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Abstract

This paper evaluates the practicality and efficiency of different solutions to the
house allocation problem faced by the company providing housing for students
at Lund University. Both static and dynamic mechanisms are considered. A
series of simulations show that the problem could be solved more efficiently by
altering the booking period length of the currently used mechanism, and even more
efficiently by adopting some variant of the top trading cycles mechanism developed
by Abdulkadiroglu and Sénmez (1999).
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1 Introduction

Imagine a man finding a collection of historical artifacts under a big rock. The man
has no interest in archaeology and decides to sell them. But whom should he sell the
artifacts? Under most circumstances, this is an easy question to answer. If his motive
is profit maximization, he will simply set the prices in such a way that each artifact is
only demanded by one buyer. Such prices can easily be found by, for example, holding an
auction. Supply then equals demand and the market clears. The person willing to pay
the most for an artifact gets to buy it. This particular process of allocating goods among
buyers is a type of price mechanism. As long as there is a functional market to trade
the artifacts on, there is normally no need to consider alternatives to price mechanisms.
However, consider a situation in which the market does not clear. Perhaps the government
sets a price ceiling on historical artifacts, causing demand to exceed supply. Then the
question of whom to sell the artifacts becomes more complicated. They can not simply
be sold to the highest bidder, because there is a limit to how high the bids can get. A
new kind of procedure to select buyers is needed. If the man does not care who gets the
artifacts and he only wants his money as soon as possible, he might select a procedure
where the artifacts are sold on a first-come, first-served basis, or one where buyers are
picked randomly. Even if he is allowed to use a price mechanism to select buyers, he might
still choose not to if he is driven by motives other than profit maximization. Perhaps he
recognizes the historical significance of the artifacts and does not wish to sell them to a
buyer who would melt them and extract the valuable metals they are made of. He will
then choose to select buyers using some alternative procedure. Which procedure he should
choose depends on his intentions. If he is concerned with which use the artifacts will be
put to, he might construct some procedure that separates the buyers who wish to study
them or put them on public display from the buyers who would use them as door stops
and subsequently selects a number of buyers of the former type. Or if he wants to sell the
artifacts to the buyers who would derive the most utility from them, he might attempt to
invent a procedure that ranks all buyers accordingly and selects the top ranking buyers.
Precisely how to create such a procedure, called a mechanism, that satisfies the de-
mands of the artifact seller falls under a subfield of game theory called mechanism design.
Traditional game theory is concerned with how rational agents act within an inherited
framework. Mechanism design, on the other hand, is about designing a framework that
will yield some desired results. Historical artifacts are seldomly found under rocks, but
the problem of designing mechanisms when a price mechanism is either inapplicable or
impractical often arises in many real life situations. It would be highly impractical for a
big organization to let office space and conference rooms be traded on an internal market.
Instead, it needs some kind of mechanism deciding who is assigned what office or confer-
ence room at any point in time. It would be possible to trade human organs on markets,
but this practice is illegal in many countries, making price mechanisms inapplicable. Some
other way to determine who should be given what organ is then required. Both of these
are problems where a one-to-one matching between agents and indivisible objects must
be selected. Such matchings are found using matching mechanisms, which is the type of



mechanism this paper will focus on.

AF Bostéader (AFB) is a housing company facing a similar problem, tasked with the
responsibility of providing housing for students at Lund University. AFB currently owns
about 5800 apartments and corridor rooms (AF Bostéder, n.d.), while Lund University had
47 000 active students in 2011 (Lund University, 2012). As is often the case for student
housing, profit maxmimization is not the only motive of the supplier. The apartments and
corridor rooms also have to be affordable to students living on a very restricted budget.
It is the policy of AFB to set rents such that each housing district is self-sufficient, with-
out making additional profits. (Theofanous, 2012) Consequently, the market for student
housing does not clear. The city of Lund is also experiencing a general housing shortage
(Boverket, 2012). AFB is thus faced with the problem of how to distribute apartments and
corridor rooms among students. If each agent is already assigned an accommodation and
accommodations are traded with monetary compensation, it is called a housing market
(Shapley and Scarf, 1974). If all accommodations start out unassigned and there is no
market to trade them on, it is called a house allocation problem. (Hylland and Zeckhauser,
1979). If some agents are initially assigned accommodations and some agents are not, it
is called a house allocation problem with existing tenants (Abdulkadiroglu and Sénmez,
1999). A house allocation problem with existing tenants, such as the one facing AFB, can
be solved using many different kinds of mechanisms. For example, the housing company
can introduce a queue, distribute apartments or corridor rooms randomly or assign them
to the earliest applicants. When designing and choosing among different mechanisms, it
is common to investigate which properties they satisfy. Any true statement describing a
mechanism is a property of that mechanism. A property could be that the mechanism
always favors applicants whose last names begin with the letter E, or that it reallocates
10 apartments every week. Assuming that the housing company is interested in having
satisfied tenants, there are some properties of mechanisms that are generally considered
desirable for house allocation problems. If a mechanism is individually rational, no one can
be made worse off by the mechanism’s reallocations, ensuring that there is no incentive
not to participate in the allocation process. If it is Pareto consistent, then the selected
matching can not be altered to make one agent better off without making some other
agent worse off. Additionally, a mechanism is strategy-proof if it ensures that no agent
can be made better off by reporting false preferences over the different corridor rooms and
apartments. This paper will consider several different mechanisms as solutions to AFB’s
house allocation problem. Their properties will be examined and the efficiency of some
mechanisms will be estimated by looking at the matchings produced by them in a series of
simulations carried out on a fictional population with randomized preferences.

1.1 Purpose

The purpose of this paper is to describe and evaluate different mechanisms as solutions to
AF Bostédder’s house allocation problem.



1.2 Method

Several different mechanisms are introduced and an examination of which properties they
satisfy is carried out. Then three of AF Bostader’s housing districts are chosen and a fictive
population is created with randomized preferences. The population and the apartments are
subsequently processed through different mechanisms, producing several different match-
ings. Finally, the efficiency of the resulting matchings are compared using some different
measures.

1.3 Related literature

One of the earliest studies of matching problems is Gale and Shapley’s (1962) examination
of marriage markets and college admission problems. Shapley and Scarf (1974) analysed
an allocation problem where a set of indivisible objects are privately owned by a set of
agents and introduced the idea of a top trading cycle. Allocation problems where private
ownership is not assumed have been examined extensively in later years, with applications
in, for example, kidney exchange programmes (Roth, Sénmez and Unver, 2004) and school
choice (Abdulkadiroglu and Sénmez, 2003; Chen and Sénmez, 2006; Erdil and Ergin, 2008).
The literature dealing with house allocation problems from a mechanism design perspective
is also fairly large, with most of the focus placed on house allocation problems for college
students. A large part of the literature is entirely theoretical. (Abdulkadiroglu and Sénmez,
1999; Andersson and Andersson, 2009; Sénmez and Unver, 2005; Sonmez and Unver, 2010).
There have, however, been some attempts at experimental and empirical papers (Chen
and Sonmez, 2003; Guillen and Kesten, 2008). For house allocation problems,; dynamic
mechanisms have received less attention than static mechanisms. An exception to this is
Bloch and Cantala (2011) who considered what they called a dynamic assignment problem,
where the set of agents varies over time, in the sense that one agent leaves the set and a
new one enters in every period. Kurino (2009) examined the house allocation mechanisms
called serial dictatorship and top trading cycles in a dynamic context. Another paper
examining house allocation mechanism in a dynamic setting was written by Abdulkadirogly
and Loertscher (2007). Dynamic mechanisms have also been examined in the context of
other applications, such as kidney exchange programmes (Unver, 2009).

1.4 Overview

In section 2, the model and the theoretical framework used to analyze different mechanisms
is presented, some properties mechanisms can satisfy are defined and examples of different
mechanisms are given. Section 3 describes the process by which AF Bostédder currently
allocates corridor rooms and apartments among students. In section 4, AF Bostédder’s
current mechanism is described within the theoretical framework established in section 2,
its properties are examined and the simulation processes for the different mechanisms are
explained. In section 5, the efficiency measures used to compare the results of the simula-
tions are described and the outcomes are presented. Section 6 provides some concluding



remarks on the results.

2 Theory

This section introduces the model that will serve as a theoretical framework for the remain-
der of the paper. In addition, the concepts and properties that will be used to evaluate
AF Bostéader’s mechanism and its alternatives are defined. The last subsection gives ex-
amples of different mechanisms that could serve as solutions to the AFB’s house allocation
problem.

2.1 Model

Consider a set of all potential agents .# that could constitute a population and a set of
all potential housing units 2 that could exist in a sociey. Following Abdulkadiroglu and
Sénmez (1999) and Sonmez and Unver (2010), a house allocation problem with ewisting
tenants, sometimes also referred to as simply a problem, is defined as a list (I, H, P) where:

e | C .7 is a finite set of agents,
e H C 77 is a finite set of housing units, and

e P is a preference profile.

Hp is the set of all occupied housing units, Hy is the set of all vacant housing units
and {ho} is the set of all null houses hgy;. For an agent i to be assigned his or her null
house hg; is equivalent to being assigned no housing unit in Ho U Hy. H C 5 is then
defined by H = Hpo U Hy U {ho} and Ho N Hy N {he} = 0. There are m housing units
h; € H\{ho}. Ig is the set of all existing tenants, each assigned exactly one h; € Hp and
Iy is the set of all agents assigned their null houses. I C . is then defined by I = [ U Iy
and Ir NIy = (. There are n agents 7 € I. € is the preference domain, i.e. the set of
all possible ordinal preference relations, defined over some set of indivisible objects. In the
present case, {2 is defined over H. Each ¢ € I has an ordinal preference relation P; € €).
The preference profile P is alist (P;),., C 2", where " thus denotes the set of all possible
preference profiles P over H, given [. For individual preferences, z 7—; y denotes that
agent ¢ weakly prefers z to y, x >; y denotes that agent ¢ strictly prefers x to y and x ~; y
denotes that agent i is indifferent between x and y. Initially, it is assumed that all P; over
H exclusively involve strict preferences. This assumption will eventually be relaxed. P; is
only observed by agent ¢ and is unknown to the housing company. Most mechanisms allow
each agent ¢ € I to send one or more signals to the housing company, which the housing
company may use to form beliefs about P;. The signal or group of signals sent by agent i is
called a strategy and the set of all strategies available to agent i is denoted by S;. Agent ’s
strategy [ is denoted by s; € S; and the strategy chosen by agent ¢ is denoted by s; € S;.
SF C S; is the set of all undominated strategies. Every s; is assumed to be an element in



S}, meaning that no agents will play dominated strategies. The strategy profile s C [[,c; Si
is the set of every s; chosen by each ¢ € I. The housing company chooses an ordering f
of all the agents according to some criteria. The agent ¢ € I ranking the highest under f
is denoted by f(1), the agent ranking second by f(2) and so on. The ranking at step k
in some matching process is denoted by fr. The outcome of a house matching mechanism
is a one-to-one and onto function y : I — H called a matching. In other words, under a
matching p, every ¢ € I is assigned exactly one h; € H. Each matching is an element of
the matching space . , which is simply the set of all possible matchings. An agent ¢ € [
being assigned a housing unit h; € H under the matching p will be denoted by (i) = h;.
The original allocation is given by the matching A € .#, under which A(i) € H is the
housing unit originally assigned to agent ¢. The initial assignment of some i € I, A(7), will
be referred to as i’s endowment. No matching mechanism evaluated in this paper will ever
reallocate the same h; € H\ {ho} twice, making A(i) equivalent to i’s assignment prior to
any reassignment for each i € I. The preferences of I over .# are characterized by the
relationship given in 1, where v € Z.

Viel: pu=v <= pi) = v (1)

This means that an agent will prefer a matching u to some other matching v if he or she
prefers his assignment under p to his assignment under v.

Definition 1. A (static) matching mechanism ¢ consists of a strategy space S; for every
i € I and an outcome function [[..; S; — 4.

The outcome of ¢ is a matching denoted by ¢(I, H, s) and agent i’s assignment under
o(I, H,s) is denoted by ¢;(I, H,s) € H\ Hy.

el

Definition 2. A matching mechanism is a direct mechanism if Vi € I : S; = Q.

In other words, a direct mechanism is a mechanism where the strategy of each agent
i consists of reporting some preference relation P/ € €. It should be noted that there
is no requirement that P/ = P,. Each agent ¢ € I has the option to misrepresent his or
her true preferences such that s; # P;. A direct matching mechanism is a special kind of
direct revelation mechanism, as defined by Mas-Colell, Whinston and Green (1995). If H
consists of some housing units that are considered equivalent in the eyes of the agents, it is
permissible to sort all such units into a class of housing units ¢, C C', where C' is the set
of all such classes and N, cccn, = 0. The housing units are equivalent and may be sorted
into a class ¢, € C if Vhj € ¢yt € [ : hj ~; hy. If housing units can be sorted into
such classes, Q2 will be defined over C'U {ho} rather than over H. This means that a unit
hi for which ﬂhj # hi : hj ~; h, Vi € I will be the sole element in a class ¢, € C. This
is how indifference is taken into account in this paper.

2.2 Properties

Not every matching mechanism is equivalent. Mechanisms are commonly evaluated by
examining which properties they satisfy. This subsection will describe some possible prop-
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erties of mechanisms that are commonly thought to be desirable if the utility of the agents
being matched is under consideration.

Definition 3. A matching p € 4 is individually rational if Vi € I :  p(i) 22; A(7).

This means that a matching p is not individually rational if some agent prefers his or
her endowment to the housing unit he or she is assigned under p. In models based on von
Neumann-Morgenstern utility, it makes sense to distinguish between ex ante and ex post
individual rationality. However, this paper does not employ von Neumann-Morgenstern
utility and individual rationality will therefore always be used to mean ex post individual
rationality.

Definition 4. A (static) matching mechanism is individually rational if it always selects
individually rational matchings. (Abdulkadiroglu and Sénmez, 1999)

A mechanism that always selects individually rational matchings is a mechanism guar-
anteeing every agent a housing unit that is at least as good as his or her endowment.
Consequently, there is no incentive to abstain from participating in the matching process
if the mechanism is individually rational. A requirement that a mechanism be individually
rational is called a participation constraint. (Mas-Colell, Whinston and Green, 1995)

Definition 5. A direct matching mechanism is manipulable if

sy = (s, Poi) =i (P, Py).

Definition 6. A direct matching mechanism is strategy-proof if it is not manipulable at
any preference profile P C Q.

In other words, a mechanism is strategy-proof if it is always a dominant strategy for
every agent i € I to report his or her true preferences. A strategy-proof mechanism is
sometimes also referred to as truthfully implementable in dominant strategies or dominant
strategy incentive compatible (Mas-Colell, Whinston and Green, 1995). In the context of
house matching mechanisms, this means that it is always a dominant strategy for each
agent ¢ € I to rank the housing units in his or her application in accordance with his or
her preference relation P; € ().

Definition 7. A matching p € # is Pareto efficient if
Bve . :v(i) i u(i) Vi€l and v(i) =; u(i) for somei € I.

In other words, a matching u is Pareto efficient if it is impossible to find a matching v
which is at least as good as p for every agent under consideration and preferred to p by at
least one agent.

Definition 8. A matching mechanism ¢ is Pareto consistent if the matching p(P) is
Pareto efficient for all preference profiles P C Q™. (Svensson, 1999; Svensson and Larsson,
2005)

Pareto consistency is sometimes also referred to as ez post efficiency (Mas-Colell, Whin-
ston and Green, 1995) or simply Pareto efficiency.

8



2.3 Examples of mechanisms
2.3.1 Serial dictatorship

Serial dictatorship is a simple direct matching mechanism that has an ordering f of a set
of agents I choosing among a set of housing units G C H\{ho} and the set of null houses
{ho}, where G = H\{ho} at step one of the algorithm. The agent ranking the highest
under f, f(1), is assigned his or her top choice in H\{ho}, which is then removed from
G. Subsequently, f(2) is assigned his or her top choice among the remaining houses in G.
This process continues until either G = () or every agent ¢ € I is assigned a housing unit
h; € H. (Abdulkadiroglu and Sénmez, 1999) The reason it is called serial dictatorship may
become clearer considering the following definition, based on the definition of a dictatorial
social choice function by Mas-Colell, Whinston and Green (1995).

Definition 9. A matching mechanism is dictatorial if
diel:oP)e{pe A ui)z;vi) Yve#} VP eQ"

This clearly holds for i = f(1). Now define the matching space at step 2, .#s2, as
AN (f(1))FU{f(1)} ), then o(P-p)) € {n € Mz = (i) Ziv(i) Vv € Maz} VP €
Q" holds for ¢ = f(2). Continuing this line of reasoning, one can see that this will apply
to all ¢ € f. Hence, it is serially dictatorial.

Example 1. Consider the problem (I, H, P), where Ip = 0, Iy = {i1,ia,13,14}, Ho = 0,
Hy = {hy, ha, hs} and s = { Py, Ps, P3, Py}. The ordering of the agents is given from highest
to lowest by f = (i1,12,13,14) and the preference profile P is given by the following table.

A P P P
hg h1 hl hg
hs hs ha hy
h1 hg hg hl
hOl h02 h'03 h04

The endowments of I are given by X, interpreted as i, being assigned hgy, is being assigned

hoa and so on.
\ i1 G i3 Iy
~ \ hot hoz hos hoa

The outcome of ¢ s found using the following steps.

1. At step one, agent f(1) =iy is assigned his or her top choice hy among the available
housing units in Hy = {hy, ho, h3}.

2. At step two, agent f(2) = iy is assigned his or her top choice hy among the remaining
housing units in Hy = {hq, hs}.



3. At step three, agent f(3) = i3 is assigned his or her top choice hy among the remaining
housing units in Hy = {hs}.

Since Hy = 0 at the end of step 3, the process terminates, producing the final matching u.

I R F
T\ e b by o
Theorem 1. The serial dictatorship matching mechanism is individually rational (i),
strategy-proof (ii) and Pareto consistent (iii).

Proof. (i) At the beginning of the assignment process, each agent is assigned his or her null
house. Provided that each agent prefers any assignment h; € H\{ho} to no assignment,
he or she cannot be made worse off. Hence, the mechanism is individually rational.

(ii) At each step, the agent i € [y ranking the highest under f is assigned his or
her most preferred h; € Hy under s;. Suppose h; is agent i’s most preferred unit in
Hy, which will also be i’s assignment if s; = P,. Then, ¢ can only affect ¢;(s;,s_;)
by playing some strategy s; = P/ under which some h; # h; is ¢’s most highly ranked
alternative in Hy. This h; # hy will then be ’s assignment and h; <; h; will hold
for any such unit h;. Consequently, Vs; @ ¢i(su,s—:) ZJi @i(Pi,s—;). By relation 1,
Vs (s, s—:) Ji ¢(Pi,s—;). Hence, the mechanism is strategy-proof.

(iii) A matching is not Pareto efficient iff p(f(7)) <; p(f (7)) and pu(f(5)) <; p(f(@)) for
at least one pair of agents f(i), f(j) € f. If i > j, then u(f(j)) € G at step i and if j > 1,
then p(f(i)) € G at step j. Thus, every p € 4 produced by ¢ is Pareto efficient and the
mechanism is Pareto consistent. [

For a more rigorous proof of theorem 1, taking indifference into account, see Svensson
(1994). Individual rationality only holds under the condition that hg; be the least preferred
choice of each agent in I. Situations where this condition does not hold are thinkable. For
example, if a university would employ a serial dictatorship mechanism and force all students
to participate in it, some students who prefer off-campus housing might be made worse
off under the matching selected by the mechanism. In many real life applications, every
i € Ip is entitled to keep A(7). This means that in spite of its positive properties, serial
dictatorship is often not applicable. This problem is addressed in the following matching
mechanism.

2.3.2 Serial dictatorship with squatting rights

Serial dictatorship with squatting rights is a matching mechanism similar to serial dicta-
torship allowing tenants to keep the housing units they are assigned under X\. Each ¢ € Iy
reports a strict preference relation P, € 2 over H and each ¢ € Ig reports either IN
or OUT and a strict preference relation P; € 2 over H. Every ¢ € Ig reporting OUT
is assigned A(i) with certainty. The strategy spaces are S; =  for every i € Iy and

10



S; = Si X Sig = {IN,OUT} x Q for every i € Ig. The remaining housing units are
then assigned, according to the procedure in random serial dictatorship, to the popula-
tion J = IynU{i € Ig : s = IN}, where G = Hy U{\(i) € Hp : sp = IN}. If
Ir = 0, then serial dictatorship with squatting rights simply reduces to serial dictatorship.
(Abdulkadiroglu and Sénmez, 1999)

Example 2. Consider the problem (I, H, P) where Ip = {iy,is,i3}, Iy = {ia}, Ho =
{hl,hg,hg}, HV = @, S = {OUT+ P1,1N+P2,IN+ P3,P4} and f = (il,i4,i3,i2). P is
given by the following table.

PP P Py
hy  hi hi hy
hs hs hy hy
hi hy hy M
hOl h02 h03 h04

The endowments of I are given by A.

\ — ity i3 1y
hi ha hs hos
The outcome of ¢ is found using the following steps.

1. At step one, agent f(1) = iy is assigned his or her top choice hy among the available
housing units in Hy = {hs, hs}.

2. At step two, agent f(2) = i3 is assigned his or her top choice hy among the remaining
housing units in Hy = {hs}.

Since Hy = 0 after step two, the process is terminated, producing the final matching .

(1 2 i3
T\ hee he h
It can be seen that A(2) >2 p(2). This is one of the major drawbacks of the serial

dictatorship with squatting rights mechanism.

Theorem 2. The serial dictatorship with squatting rights matching mechanism is not
individually rational (i) or Pareto consistent (ii).

Proof. (i) Since s;; = IN requires i to give up A(i), he or she may be assigned a housing
unit such that A(7) >; u(i), as has been shown in the example above. The mechanism is
thus not individually rational.

(ii) Consider the problem (I, H, P) where Ip = {i1,i2}, In =0, Ho = {h1,h2}, Hy =0
and s = {OUT + P;,OUT + P,}. The preference profile is given by the following table.

11



P B

he Iy
hi  hs
hOl hOQ

Since Hy = () at step one, the process terminates immediately. This means that the
original allocation A also gives the final matching p.

(i
A‘“_(m h2)

The matching p is Pareto dominated by v.

AT
"=\ by by

Hence, the mechanism is not Pareto consistent. O

As no ¢ € Iy is guaranteed a housing unit h; satisfying h; >; A(7), there are incentives
to keep one’s current housing unit and abstain from participating in the matching process.
This implies that the mechanism may lose out on some benefits from trade. Serial dicta-
torship with squatting rights is not a direct matching mechanism, which means that the
concept of strategy-proofness is not applicable.

2.3.3 Serial dictatorship with waiting list

Serial dictatorship with waiting list is a direct matching mechanism remedying some of the
problems with the serial dictatorship with squatting rights mechanism.

Definition 10. {h; € Hy : h; >=; A(i)} is the set of acceptable housing units for i € I.

All agents i € I report their preferences over H. At step one, the agent ¢ ranking the
highest under f; among those agents for which {h; € Hy : h; =; A(i)} # 0, i.e. among the
agents for which there is at least one available and acceptable housing unit, is assigned his
or her most preferred available and acceptable housing unit. The agent is then removed
from the ordering f, and his or her assigned unit (i) is removed from the set Hy. If
i € Ig, then (i) € Hp is tranferred into Hy for step two. This process continues until
Vi € fr:{h; € Hy : hj =; A\(i)} = 0. In other words, the process terminates when there
no longer are any acceptable housing units available to any ¢ € fr. When the process
is terminated, any agent ¢ € I not re-assigned any unit h; € H gets to keep the unit
h; € Ho U {hg;} he or she is assigned to under A.

Example 3. Consider the problem (I, H,P), where Ig = {iy,is}, In = {is}, Ho =
{hflahQ}; HV = {h3}7 S = {PlaPQaP?)} and f = (il7i272.3)'

12



P is given by the following table.

PP P
ho  hs  hs
hs hy My
hi hy  hs
hot  ho2  hos

The endowments are given by .

i gy i
A:
(h1 ho ho3)

The outcome of v is found using the following steps.

1. At step one, agent iy is assigned his or her only acceptable unit hs in Hy = {hs}.

2. At step two, agent iy has no acceptable unit in Hy = {hy}. Agent i3 is assigned his
only acceptable unit hy in Hy = {hy}.

After step two, Hy = 0, which implies that {h; € Hy : h; =; \(i)} =0 Vi € f3 and the
process terminates, producing the final matching p.

(i i i3
P=\hs hy Iy
Theorem 3. The serial dictatorship with waiting list matching mechanism is individually
rational.

Proof. 1f s; = P;, the agent will only be assigned units in {h; € Hy : h; >=; A(4)} U {A(7)}.
Consequently, u(i) 77; A(i) will always hold. O

Theorem 4. The serial dictatorship with waiting list matching mechanism is not strateqy-
proof (i) or Pareto consistent (ii).

Proof. (i) Consider the problem (I, H, P), where Ig = {iy,i2}, Iy = {i3}, Ho = {h1, ha},
Hy = {h3} and f = (iy,142,43). P_1 is given by the following table.

P, P
hs  ho
hy I
hi  hs
h02 h03

Next, consider the two following strategies for agent ¢;, where P, is his or her true prefer-
ences.
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P P

hy  ho
hs M
hi  hs
hOl hOl

If sy = Py, then agent 7, is assigned hg at step one. If s = P/, then the following steps
take place.

1. At step one, there is no acceptable housing unit in Hy for agent ;. The process
moves on to agent is, who is subsequently assigned hs and A(iz) = hs is sorted into
H,y, for step 2.

2. At step two, agent i, is assigned hs.

As hy =1 h3, ©1(P], P_1) =1 ¢1(P1, P_1). This means that the mechanism is manipulable
at preference profile P. Hence, it is not strategy-proof.

(ii) Consider the problem (I, H, P) described in example 3. It was shown that the serial
dictatorship with waiting list mechanism selected the final matching .

12 13
F=\ hs hy hy

The preference profile was given by the following table.

PP P
hay  hs hsy
hs hy hy
hy  hi  hs
hoi  ho2  hos

The matching p is Pareto dominated by v.

[ i iy i3
"=\ hy by hy

Hence, the mechanism is not Pareto consistent. [l

2.3.4 Top trading cycles

Top trading cycles is a direct matching mechanism allowing existing tenants to trade as-
signments with one another. It was developed by Abdulkadiroglu and Sénmez (1999) and
the top trading cycles algorithm used to find the matching selected by the mechanism is
influenced by the top trading cycles mechanism discussed by Shapley and Scarf (1974),
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attributed to David Gale. The main difference between the two is that Gale’s top trad-
ing cycles algorithm, in the terminology of this paper and the context of house allocation
problems, was developed for problems where Hy U Iy = (). The top trading cycles al-
gorithm works in the following way. At each step, each agent i € I points to his or her
most preferred housing unit h; € H under the preferences announced in s; € 5;. Each
h; € Ho points to its current tenant, each h; € Hy points to the highest ranking agent
f(1) and each hg; points to the corresponding agent i. A cycle is an ordered list of agents
and housing units (ji, jo, ..., Jx) C I U H, where each j points to the next j in the list and
Jk points to j;. Agent ¢ pointing to housing unit h; will be denoted by {i} — {h;}. At any
step k, each agent participating in a cycle is assigned the unit he or she is pointing to, after
which all agents in the cycle are removed from the process along with their assignments.
Whenever f(1) points to a housing unit h; € Hy, a cycle is formed with only these two
elements. If at step k, in this type of cycle, A(f(1)) € Hp, then it is sorted into Hy for step
k+1. Whenever there are no cycles left, the algorithm moves to the next step. The process
continues as long as there is at least one available housing unit and one remaining agent.
When the process terminates, every remaining agent is assigned his or her null house hy;.
Abdulkadiroglu and Sénmez (1999) remark that if there are several cycles at some step k
and only one of them is removed, this would not alter the outcome of the mechanism. The
reason for this is that any cycle not removed at step k remains a cycle at step k + 1.

Example 4. Consider the problem (I, H, P), where I = {iy,is,13,94}, In = {is5,i6},
HO - {h17 h/2) h37 h4}7 HV - {h5}; S - {P17 P27 P37 P47 P57 Pﬁ} and f - (i17i3ai57i47i67i2)'
P is given by the following table.

P1 P2 P3 P4 P5 PG

The endowments are given by .

\ il I3 14 U5 g
hi ha hs hy hos hos

The outcome of ¢ s found using the following steps.

1. At step one, {il,ig} — {hg}, {ZQ} — {h4}, {1472.5} — {]’Ll}, {26} — {h5}, Hy =
{hs} = {fi(1)} = {i1} and h; € Ho — {i}. The only cycle that is formed is
(hi,i1, ha,ia, ha,i4). i1 S assigned ho, is is assigned hy and iy is assigned hy and they
are removed from the process along with their assignments.
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2. At step two, {iz,ic} — {hs}, {is} — {hs}, Hv = {hs} — {f2(1)} = {is} and
{hs} — {iz}. The only cycle that is formed is (hs,i3). i3 is assigned hs and both are
removed from the process. A(iz) = hs is sorted into Hy for step three.

3. At step three, {is,ig} — {hs} and Hy = {hg} — {f3(1)} = {is}. The only cycle that

is formed is (hs,is). i5 is assigned hg and both are removed from the process.

At the end of step three HN\{ho} = 0 and the process is terminated, yielding the final
matching p.

(i1 i i3 g U5 g
T\ he ha hs b by heg
Theorem 5. The top trading cycles mechanism is individually rational.

Proof. Every A(i) points to agent ¢ until he or she is removed from the process. An agent
1 € I will therefore never point to and consequently never be assigned any housing unit
w(i) € {hj € H: h; <; A(1)}. (Abdulkadiroglu and Sénmez, 1999) O

In order to prove that the mechanism is also strategy-proof, lemma 1 is needed. The
whole proof is due to Abdulkadiroglu and Sénmez (1999).

Lemma 1. Suppose that all agents except agent i announce the partial preference profile
P_; and that i leaves the process at step k under P; and at step k' under P!, where k < k.
Then the remaining agents and housing units are the same at the beginning of step k
regardless of whether agent i announces P; or P.

Proof. Since agent i participates in no cycle prior to step k, the same cycles form regardless
of whether i announces P; or P/ and the same agents and housing units are removed from
the process before step k. O]

Theorem 6. The top trading cycles matching mechanism is strategy-proof.

Proof. Suppose that all agents except agent ¢ announce the partial preference profile P_;.
By announcing the preferences P/, i joins the cycle (h;, ji, jo2, .., jp, @), leaves the process

at step & and is assigned h;. By announcing his or her true preferences F;, agent i leaves
the process at step k’. There are two cases to consider.

1. ¥ > k.

Consider step k when agent ¢ has announced P;. According to lemma 1, the same
agents and housing units remain at the beginning of step k regardless of whether ¢
announces P/ or P;. Thus, h; points to ji, j; points to ja, ..., j, points to ¢ at step k
and they keep doing so as long as agent ¢ remains in the process. Under P;, agent i
is then assigned some ¢;(P;) 7Z; h; or joins the mentioned cycle and is assigned h;.
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2. k' < k.

According to lemma 1, the same housing units and agents remain at the beginning
of step k' regardless of whether agent i announces P/ or P;. Since agent i is assigned
his or her most preferred choice remaining at step &’ under P; and h is an available
option at k', ¢;(P;) 2Z; h; must hold.

O
Theorem 7. The top trading cycles matching mechanism is Pareto consistent.

Proof. Any agent removed from the process at step one is assigned his or her top choice.
Any agent removed from the process at step two is assigned his or her top choice among
the housing units that are still part of the matching process. Since preferences are strict,
the agent cannot be made better off without making some agent removed from the process
at step one worse off. The argument can be extended to show that no agent removed from
the process at some step k£ can ever be made better off without making some other agent
removed from the process at a preceding step worse off. (Abdulkadiroglu and Sénmez,
1999) ]

A practical problem with the top trading cycles mechanism is that for larger sets H
and [, it may be difficult to locate the cycles that are formed.

2.3.5 You request my house - I get your turn (YRMH-IGYT)

The YRMH-IGYT mechanism uses an alternative algorithm that was developed by Ab-
dulkadiroglu and Sénmez (1999) as well. In this mechanism, if an agent’s most preferred
housing unit is some h; € Hy, he or she points to that unit, and if the most preferred
housing unit is some h; € Hp, he or she points to the agent the unit is currently assigned
to. The algorithm starts by assigning f(1) his or her top choice h; € H and subsequently
removing both from the process. After that, f(2) is assigned his or her top choice, and so
on, until an agent requests an h; € Hp. When this happens, the agent he or she points to
is moved to the top of the ordering f and the process continues. A loop is formed when
there is an ordered list of agents (iy,1s,13,...,7;) such that i; demands the housing unit
currently occupied by 79, i5 demands the unit occupied by i3, ..., and 7;, demands the unit
occupied by i;. Loops are always formed by agents in Ir and the first agent in the list is
always the highest ranking agent under f. Whenever a loop is formed, all agents in the
loop are assigned their demanded units and are removed from the process along with their
assignments. The algorithm terminates whenever either no agents or no houses remain in
the process.

Theorem 8. For any ordering f, the YRMH-IGY'T matching mechanism selects the same
matching as the top trading cycles mechanism.
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Proof. The algorithm can locate and remove a loop in one of two possible ways.

1. There is an ordered list of agents (iy, s, ...,1), where f(1) = i; at the start of the

process. In this list, i1 demands A(2), is demands A(3), ..., ix—1 demands A(k) and
ir, demands some h; € Hy. As iy demands A(k), i is moved to the top of the
ordering f and is assigned the demanded h; € Hy. Thereby, A(k) is made available
and is assigned to ix_1, A(k — 1) is assigned to i_, and so on until \(2) is assigned
to i1. Here, (h; € Hy,i1,A(2), 142, ..., A\(k), k) is a cycle as defined in section 2.3.4.

There is a loop of agents (iy, is, ..., 7). Agent i; is assigned A(2), agent i, is assigned
A(3), ..., agent i is assigned A(1). Here, (A(1),i1, A\(2), 19, ..., A(k), %) is a cycle as
defined in section 2.3.4.

The algorithm locates cycles and lets the agents trade assignments accordingly. Since
the step at which a cycle is located and removed does not affect the outcome of the
matching process, the YRMH-IGYT mechanism will select the same matching as the
top trading cycles mechanism. (Abdulkadiroglu and Sénmez, 1999)

]

Example 5. Consider the same problem (I,H,P) as in example 4, where I =
{i1,da, 43,14}, In = {is,i6}, Ho = {h1, ha, hs, ha}, Hy = {hs}, S = {P1, P, P, Py, Ps, Ps }
and f = (i1, 13, 15,14, 1, 12). P 1s given by the following table.

P1 P2 P3 P4 P5 PG
ho hy hy hi hy  hs
hs hy hs hy hy Iy

The endowments are given by .

)\_(Zi 19 13 4 I i6>
o hl hQ h3 h4 h05 h06

The outcome of ¢ is found using the following steps.

1.

At step one, f1(1) = {i1} — {2}, at which point iy becomes f1(1). Continuing in this
way, {is} — {is} and {is} — {i1}, forming a loop (i1,i2,14). Then, iy is assigned
ha, 19 1s assigned hy, 14 1s assigned hy and they are removed from the process, along
with their assignments.

At step two, fo(1) = {is} — {hs}. Then, iz is assigned hs and hg is sorted into Hy .

At step three, f3(1) = {is} — {hs} and i5 is assigned hs.
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At the end of step three, no housing units remain in the process and it is terminated,
yielding the final matching p.

S TR T S VR TR
F=\ hy hy hs hi hs heg

Note that this is exactly the same matching selected by the top trading cycles mechanism.

When the agents have preferences over C' U {hg;} rather than over H, Abdulkadiroglu
and Sonmez (1999) suggest the following tie-breaking rule. Given a weak preference relation
R; over H - or equivalently - a strict preference relation R; over C' U {hq;}, construct a
strict preference relation P; over H such that for any i € I:

1. Given two housing units h; € ¢, and h; ¢ c,,, the unit belonging to the class preferred
under R; is strictly preferred under P;.

2. Given two housing units of the same type, h;; € ¢,

(a) if both units are occupied, then the unit whose owner is higher ranking under f
is preferred under P;.

(b) if hj € Hp and hy, € Hv, then hj = hy under P;.

(¢) if hj), € Hy, then the unit with the lower index number is preferred under P;.

This tie-breaking rule may be used for the top trading cycles matching mechanism as well.

Theorem 9. The YRMH-IGYT matching mechanism is individually rational, strategy-
proof and Pareto consistent.

Proof. By theorem 8, the YRMH-IGYT mechanism always selects the same matching as
the top trading cycles matching mechanism. Hence, it also satisfies the same properties.
Consequently, by theorems 5, 6 and 7, it is individually rational, strategy-proof and Pareto
consistent. [

The benefit of using the YRMH-IGYT mechanism rather than the top trading cycles
mechanism is that automates the process of locating the cycles in each step, which makes
it easier to deal with in practice. Additional properties of the YRMH-IGYT mechansim
not discussed in this paper have been examined by Sénmez and Unver (2010).

2.3.6 Dynamic mechanisms

All of the matching mechanisms described so far in chapter 2 have been static matching
mechanisms. Dynamic mechanisms have only attracted some attention in recent years.
For this reason, there appears to be no consensus on the proper definition of a dynamic
matching mechanism. Furthermore, most examinations of dynamic mechanisms have been
restricted to direct mechanisms. To define a dynamic matching mechanism, some new
concepts are needed. A dynamic matching mehanism may reallocate housing units over
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several periods in time, where ¢, will denote the beginning of the matching process and
T will denote the end thereof. The time frame of the process is given by [to, T] and each
discrete time period is denoted by t € [ty,T]. These periods are not to be confused with
the steps taken in the different algorithms. When a matching mechanism is a dynamic
process, it involves several intermediate matchings, together constituting a matching plan
#P. The matching in period ¢ is denoted by p;, agent i’s assignment in period ¢ is denoted
by (i) and p(i) will be interpreted as pp(i). .#,; denotes the matching space in period ¢
and Hf:to A thus denotes the matching plan space. Following Kurino (2009), with some
modifications to allow for dynamic non-direct mechanisms and to ensure terminological
consistency, a dynamic matching mechanism will be defined as follows.

Definition 11. A dynamic matching mechanism ¢ consists of a strategy space S; for
each i € I and an outcome function [[,., S; — HtT:tO My selecting a matching plan p?P €

HthtO M, for each strategy profile s € [],c; S;.
Kurino (2009) identifies two different kinds of dynamic direct mechanisms.

Definition 12. A dynamic matching mechanism is a spot mechanism if, in every period,
agents are asked only to reveal preferences for the current period.

Definition 13. A dynamic matching mechanism is a futures mechanism if agents are
asked to reveal their preferences over every period.

An example would be a serial dictatorship (with squatting rights or waiting list) spot
mechanism, in which each period constitutes a static serial dictatorship (with squatting
rights or waiting list) mechanism, or a top trading cycles spot mechanism, in which each
period constitutes a static top trading cycles mechanism. Abdulkadiroglu and Loertscher
(2007) use a different definition of dynamic mechanisms, under which Kurino’s spot mech-
anism would be classified as a static mechanism. Kurino (2009) also introduces a dynamic
counterpart to the individual rationality property.

Definition 14. A dynamic matching mechanism is acceptable if
Viel,t€lto,T]:  pusr(i) Zi puli).

In other words, a dynamic matching mechanism satisfies acceptability if each agent is
made weakly better off as time progresses. For dynamic spot mechanisms, this is equivalent
to a requirement that every period constitute an individually rational static mechanism. In
this paper, it is assumed that preferences are time-invariant, meaning that all preferences
remain the same in each period. It is also assumed that the matching process is significantly
short not to be affected by the time preferences, i.e. discount rates, of any agents i € [.
Consequently, the preferences of I over .# are also characterized by relation 1, as well as
the following relation.

Viel: pur~v <= pp(i) =vr(i)
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This means that it is irrelevant in which period ¢ € [to,T] ¢ is assigned u(i) or v(i). An
individual matching will always be evaluated in period 7. Kurino (2009) has shown that the
top trading cycles mechanism loses its Pareto consistency and partially loses its strategy-
proofness when transformed into a spot mechanism. This applies to the YRMH-IGYT
mechanism as well, as it is only an alternative algorithm leading to the same matchings.

3 Background

This section will provide the context of AF Bostédder’s house allocation problem and explain
how housing units are currently being allocated among students by AFB. If no other source
is given, the information in this section was either retrieved from AFB’s official website (AF
Bostéder, n.d.) or supplied in a personal interview with the students’ elected representative
at AFB. (Theofanous, 2012).

AF Bostéder is a company providing housing for students at Lund University. At
this date, AFB owns roughly 5800 accommodations of different types, located in the city
of Lund. About half of the accommodations consist of corridor rooms and the other
half of apartments with one to four rooms. Each of the accommodations is located in
one of eleven housing disctricts, named Delphi, Gylleholm, Kédmnéarsratten, Klosterdngen,
Magasinet, Parentesen, Sparta, Studentlyckan, Tomegapsgarden, Ulrikedal and Vildanden.
Lund University had 47 000 active students in 2011 (Lund University, 2012), contributing
to a relatively high demand for housing. To ensure that students on a restricted budget
can afford housing, it is the policy of AFB to set rents such that each housing district is
self-supporting, rather than setting them to maximize profits. With this in mind, it is not
surprising that the market for student housing does not clear, contributing to the general
housing shortage in the city of Lund. (Boverket, 2012) This creates a need for selecting a
mechanism to allocate apartments and corridor rooms among the students.

AFB is currently assigning accommodations to applicants using a queueing mechanism.
There is a single general queue for all accommodations in all housing districts. In order
to be placed in the queue, called a housing list, it is a requirement for the applicant to be
an active student at Lund University or employed within Akademiska Foreningen (from
which AFB’s name is derived) and to be a paying member of Akademiska Foreningen. If
the membership and study requirements are not met at any time, the applicant’s place on
the housing list is forfeited. There is also a residence limit, restricting the total duration
of tenancy to a maximum of six years. In addition to this, there is an upper age limit
of 35 years for signing a tenancy contract for a corridor room. Students who have been
accepted to Lund University for the first time are exempt from the study and membership
requirements, and new students who do not live within commuting distance are eligible to
apply for new student housing, which is a lottery granting a limited number of new students
priority access to corridor rooms.

Students submitting a valid housing application are placed on the housing list. The
date of submission of a valid housing application is called the [list date, which is personal
and can not be transferred to another applicant. Available accommodations are adver-
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tised on AFB’s website, where they can be booked by applicants during a booking period.
The duration of the booking period is always three days. Each applicant is limited to a
maximum of three simultaneous bookings at any point in time. Bookings are binding, and
if a booking is cancelled after being assigned a corridor room or apartment at the end of
the booking period, the applicant loses his or her place in the queue. All applicants are
ranked based on their list date and any priority access that may have been granted. After
the end of the booking period, the accommodations are allocated among the applicants
who have booked the individual corridor rooms and apartments in accordance with their
rankings. Upon signing a tenancy contract, the tenant’s position in the queue is forfeited.
Upon booking a corridor room, a person granted priority access is placed at the top of
the ranking of those who booked the room in question. When browsing available accom-
modations, the applicant is shown how many people have currently booked each available
accommodation and what his or her ranking among those who have currently booked the
accommodation would be. The applicant with the highest ranking among the applicants
who have booked each accommodation is offered to sign a tenancy contract for the corridor
room or apartment in question. If an applicant is the highest ranking applicant for more
than one accommodation, he or she is offered a tenancy contract for the accommodation
he or she booked the earliest. The tenant must give notice one month in advance before
revoking the tenancy contract.

4 Analysis

In subsection 4.1, AF Bostdder’s mechanism described in section 3 will be placed in the
context of the theoretical framework developed in section 2. The properties of AFB’s
current mechanism will then be examined in subsection 4.2 and potential sources of ineffi-
ciency therein will be identified in subsection 4.3. Finally, the simulations carried out are
described in subsection 4.4.

4.1 Description of AF Bostider’s mechanism within the theoret-
ical framework

There are approximately 5800 housing units h; € H\{ho} owned by AF Bostdder. These
can, under some indifference assumptions, be sorted into several classes ¢,, C C. In this
context, Iy denotes the set of agents on the housing list currently assigned their null houses
and Ip denotes the set of agents currently assigned a housing unit h; € H\{ho}. Each
agent i € I has a preference relation P; € 2 over C. S; is restricted to rankings of i’s top
alternatives in Hy U A(7) U hg;, which means that the mechanism is not a direct mechanism.
The agent selects up to three housing units h; € Hy in any period ¢. The agents are
ordered under f in accordance with their list dates, where a higher list date corresponds
to a higher ranking. At the end of the booking period, the unit is assigned to the agent
ranking the highest under f among those who booked the unit. If an agent is the highest
ranking for more than one booked unit, he or she is assigned the unit that was booked
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first. The remaining unit will then be assigned to the second highest ranking agent among
those who booked it, and so on. This implies that each h; € Hp is assigned only to one
1 € I, even in the cases where a housing unit is shared by several people. Any cohabitant
i will be characterized by ¢ ¢ I for simplicity. The units can be booked and unbooked
freely during the booking period, making it possible for the agent to rank his or her top
three units h; € H according to his or her preference relation P; € €2 over C. An agent
i € I is guaranteed his or her current assignment, A(7), and a tenancy contract may be
revoked at any time, with one month’s notice. This means that hg; is always a guaranteed
option as well. For an agent i € Iy, A(i) = hg;, which is also a guaranteed option. For each
i € Ig not assigned any h; € Hy by ¢ that did not revoke his or her contract, u(i) = A(4).
Similarly, for each ¢ € Iy not assigned any h; € Hy by ¢, (i) = A(7) = ho;. The strategies
sy € S; thus consist of rankings of at most the top five elements in Hy U A(7) U hg; for each
1 € Ig and of at most the top four elements for each ¢ € Ir. The difference is due to the
fact that Vi € Iy : A(i) = ho;. If A\(7) is preferred to any of the relevant top elements in
Hy U hg;, s; will consist of a ranking of the elements in {h; € Hy UA(¢) U ho; : hy 72 A(7)}
and if A(¢) is preferred to all the relevant top elements, then s; = A(i), i.e. the strategy
will consist of keeping the agent’s current assignment.

The mechanism is a continuously ongoing process, with new housing units being as-
signed to new agents every day, and consequently, new units being sorted into Hy every
day. This means that AFB’s mechanism is a dynamic matching mechanism. If an agent
t € I is assigned a housing unit h; € Hy U hy; in period ¢, his previously assigned housing
unit A(7) € Ho is then sorted into Hy in period ¢t + 1. An agent ¢ € I who is assigned some
h; € Hy in period ¢ is subsequently removed from the process. It is technically possible for
the agent to immediately place him- or herself at the bottom of f by once again filling out
a valid housing application, but this option will be ignored for simplicity. Additionally, it
will be shown that the mechanism is not sufficiently fast to assign or reassign any hous-
ing units to those at the very bottom of f, making this a theoretical simplification of no
practical importance. Due to the housing shortage in Lund (Boverket, 2012), it is safe to
assume that |[H\{ho}| < || and |Hy| < |Ix| in any period ¢ € [t, T]. Thus, the matching
process is unlikely to terminate as long as Hy # (), assuming that hg; is the least preferred
alternative of the agents.

Example 6. Consider the problem (I, H, P), where Ip = {iy,is}, In = {is,i4}, Ho =
{h1,ho}, Hy = {hs}, f = (i1,1i3,42,14) and s = {P},—, P;, P{}, where P} is interpreted
as agent 1 booking his or her top alternatives in Hy, but no more than three units, that
are preferred to his or her endowment and — is interpret as not booking any housing units

under any circumstances. P is given by the following table.

b P P3Py
ha hy hi  hg
hi  hi hy hy
hs  hs  hy M
hOl h02 h03 h04
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The endowments are given by .

\— 11 9 13 14
hi ha hos hos
There are two periods t € [ty,T], which means that the matching process is siz days long.

Agent i5’s contract is revoked in the first period. The outcome of  is found using the
following steps.

1. In the first period, is’s contract is revoked and he or she is assigned hgo, after which
both are removed from the process. Agent iy prefers no unit in Hy = {hs} to A(1),
which means that 11 will not book any units and keeps his or her current assignment.
Agents is and iy book hs € Hy . As iz ranks higher than iy under f, meaning that
he or she has an earlier list date, hs is assigned to i3 and both are removed from the
process. After this, Hy = () and the first period ends.

2. In the second and last period, hy is announced to be available. Agents i, and i4 book
he € Hy. As iy ranks higher than iy under f, ho is assigned to iy and both are
removed from the process. After this, Hy = () and the second period ends, yielding

the final matching p.
Y AT PR SR !
7\ he hey By o
Under p, hy s left unassigned.

4.2 Properties of AF Bostider’s mechanism

AFB’s mechanism shares many similarities with the serial dictatorship with waiting list
mechanism described in section 2.3.3. Since the mechanism guarantees each agent his
or her current assignment, it satisfies acceptability, just like the serial dictatorship with
waiting list mechanism satisfies individual rationality.

Theorem 10. AF Bostdder’s current mechanism is acceptable.

Proof. Since p1,(7) is guaranteed in period t + 1 for all ¢ € I, any s; € S; at t + 1 including
an element in {h; € ¢ @ ¢n < (i) or ¢ <; hei} is a weakly dominated strategy.
Consequently, at ¢ + 1,

Vs; € S: : ,ut(i) fﬂ hj € s; and Vs;; € S* ,ut+1(i) € S;.
As this holds for each t € [ty,T], AFB’s mechanism is acceptable. O]

Just like the similar serial dictatorship with waiting list mechanism, AFB’s mechanism
is also not Pareto consistent.

Theorem 11. AF Bostdder’s mechanism is not Pareto consistent.
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Proof. Consider the problem (I, H, P), where I = {iy,i2} In = {iz}, Ho = {h1,ha},
Hy = {hs}, f = (i3,i1,42), s = (P, Py, P;) and there is one period t € [ty,T]. Let P be
given by the following table.

PP P
hy hi M
hs hs ho
hy  hy hs

The initial matching is given by \.

i 2 3
A=
( hy ha  hos )
At step one, hs is assigned to i3. As Hy = () at the end of step one, the process terminates,
resulting in the final matching .
[t i
P=\ o hy by

The matching p is Pareto dominated by v.

(i iy i3
"=\ hy by hy

Hence, the mechanism not Pareto consistent. O

A difference between AFB’s current mechanism and the serial dictatorship with waiting
list mechanism is that the former is a non-direct mechanism. The non-directness property
comes from the fact that the strategies of agents do not consist of supplying a preference
relation over every type of housing unit, which they do for the similar serial dictatorship
with waiting list mechanism. Instead, the agents can only declare preferences by booking
up to three of the units available in Hy in any period, which they, by theorem 10, prefer to
their current assignments. Furthermore, as the concept of strategy-proofness is inapplicable
to non-direct mechanisms, AFB’s mechanism can not be said to satisfy this property. The
non-directness property also imposes a restriction on AFB’s mechanism. As a dynamic
mechanism, the reassignment takes place in multiple periods and as the mechanism only
permits agents to apply and thus declare preference for housing units in Hy,, the algorithm
can only make as many reassignments in each period as there are elements in Hy. If it
were a direct mechanism, such as the serial dictatorship with waiting list mechanism or
its dynamic spot mechanism counterpart, the housing company would have access to the
reported preferences over all types of housing units for all agents, allowing the algorithm
to go on for as many steps as it takes for the process to terminate in any period. One
implication of this is that the housing units sorted into Hy in period ¢ remain there until
period t+1 when AFB’s current mechanism is used. Therefore, when the resulting matching
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is evaluated at some end point 7', Iy and Hy may simultaneously be non-empty. This could
not happen for the serial dictatorship with waiting list mechanism, assuming that hg; is
the least preferred option of each ¢ € Iy. Although this is a minor issue as any end point
T will be arbitrary. In reality, AFB’s mechanism does not have an end point, but is rather
an indefinitely ongoing process. AFB’s matching mechanism is similar to a dynamic spot
mechanism, as agents are only permitted to apply and thus declare preference for housing
units available in the current period. However, as it is not a direct mechanism, it can
not be properly defined as such. Changing the agents’ strategy sets to consist of reported
preference relations over all units in H would transform AFB’s mechanism into a serial
dictatorship with waiting list spot mechanism.

4.3 Sources of inefficiency

Even though AFB’s current mechanism has been shown not to be Pareto consistent, this
does not mean it is equivalent to all mechanisms that are not Pareto consistent. Clearly,
a matching not satisfying Pareto consistency where many agents are assigned their most
preferred housing units but there is some room for Pareto improvement through trade is
preferable to a matching where every agent is assigned his or her null house, or a matching
where every agent is assigned his or her least preferred housing unit in H\{ho}. Different
measures of efficiency are discussed in section 5.1. Three possible sources of inefficiency in
AFB’s current mechanism are:

1. The fact that it is not a direct matching mechanism.
2. The length of the booking period.

3. The lack of trade between tenants.

The first point is of relevance for the reasons brought up in section 4.2. The length of the
booking period is only of relevance because the mechanism is dynamic, with agents being
assigned housing units in different periods. The longer the booking period, the larger Hy
will tend to be in any period. The larger Hy is, the more options there are for each agent
applying for housing, making it more likely that the agent will be satisfied with his or her
assigned housing unit. However, since A(z) will be sorted into Hy in period ¢ + 1 for each
t € I assigned a housing unit h; € Hy in period ¢, a shorter booking period gives the
mechanism more "roundaboutness”, which means that it will reallocate a larger number of
housing units in a shorter period of time. Thus, a short booking period has both good and
bad properties relative to a long booking period. The third point is of relevance due to the
welfare improvements all trade entails.

The impacts of these possible sources of inefficiency will be investigated by performing
simulations of AFB’s current mechanism and of alternative mechanisms in section 4.4 and
subsequently comparing the resulting matchings in section 5. The impact of the relatively
short booking period will be investigated by comparing the resulting matching of AFB’s
current mechanism to the resulting matching of an identical matching mechanism where
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only the length of the booking period is altered. The impact of the lack of trade between
tenants will be investigated by comparing the previously mentioned matchings with the
matching produced by the YRMH-IGYT mechanism and a dynamic spot mechanism ver-
sion thereof, which both allow for trade between tenants. The impact of the non-directness
of AFB’s mechanism was initially investigated by performing the simulation with a serial
dictatorship with waiting list direct spot mechanism. However, in order to limit the scope
and size of the paper, those findings were cut from the final version.

4.4 Simulations

To simulate the different mechanisms in the context of AFB’s house allocation prob-
lem, the focus of this paper will be limited to three housing districts, called Gylleholm,
Klosterdngen and Studentlyckan. These disctricts were chosen to give a relatively even
and varied distribution of different housing types. H\{ho} consists of 344 housing units
sorted into 10 classes ¢,, C C, C C, where (), is one of the three main classes: C; con-
sisting of one to one-and-a-half room apartments, Cs consisting of two room apartments
and C3 consisting of three room apartments, where N3_,C,, = . The requirement that
Vhjr € ¢m,i € 1:  h; ~; hy holds by construction in the simulations. However, in reality,
it may not hold for the actual applicants. The distribution of H\ {ho} is shown in table 1.

Table 1: H\{ho}

Gylleholm | Klosterdngen | Studentlyckan | Sum

1 — 15 rooms 48 112 8 168
2 rooms 0 0 154 154

3 rooms 0 0 22 22
Sum 48 112 184 344

C' is described in table 2. Since all two and three room apartments are located in Stu-

Table 2: C
1— 1% room | 2 rooms | 3 rooms
1g 2a 3a
1k 2b 3b
1s 2c -
- 2d R
_ %2¢ N

dentlyckan and since there are no or only minor differences between one room apartments
in the same housing districts, one room apartments are sorted into three classes ¢,, C C}
based on which district the housing unit is located in. The two and three room apartments
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are sorted into five classes ¢,, C Cy and two classes ¢,, C C3 respectively, based on rent
information supplied by AFB. While the number of housing units h; € Cy and h; € Cs is
known, the number of housing units h; € ¢,, is unknown for each ¢,, C Cy U C5. For sim-
plicity, the housing units are assumed to be distributed evenly among the different classes
within Cy and Cs.

As explained previously, each h; € H is assigned to at most one ¢ € I. The preferences
of 450 fictional agents i € I, composed of 344 existing tenants i € [r and 106 non-occupant
applicants ¢ € Iy, were randomized. It is thus assumed that each h; € H\{ho} is matched
to some ¢ € Iy and Hy = () before the start of the matching process, prior to any contract
being revoked. The randomization was performed using the following script in Stata/IC
12.0.

forvalues i = 1/450 {
shuffle8 1 M

replace sing_mult = r(list) in ‘i’

3

forvalues j = 1/450 {
shuffle8 G K S

replace area = r(list) in ‘j’

}

forvalues k = 1/450 {
shuffle8 2 3

replace two_three_r = r(list) in ‘k’

}

forvalues 1 = 1/450 {
shuffle8 2a 2b 2c 2d 2e

replace tworoom = r(list) in ‘1’

}
forvalues m = 1/450 {
shuffle8 3a 3b

replace threeroom = r(list) in ‘m’

}

This script gives an output of the form displayed in table 3 for agent i153. The boxes give
a preference relation going from left to right, such that a symbol for strict preference =153
could be placed between the elements in each box. The numbers and letters are interpreted
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Table 3: P153 e

1 € I | Size | District | 2-3 rooms 2 rooms 3 rooms

153 | M1| SGK 32 2e2b2c2a2d | 3a3b

in the following way. ‘M 1’ means that a multiple room solution is preferred to a one to
one-and-a-half room solution. ‘S G K’ gives the preferences over different housing districts.
Studentlyckan is preferred to Gylleholm, and Gylleholm is preferred to Klosterdngen. ‘3
2" means that a three room apartment is preferred to a two room apartment. ‘2e 2b 2c¢ 2a
2d’” and ‘3a 3b’ give the preferences of i153 over Cy and C3 respectively. The preference for
either a one to one-and-a-half room apartment or a multiple room apartment trumps the
other preferences. This means that the ‘District’ column reduces to the agent’s preferences
over (';. Table 3 could thus be rewritten as in table 4.

Table 4: P53 € 2

1€l Cl VS. CQ U Cg Cl CQ VS. C3 CQ Cg
153 M1 SGK 32 2e 2b 2¢ 2a 2d | 3a 3b

The classes ¢,, C C are ranked internally within each C,, C C rather than within C for
each i € I.

Definition 15. A preference relation over some c,, C C is internal to each C,, C C when
Vemn CCaUCE,C,CC: ¢, CCy =6, CCp <= ¢, CC4>;c, CCp.

This means that if an agent prefers one type of two room apartments to one type of
three room apartments, he or she also prefers all two room apartments to all three room
apartments. There is no overlap in the preferences such that some ¢, € C,, is preferred
to some ¢, € C, while some ¢, € C, is preferred to some ¢, € C,. This is how the
preferences were constructed, but it is not necessarily the case that the actual preferences
of real life applicants follow this model. It does seem quite likely, however, considering
how small the differences are within the two room apartment and three room apartment
sets. Table 4 thus represents the preferences relation given by table 5. In table 5, s, g
and k denote which housing district the one or one-and-a-half room apartment is located
in. The preference relation P, € () of each agent ¢ € I is complete and transitive by
construction. Single-peakedness is not satisfied because of the special case where ‘1 M’
and ‘3 2’. If agents think of housing units in general terms of, for instance, size, then
it might not make sense for an agent to, as an example, prefer a three room apartment
to a two room apartment, but at the same time prefer a one room apartment to a three
room apartment. An assumption of single-peaked preferences would then be in order. A
justification for randomizing preferences not satisfying single-peakedness is given by the
fact that one room apartments are seldomly shared with other cohabitants, while two and
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Table 5:

P53
3a
3b
2e
2b
2c
2a
2d
1s
lg
1k

three room apartments often are. Single and multiple room solutions may thus involve
very different living situations, arguably making the special case where ¢,, € Cy =; ¢, €
C3 =; ¢, € (5 realistic. It needs to be pointed out, however, that preference relations need
not follow any formal rules in the real world and may take any form. The purpose of the
simulations is to investigate how different mechanisms operate on a fictional population.
For real populations, preferences over C' need not be estimated, but can simply be supplied
directly by the applicants.

The number of elements in Iy at ¢, was chosen somewhat arbitrarily. The purpose of
this paper is to provide a comparison between different matching mechanisms, rather than
some nominal measure of efficiency. The size of Iy would not affect the ordinal efficiency
rankings of different mechanisms. The size of Iy was chosen to be large enough to make
it impossible for every i € I to be assigned a housing unit h; € H\{ho}. The number
of elements in Ig before the start of the matching process and before any contracts were
revoked equals the total number of housing units h; € H\{ho} and the size of H\ {ho}
equals the number of housing units in the three housing districts. Each h; € H\{ho} is
initially randomly assigned to one of the agents ¢« € I such that each ¢ € Ig is assigned
exactly one h; € H\{ho}. In practice, this is done by randomly sorting all of the elements
h; € H\{ho} together with 106 hg; using the random number generator in LibreOffice
Calc. This list is then pasted next to the list of every agent in /. Each h; in the list is
then matched to the agent i € I found on the same row, and this matching defines /5 and
Iy. It is assumed that some ¢ € Ig choose to revoke their contracts and be assigned hy;
during the course of [to, T]. This is not equivalent to the agents preferring to be assigned no
housing unit at all to their current housing units. The null house hg; simply represents any
housing situation outside of the three housing districts. A more reasonable interpretation
would be that h; ¢ H\{ho} =i (i) € Hp for some ¢ € I in some period t € [ty, T},
where h; ¢ H\{ho;} is some attainable alternative. Upon being assinged ho;, the agent is
removed from the set I. By construction, hg; is the least preferred alternative for all the
remaining agents ¢ € I. The contracts being revoked is simulated by randomizing a list
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of 450 elements in {0,1}, where 1 means that the agent i € I keeps his or her assigned
h; € H under A and 0 means that the agent ¢ € I is assigned hy; and removed from the
process. If one or more 0 € {0,1} is matched to some agent i € I, those elements are
once again randomized until every 0 € {0, 1} is matched to an agent i € Ig. The current
assignments h; € Hp of those agents i € Iy who are matched to a 0 € {0,1} are then
sorted into Hy in some period ¢ € [ty, T]. Exactly when they are sorted into Hy depends
on the construction of the simulated mechanism.

At this point, the agents ¢ € I are to be processed through different mechanisms, the
matchings produced by which are be evaluated in period T'. The preference profile P and
the original matching A are to be identical in every simulation. The starting point ¢y, and the
end point 7" will also be the same in every simulation, but the amount of elements in [to, 7]
will vary depending on the specifications of the different mechanisms. For the simulations,
the time frame chosen is 180 days and it is assumed, for simplicity, that one contract is
revoked every two days. This means that 90 units h; € H\ {he,} are sorted into Hy during
[to, T], for each simulated mechanism. The amount of revoked contracts during [to, T is
the same for every mechanism, but since different mechanisms involve different numbers of
periods, the number of contracts being revoked in each period t € [to, T is larger the fewer
elements there are in [tg, T]. The revoked contracts are evenly distributed among each
t € [to, T]. If the number of contracts being revoked per period is not an integer under a
completely even distribution, it will alternate between being rounded up and being rounded
down to create an even stream of units into Hy. The number will always be rounded up
in the first period. For example, if there are four periods and 18 contracts are revoked in
total, giving 4.5 ¢ Z contracts being revoked per period, the first and third periods will
have 5 new units sorted into Hy and the second and fourth periods will have 4 new units
sorted into Hy. Each agent i € Iy revoking his or her contract during [to, 7] is assumed
to be uninterested in all h; € H\{hy;} for the remainder of the 180 day period. For the
simulations, each ¢ € I revoking his or her contract is therefore simply removed at the
beginning of the matching process. Their original assignments in Hp are then continuously
placed into Hy, evenly distributed across [tg, T]. In reality, the amount of contract that are
revoked varies over time and would not reflect the even distribution in these simulations.
Nevertheless, what is of importance is that the distribution of revoked contracts over the
entire time frame [ty, T is the same in every simulation. A necessary assumption for these
simulations is that the periods t € [to,T] are treated as a series of static games by all
i € I. The strategies for each period t € [tg,T| are independent of one another. There
are no dynamic strategies, in which some agents let guesses of which housing units will
be available in the upcoming periods influence their actions. Consequently, no ¢ € [ will
reject an assignment of any h; € H >; (i) in any period t € [to, T'.

4.4.1 AF Bostidder’s current mechanism

AFB’s current mechanism was the first to be simulated using the randomized population.
The booking period is three days long, which gives 60 periods ¢ € [to, T|. In each period,
one or two housing units h; € H\{ho} are taken out of the stock of units for which the
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original tenant revoked his or her contract during the 180 day period and sorted into Hy .
Each h; € Hy is then immediately assigned to some ¢ € I. If a housing unit h; € Hy
is assigned to an agent ¢ € I in period t, A(i) € Hp will be available in Hy in period
t + 1. In any period, the process begins by assigning f(1) his or her most preferred unit
h; € Hy U{X(f(1))}. Upon being assigned a unit h; € Hy, the agent is removed from
the process. If f(1) is assigned no h; € Hy, A(f(1)) remains assigned to the agent,
who keeps his or her position in f. Next, f(2) is assigned his or her most preferred unit
h; € HyU{A(f(2))} according to the same procedure as f(1). This continues until Hy = 0,
at which point ¢ + 1 begins and the procedure is repeated. The whole process ends after
period T' = tg.

4.4.2 AF Bostider’s mechanism with longer booking period

The second mechanism to be simulated is identical to AFB’s current mechanism, with the
exception that the booking period is extended from three days to nine days, giving 20
periods t € [to, T'.

4.4.3 YRMH-IGYT

The fourth mechanism to be simulated is the YRMH-IGYT mechanism. The matching
is carried out on the last day of the 180 day time frame, so that all the 90 housing units
previously assigned to the agents who revoked their contract during this time frame are
made available in Hy for reallocation. Thus, there is only one period ¢ € [tg,T]. The
procedure is carried out exactly as described in section 2.3.5 and terminated once Hy = ().

4.4.4 YRMH-IGYT spot mechanism

The last measure to be simulated is a dynamic spot mechanism version of the YRMH-
IGYT mechanism. It is simulated in the same way as the static YRMH-IGYT mechanism,
only that the same mechanism is repeated in 20 periods ¢ € [to, T]. Any agent ¢ pointing
to his or her own unit keeps the position in f and keeps pointing to A(¢) until some
h; >; A(i) becomes available. Any agent assigned a new housing unit is simply removed
from the process and assumed to not want to change housing again during the remainder
of the matching process. However, for real life applications, such as AFB’s house allocation
problem, any agent i € Ig may at any time rejoin the process. As this possibility is assumed
away in the present simulation, all of the loops are located in the first period, after which
the mechanism reduces to the serial dictatorship with waiting list spot mechanism.

5 Results

Subsection 5.1 will introduce the efficiency measures used to evaluate the matchings pro-
duced in the simulations. In subsection 5.2, the outcomes of the simulations will be pre-
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sented in terms of the different efficiency measures. Finally, the efficiency of the different
mechanisms will be compared in subsection 5.3.

5.1 Efficiency measures

Comparing the resulting matchings requires some common measure of efficiency. The
different mechanisms are compared using the following four efficiency measures.

The first measure of efficiency is given by the size of {i € I : p >; A\}, where a larger
set is more efficient. In other words, it is given by the number of agents who prefer their
new assignments to their original assignments. This measure is best suited for individually
rational static mechanisms and acceptable dynamic mechanisms, as they ensure that {i €
I:pu=<; A} = 0. If the mechanism is not individually rational or acceptable, a way to
account for the agents that are made worse off needs to be incorporated. All mechanisms
simulated in this paper are either individually rational or acceptable.

The second measure of efficiency is the number of housing units h; € H\ {ho} assigned
to some i € I as that agent’s most preferred alternative and the third measure of efficiency
is the number of housing units h; € H\ {ho} assigned to some i € I as one of that agent’s
top three alternatives.

The fourth measure combines the ideas of the previous measures into a single measure.
The general idea of the measure is a summation of the ranking of (i) for each i € Ip,
where the ranking is 1 if the housing unit is the agent’s most preferred alternative, 2 if it
is the agent’s second most preferred alternative, and so on. This means that a lower score
will imply a more efficient allocation. As each preference profile P; is defined over C'U{hy},
rather than H, the ranking of each h; € H\{ho} is given by the ranking of the class ¢,, the
unit belongs to, according the preferences of the agent assigned that unit. The ranking of
some h; = pu(i) € ¢y, is given by the position of that ¢,, in the ordinal ranking P, of CU{ho}.
Each unassigned h; € Hy under p is included in the summation as well, given a ranking of
11, which is one step lower than the lowest ranking ¢,, C C for any ¢ € I. This means that
it is the efficiency of the allocation of each h; € H\ {ho} that is being measured, rather
than how satisfied the population I is. One argument for this would be that the size of
I shouldn’t affect a measure of how efficiently housing units are allocated. The measure
does not use the actual ranking of each h; € H\{ho}, but rather the square root of each
ranking. This decision was based on an assumption of increasing negative marginal utility
of being assigned a lower ranking h; € H\{ho}. Note that this transformation in no way
affects the ordinal structure between rankings. In another experiment designed to evaluate
different house matching mechanisms, Chen and Sénmez (2003) used the fraction of the
aggregate utility of the p induced by ¢ over the aggregate utility of the Pareto efficient
matching as an efficiency measure of the matching mechanism. It would theoretically be
possible to use a similar measure to evaluate the mechanisms in section 4. However, due
to the complexity of the example chosen, there are most likely several different Pareto
efficient matchings, and no easy way to determine what they are, let alone decide which
of them represents the social optimum. For this reason, a different but similar approach
was chosen, where the sum of the square root of the rankings is divided by the sum of the
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square root of the ranking of all h; € H\{ho} when they are put to their least efficient
use, i.e. if they are all left unassigned to any ¢ € I. In this example, it means that the sum
of the square root of the actual rankings would be divided by v/11 x m, yielding a number
in

[ 344 1}
VIl xm' |
Here, a score of one equals the efficiency of a matching p € .# where

{n(@) - p(i) € HN\{ho}} = 0.

In other words, a score of one equals the least efficient matching between H\{ho} and I
imaginable. To produce a neater and more intuitive measure, each ranking is subtracted by
one, yielding a number in [0, 1], where 1 retains its original interpretation and 0 corresponds
to a matching p € .# where each h; € Hp is assigned to an @ € Iy as his or her top choice
and Hy = (). The final formula for the fourth measure is given by expression 2.

>my+/ (ranking of ;) — 1
V10 xm

It should be noted that this measure is inferior to the measure employed by Chen and
Soénmez (2003) in the sense that their measure actually compares the outcome to a social
optimum that is attainable for all P C 2", whereas for the measure employed in this
paper, a score of 0 is only attainable for some small number of P C Q" for any H C 7.
The measure used here is therefore not suitable for comparisons across experiments with
different I C .# and H C 7. However, for the purpose of this paper, it provides a measure
that can be used to compare and evaluate the different mechanisms in section 2.3 in this
particular context. To summarize, the scores in the following four efficiency measures is be
reported in section 5.2.

(2)

L {iel:u=<;\}
2. The number of agents assigned his or her most preferred alternative.

3. The number of agents assigned one of his or her top three alternatives.

4 27ty 4/ (ranking of hj)—1
’ V10xm

These measures will be referred to as the first, second, third and fourth measure respec-
tively.
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5.2 Outcomes
5.2.1 The original random matching

Under the original matching A, 30 housing units, about 8.7 % of H\{ho}, were the top
choices of the agents to whom they were assigned and 86 units, about 25.0 % of H\{ho},
were one of the top three choices of the agents to whom they were assigned. The fourth
efficiency measure gave A a score of 0.716.

5.2.2 AF Bostidder’s current mechanism

The matching mechanism currently employed by AFB reallocated 255 housing units and
left five units unallocated in period T. As theorem 10 states, AFB’s current mechanism
is acceptable. This means that every i € Ig for which u(i) # A(i) is an element in
{i € I : u>; \}. The size of this set is thus 255 agents ¢ € Ir. 98 housing units, about
28.5 % of H\{ho}, were the top choices of the agents to whom they were assigned and 220
units, about 64.0 % of H\{ho}, were one of the top three choices of the agents to whom
they were assigned. The fourth efficiency measure gave AFB’s current mechanism a score

of 0.407.

5.2.3 AF Bostidder’s mechanism with longer booking period

When the booking period of AFB’s current mechanism was extended from three days
to nine days, 239 housing units were reallocated and eight units were left unallocated.
The proof of theorem 10 is independent of the length of the booking period, making the
mechanism with prolonged booking period acceptable as well. There are thus 239 elements
i € Igin {i € I : p >=; A}. 114 housing units, about 33.1 % of H\{ho}, were the top
choices of the agents to whom they were assigned and 231 units, about 67.2 % of H\{h¢},
were one of the top three choices of the agents to whom they were assigned. The fourth
efficiency measure gave the mechanism with a prolonged booking period a score of 0.375.

5.2.4 YRMH-IGYT

The YRMH-IGYT mechanism reallocated 297 housing units and no units were left unas-
signed. By theorem 9, YRMH-IGYT satisfies individual rationality. There are thus 297
elements i € Ig in {i € I : pu >; A}. 195 housing units, about 56.7 % of H\{ho}, were
the top choices of the agents to whom they were assigned and 334 units, about 97.1 % of
HX\{ho}, were one of the top three choices of the agents to whom they were assigned. The
fourth efficiency measure gave the YRMH-IGYT mechanism a score of 0.179.

5.2.5 YRMH-IGYT spot mechanism

The YRMH-IGYT spot mechanism reallocated 300 housing units and no units were left
unassigned. As the YRMH-IGYT is acceptable, there are 300 elements in ¢ € Ig in
{i € I :pu>; A\}. 167 housing units, about 48.5 % of H\{ho}, were the top choices of

35



the agents to whom they were assigned and 284 units, about 82.6 % of H\{ho}, were one
of the top three choices of the agents to whom they were assigned. The fourth efficiency
measure gave the YRMH-IGYT spot mechanism a score of 0.251.

5.3 Comparisons

The results for the first measure; [{i € I : p >=; A}|, are given in figure 1. The YRMH-IGYT
spot mechanism received the highest score of 300. The static YRMH-IGYT mechanism
performed slightly worse than its spot mechanism counterpart, but only by a margin of
3 agents. AFB’s current mechanism performed better than the mechanism with a longer
booking period, receiving scores of 255 and 239 respectively. This was to be expected, due
to the difference in roundaboutness mentioned in section 4.3.

350

300

250
200
150
100
50
0

AFB — 3 days AFB -9 days YRMHAGYT Dynamic
YRMHAGYT

Figure 1: [{i € I : pu>; A}

The results for the second measure; the number of housing units assigned as the agent’s
most preferred alternative, are given in figure 2. The YRMH-IGYT mechanism received the
highest score of 195 housing units, 56.7 % of H\{ho}. The YRMH-IGYT spot mechanism
received the second highest score of 167 units, 48.5 % of H\{ho}, and the mechanism with
a longer booking period performed better than AFB’s current mechanism, with percentage
scores of 33.1 % and 28.5 % respectively.

The results for the third measure; the number of housing units assigned as one of
the agent’s top three alternatives, are given in figure 3. Once again, the YRMH-IGYT
mechanism received the highest score of 334 housing units, 97.1 % of H\{ho}. The
YRMH-IGYT received the second highest score of 284 housing units, 82.6 % of H\{ho}
and the mechanism with a longer booking period performed better than AFB’s current
mechanism, with percentage scores of 67.2 % and 64.0 % respectively.
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Figure 2: Share of H\{ho} assigned as agent’s top choice.
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Figure 3: Share of H\{hy} assigned as one of agent’s top three choices.
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The results for the fourth measure are given in figure 4. Even in this measure, the
YRMH-IGYT mechanism receives the best score of 0.179. The YRMH-IGYT receive the
second best score of 0.251 and the mechanism with a longer booking period performed
better than AFB’s current mechanism, with scores of 0.375 and 0.407 respectively.
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All of the results are summarized in table 6, where the different mechanisms receive a
ranking for each measure, first being the most efficient.

[
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YRMHAGYT

4- >-71 4/ (ranking of hj)—1

Figure i

Table 6: Results

AFB - AFB - | YRMH- Dynamic
3 day BP | 9day BP | IGYT | YRMH-IGYT
Measure 1 3rd 4th 2nd 1st
Measure 2 4th 3rd 1st 2nd
Measure 3 4th 3rd 1st 2nd
Measure 4 4th 3rd 1st 2nd

6 Conclusion

The purpose of this paper was to evaluate different mechanisms as solutions to AFB’s
house allocation problem. Some of the described mechanisms have been shown to be
unsuitable in AFB’s particular context. The serial dictatorship mechanism is unable to
handle existing tenants and the serial dictatorship with squatting rights mechanism is not
individually rational. The remaining mechanisms of interest were then different variants of
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the serial dictatorship with waiting list mechanism and the top trading cycles mechanism.
AFB’s current mechanism was shown to be a non-direct variant of the dynamic serial
dictatorship with waiting list spot mechanism. The static variants of the top trading
cycles mechanism have been shown to satisfy some desirable properties which the variants
of the serial dictatorship with waiting list mechanism do not satisfy, namely strategy-
proofness and Pareto consistency. To evaluate the suitability of AFB’s current mechanism
as a solution to AFB’s house allocation problem, simulations were performed, letting a
fictional population with randomized preferences and a set of housing units based on three
of AFB’s housing districts be processed through AFB’s mechanism and three additional
mechanisms. The simulations showed that more agents would be assigned their top choices
and more agents would be assigned one of their top three alternatives if the booking
period of AFB’s current mechanism were extended. The extended booking period would
also yield a better score of 0.375 compared to AFB’s current mechanism’s score of 0.407
in the fourth measure. To remind the reader of the interpretation of these numbers, a
score of 0 represents the best imaginable matching and a score of 1 represents the worst
imaginable matching. The intuition of this result is that the longer the booking period
is, the more units are available for booking at any point in time, allowing for a better
match between agents and housing units. The downside of such an adjustment is related
to the non-directness property of AFB’s current mechanism. Non-directness restricts the
amount of steps that can be carried out in each period and under such a restriction, a
shorter booking period gives the mechanism more "roundaboutness”. This means that the
population is processed through the mechanism faster, allowing it to make a larger amount
of reallocations, albeit less efficiently. The decision of how long the booking period should
be would then have to weigh these two opposing effects in accordance with the preferences
of the decision maker.

The static YRMH-IGYT mechanism, based on the top trading cycles mechanism should
in theory, due to its Pareto consistency and directness, perform better than both variants
of AFB’s current mechanism in all of the four measures. The YRMH-IGYT mechanism
also performed accordingly in the simulations. Compared to AFB’s current mechanism, the
YRMH-IGYT mechanism improved the situation for 297, as opposed to 255 agents. 56.7
%, as opposed to 28.5 % of the apartments were the top choices of their tenants and 97.1
%, as opposed to 64.0 % of the apartments were one of the top three alternatives of their
tenants. Moving from AFB’s current mechanism to the YRMH-IGYT mechanism improved
the score of the fourth measure from 0.407 to 0.179. The downside of this mechanism is
the fact that it is a static mechanism, making it impractical for AFB’s house allocation
problem. Its static nature requires all units to be reallocated at a single point in time. In
other words, there can only be one period. Transforming it into a multi-period dynamic spot
mechanism solves this problem, but in doing so it partly loses the theoretical properties
making it superior to the different variants of the serial dictatorship with waiting list
mechanism. Nevertheless, the simulations showed that some of the efficiency of the static
mechanism was inherited by the dynamic spot mechanism variant. While scoring lower than
its static counterpart on all but the first measure, the YRMH-IGYT spot mechanism still
outperformed both variants of AFB’s current mechanism in all four measures. Compared
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to AFB’s current mechanism, the YRMH-IGYT spot mechanism improved the situation
for 300, as opposed 255 agents. 48.5 %, as opposed to 28.5 % of the apartments were the
top choices of their tenants and 82.6 %, as opposed to 64.0 % of the apartments were one of
the top three alternatives of their tenants. Moving from AFB’s current mechanism to the
YRMH-IGYT mechanism improved the score of the fourth measure from 0.407 to 0.251.
These results indicate that AFB’s current mechanism is a suboptimal solution to the house
allocation problem it faces. More efficient matchings could be found using some variant of
the top trading cycles mechanism, such as the YRMH-IGYT spot mechanism.

For future examinations of similar house allocation problems, some possible alterations
to method and theory should be considered. The model used in this paper lets agents
leave the population continuously, but all of the new arrivals enter the population at the
beginning of the matching process. It might be a realistic assumption when it comes to
student housing, as students tend to move in at the start of a semester. However, for some
applications, it might be more appropriate to allow agents to enter the population continu-
ously as well. Additional mechanisms could also be examined, such as the MIT mechanism,
which outperformed the theoretically superior top trading cycles mechanism on some ac-
counts in an experimental working paper by Guillen and Kesten (2008). Furthermore, the
mechanisms could be evaluated further by examining additional desirable properties, such
as the nonbossiness and neutrality properties described by Svensson (1999) or the weak
neutrality property described by Sénmez and Unver (2010). Finally, it could be illumi-
nating to develop models for simulations of dynamic mechanisms based on the theoretical
framework of Abdulkadiroglu and Loertscher (2007) or Bloch and Cantala (2011), rather
than that of Kurino (2009).
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