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Abstract. 

      This thesis offers a study on how well the standard GARCH(1,1) model, the GJR-

GARCH(1,1) model and the QGARCH(1,1) model, were able to model (in-sample) and 

forecast (out-of-sample) the volatility of copper spot price returns in four equally large 

subsamples within the period July 21, 1993 to 22 Mars, 2012. The results shows that the 

GARCH models' ability to model the conditional variance (in-sample) was highly satisfactory 

for the three subsamples in which there was found significant presence of ARCH effects. In 

out-of-sample forecasting the GARCH models dominated a Random Walk model across all 

four subsample (17 to 29 % lower Mean of Absolute Errors for the GARCH models). In three 

out of the four subsamples the GARCH models also dominated the unconditional variance (8 

to 19 % lower Mean of Absolute Errors for the GARCH models). In one subsample the 

GARCH models produced about 8 to 10 % higher MAE than the unconditional variance. The 

results did also indicate that no one of the three GARCH models used in this thesis could 

generally be recommended over the others for the purpose of forecasting the one-step ahead 

one day variance in copper spot price returns. This conclusion is based on the facts that the 

differences between the GARCH models in the out-of-sample forecasting was small, and that 

it was difficult to predict which model that would have the slightly better forecasting 

performance. This conclusion may be interpreted as that the standard GARCH(1,1) model 

was sufficient. 
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1. Introduction 

The recent years' dramatic price increases in many commodities are one of the many 

noteworthy events which have occurred in the world commodity markets in the last decades. 

Alongside of this development there has followed a rapidly increasing activity in the 

commodity markets by market participants other than the 'traditional' ones whom has 

industrially related exposure to the physical commodity, namely by institutional investors, 

investment banks, hedge funds, mutual funds, and other speculators. In contrast to the 

traditional market participants, who mainly uses the commodity markets for spot transitions 

and hedging purposes, these new market participants have been drawn to the commodity 

markets by the prospect of further strong price movements, and by the risk reduction effect 

(through diversification by uncorrelated returns) and inflation protection, which adding 

commodities to a traditional portfolio asset mix could bring (for more in-depth discussions on 

this topic see Geman, H. (2005) page 2-7; Russel-Walling, E. (2005); and Watkins, C. and 

McAleer, M. (2008)).   

      However, since sound investment decisions in general are based on the trade-off between 

expected risk and return, these increased investment orientated activities in the commodity 

markets calls for the same careful analysis and estimation of the expected future return, 

volatility and other key variables, as is standard when it comes to more traditional types of 

investment assets. 

      With that in mind, and when considering the growing number of studies suggesting that 

ARCH class models, especially some types of GARCH models
1
, are able to deliver more 

accurate forecasts of future variance compared to the simple historical variance (unconditional 

variance) and a Random Walk model, an important area for further academic research should 

therefore be this kind of studies with focus on the volatility of commodity returns. Although 

the volatility of some commodities are more frequently studied, such as crude oil, some 

researchers (e.g. Bracker, K. and Smith, K.L. 1999, page 80) have pointed out that other 

commodities, such as copper, has been given surprisingly little attention in this regard, given 

that copper (along side of aluminum) has the highest trading volume (spot and future) of the 

industrially used non-ferrous metals on the London Metal Exchange (LME). 

      This Bachelor Thesis therefore aims to extend the literature in this area by investigating 

the extent to which ARCH effects has been present in copper price returns since mid 1993 to 

                                                 
1
 These studies have mainly been focused at the volatility in returns of equities, fixed income 

securities and exchange rates. A few examples of such studies are listed the Appendix. 
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the present, and to evaluate how well GARCH models have been able to model (in-sample) 

and forecast (out-of-sample) the copper price volatility within this period. 

 

The value of such a study lies, first and foremost, in the importance of accurate estimates of 

the future volatility in financial decision making and many financial applications, such as 

portfolio management, derivatives pricing, and value at risk (VaR) estimation. Secondly, 

GARCH models have proven to be able to model conditional volatility and improve the 

forecasting accuracy of the future volatility of many financial time series. To fully appreciate 

the value of this fact, it should be remembered that it has proven difficult to forecast volatility 

using external regressors, thus meaning that GARCH models have been able to improve the 

forecasting accuracy of the future volatility
 
 were other methods empirically have shown to be 

unsatisfactory
2
. The results presented in this thesis should in other word be relevant because; 

knowledge about GARCH models' ability to model and forecast the future volatility in copper 

price returns are (or at least, should be) important to both traditional market participants (who 

doesn't fully hedge their physical exposure) and for the growing number of investment-

orientated market participants in the commodity markets who faces price risk and portfolio 

decisions involving copper. 

      Furthermore, another aspect of the changes and the dramatic events which have taken 

place in the commodity markets and the macroeconomic and financial environment as a 

whole over the last two decade, is that it is possible or even likely that there could have been 

some significant changes in the dynamics of the volatility in copper price returns over this 

period. This further motivates updating the literature since the study by Bracker, K. and 

Smith, K.L. (1999 and 2003) who, for the studied period December 31, 1974 to June 28, 

1996, found the GARCH, EGARCH and GJR-GARCH model outperformed the random walk 

model in out-of-sample forecasting of the one-step ahead future variance of copper price 

returns. And, the study by Watkins, C. and McAleer, M. (2008), who found the volatility of 

                                                 
2
 It is also worth to point out that GARCH models can be combined with external variance 

regressors, if such can be found to have a significant explanatory power of the future variance. 

See for example Kogan, L., Livdan, D. and Yaron, A. (2009) who presented a model for 

modeling the future volatility of oil futures conditional on a GARCH term and the slope of the 

term structure.  

      For a study on the drivers of volatility in the non-ferrous metals market see Brunetti, C. 

and Gilbert, C.L. (1995). 
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copper price returns to be non-increasing and time-varying (when analyzed over a long 

horizon) for the period January 5, 1976 to July 24, 2006. 

 

The research method used in this thesis could be divided into four main parts. First the 

possibility of modeling the mean with an autoregressive model is investigated by studying the 

presence of autocorrelation in the returns. This is done for all four subsamples which the 

studied period in this thesis is divided into. Based on this analysis an appropriate model for 

the mean is then selected for each of the subsamples. The reason for dividing the studied 

period into subsamples is to be able to analyze how the GARCH models' ability to model the 

volatility of copper price returns has change over time. 

      In the next step the presence of time-varying volatility and 'volatility clustering' (ARCH 

effects), and asymmetry in the distribution of returns are investigated, both visually and by 

various econometric tests. This is done to derive a prior expectation regarding the 

appropriateness of modeling the volatility of the copper price returns with symmetric and 

asymmetric GARCH models in each of the subsamples. 

      In the third part the GARCH models are estimated in each of the subsamples. The 

GARCH models are estimated on the residuals of the model for the mean which was selected 

for that subsample. The regression outputs are then analyzed to conclude whether it was 

appropriate to model the variance (in-sample) with the GARCH models, and to derive prior 

expectations of the forecasting performances of the GARCH models. 

      The GARCH models analyzed in this thesis are the standard symmetrical GARCH model 

developed by Bollerslev, T. (1986), and two asymmetrical GARCH models, namely the GJR-

GARCH model proposed by Glosten, L., Jagannathan, R. and Runkel, D. (1992), and the 

QGARCH model proposed by Engel, R. F. and Ng, V. (1993) and further developed by 

Sentana, E. (1995). The asymmetric GARCH models are included in this study since the 

distributions of copper price returns were skewed throughout all four subsamples. 

Furthermore, including these asymmetric GARCH models in the study also opens up the 

possibility to analyze if the standard GARCH model is sufficient to model the volatility in 

copper price returns even when the distribution of returns is skewed. 

      In this thesis the QGARCH was chosen (in favor of the EGARCH) since this model 

wasn't covered in the previously mentioned studies of the copper return volatility. The 

QGARCH was, furthermore, the best performing GARCH model regarding out-of-sample 

forecasting in the study by Franses, P.H. and van Dijk, D. (1996), who analyzed the volatility 

of weekly returns of several major stock market indices. 
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      In the fourth and last part the forecasting performances of the estimated GARCH models 

are being evaluated. This is done by comparing the variance forecasts from the GARCH 

models, a Random Walk model and the unconditional variance, to a proxy for the 'true' 

realized one day variance. Mean Squared Error (MSE), the Mean Absolute Error (MAE) and 

the Median Squared Error (MedSE) are then calculated based on the deviations between the 

variance forecasts and the proxy for the 'true' realized one day variance. The GARCH models' 

forecasting performances are then evaluated by comparing the MSE, MAE and MedSE of the 

GARCH models' variance forecast to the MSE, MAE and MedSE generated by the Random 

Walk model's and the unconditional variance's variance forecasts. Conclusions are however 

primarily based on the MAE values for reasons discussed in section 4.6. 

 

There are a few things that should be noted regarding the limitations of this study. To begin 

with, the estimated GARCH models were only of a (1,1)-order. However, judging by the 

diagnostics tests after the model estimations, this specification seemed to be sufficient to fully 

capture the ARCH effects in the data. 

       Secondly, only the volatility in the close-to-close daily log returns is analyzed. It was in 

other words not investigated whether or not the GARCH models were suitable for modeling 

and forecasting the volatility of open-to-close (intraday) returns, close-to-open returns, or 

returns of higher frequencies. 

      Thirdly, there was in this thesis no concern taken to a possible 'information accumulation 

effect' as a consequence of the observations in the data being irregularly spaced in time.  

      And finally, the data sample was arbitrarily divided into four equally large subsamples. It 

is therefore possible that better results could have been derived by instead dividing the sample 

into subsamples with a more methodical approach. An example would be the iterated 

cumulative sum of squares (ICSS) algorithm, which Bracker, K. and Smith, K.L. (1999) used 

to detect breakpoints in the volatility series. 

 

The results presented in this thesis shows that there was strong presence of ARCH effects in 

the volatility of the copper spot price returns in the studied period. This presence did however 

vary across the subsamples and was found to be highly significant in three out of the four 

subsamples. 

      The GARCH models' ability to model the conditional variance (in-sample) was highly 

satisfactory for the three subsamples in which there was significant presence of ARCH 

effects. The results also suggested that the GARCH models' ability to model the conditional 
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variance might have increased over time. The GARCH models removed the largest portion of 

excess kurtosis in the distribution of the residuals from the mean equation in the last 

subsample (between 75 to 85 % of the excess kurtosis were removed by the GARCH models 

here). 

      The economic and statistical significance of the asymmetry parameters of the GJR-

GARCH and the QGARCH did also increase over time. In the last two subsamples the 

asymmetry parameters provided significant explanatory power. The skewness in the 

distribution of demeaned returns or the distribution of the residuals from the mean equation 

were, however, not a good indicator of whether the two asymmetric GARCH models would 

be better than the standard symmetrical GARCH model in modeling the conditional variance 

(in-sample or out-of-sample). 

      The (1,1) order of the GARCH models did furthermore show to be sufficient to fully 

capture the ARCH effects in all of the subsample periods. 

      In out-of-sample forecasting the GARCH models, in terms of MAE, dominated the 

Random Walk model across all subsamples. The improvements over the Random Walk model 

varied between 17 to 29 % lower MAE.  

      However, since the unconditional variance produced lower MAE values than the Random 

Walk model, which was expected due to the mean reversion in the volatility, the 

unconditional variance proved to be a more legitimate benchmark for the forecasting 

performance of the GARCH models than the Random Walk model in this case.  

      The GARCH models had about 8 to 19 % lower MAE than the unconditional variance for 

three out of four subsamples. However, in one subsample the GARCH models had about 8 to 

10 % higher MAE than the unconditional variance. The three subsamples where the GARCH 

models outperformed the unconditional variance were not the same as the three subsamples 

which had significant presence of ARCH effects. This suggests that it's hard to predict the 

forecasting performances of the GARCH models based on the in-sample estimations. 

However, the results also suggested that if more thoughts were to be given into the subsample 

selection, more accurate expectations of the GARCH models out-of-sample forecasting 

performance could probably be derived. 

      The results from the out-of-sample forecasting also showed that the difference between 

the GARCH models (in MAE) was small, and that it was difficult to determine which one of 

the GARCH models that would perform best in out-of-sample forecasting based on the results 

from the in-sample estimations. Therefore, no one of the three GARCH models used in this 

thesis can generally be recommended over the others. 
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2. Theoretical framework 

This section of the thesis offers a dense discussion on the topic of modeling the conditional 

variance with GARCH models, and an incomplete overview of related studies. For readers 

who are already familiar with the purposes and strengths of using GARCH, this section could 

be redundant and therefore skipped. 

2.1 Modeling non-constant conditional variance 

The necessity of modeling the conditional variance is consequence of the well known 

tendency for the variance in many time series of financial returns to be non-constant over 

time. When estimating coefficients of a standard regression model (e.g. CLRM and ARMA 

models) using the ordinary least squares (OLS) on such data, the error variance of the model 

could be non-constant (heteroscedastic), which violates the assumption of homoscedasticity in 

the classical linear regression model (CLRM)
3
. Although the OLS estimator of the 

coefficients is still unbiased in such a case, the problematic consequence of this is that the 

standard formula of calculating the standard error isn't, thus making inference (e.g. confidence 

intervals and p-values) unreliable.  

      One commonly used solution to this problem when estimating a model on cross-sectional 

data is to use a robust standard error, such as White's Robust S.E., which delivers consistent 

estimates of the standard errors
 4

. When it comes to time series models on the other hand, the 

forecasting accuracy of the model is often important or the main concern. Simply adjusting 

the standard error and keeping the assumption of constant error variance is therefore not a 

satisfying solution if the heteroscedastic error variance instead can be explained by the model.  

      The reason for why modeling the heteroscedastic error variance would be a preferred 

method, is based on the fact that the error variance can be shown to be the same as variance of 

the dependent variable    in a regression model. This is so since it's also assumed that the 

values of the explanatory variables are given, so that the deviations of the dependent variable 

                                                 
3
 The assumption of homoscedasticity: the expected value of all squared errors is the same at 

any given point in time and doesn't depend on the values taken by any other variables. 

Formally;           . Also, remember that it has been shown (Gauss-Markov theorem) 

that the OLS estimators of the coefficients have minimum variance of all linear and unbiased 

estimators (BLUE) only when the assumptions of the classical linear regression model 

(CLRM) holds. 

4
 In this case the error variance varies with some explanatory variable(s) rather than over time. 
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   from its expected value (its mean) are fully explained by the error term   . The conditional 

variance of    and    are therefore the same and assumed to be constant, which formally could 

be express as: 

 
                             (2.1.1) 

, where      being some information set available at time t-1. In other words, the assumption 

of constant error variance (homoscedasticity) also means that conditional distribution of each 

   population is assumed to be spread around its conditional mean with the same (or constant) 

variance (see Gujarati, D. N. and Porter, D.C. (2010) p.55). 

      Now, since the dependent variable    in many financial time series are some asset returns, 

and since financial decisions are generally bases upon the tradeoff between expected risk and 

return, an accurate forecast of future variance of    should be important
5
. Therefore, if the 

assumption of constant error variance is known to not hold, it should for financial time series 

models be a preferred approach (compared to using robust standard error) to try modeling the 

non-constant error variance since this could both solve the problems with OLS estimation as 

described above and lead to higher forecasting accuracy of the future variance of   
6
.  

      In order to model non-constant conditional variance (or conditional heteroscedasticity), 

changes in the structure of the standard type of regression model first has to be made. One 

way to do this is by multiplying the error term with the conditional standard deviation. For 

such model, the general form for a regression of a dependent variable    on a number of 

explanatory               can be expressed as: 

 
                                   (2.1.2) 

, where    is a stochastic error term with a zero mean and unit variance. Both   and   are 

conditional upon the values taken by some explanatory variables. Therefore such a model has 

                                                 
5
 Without claiming to deliver complete coverage of situations where the accuracy of the 

forecast of future variance is important in finance, some areas where it widely accepted to be 

so is in; portfolio management, derivatives pricing, value at risk (VaR) estimation, and for 

other investment related decisions where accurate measures of expected risk and return are 

key inputs. 

6
 Remember that if homoscedasticity is assumed, the one-step ahead forecast variance is 

assumed to be the constant unconditional variance. 
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a conditional mean (or expectation) of               , and a conditional variance of 

               , both of which being nonconstant (see Ruppert, D. (2006) p.364-365) 

      Adding the assumption of normality, and if   is assumed to be linear and                 

is denoted as   
 , the model can be expressed in the following structure used by Engel, R. F. 

(1982), and Bollerslev, T. (2011).  

                    
   (2.1.3) 

 
                         (2.1.4) 

, where   being a vector of unknown parameters, and where     (the conditional mean of   ) 

could consist of both endogenous and exogenous variables. In other words, non-constant 

conditional variance can be modeled in both structural models and univariate time series 

models (e.g. the Classical Linear Regression Model (CLRM) and the AutoRegressive Moving 

Average (ARMA) model).     and   
  can also be expressed in terms of the information set 

available at time t-1, so that    can be expressed using conditional densities. 

 
                  

    (2.1.5) 

 
                  (2.1.6) 

 
                                  

              
          

                  
  (2.1.7) 

As we see in eq. 2.1.7, the conditional variance of    and    are still the same. However, their 

conditional variance are now non-constant (  
 ) rather than constant as before (  ). 

 

Although the model with this modification allow for non-constant conditional variance, an 

important part remains to be considered, namely the way in which the conditional variance 

should be modeled for the best fit to the data so that better forecasts of future variance can be 

acquired. This task is however, as forecasting the future intrinsically is, a difficult one. 

Finding external variables which can forecast the changes in variance has shown to be 

difficult, and to use external variables that are found to correlate with the changes in the 

variance has to be forecasted as well (which could be just as, or even more, difficult) in order 
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to forecast the future variance. These difficulties of modeling the conditional variance bring 

us to the next section where the ARCH class models for the conditional variance is discussed. 

2.2 ARCH 

The ARCH model, which stands for AutoRegressive Conditional Heteroscedastic model, was 

introduced by Engel, R. F. (1982). In short, the ARCH model models the conditional error 

variance as a function of the values taken by past squared errors, thus exploiting the 

commonly found presence of autocorrelations in these. Engel stated by the example of an 

autoregressive model of the first-order, that the use of a conditional mean in time series model 

clearly could bring vast improvements in forecasting the dependent variable, and by that logic 

argued that; "For real processes one might expect better forecast intervals if additional 

information from the past were allowed to affect the forecast variance" (Engel, R. F. (1982) 

p.988). 

      What Engel proposed was to model the conditional variance as a weighted average of the 

values taken by a number of the most recent lags of squared errors, and to parameterize their 

weights so that they could be estimated for the best fit to the sample data using maximum 

likelihood
7
. Engel did in other words propose that the conditional error variance should be 

conditional upon the values taken by previous errors
8
. Formally this could be express as: 

 
  
                             

                 (2.2.1) 

The possibility to model the conditional variance this way is due to another empirical 

characteristic (besides the heteroscedasticity) in time series of financial returns, which is 

commonly referred to as volatility clustering. What this means is that the volatility is clustered 

together so that there are periods of persistent high volatility followed by periods of persistent 

low volatility, and so on.  There is in other words commonly observed to be positive and 

statistically significant autocorrelation in the squared errors.  

      To understand why modeling the conditional variance with ARCH could lead to more 

accurate forecasts for the future variance in the presence of non-constant error variance and 

positive autocorrelation in the squared errors, remember first that the historical (or, empirical-, 

                                                 
7
 Engel, R. F. (1982) showed that the use of ML rather than OLS brought efficiency gains. 

8
 It should also be mentioned that it's possible to include relevant exogenous variance 

regressors (if such could be found), so that the conditional variance is not only conditional 

upon the values taken by previous errors. 
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simple-) variance of a variable is the equally weighted average of all the squared deviations 

from the sample mean in that sample. This estimate of the future variance would be optimal if 

the errors were to be strict white noise (zero mean, independent variables with constant 

variance) since the conditional error variance then would be constant and equal to the 

unconditional
9
. 

      However, being aware of the presence of non-constant error variance and positive 

autocorrelation in the squared errors, the historical variance as an estimate for the future 

variance appears unattractive. An improvement could then be to use an equally weighted 

moving average variance, of most recent  -days' squared errors. However, if it's also known 

that the size of the most recent squared errors have a larger impact on the future variance, this 

approach doesn't appear completely satisfactory either. Another improvement under these 

conditions could then be to allow each of the   most recent squared errors to have unequal 

weights. This is one of the essential features of the ARCH model. And, as explained above, 

the weights are estimated for the best fit to the sample data by using maximum likelihood 

estimation. The conditional variance equation of the ARCH( ) model can in a general from 

be expressed as: 

 

  
           

 

 

   

 (2.2.2) 

, where   
  is the one-step ahead forecast of the variance (the conditional variance),   is the 

number the most resent squared errors included in the calculation of the conditional variance, 

and    are the weights given to each corresponding lag of squared error
10

. To ensure that the 

conditional variance would not take a negative value, all weights and the constant term are 

required to be non-negative (Non-negativity constrains:                       11. 

      This formula does, however, raise the question of what the optimal size of   are given a 

certain data sample of a time series. Two problems with the ARCH model is that there isn't 

                                                 
9
 It's here desirable to have as big sample as possible since the sample variance approaches the 

population variance as the number of observations increases.   

10
 Recognize that this formula also could represent an equally weighted moving average if 

    and    …=   . 

11
   

  could take a negative value given at least one negative weight and a sufficiently large 

lagged error attached to that negative weight. 
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any clear best approach to determine this, and that   might need to be quite large in order to 

fully capture the dynamics in the variance. And, having a large   introduces the problem of 

having many parameters to estimate in the regression and an increased risk of breaching the 

non-negativity constrains. 

      To counter these problems some ad hoc solutions has been proposed. One example of 

such ad hoc solution (eq. 2.2.3) is the one Engel, R. F. (1982) used  to model the variance of 

UK inflation in the same study in which he first introduced the ARCH model. 

 
  
               

         
         

         
   (2.2.3) 

Another such example (eq. 2.2.4) is the model Engel, R. F. and Kraft, D. (1983) used.  

 

  
        

     

      
 

 

   

 (2.2.4) 

As we see, both these models solve the problem of large   since only two parameters needs to 

be estimated. 

      However, this ad hoc approach still leaves the researcher with the inconvenience of 

having to pre-determine how many lags of the squared errors the conditional variance should 

be conditional upon, and what weights they should have relative to one and another. Finding 

the most suitable model for the conditional variance could therefore be a time consuming task. 

Furthermore, and possibly more serious than the inconvenience, there also exists the 

possibility that the pre-determine specification (like those above) isn't optimized to the sample 

data since an estimation of    leaves the relative size of the weights and the size of the   

unchanged.  

      Due to these weaknesses, the ARCH( ) model are rarely used in practice today. However, 

the ARCH model has provided a framework for modeling the conditional variance upon lags 

of squared errors, a framework which the other still widely used models has been developed 

on. One of these models is the widely used GARCH model which is covered in section 2.3 

below. 

      However, before proceeding to this section, it's worth pointing out one additional aspect 

about ARCH models in general. In Engel's own words:  

      "…the ARCH regression model is an approximation to a more complex regression which 

has non-ARCH disturbances. The ARCH specification might then be picking up the effect of 

variables omitted from the estimated model. The existence of an ARCH effect would be 
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interpreted as evidence of misspecification, either by omitted variables or structural change. 

If this is the case, ARCH may be a better approximation to reality than making standard 

assumption about the disturbances, but trying to find the omitted variable or determine the 

nature of the structural change would be even better." Engel, R. F. (1982), p.990. 

      "The goal of volatility analysis must ultimately be to explain the cause of volatility. While 

time series structure is valuable for forecasting, it does not satisfy out need to explain 

volatility. … Thus far, attempts to find the ultimate cause of volatility are not very 

satisfactory." Engel, R. F. (2001) p.166. 

      In other words, it's important to not forget that no matter how accurate forecasts of the 

future variance that ARCH class models produces; they do not explain the true cause of 

volatility. And, the popularity of models based on ARCH today, should arguably not only be 

contributed to the ability of these models to model the non-constant variance, but also due to 

the difficulty in finding external variables that in a satisfactory manner can explain the true 

process. 

2.3 GARCH 

 The GARCH model, which stands for Generalized AutoRegressive Conditional 

Heteroscedastic model, was developed by Bollerslev, T. (1986)
12

, and builds on the ARCH 

framework of modeling the conditional error variance. The difference between the GARCH 

model and the ARCH model is that it 'generalizes' the selection of   and the scheme in which 

the weights decline. There is in other words no need to pre-specify an ad hoc solution for the 

number of lags ( ) to include and their relative weights before estimating a GARCH model, in 

order to avoid the problems of the ARCH model. To be more specific, the weights in a 

GARCH model decline exponentially, thus never reaching completely zero. Therefore, the 

GARCH model (in its most simple form) can be thought of as an ARCH( ) model with 

exponentially declining weights. 

      Although the benefits from this generalization might not be obvious at first, it does bring 

of some very important and desirable properties. To begin with, having the weights decline 

exponentially solves the problem of having too many parameters to estimate. This property of 

the GARCH model can be shown by studying the properties of an Exponentially Weighted 

Moving Average (EWMA) model for the conditional variance. 

                                                 
12

 Some sources do however state that the GARCH model also was developed independently 

by Taylor S.J. 
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      A EWMA is simply the historical average variance but with exponentially declining 

weights, and can formally be express as: 

 

  
              

 

 

   

 (2.3.1) 

At first glance, introducing an infinite number of weights and lagged squared errors doesn't 

seem to solve the problem of having a too large number of parameters to estimate as 

described above, rather the opposite
13

. However, the infinite series of exponentially declining 

weights can through algebra be reduced to the following recursive formula for the conditional 

variance: 

 
  
           

       
  (2.3.2) 

, where     
  is the most resent one-step ahead forecast of the variance, and   is the so called 

decay factor, which through regression can be estimated to the best fit for a particular data set, 

but is for EWMAs typically set to some standard value as RiskMetrics' 0,94. Since   by 

specification can take values between zero and one        , the conditional variance is a 

weighted average of the most resent one-step ahead forecast of the variance and the most 

resent lag of squared error
14

. From this formula it's evident that letting the weights decline 

exponentially solves the problem of having too many parameters to estimate since there are 

only two weights to be estimated.  

      The GARCH model uses this feature of a EWMA so that the conditional variance 

equation for a GARCH(1,1)  model can be written: 

 
  
          

       
  (2.3.3) 

As we see, there are some minor differences between a GARCH(1,1) model and a EWMA. In 

the GARCH(1,1) the       and   has been changed to   and  , which together with the 

                                                 
13

 Since it's impossible to weight an infinite number of the most resent errors, the series has to 

be truncated at some lag. 

14
 For large   new shocks (errors) affects the conditional variance relatively little, and the last 

one-step ahead forecast of the variance predominates the value taken by the new one-step 

ahead forecast of the variance.   is therefore also commonly called the "volatility persistence 

parameter".  
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constant term   are estimated to the best fit for a given data sample using maximum 

likelihood estimation. The conditional variance in the GARCH model is therefore a weighted 

average of the long term variance, the most resent one-step ahead forecast of the variance and 

the most resent lagged error
 
squared. The variables     

  and     
  are commonly referred to as 

the ARCH term and the GARCH term. 

      The addition of the constant term in the GARCH(1,1) model lets the conditional variance 

depend upon a long run average variance (or, the constant unconditional variance) when the 

model is stationary (that is when:      ), which it is in most cases. This property 

separates the GARCH(1,1) mode from a EWMA model, and is a desirable feature since it's 

well known that volatility series are mean-reverting, that is, the variance tend to move 

towards long run average when being relatively high or relatively low (see Brooks, C. (2008) 

p.385). 

      To highlight the benefits of the GARCH(1,1) model compared to the described ad hoc 

solutions for the ARCH model in the previous section, consider figure 2.3.1.  

 

Figure 2.3.1 - Weight declining schemes, GARCH vs. ad hoc ARCH 

 

Notes:     in the GARCH models here 
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Here we see that the more weight given to the most resent squared error in a GARCH(1,1) 

model, the faster will the rest of the weighs decline (although, still exponential). By this 

property, the estimation of   and   in a GARCH model will automatically adjust the relative 

weights of the lagged squared errors. And, although the weights in the GARCH model never 

completely reaches zero, the estimation of   and   dose in one sense also automatically 

adjusts how many of the most resent lags of squared error that the conditional variance should 

be conditional upon. For example, the GARCH model with      could almost be 

considered an ARCH(15) model with exponentially declining weights. This feature of the 

GARCH model makes it a very flexible model compared to ad hoc solutions in eq. 2.2.3 and 

eq. 2.2.4, where the estimation of    merely shifts the curve downwards (if      ) since all 

weights are equally affected by the value of this parameter. 

 

Although the GARCH(1,1) in general is sufficient to capture the volatility clustering, the 

GARCH model can be expanded to hold   number of ARCH terms and   number of GARCH 

terms. The conditional variance equation for such GARCH(   ) model can formally be 

written as
15

: 

 

  
           

 

 

   

        
 

 

   

 (2.3.3) 

 

2.4 Modifications of the standard GARCH model 

Since the introduction of the standard GARCH model there has been developed a large 

number of extensions or modifications to this model. One of the more commonly used groups 

of such modifications has been developed with the aim of dealing asymmetries in the 

distribution of returns. The usefulness of this group of GARCH models arises from yet 

another commonly found characteristic of financial returns, namely the presence of negative 

skewness in the distribution of returns. 

      A distribution which has negative skew has a longer left tail and a shorter right tail 

compared to the symmetrical normal distribution. This means that negative returns are less 

concentrated close to the mean compared to positive returns. Negative returns are in other 

words more likely to take on extreme absolute values than positive returns. It has therefore 

                                                 
15

 If all    = 0 this formula is an ARCH ( ) model. 
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been argued that negative shocks would have larger impact on future volatility than positive 

shocks in financial time series
16

. 

     Although the standard GARCH model has proven the be successful in modeling the 

volatility of financial returns in the presence of time-varying volatility and 'volatility 

clustering', it isn't able to account for asymmetry in the distribution of returns since only the 

size of lagged errors are assumed to explain future volatility
17

. The Basic linear GARCH 

model can in other word not take into account that volatility might be higher or lower 

depending on the sign of previous errors. In the presence of asymmetry in the distribution of 

returns, the standard symmetric GARCH model might therefore not be the most suitable 

model for the conditional variance, and the use of a modified version of the standard GARCH 

model might be appropriate. 

      As was mentioned in the introduction in this thesis only two modified versions of the 

GARCH model will be used, the GJR-GARCH and the QGARCH. For an incomplete, but yet 

extensive list of more modified GARCH models, see Bollerslev, T. (2011). 

 

 

 

 

 

 

 

 

 

 

 

                                                 
16

 One well-known hypothesis explaining why such dynamic would present in time series of 

equity returns is known as leverage effects. Relatively higher volatility after negative shocks 

is in this case said to be a consequence of that future cashflow streams, from holding a 

particular stock, appears more risky after fall in the stock price since the firm's debt to equity 

ratio then rises (see Brooks, C. (2008) p.404). 

17
 Remember that the explanatory variables in the standard GARCH model are lagged 

conditional variances (GARCH terms) and lagged squared errors  (ARCH terms), and that  

sign of the errors are lost when squaring them. 
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3.  Model specifications 

This section of this thesis reviews the model specifications and statistical properties of the 

standard GARCH(1,1) model, the GJR-GARCH(1,1) model, the QGARCH(1,1) model, and 

the AutoRegressive model for the mean. 

3.1 Mean equation 

A GARCH model could be estimated on the residuals from a model (for the returns) with 

ether a constant mean or a non-constant conditional mean. Since there is sometimes small but 

still significant autocorrelation in financial returns, GARCH models are frequently estimated 

on the residuals from an autoregressive model (AR) or an autoregressive moving average 

model (ARMA). In this thesis the model for the returns (the mean equation) will be either a 

AR( ) model or  a model with constant mean (unconditional mean), as specified respectively 

in eq. 3.1.1 and eq. 3.1.2 below. 

 
                              (3.1.1) 

 
          (3.1.2) 

 
        (3.1.3) 

, where    being the returns,    a strong white noise with zero mean and unit variance,    the 

conditional standard deviation, and     a constant term in the regression
18

.
 
 

      The reason for having this flexible specification is because each of the GARCH models 

will be estimated and tested in four separate subsamples. Which one of these equations that 

will be used for the mean, and what   to use if the AR( ) model will be used, are determined 

by the presence of  autocorrelation (or lack of such) in the returns of each individual 

subsample. 

3.2 GARCH(1,1) 

The conditional variance equation of the GARCH(1,1) model is given in eq. 3.2.1 below. 

                                                 
18

 It's also common to add the assumption of    being normally distributed,                . 

In that case it can be shown that                   which can be compared with  

                under the assumption of CLRM.  
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  (3.2.1) 

, where   
  being the one-step ahead forecast for the future variance (or the conditional 

variance),     
  the most resent error squared, and     

  the last estimate of the conditional 

variance produced by the model. The model imposes the negativity constrains:    ,   and 

   0, to ensure that   
  is positive. 

      Since the conditional variance in the GARCH model is only conditional upon the values 

taken by previous lags of the errors, the conditional variance could also be express as
19

:  

 
                        

  (3.2.2) 

, where it's assumed that         and                . 

      The GARCH model is stationary if      .  Given stationary the model has a mean-

reverting property, meaning that the models conditional variance will be depend upon the 

long run average variance (unconditional variance) to some extent. This is the case since the 

constant term is the product of         times the unconditional variance (  ). If we 

denote         as  , the constant term can be expressed as:         . Since the model 

requires that        ,   and therefore also   will only be positive when      . 

The degree to which the model will mean-revert depends on how close      is to one. 

When       1, the models one-step ahead forecast for the variance depends relatively little 

on the unconditional variance and is therefore said to have slow mean reversion or high 

volatility persistence. If       the model has a 'unit root in variance'. In this case there is 

no mean-reversion accounted for by the model, and the model then has the same properties as 

an Integrated GARCH model (IGARCH) or a EWMA. If      , the model is 'non-

stationarity in variance'. 

      When the model is stationarity the unconditional variance is given by (see Brooks, C. 

(2008) p.394): 

 

                
 

     
    (3.2.3) 

                                                 
19

 Remember that a GARCH(1,1) model can be thought of as an ARCH( ) model. 
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Comparing eq. 3.2.1 or eq. 3.2.2 with eq. 3.2.3, we see that the GARCH(1,1) model has 

constant unconditional variance    (unconditional homoscedastic), but non-constant 

conditional variance   
  (conditionally heteroscedastic). 

 

Although, the model (eq. 3.2.1) only deliver a one-period forecast, longer prediction horizons 

can be created by using a transformed version of the formula (eq. 3.2.4) below, and repeatedly 

using the previous forecast for the variance as input for the next step-ahead forecast for the 

variance.  

 
         

                
      (3.2.4) 

When the model is stationary the forecast of the k-step ahead future variance will converge 

with the historical average variance (  ) as the prediction horizon increases, which formally 

can be expressed as: 

 

    
   

        
   

 

     
    (3.2.5) 

When the model has a 'unit root in variance' the forecast variance is the same for all k-steps-

ahead forecasts. 

3.3 GJR-GARCH(1,1) 

The conditional variance equation of the GJR-GARCH(1,1) model is given in eq. 3.3.1 below: 

 
   

          
        

           
  (3.3.1) 

    
             
               

  

, where the difference to the conditional variance equation of the standard GARCH(1,1) 

model is the addition of       
     , an asymmetry parameter times the most resent error 

squared and a dummy variable which takes the value 1 if       .  

      The non-negativity constrains are similar to those of the standard GARCH model. In the 

GJR-GARCH these are:                    , which means that its acceptable that 

     as long as        . 

      The model is stationary when            . In this case the unconditional variance 

is given by eq. 3.3.2 below. 
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    (3.3.2) 

      When      0 the conditional variance will not only be conditional upon the sizes of the 

previous lags of errors squared, but also on the sign of the most recent error. If      0 the 

models one-step ahead forecast for the variance will increase in response to the most resent 

error being negative, by the amount of       
 . If     0 on the other hand, it will decrease by 

the same amount. 

3.4 QGARCH(1,1) 

The conditional variance equation of the QGARCH(1,1) model is given in eq. 3.4.1 below: 

 
   

          
       

          (3.4.1) 

, where the difference to the conditional variance equation of the standard GARCH(1,1) 

model is the addition of       , an asymmetry parameter times the most resent error.  

      In addition to the non-negativity constrains in the standard GARCH(1,1),   
         

     is required to ensure positivity of   
 . 

      The model is stationary if      . The stationarity of the model does in other words 

not depend on the asymmetry parameter. When the model is stationary the unconditional 

variance is given just as in the standard GARCH model (eq. 3.2.3). The mean-reverting 

property of this the QGARCH(1,1) model is also the same as in the standard GARCH(1,1) 

model. The closer     is to 1, the less will the one-step ahead forecast for the variance 

depend on the unconditional variance, thus having slower mean reversion or higher volatility 

persistence. 

     For some given values of  ,      
  and      

 , when      0 the models one-step ahead 

forecast variance will increase when most resent error is positive, and decrease when most 

resent error is negative, by the amount of |      |.  If      0 on the other hand, it will 

increase when most resent error is negative, and decrease when most resent error is positive, 

by the amount of |      |. The case of      0 can therefore be interpreted as the model 

predicts the one-step ahead future variance to be relatively higher after negative shocks 

compared to after positive shocks.  
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4. Data and Research Method 

4.1 Variables and sample periods specifications 

The data analyzed in this thesis are daily log-returns, calculated from daily close spot prices 

for copper (Grade A Cash U$/MT) noted at London Metal Exchange between 1993-07-20 and 

2012-03-21 (Source of data: Datastream). The log-returns where calculated using the standard 

formula; 

 
  
 
    

 
 

 
   

     
 
    

   
 (4.1.1) 

where    being the log-returns and    being the close spot price for day t.  

      The total number of observations in the analyzed period is 4872, with the first observation 

at 1993-07-21 and the last at 2012-03-21
20

. The sample is further divided into four 

subsamples, each of which consists of one in-sample and one out-of-sample period. The 

GARCH models are estimated in the in-sample periods and their forecasting performance are 

tested by forecasting in the corresponding out-of-sample period. Each GARCH model will 

therefore be estimated and tested four times over the entire sample period. 

      The dates for which each subsamples, in-sample and out-of sample ranges between are 

specified in table 4.1.1. The in-sample period consists of 1155 observations each, making 

them approximately four and a half years. The out-of-sample-period consists of 252 

observations each so that the estimated models will be forecasted over the subsequent year 

(assuming that one year consists of 252 trading days). 

      To make maximum use of the total sample, out-of-sample periods are overlapping the in-

sample period, thus letting one in-sample period to start right after the previous one. This 

shouldn't cause any problems since the GARCH model estimation and prediction power 

testing are fully independent between subsamples. A graphical depicture of this structure can 

be seen in figure 4.1.1. 

 

Table 4.1.1 - Specification of subsamples 

Subsample In-sample period Out-of-sample period 

Subsample 1 1993/07/21 - 1997/12/23 1997/12/24 - 1998/12/09 

Subsample 2 1997/12/24 - 2002/05/28 2002/05/29- 2003/05/14 

Subsample 3 2002/05/29 - 2006/10/31 2006/11/01 - 2007/10/17 

Subsample 4 2006/11/01 - 2011/04/05 2011/04/06 - 2012/03/21 
Notes: Each in-sample period and out-of sample period has 1155 and 252 observations of 

daily log-returns respectively.  

                                                 
20

 Note that the observation at 1993-07-21 is the return between 1993-07-20 and 1993-07-21. 
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Figure 4.1.1 - Graphical overview of the subsample layout 

 
Notes: In-sample periods are marked will dark gray and the out-of-sample periods are 

marked with light gray. The number of observations for each period is written within each   

corresponding cell. 
 

NOTE, however, that during the general data analysis in section 4.2, it was found that the 

LME data included observations of the spot close price at days for which the market had been 

closed, such as Christmas, New Year and Easter holidays. Since it makes no sense to estimate 

or forecast the variance for days when the return and variance is known to be zero, all 

observations with log-returns equal to zero was therefore removed (approximately 60 

observations from each subsample) before proceeding with the analysis, model estimation and 

forecasting in section 4.3 to section 4.6. 

4.2 Data exploration 

The daily log-returns and spot price level for the entire sample period are graphed in figure 

4.2.1 below. From this figure it, at least visually, seems to be some volatility-clustering 

present in the copper returns, suggesting that the volatility might be time-varying 

(heteroscedastic) with some positive autocorrelation in squared returns. The volatility-

clustering dose however seem to be larger in in-sample 1, 3 and 4 than in in-sample 2, 

suggesting that the possibility of modeling the conditional variance with GARCH models 

might vary over time. 

      This suspicion is further strengthened by positive excess kurtosis shown in table 4.2.1 

below
21

. The positive excess kurtosis differs in size between the in-samples, again suggesting 

that benefits of modeling the conditional variance with GARCH models might vary over time. 

                                                 
21

 A consequence of heteroscedastic unconditional variance is that the distribution of the 

errors (here the demeaned copper returns) around the unconditional mean will be leptokurtic 

(have a positive excess kurtosis). A leptokurtic distribution has fatter tails and is more peaked 

around the mean compared to a normal distribution.  
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The kurtosis is particularly high in in-sample 1 and 3. The kurtosis is about the same in in-

sample 4 and in-sample 2. 

      In table 4.2.1 we also see that there is skewness in the distribution of returns in all of the 

in-sample period, suggesting that the asymmetric GARCH models might be better suitable for 

modeling the volatility than the symmetrical GARCH model. Interesting to note here is also 

that the skewness is negative in in-sample 1, 3 and 4 (which is the common case in returns of 

for example equities), but positive in in-sample 2. The skewness was, furthermore, 

significantly larger in in-sample 1 than in the other in-samples. 

 

Figure 4.2.1 - Daily log-returns and spot price levels 

 

Notes: Daily log-returns are shown in black and their sizes are given by the left axis scale. 

The spot price is shown in light gray and its level is given by the right axis scale. For further 

illustration of the subsample periods, the in-sample periods are separated by horizontal lines. 
 

 

Table 4.2.1 - Descriptive statistics of log-returns 

Period  Mean Std. Dev. Skewness Kurtosis 

Entire sample 0,000303 0,017144 -0,225917 7,848979 

In-sample 1 -0,0000795 0,014937 -0,702237 11,61832 

In-sample 2 -0,0000519 0,011656 0,124801 4,827180 

In-sample 3 0,001304 0,016791 -0,172543 8,686449 

In-sample 4 0,000208 0,022739 -0,164349 5,042145 
Notes: Descriptive statistics of the log-returns in each in-sample period and the entire 

sample. 
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To summarize, the copper price returns in all of the in-samples seem to have some volatility 

clustering and a distribution of returns that is characterized by skewness and excess kurtosis. 

The degree to which this is the case does however appear to be larger in in-sample 1, 3 and 4 

than in in-sample 2. Some prior expectations are therefore that; it should be appropriate to try 

modeling the variance with the GARCH models, the asymmetric GARCH models might 

better explain the variance than the symmetrical GARCH model, and that the GARCH models 

might be more successful in modeling the variance in in-sample 1, 3 and 4 than in in-sample 

2. 

 

Before moving on the next section it should also be worth noticing the radical price level 

increase which occurred over in-sample 3, and the fact that the general level of the volatility 

has increased over the last decade compared to the previous one. 

4.3 Selection of the model for the conditional mean 

As was stated in section 3, each of the GARCH models will be estimated on the residuals of 

either mean equation 3.1.1 or 3.1.2. Therefore, before estimating the GARCH models, it will 

in this section be analyzed which of the two mean equations that is most suitable for each one 

of the subsamples.  

      In the case of significant autocorrelation (AC) in the returns, there might be a possibility 

to model the returns based on the values taken by precious lags of returns through an 

autoregressive model (eq. 3.1.1). Although the extent to which it is possible to model 

financial returns by an autoregressive model usually is rather small, there appears to be no 

good motivation for instead using an unconditional mean in the presence of significant AC in 

the returns and thus neglecting a small but still available improvement of the one-step ahead 

expectation for the returns
22

. Therefore, the AC of the returns and the significance of the 

estimated parameters in eq. 3.1.1 are investigated and presented in table 4.3.1 below
23

. 

 

                                                 
22

 One reason for why an AR model would not be preferred for the mean equation, when the 

aim is to analyze the forecasting performance of GARCH models, even in the presence of AC, 

is however discussed in section 6 of this thesis. 

23
 Only the standard GARCH model will be used for these tests since it's assumed that the 

standardized residuals from the GJR-GARCH or QGARCH will not differ enough to lead to 

any different conclusions about what mean equation that would be appropriate. 
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Model 4.3.1 - Regression outputs and diagnostics test of standardized residuals  

 
AR(1)-GARCH(1,1) AR(2)-GARCH(1,1) 

    In-sample    1    1  2   CorrC CorrAR1 CorrAR2 

1 
 

0,1049 
 

0,1166 -0,1057 
 

0,007 0,101 0,874 

  
(3,1205)* 

 
  (3,2759)*   (-2,6883)* 

 
0,004 0,037 0,327 

  
(0,0018)

P 
 

  (0,0011)
P   (0,0072)

P 
 

0,003 0,026 0,214 

          2 
 

0,0213 
 

0,0218 -0,0429 
 

0,462 0,434 0,614 

  
  (0,6596)* 

 
  (0,6770)*   (-1,4904)* 

 
0,797 0,793 0,907 

  
  (0,5095)

P 
 

  (0,4984)
P   (0,1361)

P 
 

0,537 0,528 0,591 

          3 
 

-0,0285 
 

-0,0299 -0,0506 
 

0,446 0,326 0,387 

  
(-0,8192)* 

 
  (-0,8593)*   (-1,6160)* 

 
0,406 0,388 0,439 

  
(0,4127)

P 
 

  (0,3902)
P   (0,1061)

P 
 

0,607 0,553 0,613 

          4 
 

-0,0529 
 

-0,0521 0,0149 
 

0,501 0,690 0,540 

  
(-1,6128)* 

 
(-1,5824)* (0,4632)* 

 
0,762 0,863 0,806 

    (0,1068)
P   (0,1136)

P (0,6432)
P   0,922 0,957 0,941 

Notes: Regression output of the mean equation from estimation of AR(k)-GARCH(1,1) models on the log-

returns in  each corresponding in-sample. Estimation Method: ML - ARCH (Marquardt) - Normal distribution, 

with Bollerslev-Wooldridge robust standard errors & covariance.  The first row of the  1 and  2 columns 

shows the estimated parameter values. The second and third row, marked with a * and a 
P
, shows the 

corresponding z-statistics and the p-values (respectively).  In the Corr columns are p-values based on a Ljung-

Box joint test for autocorrelation in the standardized residuals. For the first row in these columns 5 lags where 

considered, in the second 10 lags and in the third row 15 lags. In CorrC column the standardized residuals of a 

GARCH(1,1) model with constant mean was tested.  In CorrAR1 column the standardized residuals of a AR(1)-

GARCH(1,1) model  was tested.  In CorrAR2 column the standardized residuals of a AR(2)-GARCH(1,1) 

model  was tested. 

In the table we first see that only for in-sample 1 does the Ljung-Box joint test statistic reject 

the null hypothesis of no autocorrelation in the standardized residuals of the GARCH(1,1) 

model with a constant mean for the returns. The null hypothesis is rejected at 1 % significance 

level in in-sample 1, and can't be rejected even at a 10 % significance level for the other in-

samples. 

      Estimating the AR(1)-GARCH(1,1) model, we see (as expected given the discussed 

observation above) that  1 is significant at a 10 % level only for the model estimated in in-

sample 1. For in-sample 1 we also see that, even after estimating the AR(1)-GARCH(1,1) 

model, the Ljung-Box joint test statistic still rejects the null hypothesis of no autocorrelation 

in the standardized residuals at 5 % significance level when 10 or 15 lags are considered. This 

suggests that a higher order of the autoregressive model in the mean might be appropriate. 

Naturally, we also see that the Ljung-Box joint test statistic cannot reject the null hypothesis 
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of no autocorrelation in the standardized residuals by an AR(1)-GARCH(1,1) model 

estimated in the other in-samples. 

      Finally, estimating the AR(2)-GARCH(1,1) model we see that  1 as well as  2 is 

significant at a 10 % level only for the model estimated in in-sample 1, where both  1 and  2 

then are significant at a 1 % level. For in-sample 1 we now see that the Ljung-Box joint test 

statistic do not reject the null hypothesis of no autocorrelation in the standardized residuals at 

a 10 % significant level. Quickly estimating an AR(3)-GARCH(1,1) model for in-sample 1 

(not covered in the table), it was, as expected, also observed that  3 was not significant at a 10 

% level. 

      Based on these results a constant unconditional mean (eq. 3.1.2) was selected for the 

GARCH models in subsamples 2 to 4, while an autoregressive model of the 2nd order was 

selected for the GARCH models in subsample 1. 

      The models that will be estimated and tested for their prediction power of the future 

variance in each respective subsample are listed in table 4.3.2 below. The random walk model 

is not included here but will, as mentioned, be used as a benchmark in all of the subsamples 

when evaluating the forecasting performances of the GARCH models. 

 

Table 4.3.2 - The GARCH models that are estimated and tested in this thesis 

Subsample 1 Subsample 2 Subsample 3 Subsample 4 

AR(2)-GARCH(1,1) GARCH(1,1) GARCH(1,1) GARCH(1,1) 

AR(2)-GJR-GARCH(1,1) GJR-GARCH(1,1) GJR-GARCH(1,1) GJR-GARCH(1,1) 

AR(2)-QGARCH(1,1) QGARCH(1,1) QGARCH(1,1) QGARCH(1,1) 
Notes: The selection of the mean equation was based on the analysis in this section. Exclusion of an AR(k) model 

for the conditional mean equation (as in subsample 2, 3 and 4) means that only a constant is included in the mean 

equation as in eq. 3.1.2. 

 

4.4 Motivation for the use of GARCH models 

In section 4.2 there was found some indications of autocorrelation in the squared returns and 

heteroscedastic variance of the returns. However, before estimating the GARCH models listen 

in table 4.3.2, the appropriateness of doing so will be further examined in this section. This 

will be done by analyzing the squared residuals, produced by estimating each in-samples' 

corresponding mean equation by OLS regression, with Ljung-Box joint test for AC and Engel, 

R. F. (1982) test for ARCH effects. 

      Furthermore, in section 4.2 it was also found that the distributions of the returns in all of 

the in-samples were skewed, suggesting that the use of asymmetric GARCH models might be 
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appropriate. This will also be further analyzed in this section by conducting an Engel, R. F. 

and Ng, V. (1993) test for asymmetry effects in each of the in-samples. 

 

Looking at table 4.4.1 below, we see that the Ljung-Box joint test statistic, and the F- and 

LM-statistic from an Engel, R. F. (1982) test for ARCH effects with five lags, are all highly 

statistically significant in in-samples 1, 3 and 4, thus rejects the null hypothesis of no ARCH 

effects or autocorrelation in the squared residuals at a 1 % significance level for these in-

samples. For in-sample 2 on the other hand, the null hypotheses of neither the Ljung-Box joint 

test nor the Engel, R. F. (1982) test for ARCH effects could be rejected at a 10 % significance 

level. 

 

Model 4.4.1 - Test for ARCH effects 

    In-sample F-stat. LM-stat. Corr. 

 

Notes: Tests based on the 

residuals from OLS regression of 

the mean equation in each in-

sample. In the Corr. column are 

p-values based on a Ljung-Box 

joint test for autocorrelation in the 

squared residuals. For the first 

row in these columns 5 lags 

where considered, in the second 

10 lags and in the third row 15 

lags. F- and LM-statistic 

(Observations * R-squared) are 

from a Engel's (1982) test for 

ARCH effects with five lags. 
P
 

denotes p-values based on 

corresponding F and LM-

statistics. 

1 34,866 151,21 0,000  

 
(0,0000)

P (0,0000)
P 0,000  

   
0,000  

    
 

2 1,594 7,96 0,148  

 
(0,1588)

P (0,1586)
P 0,465  

   
0,246 

 
     3 15,442 72,53 0,000 

 

 
(0,0000)

P (0,0000)
P 0,000 

 
   

0,000 

 
     4 45,966 191,29 0,000 

 

 
(0,0000)

P (0,0000)
P 0,000 

       0,000 

     

 

These results suggest that trying to model the variance with GARCH models should be 

appropriate, and that doing so could be expected to be more suitable for subsample 1, 3 and 4, 

than for subsample 2. These results are consistent with the findings in section 4.2. Two prior 

expectations before estimating the GARCH models are therefore that   and   over all have a 

high probability of being statistically significant, and that this probability is higher for the 

models estimated at in-sample 1, 3 and 4 returns, than for the models estimated at in-sample 2 

returns. 
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As previously mentioned, an Engel, R. F. and Ng, V. (1993) test for asymmetry effects will be 

conducted for each of the in-sample periods to analyze the appropriateness of using 

asymmetric GARCH models. The regression model of this test can formally be written as: 

 

    
 
  

 
  

 
    
   

 
    
        

 
    
          (4.4.1) 

, where     are the residuals from estimating the mean equation.     
  is an indicator dummy 

which takes the value 1 if       , and the value 0 otherwise.     
  is another indicator 

dummy which takes the value 0 if       , and the value 1 otherwise.    is an i.i.d. error 

term.  

      Statistical significance of the parameter    indicates sign biases asymmetry, meaning that 

the sign of the most resent residual has an explanatory effect on the one step-ahead squared 

residual. Statistical significance of the parameter    and    indicates size biases asymmetry, 

meaning that not only the sign, but also the size of most resent residual has an explanatory 

effect on the one-step ahead squared residual. 

      The regression outputs from estimating this test model in each of the in-samples are 

presented table 4.4.2 below.  

 

Model 4.4.2 -  Engel and Ng (1993) asymmetry test 

    In-sample ϕ1 ϕ2 ϕ3 

 

Notes: Engel, R. F. and Ng, V. 

(1993) test for asymmetry effects. 

Estimation method: OLS. The 

first row of the ϕ1, ϕ2 and ϕ3 

columns shows the estimated 

parameter values. The second and 

third row, marked with a * and a 
P
, shows corresponding t-statistics 

and the p-values (respectively). 

1 -1,12E-04 -0,0136 -0,0015 

 
 

(-1,9917)*   (-5,5716)*   (-0,5160)* 

 

 
(0,0466)

P   (0,0000)
P   (0,6060)

P 

 
     2 2,29E-06 0,0008 0,0006 

 
 

(0,0911)* (0,5166)* (0,3832)* 

 

 
(0,9274)

P (0,6055)
P (0,7016)

P 

 
     3 6,64E-05 -0,0066 0,0086 

 
 

(0,9807)*   (-2,4521)*   (2,9615)* 

    

 
(0,3269)

P   (0,0144)
P   (0,0031)

P 

    
        4 1,22E-06 -0,0155 0,0181 

    
 

(0,0130)*   (-5,6977)*   (6,0610)* 

      (0,9895)
P   (0,0000)

P   (0,0000)
P 

     

As we here,   is not significant for in-sample 2, 3 and 4, and just barely significant at a 5 % 

significance level for in-sample 1. However, since the conditional variance equations of the 
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GJR-GARCH and the QGARCH are designed to be able to deal with size biased asymmetry, 

there shouldn't be a too big focus on the significance of    when evaluating the 

appropriateness of using these two asymmetric GARCH models. 

      In terms of statistic and economic significance of    and    we see that in-sample 4, 

followed by in-sample 3, appears to be the most suitable in-samples for the use of asymmetric 

GARCH models. It's however more uncertain whether or not in-sample 1 is suitable for the 

use of asymmetric GARCH models since   , but not   , is statistically significant. In-sample 

2 does not appear suitable for asymmetric GARCH models since nether    nor    is 

statistically significant at a 10 % level. 

 

Based on these results, the statistic and economic significance of the asymmetry terms of the 

estimated asymmetric GARCH models could therefore be expected to be largest in in-sample 

4, second largest in in-sample 3, second lowest in in-sample 2, and lowest in in-sample 1. 

 

4.5 Model estimation 

The regression outputs from the GARCH model estimations, together with diagnostics test 

and statistics of the standardized residuals, are presented in tables 4.5.1 - 4.5.4 below.  

      The models were estimated using Maximum Likelihood - ARCH (Marquardt) - Normal 

distribution. Bollerslev-Wooldridge robust standard errors & covariance was used in all of the 

GARCH model estimations since the assumption of    being normally distributed, and    

being conditionally normally distributed, is clearly unlikely to hold when examining the 

skewness and kurtosis of the standardized residuals
24

. This was the reason for using the 

Bollerslev-Wooldridge robust standard errors & covariance when estimating the models in 

section 4.3 as well. 

 

                                                 
24

    being normally distributed, and    being conditionally normally distributed can formally 

be expressed as:            
  , and         ,           . Since    is unknown the sample 

counterpart, the standardized residuals (   ) was analyzed for normality.     was derived by 

dividing the models residual at time t by the conditional standard deviation at time t. 

Formally:      
   

   
. Although not included in the tables, Jarque-Bera test statistic rejected the 

null-hypothesis of normality in the distribution of the standardized residuals from each of the 

twelve GARCH models at a 1 % significance level. 
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Model 4.5.1 - Regression outputs from estimating the AR(2)-GARCH models at in-sample 1 returns               

 
Regression output and parameter estimates 

 
Standardized residuals stat. and diagnostics 

Model ω γ α β δG δQ AIC SBIC 
 

Skew. Kurt. Corr. Corr.
2 ARCH 

GARCH(1,1) 1,22E-05 0,0550 0,1073 0,8416 
  

-5,718 -5,691 
 

-0,677 8,871 0,874 0,787 0,960 

 
(2,2096)* 

 
  (3,2427)*   (18,567)* 

       
0,327 0,946 0,960 

 
(0,0271)

P 
 

  (0,0012)
P   (0,0000)

P 
       

0,214 0,931 
 

               GJR-GARCH(1,1) 1,23E-05 0,0591 0,1037 0,8407 0,0081 
 

-5,716 -5,685 
 

-0,671 8,833 0,875 0,792 0,962 

 
(2,1979)* 

 
  (2,7236)*   (18,616)*   (0,1555)* 

      
0,325 0,945 0,962 

 
(0,0280)

P 
 

  (0,0065)
P   (0,0000)

P   (0,8764)
P 

      
0,215 0,936 

 

               QGARCH(1,1) 1,30E-05 0,0581 0,1131 0,8331 

 
-0,0004 -5,717 -5,685 

 
-0,629 8,646 0,877 0,793 0,963 

 
(2,2351)* 

 
  (3,4235)*   (18,367)* 

 
  (-0,5319)* 

     
0,318 0,940 0,963 

  (0,0254)
P     (0,0006)

P   (0,0000)
P     (0,5948)

P           0,214 0,936   
Notes: Method for the estimation: ML - ARCH (Marquardt) - Normal distribution, with Bollerslev-Wooldridge robust standard errors & covariance. The first row of the ω, α, β, δG 

and δQ columns shows the estimated parameter values. The second and third row, marked with a * and a 
P
, shows the corresponding z-statistics and the p-values (respectively). γ was 

calculated as 1-α-β. The skewness and kurtosis of the standardized residuals can be compared to those from the residuals when only the mean eq. was estimated (Skewness = -0,572 

and Kurtosis = 10,535). In the Corr and Corr
2
 column are p-values based on a Ljung-Box joint test for autocorrelation in the standardized residuals and squared standardized residuals 

respectively. For the first row in these columns 5 lags where considered, in the second 10 lags and in the third row 15 lags. The values in the ARCH column are p-values based on 

from F- and LM-statistic from a Engel's (1982) test for ARCH effects with five lags. First row's p-value corresponds to the F-statistic and the second row's p-value corresponds to the  

LM-statistic. AIC: Akaike's Information Criterion. SBIC: Schwarz's Bayesian Information Criterion.  
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Model 4.5.2 -Regression outputs from estimating the GARCH models at in-sample 2 returns               
 

 
Regression output and parameter estimates 

 
Standardized residuals stat. and diagnostics 

Model ω γ α β δG δQ AIC SBIC 
 

Skew. Kurt. Corr. Corr.
2 ARCH 

GARCH(1,1) 2,50E-06 0,0406 0,0204 0,9617 
  

-6,028 -6,010 
 

0,079 4,762 0,462 0,648 0,631 

 
(1,1060)* 

 
  (1,8730)*   (39,919)* 

       
0,797 0,961 0,629 

 (0,2687)
P 

 
  (0,0611)

P   (0,0000)
P 

       
0,537 0,864 

 

               GJR-GARCH(1,1) 2,54E-06 0,0466 0,0184 0,9602 0,0066 
 

-6,027 -6,004 
 

0,088 4,475 0,468 0,686 0,672 

 
(1,0810)* 

 
  (1,4543)*   (38,322)*   (0,4458)* 

      
0,804 0,968 0,670 

 (0,2797)
P 

 
  (0,1459)

P   (0,0000)
P   (0,6557)

P 
      

0,544 0,878 
 

               QGARCH(1,1) 1,32E-06 0,0581 0,0169 0,9733 

 
-0,0002 -6,029 -6,006 

 
0,095 4,460 0,478 0,555 0,530 

 
(1,0361)* 

 
  (2,0963)*   (66,276)* 

 
  (-1,8675)* 

     
0,813 0,922 0,529 

  (0,3001)
P     (0,0361)

P   (0,0000)
P     (0,0618)

P           0,547 0,772   
Notes: Method for the estimation: ML - ARCH (Marquardt) - Normal distribution, with Bollerslev-Wooldridge robust standard errors & covariance. The first row of the ω, α, β, δG 

and δQ columns shows the estimated parameter values. The second and third row, marked with a * and a 
P
, shows the corresponding z-statistics and the p-values (respectively).  γ 

was calculated as 1-α-β. The skewness and kurtosis of the standardized residuals can be compared to those from the residuals when only the mean eq. was estimated (Skewness = 

0,125 and Kurtosis = 4,827). In the Corr and Corr
2
 column are p-values based on a Ljung-Box joint test for autocorrelation in the standardized residuals and squared standardized 

residuals respectively. For the first row in these columns 5 lags where considered, in the second 10 lags and in the tired row 15 lags. The values in the ARCH column are p-values 

based on from F- and LM-statistic from a Engel's (1982) test for ARCH effects with five lags. First row's p-value corresponds to the F-statistic and the second row's p-value 

corresponds to the  LM-statistic. AIC: Akaike's Information Criterion. SBIC: Schwarz's Bayesian Information Criterion.  
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Model 4.5.3 -Regression outputs from estimating the GARCH models at in-sample 3 returns               
 

 
Regression output and parameter estimates 

 
Standardized residuals stat. and diagnostics 

Model ω γ α β δG δQ AIC SBIC 
 

Skew. Kurt. Corr. Corr.
2 ARCH 

GARCH(1,1) 2,08E-06 0,0054 0,0522 0,9424 
  

-5,533 -5,515 
 

-0,356 5,830 0,446 0,239 0,264 

 
(1,8210)* 

 
  (2,6602)*   (46,912)* 

       
0,460 0,586 0,263 

 (0,0686)
P 

 
  (0,0078)

P   (0,0000)
P 

       
0,607 0,721 

 

               GJR-GARCH(1,1) 1,51E-06 -0,0259 0,0672 0,9587 -0,0583 
 

-5,551 -5,528 
 

-0,295 5,287 0,260 0,481 0,471 

 
(1,8433)* 

 
  (2,7852)*   (79,187)*   (-2,0464)* 

      
0,297 0,674 0,469 

 (0,0653)
P 

 
  (0,0053)

P   (0,0000)
P   (0,0407)

P 
      

0,425 0,603 
 

               QGARCH(1,1) 2,67E-06 0,0581 0,0410 0,9493 

 
0,0006 -5,539 -5,517 

 
-0,303 5,568 0,359 0,448 0,459 

 
(2,3128)* 

 
  (2,8288)*   (58,318)* 

 
  (1,6926)* 

     
0,381 0,752 0,458 

  (0,0207)
P     (0,0047)

P   (0,0000)
P     (0,0905)

P           0,484 0,775   
Notes: Method for the estimation: ML - ARCH (Marquardt) - Normal distribution, with Bollerslev-Wooldridge robust standard errors & covariance. The first row of the ω, α, β, δG 

and δQ columns shows the estimated parameter values. The second and third row, marked with a * and a 
P
, shows the corresponding z-statistics and the p-values (respectively).  γ 

was calculated as 1-α-β. The skewness and kurtosis of the standardized residuals can be compared to those from the residuals when only the mean eq. was estimated (Skewness = -

0,173 and Kurtosis = 8,686). In the Corr and Corr
2
 column are p-values based on a Ljung-Box joint test for autocorrelation in the standardized residuals and squared standardized 

residuals respectively. For the first row in these columns 5 lags where considered, in the second 10 lags and in the third row 15 lags. The values in the ARCH column are p-values 

based on from F- and LM-statistic from a Engel's (1982) test for ARCH effects with five lags. First row's p-value corresponds to the F-statistic and the second row's p-value 

corresponds to the  LM-statistic. AIC: Akaike's Information Criterion. SBIC: Schwarz's Bayesian Information Criterion.  
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Model 4.5.4 -Regression outputs from estimating the GARCH models at in-sample 4 returns               
 

 
Regression output and parameter estimates 

 
Standardized residuals stat. and diagnostics 

Model ω γ α β δG δQ AIC SBIC 
 

Skew. Kurt. Corr. Corr.
2 ARCH 

GARCH(1,1) 9,83E-06 0,0207 0,0744 0,9049 
  

-4,890 -4,872 
 

-0,242 3,562 0,501 0,391 0,414 

 
(1,8298)* 

 
  (3,7365)*   (34,531)* 

       
0,762 0,709 0,413 

 (0,0673)
P 

 
  (0,0002)

P   (0,0000)
P 

       
0,922 0,782 

 

               GJR-GARCH(1,1) 7,10E-06 0,0545 0,0223 0,9232 0,0786 
 

-4,902 -4,879 
 

-0,196 3,393 0,442 0,301 0,292 

 
(1,9422)* 

 
  (1,4979)*   (52,364)*   (3,1085)* 

      
0,742 0,690 0,292 

 (0,0476)
P 

 
  (0,1342)

P   (0,0000)
P   (0,0019)

P 
      

0,907 0,744 
 

               QGARCH(1,1) 7,50E-06 0,0581 0,0548 0,9306 

 
-0,0016 -4,910 -4,887 

 
-0,098 3,283 0,143 0,675 0,676 

 
(1,9733)* 

 
  (3,8982)*   (52,391)* 

 
  (-3,4629)* 

     
0,088 0,952 0,673 

  (0,0485)
P     (0,0001)

P   (0,0000)
P     (0,0005)

P           0,252 0,995   
Notes: Method for the estimation: ML - ARCH (Marquardt) - Normal distribution, with Bollerslev-Wooldridge robust standard errors & covariance. The first row of the ω, α, β, δG 

and δQ columns shows the estimated parameter values. The second and third row, marked with a * and a 
P
, shows the corresponding z-statistics and the p-values (respectively).  γ 

was calculated as 1-α-β. The skewness and kurtosis of the standardized residuals can be compared to those from the residuals when only the mean eq. was estimated (Skewness = -

0,164 and Kurtosis = 5,042). In the Corr and Corr
2
 column are p-values based on a Ljung-Box joint test for autocorrelation in the standardized residuals and squared standardized 

residuals respectively. For the first row in these columns 5 lags where considered, in the second 10 lags and in the third row 15 lags. The values in the ARCH column are p-values 

based on from F- and LM-statistic from a Engel's (1982) test for ARCH effects with five lags. First row's p-value corresponds to the F-statistic and the second row's p-value 

corresponds to the  LM-statistic. AIC: Akaike's Information Criterion. SBIC: Schwarz's Bayesian Information Criterion.  
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Before analyzing the model estimation outputs in more detail some general results are worth 

pointing out. To begin with, the null hypothesis of the Ljung-Box joint test for AC in the 

standardized residuals and squared standardized residuals, and the null hypothesis of Engel, 

R. F. (1982) test for ARCH effects, cannot be rejected at a 10 % significance level for any of 

the models (one not so worrisome exception is however the Ljung-Box joint test for AC in the 

standardized residuals from the QGARCH model in in-sample 4, which has a p-value of 0,088 

when 10 lags are considered). This suggests that the models' specifications are sufficient to 

capture the AC in the ordinary residuals and squared ordinary residuals in all of the in-sample 

periods, and higher orders of AR-GARCH models shouldn't therefore be needed. 

      Secondly, all models were found to be stationary, and all models except for the QGARCH 

in in-sample 4 did fulfill the non-negativity constrains. In table 4.5.5 some calculations are 

presented to easier control that so is the case. The fact that the QGARCH in in-sample 4 didn't 

fulfill the non-negativity constrains shouldn't however be a problem for the end results since 

the model didn't produce any negative variance forecasts. 

      And finally, the weight distribution between  ,   and   has varied quite a bit between the 

in-sample periods. No clear trend in this variation can however be determined. The relatively 

low   :s  and relatively high  :s in in-sample 1 do however stand out in comparison to the 

other in-samples. The  :s in in-sample 2 are also relatively low, which is probably explained 

by the lack of AC in the squared residuals from the mean equation. Also worth pointing out is 

that there does appear to be a mean reverting effect incorporated in most of the estimated 

models, suggesting that GARCH models are more suitable for modeling the conditional 

variance than an EWMA.  

 

Model 4.5.5 -  Non-negativity and stationarity of GJR-GARCH and QGARCH 

 
Non-neg. GJR Stat. GJR Non-neg. QGARCH 

In-sample α + δG 2(1-α-β) δQ
2 4αω 

1 0,1118 0,1182 1,60E-07 5,86E-06 

2 0,0250 0,0932 5,99E-08 8,95E-08 

3 0,0089 -0,0517 3,46E-07 4,38E-07 

4 0,1009 0,1090 2,44E-06 1,64E-06 
Notes: The table includes some results from calculations necessary to check the stationarity 

requirements and non-negativity constrains for the GJR-GARCH and the QGARCH. 

 

Now, starting by examining the statistical significance of   and   for the standard 

symmetrical GARCH(1,1) model, we see that the  :s are highly statistically significant (p-

values are zero down to four digits) in all four subsamples. The  :s, on the other hand, are 
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statistically significant at a 1 % level only for in-sample 1, 3 and 4 (p-value = 0,0611 for in-

sample 2). Furthermore, looking at the kurtosis of the distribution of the standardized 

residuals from the standard symmetrical GARCH(1,1) model, we also see that the kurtosis has 

decreased substantially in comparison to the kurtosis of the distribution of the ordinary 

residuals  in these three in-samples, but just marginal for in-sample 2
25

. These results are in 

line with our pre-estimation expectations discussed in the previous section, and thus 

demonstrate the relevance of such pre-estimation inspection and testing of the data. 

      Now, trying to determine which one of the GARCH models that are the most suitable one 

for each in-sample, we first see that in in-sample 1 there isn't much difference between the 

models, judging by the AIC and SBIC values and the level of kurtosis and skewness in the 

standardized residuals. This is not very surprising when considering the statistical 

insignificance and low economic significance of the asymmetry parameters in the GJR-

GARCH and QGARCH model. One first conclusion would therefore be that the GJR-

GARCH and QGARCH model was not able to model the conditional variance significantly 

better than the standard symmetric GARCH model in this in-sample. This is, however, rather 

surprising since the level of skewness in the distribution of the ordinary residuals was about 

four times higher for in-sample 1 than for the other in-samples
26

. 

      For the models estimated in in-sample 2, we see that the asymmetric GARCH models was 

actually able to lower the kurtosis more  than the standard GARCH model compared to in-

sample 1 (when the overall level of kurtosis is considered). The asymmetry parameter in the 

QGARCH model was furthermore statistically significant at a 10 % level. However, for the 

GJR-GARCH model,   and the asymmetry parameter was not statistically significant at a 10 

% level in this in-sample either. The AIC and SBIC values are, on the other hand, still not 

showing any significant differences between the models. The general conclusion would 

however, all things considered, be that; although the difference isn't very large in this in-

sample either, the QGARCH model did possibly model the conditional variance slightly better 

than the standard symmetric GARCH model in this in-sample. 

                                                 
25

 When the conditional variance can be successfully (to some degree) modeled with GARCH 

models, some (but usually not all) of the leptokurtosis in the unconditional distribution of 

returns are captured by the GARCH model, thus making     less leptokurtic than     (see 

Brooks, C. (2008) p.399). 

26
 Remember that the skewness in the distribution of returns often is used as the main 

argument for the use of asymmetric GARCH models. 
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      Moving on to in-sample 3, we see that the difference between the models, in terms of 

kurtosis, AIC and SBIC values, appears to have increased. The kurtosis, AIC and SBIC are all 

lower for the asymmetric GARCH models compared to the standard symmetrical GARCH 

model. The asymmetry parameters are in this in-sample statistically significant at a 5 % and a 

10 % level for the GJR-GARCH and the QGARCH respectively. The GJR-GARCH model 

does overall appear to be the best model for the variance in in-sample 3. One noteworthy 

observation for this in-sample is however the sign of the asymmetry parameters. Only for in-

sample 3 is the sign of the asymmetry parameter negative for the GJR-GARCH and positive 

for the QGARCH. The implication of this is that the models predict the one-step ahead 

variance to be higher when the sign of the most recent error is positive, compared to when the 

sign of the most recent error is negative. This is rather unusual and is probably caused by the 

fact that in-sample 3 mainly consists of the extraordinary price increase between 2004 and 

mid 2006. 

      Finally, taking a look at the model estimations for in-sample 4 we see that the in AIC and 

SBIC values again are significantly different between the asymmetric GARCH models and 

the standard GARCH model. We can also see that both the economic and statistical 

significance of the asymmetry terms of the GJR-GARCH and QGARCH model are higher 

here than for any other in-sample. The statistical significance of   and   is also highest in this 

in-sample, with the exception of   in the GJR-GARCH model (which could be seen as an 

even stronger evidence of the asymmetric models superiority in this in-sample)
27

. The 

QGARCH model did however appear to best explain the variance in this in-sample since it 

had the lowest kurtosis, AIC and SBIC of the three models (almost all excess kurtosis was 

removed). 

 

                                                 
27

 Remember that   is the corresponding parameter to the most resent squared residual, and 

that the asymmetry parameter is the corresponding parameter to the most resent squared 

residual if the most resent residual is negative. If   is statistically significant in the GARCH 

model but only   and the asymmetry parameter are statistically significant in the GJR-

GARCH model, this could be interpreted as that the most resent squared residual actually only 

holds a significant explanatory power if the most resent residual is negative, but still makes   

in the GARCH model statistically significant since a large portion (presumably about half in 

this in-sample) of the most resent residual is negative. 
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To summarize the results in this section, we first saw that the results from the Ljung-Box joint 

test for AC in the standardized residuals and squared standardized residuals, and Engel, R. F. 

(1982) test for ARCH effects in the standardized residuals, strongly suggests that the models' 

specifications are sufficient to capture the AC in the ordinary residuals and squared ordinary 

residuals in all of the in-sample periods. We also saw that the models was stationary and 

fulfilled the non-negativity constrains (or didn't produce any negative variance forecasts). 

      The GARCH models' ability to model the conditional variance (in-sample) was generally 

satisfying for in-sample 1, 3 and 4, but not for in-sample 2. This result was accurately 

predicted by Ljung-Box joint test for AC the squared residuals from the mean equation, and 

the Engel, R. F. (1982) test for ARCH effects in section 4.4. The results also suggested that 

the GARCH models' ability to model the conditional variance might have increased over time. 

In in-sample 4, followed by in-sample 3, the GARCH models could remove the largest 

portion of excess kurtosis in the distribution of the residuals from the mean equation. Between 

75 to 85 % of the excess kurtosis were removed by the GARCH models in in-sample 4. 

      Furthermore, the economic and statistical significance of the asymmetry term appears to 

have increased over time. In in-sample 3 and 4 the asymmetry parameters of the QGARCH 

and GJR-GARCH model did provide significant explanatory power. The skewness in the 

distribution of demeaned returns or the distribution of the residuals from the mean equation 

were, however, not a good indicator of whether the two asymmetric GARCH models would 

be better than the standard symmetrical GARCH model in modeling the conditional variance. 

The Engel, R. F. and Ng, V. (1993) test for asymmetry effects did, however, provide useful 

indications of this. 

 

In the next section the forecasting performance of the estimated models will be tested. 

Although it's generally hard to predict how well the models will do in out-of-sample 

forecasting based on the results from the in-sample estimations, two things could be expected.  

      Firstly, due to the high statistically significance of the parameters in the GARCH models 

and the success in lowering the kurtosis, the GARCH models should be able to deliver more 

accurate forecasts of the future variance than a Random Walk model and the unconditional 

variance, given that the out-of-sample data not differs drastically from the in-sample data.  

      Secondly, the differences in forecasting performances between the GARCH models 

should be rather small, but presumably slightly lager in subsample 3 and 4 compared to 

subsample 1 and 2. Also, if the asymmetric models would prove to perform significantly 

better than the symmetric GARCH model, this is likely to occur in subsample 3 or 4. 
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4.6 Out-of-sample forecasting 

In this section of the thesis, the out-of-sample forecasting performances of the estimated 

GARCH models are tested. This is done by comparing the GARCH models' rolling one-step 

ahead forecast variance to a proxy for the 'real' realized one day variance over the entire out-

of-sample period
28

. Mean Squared Error (MSE), the Mean Absolute Error (MAE) and the 

Median Squared Error (MedSE) are then calculated based on the deviations between the 

forecasts and the proxy. 

      As a method of evaluating the forecasting performances of the GARCH models, MSE, 

MAE and MedSE for a Random Walk (No Change) model will also be calculated to use as a 

benchmark. This is a common method of evaluating the out-of-sample forecasting 

performance of GARCH models, and is used in studies such as the one conducted by Franses, 

P.H. and van Dijk, D. (1996); Watkins, C. and McAleer, M. (2008); Bracker, K. and Smith, 

K.L. (1999 and 2003). Another well know method that doesn't involve a RW-model as a 

benchmark was introduced by Day, T. and Lewis, C. (1992). However, since the method of 

using a benchmark such as the RW-model appears to be more common, this approach will be 

used in this thesis. 

      In addition to the RW-model, the unconditional (average historical) error variance in the 

corresponding in-sample period will also be used as a forecasting benchmark. This approach 

was not used in the studies mentioned above, but should however make both theoretically and 

practical sense since the volatility of financial returns are widely known to be 'mean-reverting' 

(i.e. stationary), and since using the unconditional variance as a forecast always is an available 

option for the market participants. Furthermore, Due to the 'mean-reversion', a prior 

expectation is that the unconditional variance will produce better variance forecasts than the 

RW-model. 

 

In this thesis the proxy for the 'real' realized one day variance is the squared realized errors 

(residuals) from the specified mean equation in each model, which formally can be expressed 

as: 

 
  
             

  (4.6.1) 

                                                 
28

 A proxy for the 'true' realized variance is needed since the 'true' variance can't be observed 

directly.  
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, where    being the realized return at time t, and       the one-step ahead forecast for the 

return at time t. This type of proxy for the 'true' realized variance is commonly used in studies 

on the forecasting performance of GARCH models (e.g. Franses, P.H. and van Dijk, D. 

(1996); Watkins, C. and McAleer, M. (2008); Bracker, K. and Smith, K.L. (1999 and 2003)). 

      These authors did however assume that the forecast for the future return was the 

unconditional mean for the returns in the in-samples, formally;          . This structure 

deserves a second thought since the variance forecasts from the GARCH models are forecasts 

for the error variance, which depends on the specified mean equation. Therefore, in this 

thesis, this structure is only used when the mean equation has a constant mean. In out-of-

sample 1, however, the one-step ahead forecasts for the returns are based on the estimated 

AR(2) model in the mean equation for each GARCH model. For the random walk model a 

separate AR(2) model where estimated on the returns with OLS regression to produce 

forecasts for the one step ahead return. This should be fine since the statistical significance of 

an AR(2) model in the mean has already been confirmed. In the estimations of the GARCH 

models in subsamples 2 to 4 there is only a constant mean. The forecast for the one-step ahead 

returns are therefore the same throughout the entire out-of-sample period. The constant means 

are, for the GARCH models, the constant mean in the mean equation from the GARCH model 

estimations. For the random walk model the constant mean where estimated by OLS 

regression on the returns in each corresponding in-sample period. 

      The GARCH models one step ahead forecast for the one day error variance is given by the 

model specifications in section 3 and the parameter estimates from the model estimations. The 

parameters of the GARCH models are in other words not re-estimated during the forecasting 

procedure. For the random walk model the one step ahead forecast for the one day error 

variance is the last observed squared residual from the specified mean equation, which 

formally can be expressed as: 

 
          

      
  (4.6.2) 

There is no drift in the random walk here since it's assumed that there is no long term trend in 

variance of copper price returns. This assumption is in accordance with the results presented 

in the study by Watkins, C. and McAleer, M. (2008).  

      The deviations (errors) by the variance forecasts from the 'true' variance proxy are then for 

the GARCH models and the random walk model given as below. 
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   (4.6.3) 

 

Based on    the MSE, MAE and MedSE are calculated as described below: 

 

     
 

 
   

 

 

   

 (4.6.4) 

 

     
 

 
     

 

   

 (4.6.5) 

 

The MedSE is simply the median value of   
 . 

      As mentioned above, comparing the MSE, MAE and MedSE (and sometimes also other 

measures) of the variance forecasts by the GARCH models and the Random Walk model is a 

common way to evaluate the forecasting performance of GARCH models. However, before 

drawing any conclusions bases on these measures it's important to consider what they actually 

measure and what economic implications this has. 

      To begin with, remember that the MSE is the average of the squared deviations by the 

variance forecasts from the 'true' variance proxy, which means that the deviations (absolute) 

are not weighted equally in the MSE. Large deviations are in other words, given a 

disproportionally large weight compared to small deviations. This means that a large error for 

a one day's variance forecast could lead to a lager increase in the MSE than several small 

errors which has a larger absolute value when summarized. This is much doubtfully a logical 

approach when it comes to evaluating variance forecast performance since market participants 

normally are exposed to price risks for periods longer than one day, and that larger than 

expected returns (negative or positive) are additive over time. It does therefore not make 

much sense to give disproportionally more weight to large deviations, since one large 

deviation isn't more problematic for the market participants than several small deviations of 

the same absolute size when summarized. This motivates for the use of MAE rather than MSE 

when evaluating the forecasting performance. 

      Furthermore, due to the nature of the MSE discussed above, outliers could have a severe 

impact on the result and are therefore frequently removed before OLS estimations and MSE 

calculations. When it comes to squared errors of a mean equation on returns, however, such 

interference in the data doesn't appear to be a rational approach. Firstly since it's hard to 
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motivate that some returns are too large (positive or negative) due to some abnormality, and 

thus should be inappropriate to be represented in the data. And secondly, since squaring the 

errors from the mean equation makes 'outliers' in the returns even more extreme. 

      With the aim of minimizing the impact of outlying observations, P.H. Franses and D. van 

Dijk (1996 p.231) approached this problem by using MedSE instead of MSE. However, it is 

here important to consider the value of a median error measurement to a market participant 

whose financial decision making are based on forecasts of risk and return. Basing financial 

decision on median squared errors of a forecast doesn't appear attractive when considering 

that all errors less than the median could be only slightly less while the errors larger than the 

median could be extremely large
29

. This also motivates for the use of MAE when evaluating 

the forecasting performance of the GARCH models. 

      Based on the reasoning above, conclusions regarding the forecasting performances of the 

GARCH models will therefore in this thesis primarily be based on the MAE values. MedSE 

and MSE values will however also be included for those who are of other opinion. 

 

The results from the forecasting procedure are presented in table 4.6.1 below. Here we see 

that, in terms of MAE the GARCH models outperform the RW-model in all of the 

subsamples. The improvement varies between 17 to 29 % lower MAE. No clear trend in the 

improvement to the RW-model can be observed over the four subsamples. 

      Comparing the GARCH models to the unconditional variance, we see that in subsample 1 

and 2 the GARCH models have about 8 to 12 % lower MAE. However, in subsample 3 the 

GARCH models have about 8 to 10 % higher MAE than the unconditional variance. This is 

the only case where ether the RW-model or the unconditional variance outperforms the 

GARCH models in terms of MAE. This is rather surprising considering that the GARCH 

models were relatively more successful in modeling the variance in in-sample 3 compared to 

in-sample 2. One possible explanation for the poor forecasting performance in subsample 3 

could be that the GARCH models in in-sample 3 were estimated on data that are highly 

unrepresentative for the average dynamics in the copper price returns. This explanation is 

supported by the fact (as was discussed in section 4.5) that in-sample 3 mainly consists of the

                                                 
29

 Remember that the median of the values 1, 2 and 3, and the median the values 1, 2 and 999, 

are both 2. If the numbers in the two series above were the amount of money you would risk 

to lose as a consequence of participating in two different investment alternatives over the next 

day, evaluating the risk of these two investments by median loss would clearly be irrational. 
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Model 4.6.1 - Forecasting results. 

Subs. Model MAE Percent diff.   MSE Percent diff.   MedSE Percent diff. 

1 AR(2)-GARCH(1,1) 1,936E-04 -(20,98%)* -(8,25%)''   9,270E-08 -(49,09%)* -(1,20%)''   2,156E-08 (82,88%)* -(42,55%)'' 

 

AR(2)-GJR-GARCH(1,1) 1,939E-04 -(20,86%)* -(8,11%)'' 

 

9,283E-08 -(49,01%)* -(1,06%)'' 

 

2,173E-08 (84,31%)* -(42,10%)'' 

 

AR(2)-QGARCH(1,1) 1,951E-04 -(20,34%)* -(7,51%)'' 

 

9,328E-08 -(48,77%)* -(0,58%)'' 

 

2,229E-08 (89,08%)* -(40,60%)'' 

 

AR(2)-RW 2,450E-04 

   

1,821E-07 

   
1,179E-08 

  

 

Unconditional Var. 2,110E-04 

   

9,382E-08 

   

3,753E-08 

  

             2 GARCH(1,1) 1,081E-04 -(26,26%)* -(8,28%)'' 

 

2,086E-08 -(53,47%)* -(4,58%)'' 

 

9,236E-09 (3,13%)* -(29,75%)'' 

 

GJR-GARCH(1,1) 1,078E-04 -(26,44%)* -(8,51%)'' 

 

2,083E-08 -(53,52%)* -(4,69%)'' 

 

8,978E-09 (0,25%)* -(31,71%)'' 

 

QGARCH(1,1) 1,053E-04 -(28,14%)* -(10,62%)'' 

 
2,075E-08 -(53,70%)* -(5,05%)'' 

 
8,163E-09 -(8,86%)* -(37,92%)'' 

 

RW 1,466E-04 

   

4,482E-08 

   

8,956E-09 

  

 

Unconditional Var. 1,179E-04 

   

2,186E-08 

   

1,315E-08 

  

             3 GARCH(1,1) 4,072E-04 -(27,33%)* (10,48%)'' 

 
5,158E-07 -(48,15%)* -(0,38%)'' 

 

8,207E-08 (4,43%)* (45,08%)'' 

 

GJR-GARCH(1,1) 4,051E-04 -(27,70%)* (9,92%)'' 

 

5,281E-07 -(46,91%)* (2,00%)'' 

 

7,370E-08 -(6,21%)* (30,30%)'' 

 

QGARCH(1,1) 3,975E-04 -(29,06%)* (7,86%)'' 

 

5,227E-07 -(47,46%)* (0,95%)'' 

 

7,027E-08 -(10,58%)* (24,23%)'' 

 

RW 5,603E-04 

   

9,947E-07 

   

7,858E-08 

  

 

Unconditional Var. 3,685E-04 

   

5,177E-07 

   
5,657E-08 

  

             4 GARCH(1,1) 4,156E-04 -(18,17%)* -(18,24%)'' 

 

5,370E-07 -(40,67%)* -(12,41%)'' 

 

6,777E-08 (24,28%)* -(69,42%)'' 

 

GJR-GARCH(1,1) 4,110E-04 -(19,07%)* -(19,14%)'' 

 
5,156E-07 -(43,03%)* -(15,91%)'' 

 

6,866E-08 (25,91%)* -(69,02%)'' 

 

QGARCH(1,1) 4,201E-04 -(17,29%)* -(17,36%)'' 

 

5,211E-07 -(42,43%)* -(15,02%)'' 

 

7,646E-08 (40,23%)* -(65,50%)'' 

 

RW 5,078E-04 

   

9,051E-07 

   
5,453E-08 

  

 

Unconditional Var. 5,083E-04 

  

  6,131E-07 

  

  2,216E-07     
Notes: MAE: Mean of absolute Errors. MSE: Mean of squared Errors. MedSE: Median of absolute Errors. * Percent difference between the  MAE, MSE or MedSE of the GARCH model 

and the RW-model. " Percent difference between the MAE, MSE or MedSE of the GARCH model and the unconditional variance forecast. 
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extraordinary price increase between 2004 and mid 2006 and that the asymmetry terms was 

found to be of opposite signs compared to the normal. Also, considering that the mean of the 

daily log returns was about 0,13 % (per day!) in in-sample 3, such type of market could 

clearly not be expected to persist indefinitely. 

      Moving on to subsample 4, we here see that the GARCH models produce about 17 to 19 

% lower MAE than the unconditional variance, which is the largest improvement over the 

unconditional variance by the GARCH models. This further strengthens the suspicion of that 

the poor performances of the GARCH models in in-sample 3 could have been the 

consequence of misfortunate subsample specifications.  

      Anyhow, this result show it's hard to predict whether or not the GARCH models will be 

able to deliver more accurate forecasts of the future variance than the unconditional variance 

base on the pre-estimation test for ARCH effects in section 4.4 and the models ability to 

model the variance in-sample. However, if more thoughts were to be given into the subsample 

selection, this might lead to more accurate expectations of the GARCH models out-of-sample 

forecasting performance. 

 

In the table we also see that the differences between the GARCH models are small. The 

differences are however larger in subsamples 3 and 4 compared to subsamples 1 and 2. This 

result is however consistent with our pre-forecast expectations. 

      However, the QGARCH did actually perform worst of the GARCH models in subsample 

4, but best in subsample 3. This suggest that it's hard to determine which one of the GARCH 

models that will perform best in out-of-sample forecasting, given the level of difference of the 

models parameter value and statistical significance which was the case here. 

      We also see that, in terms of both MAE and MSE, the unconditional variance produces 

much more accurate forecast for the future variance than the random walk. This result is also 

in line with our pre-forecast expectations discussed previously in this section. This indicates 

that the unconditional variance actually is a more legitimate benchmark for the forecasting 

performances of the GARCH models than the Random Walk model. 

 

In the MSE section of the table, we see that the improvements compared to the RW-model are 

much larger here than they were for MAE, indicating that the RW-model generally produces a 

larger number of relatively small errors and a larger number of errors of relatively large errors 

compared to the GARCH models. The RW-model is significantly outperformed, with MSEs 

that are about 41 % to 53 % lower for the GARCH models in all of the samples.  
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       On the other hand, the improvements by the GARCH models over to the unconditional 

variance in subsamples 1 and 2 are only about 1 % and 4,5 % respectively when measured as 

MSE. This indicates that the GARCH models produce a larger number of relatively small 

errors and a larger number of errors of relatively large errors compared to the unconditional 

variance in these two out-of-sample periods. The same is also the case for subsample 4, where 

improvement over the unconditional variance has decreased to about 12 to 16 %. The opposite 

is however true for subsample 3 where the MSE is only about 1 % higher for the GARCH 

compared to the unconditional variance.  
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5. Conclusion 

Based on the results presented in section 4.4 to section 4.6 in this thesis, some conclusions 

could be made. These conclusions are listed below. 

 

˟     In the presence of ARCH effects in the volatility of copper spot price returns, the GARCH 

models were able to successfully model the conditional variance (in-sample) to a satisfying 

degree. The presence of ARCH effects in the volatility of copper spot price returns did 

however vary over the studied period in this thesis. There was only a significant presence of 

ARCH effects in three out of the four subsamples. It should therefore be important to keep 

updated on the current situation regarding this before modeling the conditional variance of 

copper spot price returns with GARCH models. 

 

˟    Forecasting the one-step ahead one day variance of copper spot price returns with the 

GARCH models can be recommended. This conclusion is based on the fact that the GARCH 

models provide more accurate forecasts (across all subsamples) compared to assuming that 

the one day error variance followed a Random Walk process (17 to 29 % lower MAE), and 

more accurate forecasts (in three out of the four subsamples) compared to assuming constant 

error variance and using the unconditional variance as a forecasts for the one-step ahead one 

day variance (8 to 19 % lower MAE).  

      A further motivation for this recommendation is due to the fact that the GARCH models' 

performance in modeling (in-sample) and forecasting (out-of-sample) the conditional variance 

was best in the last subsample. Here between 75 to 85 % of the excess kurtosis were removed 

by the GARCH models in in-sample estimation, and the GARCH models produced 17 to 19 

% lower MAE than both the Random Walk model and the unconditional variance in out-of-

sample forecasting. 

 

˟    Using the unconditional variance as a forecast for the one-step ahead one day variance 

produced lower MAE values than a Random Walk model, and could therefore arguably be 

consider a more legitimate benchmark for the forecasting performance of the GARCH 

models. 

 

˟    Before estimating the GARCH models with the purpose of later using the models to 

forecast the one-step ahead one day variance of copper spot price returns, it is probably 
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important to evaluate how well the in-sample data might represent the future. This conclusion 

is based on the 8 to 10 % higher MAE the GARCH models had compared to the unconditional 

variance in out-of-sample forecasting in subsample 3. 

 

˟    No one of the three GARCH models used in this thesis can generally be recommended 

over the others due to the small differences between the GARCH models in the out-of-sample 

forecasting, and due to the difficulty in predicting which model that will have the slightly 

better performance. 

 

˟    The skewness in the distribution of demeaned returns or the distribution of the residuals 

from the mean equation were not a good indicator of whether the two asymmetric GARCH 

models would be better than the standard symmetrical GARCH model in modeling the 

conditional variance (in-sample or out-of-sample). 

 

˟    The (1,1) order of the GARCH models appears to be sufficient to fully capture the ARCH 

effects in the volatility of copper spot price returns. 
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6. Discussion 

One of the more serious limitations of this thesis is that only two modified versions of the 

standard GARCH model was used. This limitation was added since testing all types of 

GARCH models would be a far too extensive study for this thesis. It is however possible that 

some other type of GARCH models would perform even better than those which have been 

used in this thesis. An important area of further research should therefore be to investigate the 

extent to which other types of GARCH models are able to improve the accuracy of the 

forecast of future copper return volatility.  

      Two examples of other modifications to the GARCH model that could be interesting to 

investigate closer are; GARCH models which are able to account for an 'information 

accumulation effect' since the observations in the sample data are irregularly spaced in time, 

and GARCH models which includes external variance regressors of fundamental volatility 

drivers in the copper price returns. 

 

Another rather serious limitation to the study in this thesis is the structure of the subsample 

periods. In this thesis the data sample was arbitrarily divided into four equally large 

subsamples. It is however likely that different results would have been derived if instead the 

sample was dividing into subsamples of different sizes, or if a more methodical approach was 

used to divide the sample into subsamples. An example of such approach would be the 

iterated cumulative sum of squares (ICSS) algorithm, which Bracker, K. and Smith, K.L. 

(1999) used to detect breakpoints in the volatility series.  

      However, for a first investigation of whether or not modeling the copper return volatility 

with GARCH models is appropriate, the selection of equally large subsamples should be 

sufficient. But for further knowledge and more precise conclusions it could be worth 

investigating the GARCH models forecasting performances when the subsamples are selected 

differently. 

 

Furthermore, only the volatility in the close-to-close daily log returns was analyzed in this 

thesis. For further researches about GARCH models' ability to model and forecast the 

volatility in copper price returns, it can also be interesting to investigate whether or not 

GARCH models are suitable for modeling and forecasting the volatility of open-to-close 

(intraday) returns, close-to-open returns, or the volatility of returns of higher frequencies (and 

maybe also for lower frequencies). 
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Finally, in this thesis a AR(2) model was selected for the conditional mean in subsample 1, 

and the proxy for the 'true' realized variance was therefore specified as eq. 4.6.1. Although the 

AR(2) lowers the sizes of the errors and increases the accuracy of the mean equation, it could 

however be the case that GARCH models are more suitable to model the error variance from 

a model with constant mean. 

      The reason for this would be that some of the underlying factors which create the 

volatility clustering might be due to some sort of psychological reaction of the market 

participants. Such kind of response is arguably unlikely to be based on the previous days' 

errors from a model for the returns with a conditional mean, since it's very unlikely that 

market participants use the same model for the mean. It's on the other hand arguably more 

likely that the market participants react to the mere sizes of previous returns or errors from a 

long term expected return. 

      However, since forecasting the returns are at least as important as forecasting the 

volatility, using only a constant mean where it possible to successfully model a conditional 

mean with an AR process, doesn't appear very attractive even if the accuracy of the variance 

forecasting are increased by doing so. Also, since the autocorrelations in the returns in this 

case are quite small, it's unlikely that the use of the AR(2) model in subsample 1 would have a 

significant impact on the end results. 
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