
rendering single and multiple textures using this method are compared and evaluated. A
simple method to parallelize patch-based texture synthesis is also introduced. The results
show that good quality and real-time performance is possible.

Sammanfattning

Inom 3D-rendering är det vanligt att rendera stora texturtäckta ytor, som väggar och land-
skap. På grund av minnesbegränsningar låter man ofta en mindre textur upprepas över
ytan, men detta blir i vissa fall väldigt tydligt för det mänskliga ögat. Detta examensarbe-
te undersöker en metod som med hjälp av textursyntes kan minska synliga upprepningar
och minnesanvändning på bekostnad av ett förbehandlingssteg och högre prestandakrav
vid körning. Olika optimeringar av metoden för att rendera enstaka och multipla texturer
jämförs och utvärderas. En enkel metod för att parallellisera lapp-baserad (patch-based)
textursyntes introduceras också. Resultaten visar att realtidsprestanda och god bildkva-
litet kan uppnås.

2

Contents

1. Introduction 5

2. Background 5

2.1. Example based texture synthesis . 5
2.2. Approximate nearest neighbor search . 7

3. Using synthesized textures in real-time 3D rendering 8

4. Implementation 10

5. Results and performance 14

5.1. Single texture mapping . 15
5.2. Multiple texture mapping . 18

6. Conclusion 20

References 21

Appendix A. texsyn.frag 23

3

Acknowledgements

I would like to thank Tomas Akenine-Möller and especially Michael Doggett for their
valuable feedback during the quite long process of creating this thesis.
I would also like to thank So�e Samuelsson and Xix Xeaon for their proofreading and

constructive criticism.

4

1. Introduction

Both natural and man-made materials typically contain repeating elements. Some in
very regular patterns; some with nearly random distribution. Many of these patterns, or
textures, can be emulated by much simpler processes than those that originally created
them, a fact that can be exploited when creating digital images. This thesis explains a
few techniques that is commonly used to synthesize images, and explores optimizations
of one method that could be used in real-time 3D scenes, such as games and simulations.

2. Background

2.1. Example based texture synthesis

A texture in the context of image processing is a digital image composed of repeated
elements. These elements or features can be repeated in regular patterns, stochastically,
or anything in between, see �gure 1. Texture synthesis is the process of algorithmically
generating such textures. One way to do so is to construct an analytic function taking a
set of parameters and outputting a texture � what is called procedural texture synthesis.
But since you often want to mimic natural textures, like grass or a brick wall, coming up
with a decent function is often hard. Instead, a common way is to use a sample image
of a part of a texture to generate a similar, but arbitrarily large, texture. This is called
example based texture synthesis.

Figure 1: Di�erent kinds of textures.

One of the simplest ways to do texture synthesis from a sample image would be to tile
the sample image: copy the sample image and paste it side by side until the output image
is �lled. However, this would in most cases result in visible seams between the tiles, or at
least lead to a highly repetitive result.
A more general idea is to generate the texture pixel by pixel; this is called pixel-based

synthesis [1]. It could be described like this:

1. Pick a pixel randomly from the sample image and put it in the output image.

5

2. Pick another pixel from the sample image to put next to the latest pixel in the
output image, by comparing the neighboring pixels in both images. Repeat until
the output image is �lled.

It is a simple and easy to use algorithm � the only parameters are the input image and
the neighborhood size. If a neighborhood is seen as a vector of dimension N, where N is
the number of pixels in a neighborhood, they can be compared by squared distance. This
is quite costly if calculated for all possible neighborhoods, but can be accelerated using
some nearest neighbor algorithm [2]. There also exist various improved algorithms that for
example take spatial coherence of the selected pictures into account, such as k-coherence
[3] that limits the search-space and improves both quality and speed.
Another way to increase speed and quality of the texture synthesis is to synthesize

patches instead of pixels � so called patch-based texture synthesis. The pixels in a patch
of the input image already �t together well, so as long as you can �t di�erent patches
together in a good way the quality of the output image should be good. And since you do
not need to select as many patches as pixels to synthesize images of equal size, the speed
can increase.
To �t patches together some di�erent techniques have been used, one of the simplest

being to make patches overlap and blend the images along the boundary [4]. This can
sometimes lead to blurry artifacts, so other methods such as �nding an optimal path on
the boundary to cut through [5, 6] or warping the patches to make the edges match [7, 8]
have been tried.
Yet another way to do texture synthesis is to generate tiles with a small number of

border classes, such that borders of the same class match [9]. Then it is a matter of laying
out the tiles while keeping the edge constraints.

6

2.2. Approximate nearest neighbor search

To synthesize a texture from a sample you need a way to �nd parts of the input im-
age that �t well together. Many algorithms use a nearest neighbor (NN) search al-
gorithm to do this. Finding the nearest neighbor to a point a is the same as �nding
the point b within a set S with the smallest distance to a, commonly measured as Eu-
clidean or Manhattan distance. A common algorithm for �nding the nearest neighbors
uses the k-d tree data structure [10]. A k-d tree is a binary space partitioning tree,
with each non-terminal node splitting its children along one assigned dimension, see

Figure 2: One possible way of splitting the
points when constructing a two-
dimensional k-d tree. The point
along the longest vertical line rep-
resents the root node in the tree,
with the two points on the horizon-
tal lines being its child nodes.

�gure 2. What dimension to split along,
and where to split, is decided when build-
ing the tree; it is called a splitting rule.
The standard splitting rule [11] is to split
along the dimension with the largest vari-
ance, and to partition around the median
in that dimension. This creates a bal-
anced tree that allows for nearest neighbor
search with expected-case running time of
O(log n), for any �xed dimension d and as-
suming uniformly distributed points. How-
ever, NN search is a�ected by the curse of

dimensionality [12]: in high dimensional
spaces it is hard to get better than lin-
ear search (O(dn)). Therefore approxi-
mate nearest neighbor (ANN) algorithms
are often used. These does not always �nd
the nearest neighbor, but they often �nd
one at least almost as near.
One way to make an ANN query is to

stop the search after a set number of nodes
in the tree has been visited, and return the
best point so far. This makes the algorithm
dependent on the traversal order. Best Bin
First [13] is a simple modi�cation of the
common NN algorithm for a k-d tree, that
allows for a more e�cient ANN search in this manner by traversing the tree in the order
of a priority queue of the paths not selected, instead of the common, depth �rst-like
traversal.
The sliding midpoint rule is an alternative splitting rule that has good properties for

ANN [14].

7

3. Using synthesized textures in real-time 3D rendering

A texture in the context of 3D rendering is a digital image that is applied to a three
dimensional surface � this is a somewhat di�erent de�nition than what has been spoken
of so far. If the surface to be textured should look like a wall or a landscape it is often a
textural image you want to use. But it could also be that you want to texture a painting
or a human character � in these cases the image used would probably not qualify as a
textural image as de�ned in the context of image processing. Real-time is another term
with di�erent meanings in di�erent contexts. In the context of 3D rendering it means
that you need to be able to generate a new output image many times per second, with
low latency.
Using a synthesized texture to texture a surface in real-time 3D rendering could be

done in the same manner as if using a regular image, as long as the texture is generated
beforehand. This method is sometimes used as a way to make tileable textures as a
synthesized texture could easily be generated with the property that the edges match
when tiled. Tileable textures are often useful for larger surfaces such as walls and terrains,
since a texture for the whole surface would use a lot of memory. The disadvantage is that
the repetitions can be very visible.
However, today's graphics hardware impose three important limits on using textures:

• The hardware used to do 3D rendering in real-time, the graphics card, has a limited
amount of memory.

• Transfer between regular memory and the graphics card memory is expensive.

• The size of a texture is restricted.

This means that you cannot use very large textures, say over 8192× 8192 pixels, which in
case of textural images would often be useful to reduce the amount of visible repetitions.

(a) Spatial determinism � regions that overlap must
match even if synthesized independently.

(b) Local evaluation � using a sequential
synthesis the ghosted region need to be
generated before the region in the blue
rectangle can be generated.

Figure 3: Di�culties with on-the-�y synthesis [15].

One alternative is to do texture synthesis on-the-�y, in real-time. To do that you need
to solve how to handle spatial determinism � the color of a pixel should remain the same

8

no matter the order pixels are synthesized in, and local evaluation � to decide what color
a pixel should have you should only need to know the color of a small number of other
pixels, see �gure 3. You also need to have an algorithm that is fast enough to be executed
in real-time. This has been done using an iterative approach [16] as well as using a further
improved parallel texture synthesis algorithm [17]. These algorithms are however quite
complex.
Another alternative is to do the actual synthesis beforehand and store only the data

that is necessary to reproduce the result. This can then be used as a form of texture
compression speci�c to textures generated using texture synthesis. This has been tried
before using a tile based texture synthesis method [18]. In the case of patch-based texture
synthesis it would mean storing the coordinates of the selected patches, and that is the
approach taken in this thesis.

9

4. Implementation

The main idea is to use patch-based texture synthesis to generate a large texture, but
instead of storing the generated texture, the coordinates of the patches in the input image
are stored. Then a shader1 is written that uses the input image and the patch coordinates
to reconstruct the synthesized texture in real-time.
The texture synthesis part uses ANN search to select patches and blends di�erent

patches linearly of the the overlapping borders. To do ANN lookup a simple Best Bin
First implementation using the sliding midpoint rule was written in C. Using existing
generic ANN libraries was problematic because they could not easily be made to utilize
the fact that most of the data of a patch is shared with other patches, which leads to
unnecessarily high memory usage.

Figure 4: Four di�erent border con�gura-
tions [4].

Patches are selected in a left-to-right,
top-to-bottom order. The �rst patch is
synthesized by picking a random patch in
the input image, the rest by comparing
the overlapping borders. To synthesize a
patch, the borders that it will overlap in
the so-far generated output image are col-
lected in a single vector and used to look up
a good match in a k-d tree of all such bor-
der zones in the input image. The output
image is considered a wrapping image, so
when selecting patches sequentially there
are 8 di�erent con�gurations of overlap-
ping borders � see �gure 4 � so 8 di�erent
k-d trees need to be constructed. To save
memory, the color data of every possible
border are not stored in the k-d trees, but
only pointers to a pixel in an image, along
with description of the shape of the border zone. Also, the k-d trees can be constructed
in parallel.
To speed up the synthesis a simpli�cation of the dependencies between patches have

been made, see �gure 5. This ignores some dependencies caused by overlapping corners
(over the wrapping edge), but leads to good enough results in practice and allows for
parallelization of the algorithm. Even though the actual synthesis is not used in real-
time, a fast synthesis is useful when tweaking the parameters manually.

1A shader is a program written for a graphics processor, or GPU.

10

1 2 3

3

4

4 5 6

5 6 7 8

7 8 9 10

Figure 5: Simpli�ed patch dependencies when synthesizing a texture of 4 by 4 patches, in
the order left to right, top to bottom. The numbers indicate in which step each
patch can be synthesized. This means that in an image with this many patches,
using two processing cores can speed up the synthesis from 16k to 10k, where k
is the time it takes to synthesize one patch. When synthesizing larger images,
more cores can be utilized and more speedups can be gained.

The parameters to the synthesizing program are the input image, the number of patches
in the output image, the size of a patch, and the width of a border. A good patch size is
roughly the size of a feature in the input image, and the border size a�ects the randomness
of the output, see �gure 6.
The real-time part of the implementation is an OpenGL application written in Scala

and using the jMonkey Engine. The relevant part is the GLSL fragment shader that uses
two texture samplers to reconstruct the synthesized image and apply it to a surface, see
appendix A. The �rst sampler is bound to the input image, the second to a 16-bit texture
containing the patch coordinates, the x-coordinate in one channel and the y-coordinate
in another.
The shader �rst determines what patch the current fragment2 is in by multiplying the

texture coordinate by the number of patches, and rounding down to the nearest integer
value. The coordinate of this patch, and the three neighboring patches, are looked up
in the second texture sampler. These four coordinates are used to look up four values
in the input image. These are then blended together depending on where in the patch
the fragment is located. If the fragment is not on a patch border, only one color value
is actually used. This is wasteful, since sampling textures is expensive, but hard to
avoid since GPUs are bad at rapidly changing dynamic branching. One thing can be
done however � when the patches are so small on the screen that the border is hardly
visible, only single patch look-up is used, skipping blending entirely. This is determined
by comparing the z value of the fragment (in screen coordinates) with a shader parameter.
The minimum value of this parameter before the borders between patches become visible

2A fragment is often the same as a screen pixel.

11

depends on the synthesized texture. This kind of dynamic branching does not change
rapidly while traversing the screen, and gives a speed boost on modern graphics hardware.
Such a method to reduce rendering complexity based on distance from the viewer is called
a level of detail (LOD) technique.
There are some other interesting details in the shader. The ordinary texture look-up

function uses the derivatives of the speci�ed coordinate to select what level in the mipmap
pyramid to fetch from. Slightly simpli�ed, it can be described as: if the derivative is high,
the pixel is far away and a lower resolution version of the image is used to look-up.
However, since the patches can lie anywhere in the input image these derivatives are
much larger on the borders between patches. The textureGrad operation is therefore used
to specify other derivatives, that are linear across the surface, which prevents incorrect
mipmap levels along the borders between patches. However, this operation is unnecessarily
slow on most hardware when not using anisotropic �ltering. When using only trilinear
�ltering it can be emulated faster using the textureLod operation, see textureGrad_fake

in appendix A for details. There is also an operation named textureGather that can fetch
four neighboring texels in one texture-fetch. This operation is used to reduce the number
of texture-fetches from 8 to 6 and improves performance slightly.
In real applications, it is common that you do not only want to apply one texture to a

surface, but multiple textures that blend together. You could for example want to have a
path in the terrain. A common technique for doing this is to use splatting � use one extra
texture (sometimes called an alpha-map) to look up where the regular textures should be
applied, and how they should be blended, using one color channel for each input texture.
Since this multiplies the number of texture fetches by the number of input textures,
a variation of the shader was made to try to take advantage of the patch-structure to
handle multitexturing. For this shader, the synthesized texture was generated from three
di�erent textures, with one k-d tree for each input texture. An alpha-map was used to
see which of the k-d trees should be used for each patch synthesized, and an index for the
selected texture was stored along with the patch coordinates. Then in the shader instead
of one input texture, an array of input textures was used, and the stored texture index was
used to select what layer in the array should be used for each texture look-up. To reduce
the visibility of the borders between patches with di�erent texture indexes, blending was
increased to its maximum value when the neighboring patches lay on di�erent textures.
A disadvantage is that the same synthesis parameters have to be used for each texture,
which might lead to less than optimal output.

12

Figure 6: A texture synthesized with the implemented software. To the left is the input
image. The upper right image was synthesized using a patch size of 64 pixels
and a border width of 16 pixels. The lower right image was synthesized using a
patch size of 32 pixels and a border width of 8 pixels. The di�erence is subtle,
but the upper image has more blurred borders, and the lower image has more
visibly repeated features.

13

5. Results and performance

The performance of the software was measured on a Windows 7 machine with an AMD
Phenom II X6 1090T CPU running at 3.20 GHz and an nVidia GeForce GTX 560 Ti GPU.
To synthesize an image of size 1024× 1024 pixels from an input image of size 194× 194,
with 1024 32 × 32 patches and a border width of 16 pixels, takes about 11 seconds, of
which 1 seconds are for constructing the k-d trees and 10 seconds for synthesizing the
patches. The time to construct k-d trees depends on the input image size and the patch
size and border width, while the time to synthesize patches depend mostly on the number
of patches to synthesize and the number of nodes in the k-d tree visited per look-up.
Synthesizing very large images can take hours, but you can synthesize a small texture to
verify that the parameters give a good output, and then synthesize a large image over
night to use when rendering. This part of the synthesis is only a pre-processing step, so
optimizing its performance was not a primary goal for this thesis, but instead making the
real time rendering as fast as possible.
For all real-time scenes, a synthesized texture applied to a 3D-terrain was rendered to

a 1680 × 1050 screen with the �ltering of the input image-texture set to trilinear and
the �ltering of the coordinate texture set to nearest neighbor. The real-time performance
was measured in frames per second, FPS, when the frame rate had stabilized. The the-
oretical throughput was estimated for an AMD Radeon HD 6970 GPU using AMD's
GPU ShaderAnalyzer utility. This is a quite di�erent GPU than the one used for testing,
but it represents the same generation of graphics cards and the results should still give a
good picture of the relative complexity of the di�erent shaders.

14

5.1. Single texture mapping

To compare single texture mapping performance a synthesized texture of 256×256 patches
of size 32×32 pixels and a border width of 8 pixels was used. This means that the output
image was 8192× 8192 pixels large, a size that only more recent GPUs can handle when
used as a regular texture. The input image was of size 196× 196 pixels. The procedural
texture uses four layers of simplex noise, representing a minimum amount of processing
needed for a decent procedural texture. The regular texture shaders use the input image
to the texture synthesis and the output synthesized texture respectively, to compare the
memory usage.

Table 1: Performance results rendering a single texture.

Shader FPS Theoretical
throughput
(Mpixels/s)

memory usage (kB)

Synthesized texture without LOD 1 060 3 911 413

Synthesized texture with LOD 1 216 5 029 413

Procedural texture 371 2 139 0

Regular texture (input image) 1 816 14 080 110

Regular texture (output image) 1 816 14 080 268 000

Using the synthesized texture shaders the rendered image looks almost exactly the same
as when using the output image as a regular texture. That is, except for some very slight
�jumping� in the far distance when the camera is moved, coming from the nearest neighbor
�ltering of the coordinate texture; when a patch is smaller than a pixel, choosing a patch
becomes an almost random process. However, at this distance the input-texture is so
blurred from its trilinear �ltering that this is rarely noticeable. Compared with using a
tiled image the size of the input image any visual repetitions are drastically reduced, see
�gure 7.
With the LOD shader, about a half of the screen can use the simpler branch with next

to no visible di�erence, see �gure 8. The theoretical performance is estimated based on
this assumption.
The di�erence in memory usage between the regular texture shaders is huge, but in

an actual application it might lie somewhere in-between. You seldom actually need a
8192× 8192 pixel texture, but to avoid the repetitions visible in �gure 7a you might need
one larger than for example 512× 512 pixels.
The poorer performance of the synthesized texture shaders comes mostly from the fact

that 6 texture fetches are needed for every fragment in the worst case, and only one is
needed when using a regular texture. Another factor is that the patch coordinates are
seemingly randomly distributed, which could be bad for texture caching when the patches
are small. The performance is still many times higher than the 60 FPS that most displays
can show, and also a lot better than the simple procedural shader that was compared
with.

15

(a) A 512×512 pixel image is tiled over the surface.
You can see the same feature appearing over and
over again.

(b) A synthesized texture is applied to the surface.
Parts of the texture are still repeated, but in an
irregular manner.

Figure 7: Comparison between tiling and a synthesized texture.

(a) With no blending. The inconsistencies between
patches should be visible among the closest
patches.

(b) With blending on the about 50 % pixels closest
to the camera.

Figure 8: The e�ect of blending between patches.

16

Figure 9: This image was rendered using a synthesized texture of 128×128 patches of size
64 × 64 pixels, and a border width of 8 pixels. This synthesized texture looks
good as far as repeated features are concerned, but somewhat sharp di�erences
in brightness are visible. This shows that the input image should have an even
luminosity across the whole image.

Figure 10: The procedural texture used for comparison. It should be possible to get much
better visual quality at about the same performance, but that is not in the
scope of this thesis.

17

5.2. Multiple texture mapping

Multi-texturing performance was compared using 3 textures of size 256× 256 pixels and
an alpha-map of 1024× 1024 pixels. The texture array version of the synthesized texture
was generated using 128 × 128 patches of size 64 × 64 pixels and a border width of
8 pixels, and uses the alternate shader that takes advantage of the patch-structure of
the synthesized texture. The shader using splatting and synthesized textures used three
di�erent synthesized textures with di�erent parameters, and uses LOD.

Table 2: Performance results rendering multiple textures.

Shader FPS Theoretical
throughput
(Mpixels/s)

memory usage (MB)

Synthesized texture using texture array 1000 3 520 0.672

Synthesized texture splatting 512 ~1 600 5.49

Regular splatting 1307 8 800 3.73

The visual quality, see �gure 11, is much improved using synthesized texture splatting
over using regular splatting; repeated features are hardly visible at all. Although the
performance hit is quite large, it is still many times faster than what is necessary for
real-time rendering.
The shader using the texture array on the other hand gives a completely di�erent

result. The path and the borders between di�erent textures look blocky, and smother
transitions and mixed textures are nowhere to be seen. A smaller patch size might reduce
the blockiness but would also reduce blending between textures and introduce sharper
borders, and in addition might reduce the quality of the synthesized texture. For some
applications this visual style could still �t in, but it might be hard to use it for realistic
images. However, only for this shader is the performance not limited by the number of
textures used.

18

Figure 11: A visual comparison of the di�erent multi-texturing techniques. The top-most
image uses the texture-array based shader, the middle image uses synthesized
texture splatting and the bottom images uses regular splatting.

19

6. Conclusion

The results show that patch-based, pre-generated, synthesized textures can be used in real-
time 3D rendering to reduce video memory usage or increase texture quality at the cost
of performance. Whether this tradeo� is worthwhile depends on the intended application,
but most modern applications should have bottlenecks in other parts of rendering than in
for example terrain texturing. The synthesized texture splatting-shader could probably
be used in some modern games without much modi�cation, and improve visual quality
with only slightly worse performance. And a similar method could be used for o�ine
rendering to reduce rendering times for some scenes in CGI-videos, since more textures
can �t in memory. But the technique is no silver bullet � it only works for textures that
can be generated using patch-based synthesis in the �rst place.
The multi-texturing technique using a texture array would probably need much im-

provement before practical use. One way to improve it could be to store two texture
indexes per patch and one value specifying how to blend between them. Or to introduce
noise when selecting level in the texture array. Or it might be that a completely di�erent
multi-texturing optimization can be adapted for synthesized textures in a better way.
One interesting aspect of this method of using texture synthesis to texture large areas

is that it is highly automatic and not particularly customizable. This appeals to pro-
grammers, but perhaps not as much to texture artists, who might want full control over
the result. One solution that allows for full control is what is called megatextures or
clipmaps [19] that allows usage of huge textures by streaming the parts that are visible to
the graphics card. The initial texture could of course still be generated using texture syn-
thesis. Comparing these methods to the methods in this thesis could be an opportunity
for future research.
Other areas of future research may include �nding better ways to join patches than

blending, how to handle normal and specular maps, improving anisotropic �ltering quality,
and whether more adaptable or even dedicated hardware could improve performance.

20

References

[1] A Efros and T Leung. Texture synthesis by non-parametric sampling. In Proceedings

of the International Conference on Computer Vision, volume 2 of ICCV '99, pages
1033�1038, 1999.

[2] L-Y Wei and M Levoy. Fast texture synthesis using tree-structured vector quan-
tization. In Proceedings of the 27th annual conference on Computer graphics and

interactive techniques, SIGGRAPH '00, pages 479�488, 2000.

[3] X Tong, J Zhang, L Liu, X Wang, B Guo, and H-Y Shum. Synthesis of bidirectional
texture functions on arbitrary surfaces. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, SIGGRAPH '02, pages 665�672,
2002.

[4] L Liang, C Liu, Y-Q Xu, B Guo, and H-Y Shum. Real-time texture synthesis by
patch-based sampling. ACM Transactions on Graphics, 20:127�150, July 2001.

[5] A Efros and W T Freeman. Image quilting for texture synthesis and transfer. In
Proceedings of the 28th annual conference on Computer graphics and interactive tech-

niques, SIGGRAPH '01, pages 341�346, 2001.

[6] V Kwatra, A Schödl, I Essa, G Turk, and A Bobick. Graphcut textures: Image and
video synthesis using graph cuts. In ACM SIGGRAPH 2003 Papers, SIGGRAPH
'03, pages 277�286, 2003.

[7] C Soler, M-P Cani, and A Angelidis. Hierarchical pattern mapping. In Proceed-

ings of the 29th annual conference on Computer graphics and interactive techniques,
SIGGRAPH '02, pages 673�680, 2002.

[8] Q W Yizhou. Feature matching and deformation for texture synthesis. In ACM

SIGGRAPH 2004 Papers, SIGGRAPH '04, pages 364�367, 2004.

[9] M F Cohen, J Shade, S Hiller, and O Deussen. Wang tiles for image and texture
generation. In ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, pages 287�294, 2003.

[10] J Bentley. Multidimensional binary search trees used for associative searching. Com-

mun. ACM, 18:509�517, September 1975.

[11] J H Friedman, J L Bentley, and R A Finkel. An algorithm for �nding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3:209�226, September 1977.

[12] R B Marimont and M B Shapiro. Nearest neighbour searches and the curse of
dimensionality. Journal of the Institute of Mathematics and its Applications, 24:59�
70, 1979.

[13] J Beis and D Lowe. Shape indexing using approximate nearest-neighbour search in
high-dimensional spaces. In Proceedings of the 1997 Conference on Computer Vision

and Pattern Recognition, CVPR '97, pages 1000�1006, 1997.

21

[14] S Maneewongvatana and D M Mount. It's okay to be skinny, if your friends are
fat. In Center for Geometric Computing 4th Annual Workshop on Computational

Geometry, pages 84�89, 1999.

[15] L-Y Wei, S Lefebvre, V Kwatra, and G Turk. State of the art in example-based
texture synthesis. In Eurographics '09 State of the Art Reports (STARs), pages 93�
117, 2009.

[16] L-Y Wei and M Levoy. Order-independent texture synthesis. Technical Report TR-
2002-01, Computer Science Department, Stanford University, April 2002.

[17] S Lefebvre and H Hoppe. Parallel controllable texture synthesis. In ACM SIGGRAPH

2005 Papers, SIGGRAPH '05, pages 777�786, 2005.

[18] L-Y Wei. Tile-based texture mapping on graphics hardware. In ACM SIGGRAPH

2004 Sketches, SIGGRAPH '04, pages 67�, 2004.

[19] C Tanner, C Migdal, and M Jones. The clipmap: A virtual mipmap. In Proceed-

ings of the 25th annual conference on Computer graphics and interactive techniques,
SIGGRAPH '98, pages 151�158, 1998.

22

Appendix A texsyn.frag

The uniforms should be set as follows:

• m_Di�use: a texture array of the input images (at least one).

• m_Coords: a luminance/alpha texture with patch coordinates, divided by the input
image size.

• m_TextureIndex: optional, an alpha texture with the texture indexes of the patches.

• m_ps: the patch size divided by the input image size.

• m_bs: the border width divided by the patch size.

• m_np: the number of patches per side.

• m_lod: optional, a value specifying the maximum distance where the simple branch
should be taken.

To enable all optimizations, TEXTURE_GATHER should be de�ned. That requires a
GPU and drivers that support OpenGL 4.0 or higher.
For older GPUs, modify the version on the �rst line to, for example, #version 330.

1 #version 420

2

3 uniform sampler2DArray m_Diffuse;

4 uniform sampler2D m_Coords;

5 #ifdef TEXTURE_INDEX

6 uniform sampler2D m_TextureIndex;

7 #endif

8

9 uniform float m_ps;

10 uniform float m_bs;

11 uniform float m_np;

12 #ifdef LOD

13 uniform float m_lod;

14 #endif

15

16 in vec2 texCoord;

17 in vec4 pos;

18

19 vec4 textureGrad_fake(sampler2DArray sampler , vec3 P, vec2 dPdx , vec2 dPdy)

20 {

21 vec2 dx = dPdx * textureSize(sampler , 0).xy;

22 vec2 dy = dPdy * textureSize(sampler , 0).xy;

23 float d = max(dot(dx , dx), dot(dy, dy));

24

25 return textureLod(sampler , P, 0.5 * log2(d));

26 }

27

28 #ifndef TEXTURE_GRAD

29 #define textureGrad textureGrad_fake

30 #endif

31

32 vec4 textureSynth(sampler2DArray sampler , sampler2D coords ,

33 #ifdef TEXTURE_INDEX

23

34 sampler2D textureIndex ,

35 #endif

36 vec2 P,

37 #ifdef LOD

38 float lod , float z,

39 #endif

40 float ps, float bs, float np)

41 {

42 vec2 coord = P * np + 0.5;

43

44 vec2 patchCoord = floor(coord);

45 vec2 inPatchCoord = coord - patchCoord;

46

47 vec2 dFdxCoord = dFdx(coord*ps);

48 vec2 dFdyCoord = dFdy(coord*ps);

49

50 #ifdef LOD

51 if(z > lod)

52 {

53 vec2 v = vec2(inPatchCoord.x < 0.5? -0.5:0.5 ,

54 inPatchCoord.y < 0.5? -0.5:0.5);

55

56 vec2 t = texture2D(coords , P).zw;

57

58 vec3 u = vec3((t + (inPatchCoord - v + bs /2.0)*ps), 0.0);

59 #ifdef TEXTURE_INDEX

60 u.z = texture2D(textureIndex , P).a * 256.0;

61 #endif

62

63 return textureGrad_fake(sampler , u, dFdxCoord , dFdyCoord);

64 }

65 #endif

66

67 #ifndef TEXTURE_GATHER

68 vec2 ipatch [4] = vec2 [](

69 (patchCoord+vec2(-0.5, 0.5)) / np ,

70 (patchCoord+vec2(0.5, 0.5)) / np ,

71 (patchCoord+vec2(0.5 ,-0.5)) / np ,

72 (patchCoord+vec2 (-0.5,-0.5)) / np

73);

74 #endif

75 vec4 ipatchx;

76 vec4 ipatchy;

77 #ifdef TEXTURE_GATHER

78 ipatchx = textureGather(coords , patchCoord/np, 2);

79 ipatchy = textureGather(coords , patchCoord/np, 3);

80 #else

81 for(int i=0; i<4; i++)

82 {

83 ipatchx[i] = texture2D(coords , ipatch[i]).z;

84 ipatchy[i] = texture2D(coords , ipatch[i]).w;

85 }

86 #endif

87 #ifdef TEXTURE_INDEX

88 vec4 tindex;

89 #ifdef TEXTURE_GATHER

90 tindex = textureGather(textureIndex , patchCoord/np , 3) * 256.0;

91 #else

92 for(int i=0; i<4; i++)

93 {

94 tindex[i] = texture2D(textureIndex , ipatch[i]).a * 256.0;

95 }

24

96 #endif

97 if(tindex.xyzw != tindex.yzwx)

98 {

99 bs = 1.0; // Blend maximally between different layers.

100 }

101 #endif

102

103 vec4 colors [4];

104 const vec2 offsets [4] = vec2[] (

105 vec2 (0.5 , -0.5), vec2 (-0.5,-0.5), vec2 (-0.5 ,0.5), vec2 (0.5 ,0.5)

106);

107 for(int i=0; i<4; i++)

108 {

109 vec3 u = vec3((vec2(ipatchx[i],ipatchy[i])

110 + (inPatchCoord + offsets[i] + m_bs /2.0)*ps),

111 0.0);

112 #ifdef TEXTURE_INDEX

113 u.z = tindex[i];

114 #endif

115 colors[i] = textureGrad(sampler , u, dFdxCoord , dFdyCoord);

116 }

117

118 vec2 transition = clamp ((inPatchCoord -0.5)/bs+0.5, 0.0, 1.0);

119 vec4 a = mix(colors [3], colors [2], transition.x);

120 vec4 b = mix(colors [0], colors [1], transition.x);

121 return mix(a, b, transition.y);

122 }

123

124 layout(location=0, index =0) out vec4 frag_color;

125 void main(void)

126 {

127 frag_color = textureSynth(m_Diffuse , m_Coords ,

128 #ifdef TEXTURE_INDEX

129 m_TextureIndex ,

130 #endif

131 texCoord ,

132 #ifdef LOD

133 m_lod , pos.z,

134 #endif

135 m_ps , m_bs , m_np);

136 }

25

	Introduction
	Background
	Example based texture synthesis
	Approximate nearest neighbor search

	Using synthesized textures in real-time 3D rendering
	Implementation
	Results and performance
	Single texture mapping
	Multiple texture mapping

	Conclusion
	References
	Appendix texsyn.frag

