
Using Doppler Ultrasound for Diagnosing
and Staging of Rhinosinusitis
Implementation on a Clinical Scanner

Daniel Andersson & Peter Zandén

September 3, 2012

Master’s Thesis
Faculty of Engineering, LTH

Department of Measurement Technology and
Industrial Electrical Engineering

Division of Electrical Measurements
Supervisor: Tomas Jansson

Abstract

Rhinosinusitis is the fifth most common diagnosis for which an-
tibiotics are prescribed- but it is often done in vain. Currently,
the only way to fully determine whether or not such treatment
is actually needed is an invasive procedure. In order to spare
patients from the discomfort that it would involve, this essential
step is often skipped and instead, antibiotics are prescribed re-
gardless. Using Doppler ultrasound, it is possible to induce and
measure acoustic streaming inside a cavity. This can be used in
order to determine the nature of the sinus infection and hence
avoid unnecessary prescriptions of antibiotics. In this master’s
thesis, a program was created which simplifies and, to a degree,
automates this new method of diagnosis. Using energy levels
below the safety limits, set by the FDA, trial results were suc-
cessful in inducing acoustic streaming velocities of 2 cm/s inside
a phantom model. The method is ready to be used clinically
using a pulse repetition frequency of 3.3 kHz.

Acknowledgements

We would like to give special thanks to Tomas Jansson for his
help and guidance. To Hans W. Persson for his valuable com-
ments and to Stephane at Ultrasonix for his help with the Ul-
terius SDK.

3

Contents

1 Introduction 6

2 Theory 7
2.1 Ultrasound . 7

2.1.1 Acoustic Impedance 8
2.1.2 Pulses . 9
2.1.3 Non-Linear Propagation 9
2.1.4 Acoustic Streaming 11
2.1.5 Transducer . 11
2.1.6 Beam Forming 12
2.1.7 B-Mode Images 13
2.1.8 Doppler . 14

2.2 Safety . 15
2.3 Paranasal Sinuses and Rhinosinusitis 16
2.4 Sonix RP . 18
2.5 Programming . 20

2.5.1 C++ vs Java . 20
2.5.2 Ulterius . 20
2.5.3 Qt . 21
2.5.4 Mutex . 23

3 Method 25
3.1 Approach . 25
3.2 Sonix RP Machine . 25
3.3 Modeling the Paranasal Sinuses 27
3.4 Programming . 27
3.5 Safety . 28

4 Results 32
4.1 Sonix RP . 32
4.2 Programming . 32

4.2.1 Coding process 32
4.2.2 Graphical User Interface 33
4.2.3 Class Layout . 35

4.3 Safety . 37
4.3.1 Scale Test . 37
4.3.2 Hydrophone Test 37

4.4 Transducer Glitch . 42

4

4.5 Trial Results . 42
4.6 True Frequencies . 44

5 Discussion 45
5.1 Sonix RP . 45
5.2 Transducer Glitch . 46
5.3 Programming . 46
5.4 Safety . 48
5.5 Milk Trials . 49

6 Conclusion 50

A Snotalyzer User Guide 53

B Source Code 58
B.1 main.cpp . 58
B.2 mainwindow.h . 58
B.3 mainwindow.cpp . 59
B.4 mainwindow.ui . 68
B.5 ushandler.h . 75
B.6 ushandler.cpp . 77
B.7 patientdialog.h . 92
B.8 patientdialog.cpp . 93
B.9 settingsdialog.ui . 94
B.10 settingsdialog.h . 98
B.11 settingsdialog.cpp . 98
B.12 settingsdialog.ui . 100
B.13 keypresswidget.h . 104
B.14 keypresswidget.cpp . 105
B.15 worker.h . 105
B.16 worker.cpp . 106

5

1 Introduction

Today, many patients diagnosed with rhinosinusitis are being adminis-
tered antibiotics in vain. Previous studies have shown that the need for
such treatments is predicated on the nature of the infection. Rhinosi-
nusitis is caused by either bacteria or virus, and one way to distinguish
between the two is to examine the viscosity of the mucus, or fluid, which
is formed inside the maxillary paranasal sinuses during infection. Since
antibiotics are only truly needed if the infection is caused by bacteria,
determining the viscosity of the fluid could prevent extraneous treat-
ments.

It has been found that acoustic streaming can be induced into a fluid
through the use of Doppler ultrasound. Depending on the viscosity of
the fluid, more or less energy is needed in order to generate a flow that
is detectable by a Doppler measurement. If the difference in streaming
velocity between the two types of fluids is large enough, it should be
possible to determine the nature of the infection using Doppler ultra-
sound. The theoretical background for this master’s thesis has been
established, but an implementation for use in actual diagnosis has yet
to be made.

The main goal of this master’s thesis is to simplify and, to a de-
gree, automate the diagnosis of paranasal sinus infections. Ultrasound
is already being used in order to detect the presence of fluid inside the
paranasal sinuses, but in order to, for certain, determine whether or
not antibiotics are needed- an invasive procedure is still required. If it
is possible determine the nature of the fluid inside the cavities using a
non-invasive procedure, it would lessen the strain on the patients as well
as lower the unnecessary use of antibiotics. In order to evaluate Doppler
ultrasound as a diagnosis method, as developed by Tomas Jansson and
Pernilla Sahlstrand Johnson, and decide whether or not it can be used
in diagnosis, a physical implementation needs to be created. The aim
of this master’s thesis is to develop a program which can be used on a
clinical ultrasound scanner and evaluate its validity in the diagnosis of
paranasal sinus infections.

6

2 Theory

2.1 Ultrasound

Sound waves are longitudinal waves that propagate by oscillating the
particles of the medium back and forth in the direction of the wave.
By setting a surface in movement, the surface collides with particles
of the medium at the face of the surface. These particles then do the
same thing to whatever lies beyond them, effectively starting a chain
reaction making the particles of the medium oscillate in the direction of
the longitudinal wave. Where particles in adjacent regions have moved
towards each other, there is a region of higher pressure. Vice versa in
regions where particles have moved away from each other there is a re-
gion of lower pressure.[1] Normally, the net movement of the medium is
zero but when something called acoustic streaming occurs, this is not
the case. This will be explained later. The two most common ways of
displaying a sound wave are with a function in a Time-Amplitude dia-
gram, i.e. a sine wave or pulse, or with a frequency-amplitude diagram
i.e. the frequency spectrum.

Sound is generally split into three categories depending on their fre-
quencies. Infrasound, which refers to sound with frequencies lower than
20 Hz, Audible sounds ranging from 20 Hz to 20 kHz and Ultrasounds
which have frequencies above 20 kHz. The relation between frequency
(f) and the wavelength (λ) is determined by equation 1, where c is the
speed of sound in the medium. It should be noted that the speed of
sound in a medium is also dependant on temperature. At 37◦C the
speed of sound in soft tissue is usually approximated to 1540 m/s, and
3360 m/s in skull can bone. In relation, the speed of sound in water at
20◦C is about 1480 m/s [1]. The frequencies used in this master’s thesis
range from 4-10 MHz, which corresponds to wavelengths of 0.385-0.154
mm in water.

f =
c

λ
(1)

When a sound wave encounters an irregularity in the medium, or
the surface of a new medium all together, part of the wave is reflected
back towards its source and a part of the wave is scattered. Some of
the energy is absorbed as heat, while the rest propagates further into
the medium. The amount of energy which is reflected is determined by
equation 2.

7

pr
pi

=
z2 − z1
z2 + z1

(2)

Where pi and pr are the amplitudes of the incident and reflected
waves respectively, while z1 and z2 are the mediums’ acoustic impedance.

2.1.1 Acoustic Impedance

Acoustic impedance is a measure of how the particles of a medium
respond to a sound wave of a given pressure. The formula for calculating
the acoustic impedance is found in equation 3.

z =
p

v
(3)

Where p is the local pressure and v is the particle velocity. z can also be
determined by the mediums density(ρ) and stiffness (k) as: z =

√
ρk.

To give a perspective of different acoustic impedances, see Table 1.

Table 1: Acoustic Impedances [1]

Material z(kgm−2s−1)
Liver 1.66∗106

Fat 1.33 ∗106

Air 430
Bone 6.47 ∗106

As bone and soft tissue have very different properties, most of the
energy is reflected back when the wave encounters bone inside tissue.
However, if the thickness of a membrane/slab/structure corresponds to
a half-wavelength, this reflection has been found to be minimized. This
is due to what is called the ’intensity transmission coefficient’ (αT). At
normal incidence of a membrane, if the impedance of the membrane is
z in a surrounding medium of impedance Z, the transmission coefficient
is determined by equation 4.

αT (f) =
4Z2

4Z2cos2(2πfl/c) + (Z + Z2/z)2sin2(2πfl/c)
(4)

Where c is the speed of sound in the membrane, f the frequency,
and l is the thickness of the membrane. So if λ/2 = l or equivalently
f0 = c/2l, the transmission should be maximized [13].

8

Figure 1: A pulse (left) and its frequency spectrum. The pulse contains
a range of different frequencies, dominated by a center frequency, or
nominal frequency f0. [1]

An ultrasound image is built up from the echoes of larger interfaces
and scattering from smaller targets. In order to get more distinct echoes,
the ultrasound signal is sent in short bursts, or pulses. The longer the
pulse, the stronger signal, but the shorter the pulse- the better distance
resolution.

2.1.2 Pulses

Pulses can be represented as a wave in a pressure-time figure, or as
amplitudes in a frequency spectrum. This is because pulses are com-
prised of many different frequencies, compared to continuous transmis-
sion which merely contain one single frequency. The frequencies in-
cluded in a pulse are centered around the so called nominal frequency
(sometimes referred to as the fundamental frequency). The nominal
frequency is usually the one with the highest amplitude, and is hence
the one mentioned as the transmitting frequency. This is illustrated in
figure 1 [1].

2.1.3 Non-Linear Propagation

While the speed of sound is normally said to be the same for all frequen-
cies, this is not completely true. At higher pressures, or amplitudes (>1
MPa in water [1]) this is no longer a good approximation. The speed at
which sound travels through a medium is now related to the properties
of the medium and the local particle velocity. In high pressure parts,
i.e. where particles are highly compressed, there is a slight increase in
speed, and vice versa slightly slower in low pressure parts of the wave.
As the wave progresses into the medium, this results in the high pressure

9

parts of the wave gradually catching up to the low pressure parts. This
effectively changes the shape of the wave. Compression parts becoming
more narrow and increasing amplitude, while refractory parts become
wider with lower amplitude. Hence it is possible, and quite easy, to spot
a non-linear propagation. Another effect, as shown by Baker, 1989, is a
sine wave’s growing resemblance to a saw tooth wave with propagation
distance, can be seen in Figure 2.

Figure 2: Hydrophone measurements of pressure at z = 700 mm, the
far field of a piston source (a = 19 mm) operating CW at 2.25 MHz as
the drive voltage to the transducer is increased (from Baker, 1989) [2].

When looking at a frequency spectrum, this narrowing of the com-
pression parts of the wave is also seen as changes in the frequency com-
ponents of the wave. The swift changes in pressure in the compression
part of the wave appear as high frequency components in the frequency
spectrum. These components are multiples of the original fundamental
frequency, i.e. f0, 2f0 etc. Essentially, this phenomenon shows that
a portion of the energy of a wave is transferred to higher frequencies
due to non-linear propagation. While commonly used in order to cre-
ate ”shock” fronts (i.e. almost instantaneous increases in pressure),
non-linear propagation is also highly sought after when trying to induce

10

what is called acoustic streaming.

2.1.4 Acoustic Streaming

Acoustic streaming is where energy is absorbed in a medium to the point
where it starts moving in the direction of the wave. Since non-linear
propagation shifts the energy of the wave to higher frequencies, and
higher frequencies are attenuated more than lower frequencies, it can
be safely assumed that non-linear propagation means that more energy
is being absorbed by the medium. Hence this is very useful when trying
to induce streaming. Equations for inducing acoustic streaming, which
were formulated by Nyberg [5] using a successive approximation method,
are seen below.

µ52 u2 −5p2 + F = 0 (5)

F = −ρ0 〈(u15)u1 + u1(5u1)〉 (6)

Where µ is dynamic viscosity, ρ0 is constant equilibrium density, u1 is
oscillatory particle velocity, u2 is acoustic streaming, P2 is a steady state
”dc” pressure, F is non-linear driving forcing term, and the brackets
indicate a time averaging over a large number of cycles. What should
be taken away is that a higher viscosity effectively means that more
energy is required in order to induce acoustic streaming in the medium
[5].

All absorption processes contribute to the acoustic streaming effect
including shear and bulk viscosity, relaxation and excess absorption due
to non-linear propagation. In liquids with very low dampening or high
viscosity, it is hence more difficult to induce a detectable amount of
streaming [15]. Since streaming is to be induced in vivo , the range at
which acoustic streaming is achievable is quite narrow due to the tight
energy regulations set by the FDA. These restrictions upon the energy
used in master’s thesis will be presented in the Safety section.

2.1.5 Transducer

A transducer, or probe, is the component which converts an electrical
impulse into a acoustical pressure. This is most commonly done by the
use of piezoelectric elements. Connecting piezoelectric materials, such
as quartz, to a voltage changes their physical dimensions. Reciprocally,

11

changing such materials’ physical dimensions generates electrical poten-
tial gradients. This means that if an alternating current, for instance a
sinusoidal one, is transmitted through an element of this material- the
same frequency is emitted by the material as sound waves. Since the the
piezoelectric elements also work reciprocally, the transducer also has the
ability to convert from sound waves to electrical signals. Putting many
such elements in a matrix, while having control over delay circuits for
each of the elements, one can control the sound waves with quite high
precision. This control is called beam forming. However, to improve the
transmitting capabilities, there is also a backing layer, a matching layer
and a lens. The backing layer effectively cancels out one side of the
elements, forcing most of the emitted energy to travel in one direction.
The matching layer is, as the name suggests, a means to minimize the
difference in acoustic impedances that the wave needs to travel through.
The lens is used to focus the many different waves into one direction.
The focusing, however, is often mostly accomplished by the use of beam
forming. The basic structure of an ultrasound transducer can be seen
in Figure 3.

2.1.6 Beam Forming

In order to build an image from echoes, it is preferred to build the
image one column at a time. In order to accomplish this, as well as
other creating a single wave front, beam forming is used. Beam forming
is where the different elements in a transducer are controlled separately
in order for their respective waves to interfere at certain points inside
a medium. This control includes the power and timing of the pulses
from each piezoelectric element, see Figure 4a. Using beam forming one
can effectively look along one narrow direction at a time. An expansion
of this method is dynamic focusing. When looking at the returning
echoes from a pulse and/or looking down a single line, the focusing
changes with time. The use of dynamic focusing yields much clearer
images. Depending on the transducer and image analysis methods used,
an ultrasound machine is able to create both two- and three-dimensional
images in real time. For this master’s thesis, only the two dimensional,
or B-mode, images are of interest.

12

Figure 3: The basic Structure of a transducer [3].

(a) Signals to different elements are
delayed in order to aim the combined
sound wave [3].

(b) Dynamic focusing and beam form-
ing [3].

2.1.7 B-Mode Images

In order to understand how an image is created, it is easy to first look
at how the common A-Mode (amplitude modulation) works. In A-
mode, a pulse is sent out from the transducer in one direction, or line.
Directly after emitting the pulse, the transducer is switched to listening
mode. During this phase the signals go in the opposite direction, and
instead of creating a pulses, the amplitude of the returning echoes are
registered. These echoes are then displayed along a time axis, depending

13

on how long after the pulse was sent out, until the echo was received.
If this process is repeated along many lines, one can build up a matrix
of amplitudes. Where each column represents one direction, and each
row represents a return time, or distance. The amplitudes are in turn
mapped to pixel values. An example of this sort of mapping can be seen
in figure 4. The time-to-distance mapping is determined by the time
resolution, which depends on the shape and length of the sent pulse.

Figure 4: The actual signal/time (green) is integrated over regular time
intervals. These integrated values (blue) are then mapped to pixel val-
ues, and the time intervals are converted to distance.

As each pixel in an image has finite range, the amplitude matrix
is mapped onto this range, effectively losing some information. In the
case of the Sonix RP, each pixel is a single number between 0 and 255.
These numbers represent a gray scale where 0 is completely black and
255 is completely white. This means, that if B-mode data is used to
differentiate between two echoes - this is only always possible if the
difference in amplitude between them is greater than 0.39% (1/256).

2.1.8 Doppler

The principle of Doppler measurements are based on the change in ob-
served frequency when, for instance, a sound wave is emitted from a
source that is moving relative to the receiver. If the source and the
receiver move relatively towards each other, the observed frequency is
higher than the emitted. The change in frequency is directly propor-
tional to the velocity of the sound, and most importantly: the relative
velocity between the source and the receiver. This relation is expressed
in the Doppler equation (7).

fd = fr − ft =
2vftcos(θ)

c
(7)

14

Where fd is the change in frequency, fr and ft the frequency of the
received and transmitted signals, and v is the velocity. The speed of
sound is c, and θ is the angle between the direction of the beam and the
direction of the movement of the moving medium.

Hence, by sending a pulse with a known frequency towards a moving
medium, and looking at the new frequency of the received echo pulse,
one can determine the velocity of the moving medium relative to the
transducer.

Pulsed Doppler is when the transducer sends a pulse and waits for
the return of said pulse before sending a new one. This repetition time
is called ’PRF’ (pulse repetition frequency). Another way to describe
this is ’PRP’ or pulse repetition period. The relation between PRF and
PRP is found in equation 8. The PRF ranges usually between 1-10 kHz
in diagnostic ultrasound machines. The reason for mentioning PRP is
because this is what Ultrasonix uses in their settings, while PRF is what
is usually displayed and mentioned.

PRF =
1

PRP
(8)

The PRF determines the maximum velocity that is possible to de-
tect, as well as the depth at which the Doppler can be used. The
equation used in order to determine the maximum velocity (vmax) that
can be measured, using the pulse repetition frequency fPRF , and the
pulse nominal frequency f0 in equation 9[11].

vmax =
c

2

fPRF

2f0
(9)

The depth at which is possible to use the pulsed Doppler with a
given PRF is determined by equation 10.

depthmax =
c

2PRF
(10)

2.2 Safety

Since ultrasound is absorbed in tissue, and tissue is vulnerable to tem-
perature changes, the Food and Drug Administration (FDA) has set
limits regarding the energy and effect allowed in clinical ultrasound diag-
nosis. The maximum pressure limit, as set by the FDA, is 50 mW/cm2

for ophthalmic regions (directly on and inside the eye) as measured
in water. This limit is lower than for other regions, where it is 720

15

mW/cm2, because of the dangers of high pressure waves damaging the
sensitive parts of the eye (the maxillary paranasal sinuses are however
not considered part of the ophthalmic region despite being very closely
situated). Pulsed Doppler ultrasound have been found to produce sig-
nificant thermal effects, particularly near bone. And recommendations
using pulsed Doppler are as follows[10]:

Care should be exercised to ensure that the examinations are
performed prudently using as low as reasonably achievable
(ALARA) acoustic output and dwell time. Users should take
notice of exposure information provided by the manufacturer
and minimise exposures to tissue structures containing bone
and/or gas.[10]

For the thermal effects of ultrasound, the FDA has set the limit to
720 mW/cm2 ISPTA (spatial peak temporal average intensity), and the
maximum increase in temperature may not exceed 2◦C.

As a reference, values for equipment in clinical use can be seen in Ta-
ble 2, where intensity is derated by 0.3 dB cm−1 MHz−1 to compensate
for attenuation by the tissue-path.

Table 2: Values for the UK survey of equipment in clinical use. Intensity
measured in water.[10]

Intensity limit ISPTA [mW/cm2]
Application Mean Maximum
B-Mode 200 1000
Pulsed Doppler 1700 9000
Colour flow imaging 450 2000

2.3 Paranasal Sinuses and Rhinosinusitis

The most prominent, and the sinuses that are the focus in this report,
are the maxillary paranasal sinuses. These are air filled pockets located
on either side of the nasal cavity approximately 4-6 cm deep (et al.
Jannert, Malmö 1982).

In front of the maxillary paranasal sinuses is the Maxilla facial bone,
or canine fossa. Through measurements using CT by (et al. Sahlstrand
Johnson 2011) this bone has an approximate thickness of 1.1 +-0.4 mm.

16

Rhinosinusitis is an infection, caused by either bacteria or virus, in
the paranasal sinuses. Acute rhinosinusitis, or ARS, is the fifth most
common diagnosis for which antibiotics are prescribed, according to
the US National Ambulatory Medical Care Survey. [4] It is, according
to European Position Paper on Rhinosinusitis and Nasal Polyps, or
EP3OS, defined as (Fokkens et al. 2007):

Inflammation of the nose and the paranasal sinuses charac-
terized by two or more symptoms, one of which should be
either nasal blockage/obstruction/congestion or nasal dis-
charge (anterior/posterior nasal drip): +- facial pain/pres-
sure, +- reduction or loss of sense of smell and either:

endoscopic signs of: -polyps and/or mucopurulent discharge
primarily from the middle meatus; and/or -oedema/mucosal
obstruction primarily in the middle meatus,

and/or -changes seen in computed tomography (CT) images:
mucosal changes within the ostiomeatal complex and/or si-
nuses.

At the University Hospital in Skania, Sweden, (Sk̊anes Universitetssjukhus)
or SUS, the diagnosis for rhinosinusitis commonly involves ultrasound.
An ultrasound probe is used in order to detect whether or not there
is fluid inside the patients’ paranasal sinuses. This is accomplished by
simply looking for an echo from the back wall of the paranasal sinus
cavity. If such an echo is detected, it can be determined that there is
fluid present inside the cavity.

Studies indicate that ARS with serious sinus fluid, with low viscos-
ity, is caused by viruses, while mucopurulent sinus secretion, with high
viscosity, is caused by bacteria (Carenfelt and Lundberg 1977; Caren-
felt et al. 1978). Since antibiotics are only needed when the infection
is caused by bacteria, determining the viscosity of the fluid inside the
cavity would potentially decrease the unnecessary use of antibiotics in
rhinosinusitis patients.

However, antibiotics are still being administered in vain, because the
method using ultrasound (as well as the another method using CT) only
shows the presence of fluid, while offering no information of the fluid’s
properties.

The only way to determine the viscosity is currently to perform
a sinus puncture. This involves penetrating the maxillary sinus cavity

17

with a needle via the nose through a bone wall, and is an uncomfortable
invasive procedure.

Using ultrasound for the staging of rhinosinusitis may be a way to
spare patients this procedure. Since the maxillary paranasal sinuses are
not included in the ophthalmic region, the maximum allowed energy is
720 mW/cm2 [12]. Hence, the energy should be sufficient to induce a
detectable amount of acoustic streaming in the low viscosity fluid. It
may not, however, be enough for the high viscosity fluid and thus the
way to distinguish between the two types of rhinosinusitis could be the
detection of a velocity >0.

2.4 Sonix RP

Figure 5: The Sonix RP

The clinical ultrasound scanner used in this master’s thesis is the
Sonix RP, made by Ultrasonix. It is basically a personal computer with
hardware added to support ultrasound processing. It uses Windows XP
Professional as its base operating system. The motherboard is a ’Asus

18

P4P800-VM Intel 865G 4xDIMM Socket 478 mATX Bulk’ and, as the
name of the motherboard suggests, it uses an Intel P4 processor. The
Sonix RP has 1GB RAM. The graphics card used is an AGP Nvidia
GTX 6600.

There are also three PCI expansion cards. One allows more se-
rial(RS232) connections to the computer and another is a modem to
allow a dial-up connection. The last expansion card is a custom card
from Ultrasonix that enables use of the ultrasound transducer as well as
powering the console. The console is a physical interface with a small
touch screen, a keyboard and trackball, but also ultrasound specific con-
trols, like Time Gain Control and PWD/B-mode switches. The touch
screen enables the user to change mode specific settings, like frame rate
and focus settings in B-mode.

Ultrasonix also provide software to be able to record and display the
received ultrasound. A screenshot of the software can be seen in figure
6.

Figure 6: The Exam software provided by Ultrasonix

There is a button on the console called ”Research Mode”. When
in Research Mode the user is able to change different parameters, for
example voltage for a range of frequencies in Pulsed Wave Doppler.
There are also xml files that need to be altered to get some of the
research parameters to work with the exam software. Each probe type
has its own xml file where probe specific settings are stored, for example
frequency range for different modes.

19

The transducer used in this master’s thesis is L-14/38mm. It has
128 elements and a center frequency of 7.2 MHz.

2.5 Programming

2.5.1 C++ vs Java

The implementation of the diagnosis method requires programming in
C++, and as many who read this master’s thesis will be unfamiliar
with this programming language, while quite experienced in Java- a
short introduction to C++ follows. Compared to the programming
language Java, C++ offers the user more control over data and memory
usage, while being less user friendly. C++ is, in other words, a lower
level programming language than Java. Most of the syntax is very
similar, but the low level control over the execution of a program that
C++ offers, puts more pressure on the programmer. This control, and
possibly the biggest difference between them, comes from C++ making
use of pointers.

Pointers are essentially addresses to where a certain object is located
in the memory, which are sent instead of all the actual data contained
at the address location. This is done to minimize the memory usage of
a given function. Using pointers may however result in ’NULL point-
ers’ and ’pointer exceptions’. These occur if the address provided to
a function or action is currently occupied by some other process, if it
is empty, or contains something other than what the pointer suggests.
While in Java, the process of sending pointers and handling addresses
are highly regulated, they are not in C++. Hence this is the most com-
mon problem facing many programmers who use C++ or other lower
level languages.

In order to simplify using a low-level language, such as C++, one
often makes use of a software development kit, or SDK. An SDK gener-
ally provides the user with functions and objects (or classes) that handle
certain common, but complicated, actions. They can for instance pro-
vide means to interact with hardware or machines, as well as the means
to display images and create a user interface.

2.5.2 Ulterius

Ulterius is a software development kit (SDK) developed by Ultrasonix.
In essence, it is an interface to the Sonix RP machine which simplifies

20

access to certain capabilities and settings of the machine. Ulterius allows
full control over the imaging parameters of the ultrasound machine and
the ability to remotely connect to it. Once connected, it is possible
to both set and check certain parameters, as well as collect the data
gathered by the ultrasound machine. Such data include, but are not
limited to, B-mode images, RF-data (raw format data) and FFT (fast
fourier transform) sequences acquired from the PW-Doppler (pulsed
wave Doppler) mode.

At the time of this master’s thesis, Ulterius uses something called
’callbacks’. A callback is an interrupt signal that triggers the use of
a ’callback function’. Once the callback function is done operating, it
can be called upon again. This enables a program to be put into a
wait-for-update state and effectively update or stream images continu-
ously from the ultrasound machine. At the time of this master’s thesis,
Ulterius needs to be compiled using a Microsoft Visual C++ compiler.
Ultrasonix are moving towards using Qt Creator in their demo pro-
grams but, at the time of this master’s thesis, this is not yet available
in Ulterius(Version 5.7.3).

Some restrictions to Ulterius are controlled by ’.xml’ files on the
Sonix RP system. These files contain parameters which govern the
way that the imaging parameters can be adjusted, both inside of the
main program as well as through the use of programming environments
developed by Ultrasonix (including Ulterius). Hence when changing
parameters, one must check and/or change the ’.xml’ file of the probe
used in order to be sure the new value is viable.

2.5.3 Qt

The Qt SDK is commonly used through Qt Creator, which is an open
source cross-platform integrated development environment (IDE) devel-
oped by NOKIA. It is used by over 450,000 developers in more than 70
industries to build advanced applications and devices[6]. This is due to
its many utilities, and rather quick learning curve. For this master’s
thesis, Qt Creator has two main strengths that are needed. The first
one being that Qt Creator simplifies creating a graphical user interface
(GUI). The second that it is also possible to utilize the Microsoft Visual
C++ compiler. It does not, however, use callback functions. Instead,
Qt Creator utilizes signals and slots.

Signals and slots are quite similar to the callback functions. Just
as with the callback functions, a signal is emitted when a certain event

21

occurs. If said signal has been connected to a slot, the code in that slot
is handled much like the callback function. The key difference is that the
signals used in Qt are type safe. This means that a slot, unlike callback
functions, can never be called with incorrect arguments. A callback
function may even crash if called with incorrect arguments. This can
never happen with signals, as slots only respond to signals with the
correct signature. A slot can also ignore extra arguments, making them
even safer to use [6]

22

2.5.4 Mutex

Most operating systems switch between processes/threads/programs
many times a second to give the impression that they are concurrently
running. The threads are however run one at a time with each process
given a timeslot of the processor to run in.

(a) Apparent processor usage (b) Actual processor usage

Problems occur when two or more threads share resources, for exam-
ple one part of the memory or a variable storing data. An illustration
is the best way to explain one of the problems that may occur. Imagine
that you have 5000 SEK on your bank account. You are at an automatic
teller machine(ATM) and you are about to withdraw 1000 SEK but at
the same time a friend is about to deposit 7000 SEK into your account.

(c) The resulting balance is 12000 SEK (d) The resulting balance is 4000 SEK

The account balance is of course supposed to be 11000 SEK in both
cases. Neither you nor the bank wants the concurrency errors above to
occur. What is needed is mutual exclusion, that is, only one process
may access shared resources, or critical sections of code, at a time.

A mutex can be seen as a padlock with only one key. Only the
keyholder can open the padlock and use what it protects. That is how
the mutex works. If a thread claims the mutex, no other thread can
claim the mutex. When other threads try to claim the mutex they are
put to sleep until the mutex is released by the thread currently holding
it.

23

It could get rather complicated however if several mutexes are needed.
One issue one has to think about while using mutexes is deadlocks. A
deadlock is when two or more threads are waiting for the other/others
to finish and because they are waiting- neither of them ever do. Below
is an example to show a deadlock.

Figure 7: A simple example showing a deadlock

There are other tools to ensure concurrency correctness like semaphores
and monitors, but this master’s thesis does not make use of them.

24

3 Method

3.1 Approach

The implementation of the diagnosis program will be created specif-
ically for the ultrasound machine Sonix RP, developed by Ultrasonix
corporation. This is due to one being available at the Department of
Electrical Measurements, Lund Institute of Technology, and the possi-
bility of creating custom applications for said machine.

Diagnosis should begin by establishing the presence of fluid inside
the paranasal sinuses. In order to accomplish this task, the doctor uses
B-mode to find an echo originating from the back wall of the maxillary
paranasal sinus cavity. Hence the program needs to start in B-mode.
Once the back wall is found- the program should find the frequency for
which the back wall echo is maximized. This is to ensure that as much
energy as possible is transmitted through the front wall into the fluid.
The reader should note that, as stated earlier, the bone wall in front of
the paranasal sinuses vary between patients and the optimum frequency
thereby varies as well.

After finding the optimum frequency, the program should change to
a Doppler setting. When the Doppler is running, the program should
display the velocity of the measured flow inside the cavity. Finally data
needs to be collected in order to establish some sort of threshold that
would indicate the viscosity, or the nature of the fluid. If the viscosity
is low, a higher velocity should be detected compared to if the viscosity
of the fluid is high. Meaning that if the detected velocity of the acoustic
streaming is higher than a (yet to be) established threshold, there will
be no need for administering antibiotics to the patient.

In order to be viable for use in diagnosis, the program should be easy
to use and yield consistent results which are easy to interpret. After an
initial walk-through of the program, the user should have no difficulty
to use the program to make a valid diagnosis.

3.2 Sonix RP Machine

At the beginning of this master’s thesis, the ultrasound scanner (Sonix
RP) did not start properly. Upon attempting to start, it would go
into an endless boot-loop. The unit would reboot just as Windows
was about to load. At first the hard drive was thought to be broken
but when Windows was started in safe mode a few files would load,

25

indicating that it might just have been a corrupt system file.
A recovery CD was used to format the hard drive and reinstall Win-

dows. The reinstall was successful but, for whatever reason, the Ultra-
sonix software did not accept the license provided by the manufacturer.
After several sessions with tech support it was decided that it was likely
some part of the hardware, probably the company’s custom PCI card,
causing the licensing error. The Sonix RP was dismantled and the mod-
ulo(computer chassis) was removed to get access to the hardware. A
PCI Modem was removed completely as it no longer served any purpose.
The custom PCI card was then put in the PCI Modem’s slot in order
to see if it was simply the PCI slot on the motherboard that was faulty.
After putting the machine back together it started but gave an error
saying it could not connect to the Console. Parts of the console had
power as some of the buttons were lit and the display on the console
had power.

The Console is connected by three serial(R323) cables, which were
swapped around to eliminate broken connectors. There seemed to be no
difference changing the serial cables, since still only parts of the Console
were lit up. After another reseating of the PCI cards the Sonix RP would
no longer manage to get through BIOS. It only showed a black screen.
A number of graphics card were tried to no avail. The BIOS battery
was removed in order to reset the BIOS. The BIOS settings could have
been corrupted, but just resetting the BIOS was not enough to solve
the issue. The motherboard was likely broken and an identical board
was found and bought.

After the motherboard was changed, Windows and the Ultrasonix
software was still not operating properly and another reinstall was at-
tempted. The console still did not receive any power, and so the
CD/DVD reader inside the console did not work. Several IDE DVD
readers were tried but none of them worked. At first the DVD was
thought to be scratched and unusable. Tech support thereby offered an
ftp with the Recovery DVD as an ISO. Something was wrong with the
routing or the file on their server because it would stop downloading at
41.3 MB every time. By chance the DVD was brought home and tried
on a SATA DVD reader, and the DVD could then be read. That reader
was then connected to the Sonix RP and windows could be reinstalled
once again. After the reinstall the Sonix RP worked again.

26

3.3 Modeling the Paranasal Sinuses

A 6x4 cm (outside measurement) acrylic glass box, with 0.4 cm thick
walls, is used to model the walls of the paranasal sinuses. Milk with 3%
fat is used to approximate the fluid in the cavity. The milk should be
a fairly good representation of the low viscosity fluid that is secreted
during bacterial rhinosinusitis. Trials using cream to increase the fat
percentage further was tried, but failed to induce any kind of streaming.
Water was also found to not work as well, since the absorption coefficient
in water is very low. The results only include the trials where the 3%
milk was used as those were the most representative of the low viscosity
fluid. In the back of the acrylic glass box, there is a piece of sound
dampening material. The same material that covers the walls of the
glass container in the hydrophone tests. Due to the quite small echo
reflected off said surface, this created a more accurate representation of
how a back-wall echo would appear in actual patients. The maxillary
sinus cavity is rarely square in form, and so the non-flat shape of the
material further improved the model.

Figure 8: The model of the paranasal sinuses

3.4 Programming

Initial trials were made using Visual Studio 2010 Express. However
as, for some reason, the GUI demo by Ultrasonix was unable compile,

27

it was decided to switch from Visual Studio. Qt Creator was chosen
since it has powerful tools for creating user interfaces plus the ability to
utilize the Microsoft Visual C++ compiler which is needed in order for
Ulterius to work.

In order to create and display images, Qt Creator has numerous
available options. After some failed attempts and a bit of forum re-
search, ’QLabel’ seemed like the most promising option to use. Dur-
ing these trials it was discovered that the image displayed in the QLa-
bel could only be updated from within the ’MainWindow’ class, which
needed some sort of work-around. It was concluded that this issue could
be solved by the use of signals. The MainWindow class is the main user
interface class used in Qt Creator.

The callback functions used are triggered every time a new image
has been processed by the ultrasound machine. The callbacks provide
the data from the image, certain characteristics of the image itself, and
parameters describing the data type.

3.5 Safety

As the power setting on the Sonix RP is maxed out (15V) and the probe
is to be used on an area close to the eye of a patient - it is important
that the energy emitted does not exceed safety limits.

In order to test the energy emitted from the transducer probe two
types of measurements were made. The first test involved a highly
sensitive scale. A small container filled with water, with an absorbing
target on the bottom, was placed on the scale and the transducer was
suspended above the water surface with its tip submerged. The scale
was calibrated to zero while the transducer was silent. The transducer
was then switched on and the resulting change on the scale was noted.

Radiation pressure is force per unit area at a target, and so the total
force acting on a target, or radiation force, is obtained by integrating
the radiation pressure over the target. Provided that the whole beam
is intercepted, the radiation force F is the determined by equation 11.
Where W is total power, c the speed of sound, and h is a factor de-
pending on the type of target used. As stated before the target is an
absorbing one, hence h= 1 [14].

F =
hW

c
(11)

28

Figure 9: The transducer is suspended above and into a container with
water and an absorbing target, which is placed on the scale.

The second test was done in a water tank by sending pulsed Doppler
wave signals through water and analysing the pulses a few centime-
tres away with a sensitive hydrophone. Since the Doppler mode uses
beam-forming, the detected energy of the pulsed waves are very differ-
ent depending on how the hydrophone is positioned compared to the
ultrasound probe. In order to find the optimum distance, a program
developed at the Department of Electrical Measurements, at LTH, was
used. This program controls very precise motors which enables the user
to move an object with high precision in x, y, and z direction while it
also has the ability to fetch and analyse data from an oscilloscope. By
combining these capabilities it is possible find the optimum position for
the hydrophone as well as actually measuring the energy of the pulses
from the pulsed Doppler.

The walls of the water-filled tank is laced with rubber walls designed
to dampen any residual sound waves. The water in the tank is left
to sit for many hours to make sure that there are as few bubbles as
possible. While measuring, removing bubbles from the transducer and
hydrophone is vital for accurate measurements.

The hydrophone used is a Precision Acoustics 0.5 mm interchange-
able probe made by Percision Acoustics, for which the calibration has
expired. It has a capacitance of 24 pF±3 pF and is correctly termi-
nated through 50 Ω to an HPI submersible pre-amplifier. The signal

29

Figure 10: The transducer is positioned just under the surface of the
water. The position of the hydrophone is then adjusted for maximum
amplitude.

goes to an analogue oscilloscope (model: Tektronix TDS 360, made in
Beaverton, Oregon) which is connected to the computer. The computer
runs on Windows XP Professional and a Labview VI developed at the
Department of Electrical Measurements, LTH. While the hydrophone’s
calibration time has expired, it is mainly used to get approximate fig-
ures.

30

Figure 11: The Pulse Analysis program. It displays one of the pulses
emitted from the transducer, with the spectrum underneath. Some
calculated characteristics can be seen to the right.

31

4 Results

4.1 Sonix RP

The Sonix RP is working again. However, the probe used during the
project is not fully functional. What needs to be done is either to replace
the probe or reattach/replace the silicon layer of the probe. It should
be noted that while B-Mode is functional, both energy output and the
detection capabilities of the probe may be lowered to some extent. While
the difference in results between the probe used, and what would be
acquired with a fully functional one, may be insignificant- it should be
kept in mind when looking at the results from both the milk trials and
energy measurements. The process of fixing the Sonix RP can be found
in section 3.2. A section concerning the probe is found in section 4.4.

4.2 Programming

4.2.1 Coding process

The first version of the program was made before the Sonix RP was fully
operational. The focus was to get the Graphical User Interface(GUI) as
complete as possible so focus could be put on algorithms and collecting
data from the Sonix RP. Creating a GUI is usually quite cumbersome
in C++, but working with Qt helped things along. Integrating Ulterius
with the first version was troublesome however. This was mostly due
to Ulterius requiring its callback function to be declared static while at
the same time displaying widgets in Qt had to be non-static.

Objects declared static are always in memory. They are created the
first time their declaration is encountered, and are removed only when
the program terminates. In turn this means that any static functions
are only able to call upon other static functions [9].

There are two ways of connecting to the Ultrasonix software through
Ulterius. Either connecting through the internet using the Sonix RP
internal IP address, or running an Ulterius application on the Sonix RP
machine and connecting to local host e.g. itself. Running the program
locally on the Sonix RP machine was found to run much more smoothly
than a remotely connected application. This is of course due to the
latency which comes with a connection through the network. Such a
latency also increases the interval between each callback. The need for
quick calculation from image data is thereby much less pressing, as the

32

computer has more time before the images are updated. This was made
clear when the application was run locally on the Sonix RP machine.

The second version was running everything in a single thread, due
to simplicity. Once the application was running locally, the computer
could not keep up with the repetition frequency of the callback being
called. The function ’QImage::Pixel()’ proved to be too computationally
heavy for the Sonix RP machine’s processor to manage all calculations
in time for a new callback. Therefore a version of the application using
multiple threads was needed. The final version’s class structure can be
found in section 4.2.3

A B-mode image uses the amplitude of the returning echoes in order
to create an image. Making use of Time Gain Control and continuous
focusing in order to determine the origin of the echo, the calculated
amplitude value is then mapped to an XRGB value. These values range
from 0 to 255, which means that the data contained in the image is
already compressed.

While the more exact amplitude of the echo is lost in a B-mode im-
age, it is still quite possible to use the information contained in order to
compare the penetration of different frequencies. By selecting an area
of interest and then comparing the pixel values of the areas for differ-
ent frequencies, it is possible to evaluate their respective echoes and,
consequently, penetration through a medium. Given that the difference
in amplitude between the frequencies is bigger than 0.4 percent, the
distinction is easily made.

4.2.2 Graphical User Interface

The program, called Snotalyzer has had many capabilities which are
not present in the final version. For instance, it contained the code to
display as well as save RF-data to a file, which could be used together
with Matlab. In order to simplify use, a low number of buttons have
been prioritized. A few functions are accessible through the menus, but
are not essential, or even recommended for novice users. In the settings
menu, the user has the ability to change the IP, PRF, and Doppler
measurement time.

The final version of the front panel only includes B-Mode, and
Doppler buttons, as well as TGC slider controls. All these are essen-
tial controls which without, the user would be ill-equipped to make a
diagnosis. To help the user, there is also a text display which tells the
user what is happening. The upper large display shows the B-Mode

33

image, while the lower one displays the Doppler shift signal acquired in
Doppler mode. An image of how the user sees the program can be seen
in figure 12. A more detailed description as well as a user guide can be
found in the appendix.

Figure 12: The User Interface Panel of Snotalyzer

34

4.2.3 Class Layout

Figure 13: Layout of the Classes in the final program.

35

• MainWindow is the main class of the program. It is a thread
handling the user interface. A few images of the Graphical User
Interface can be found in section 4.2.2.

• QCustomPlot is an external class written by DerManu [7]. QCus-
tomPlot is an easy way to plot data. Qt does not have an internal
tool for 2-D or 3-D plotting. There are other external libraries
like qwt, but they are overkill for a simple 2-D plot.

• KeyPressWidget is a class/widget that makes it possible to select
an area of a QLabel. The user can select an area in the B-mode im-
age and let the program maximize the intensity by going through
a range of frequencies.

• USHandler is a class that handles everything having to do with
Ulterius. It will set up a connection or disconnect from the Sonix
RP. The class has callback functions that copy image data to a
buffer from memory. The class also has two computational heavy
functions that runs in another thread, Worker. The shared re-
sources in USHandler are protected by a mutex.

• The worker thread is a thread that operates on USHandler when
it is signalled from the MainWindow thread.

• SettingsDialog is a class that extends QDialog. It enables the user
to choose which IP to connect to. The Pulse Repetition Frequency
(PRF) in Doppler mode can also be changed with a slider. It is
also possible to change for how long each Doppler measurement
run.

• PatientDialog is another class that extends QDialog. It is used to
enter patient specific data, for example social security number.

For the full code, see Appendix B.

36

4.3 Safety

4.3.1 Scale Test

The first transducer test was done with a sensitive scale. Where the
Doppler signal was sent through water onto the scale. This should
effectively measure the continuous impact caused by the Doppler signal,
and then quite easily translate into energy transferral. By measuring
the difference between the signal being sent, and the transducer being
silent.

The scale was very sensitive. By only touching the table that the
scale was on with a finger, the scale would alter the value presented on
the display. However, the only time we could get a proper reading on
the scale was with the highest pulse repetition frequency possible, 12.5
kHz. At these settings, the scale showed 10 mg, which translates to 151
W/m2 through equation 11. This is well below 720 W/m2 which is the
maximum limit for diagnostic ultrasound.

4.3.2 Hydrophone Test

From looking at the pulse shapes, energies and number of periods in
each of the pulses sent out, it was found that only 7 different frequencies
were being emitted. See figure 14. The variations within each span is
consistent with the margin of error for the measurements. After this
was established, the following results were obtained from one frequency
in each of the different frequency spans.

37

Figure 14: Pulse Energy Stages - Measured Energies

Figure 15: Mean intensity

38

Figure 16: 5kHz pulse repetition frequency with standard deviations

Figure 17: 3.3kHz pulse repetition frequency with standard deviations

39

Figure 18: 2.5kHz pulse repetition frequency with standard deviations

40

As seen in figure 16, when using a pulse repetition frequency (or
PRF) of 5kHz - the energy of the pulses exceed the safety limits set by
the FDA. Lowering the PRF has a direct correlation with the energy
induced into the medium. This can be seen in figure 15. Using a PRF
of 3.3kHz puts the Doppler pulse energy safely under the limits, and
would thereby preferably be the PRF used in a patient study.

In figure 19 is one of the largest pulses detected during the hy-
drophone measurements. It also illustrates the non-linear propagation
mentioned in the theory section.

Figure 19: Pulse on oscilloscope. The triangle-like shape indicates non
linear propagation.

41

4.4 Transducer Glitch

Figure 20: Cropped screenshot of the Exam software, note the black
vertical areas

When using a pulse repetition frequency of 12.5kHz and a voltage of
15V across the elements during the scale tests(see section 3.5), parts
of the image went black. Moving the area of interest, the pulsed wave
Doppler gate, to another section yielded the same result: this section
also went black.

The Doppler measurement is currently done using the lower half of
the transducer where all elements appears to be fully functional.

4.5 Trial Results

The model of the maxillary paranasal sinuses used in the trials can
be found in section 3.3. The whole procedure of finding the optimum
frequency from the back-wall echo was done prior to each measurement.
A measurement time of 10 seconds during which a pulsed Doppler of
the calculated optimum frequency was being sent into the model with
the transducer fixed.

The optimum frequency found for the acrylic glass box with milk
was found to be 6.6MHz (which is within the span ranging from 6.2 to
7.2MHz). The mean value of the maximum velocities found during each
test can be found in table 3, and illustrated in figure 21.

42

Table 3: Mean maximum velocity found during milk trials.

PRF [kHz] Mean Velocity [mm/s] Standard Deviation
5.00 -38.1296 2.5215
4.00 -23.9283 3.3224
3.33 -20.4266 3.7682
2.50 -21.1075 1.7830
1.67 -16.3413 0.6419
1.25 -15.3578 1.7060

Figure 21: The maximum mean velocities found for each PRF.

43

4.6 True Frequencies

As stated in previous sections, the Sonix RP is only able to emit certain
frequencies. That means that regardless of how accurate the settings in
the .xml file are, and what the software tells you is being emitted, the
actually transmitted frequency is often different. The actual frequencies
in each span can be found in table 4. Upon contacting the manufacturer
concerning this issue with our results, it was confirmed that the Sonix
RP was only able to emit frequencies of 40/X MHz.

Table 4: The actual transmitted frequencies for each span.

Span [MHz] Actually Transmitted Frequency [MHz] (40/X)
4.0-4.29 4
4.3-4.79 4.44
4.8-5.39 5
5.4-6.19 5.71
6.2-7.29 6.66
7.3-8.89 8
8.9-10 10

44

5 Discussion

5.1 Sonix RP

While the probe should be replaced/repaired eventually, it still works
fine for the procedure since there is no real use for the entire length of
the transducer anyway. If patient trials are successful, the development
of a customized probe might be the next step.

When looking at the pulses more closely during the hydrophone test,
it was found that the energy, and frequencies of the pulses did not ap-
pear to change between all frequencies. Merely 7 different pulses were
recorded in the span from 4-10 MHz. Since the instructions from Ultra-
sonix implied that it was possible to change frequencies on a Hz scale,
this seemed unlikely. However, upon contacting the manufacturer a sec-
ond time concerning this issue, we were informed of the real case. As
stated in the results, the Sonix RP we used can only emit frequencies of
40/X MHz. This limitation had staggering implications for the master’s
thesis as a whole. At first, the intention was to check the intensity every
100kHz which would have resulted in 61 different intensities and quite
a high certainty. Instead, it is unlikely that we can find the truly best
frequency when there are only 7 to choose from.

Information regarding the frequency limitations should be available
to users, as other experiments using the Sonix RP machines and soft-
ware may require quite specific frequencies. As this is not possible, the
implications may be that studies have published incorrect results. Since
this limitation was discovered during very extensive tests checking dif-
ferent frequencies, it is unlikely that others have found, or even thought
of the possibility, that this limitation exists.

45

5.2 Transducer Glitch

Figure 22: Cropped screenshot of the Exam software, note the extra
black vertical area to the right

Ultrasonix’s Exam software enables the user to disable individual trans-
ducer elements, which has been done in the figure 22 above. Ten ele-
ments in a row have been turned off to simulate the elements being
dead.

The difference might not be clear in the printed version but the non-
simulated areas are more diffuse, particularly the topmost horizontal
line. It is still possible to discern a line in the middle and left black areas,
whereas the right area is entirely black. Also, the shape is different. The
simulated area is hourglass shaped while the others are more diffuse.

It is therefore likely that overheating occurred and that the glue
melted, which holds the silicon layer in place (see figure 3). The glue in
question is between the lens and matching layer. The energy absorbed
in this layer was too high for extended use, perhaps in addition to the
transducer being old and the glue subject to some dehydration. When
the PRF was increased to 5kHz: this problem was no longer present,
and the transducer is able to emit these frequencies and amplitude at
extended periods of time without loss of function.

5.3 Programming

As we were both new to Qt Creator, and had not been working with
C++ for a considerable amount of time, it took us a while to get Qt
Creator to work together with Ulterius. Fixing include directories and
libraries was difficult at first, as the documentation did not specify how

46

to do it correctly. Some ’.dll’ files were also needed in the build directory
when the software was compiled. If the ’.dll’s were not there a cryptic
”The program has finished unexpectedly.” message would be all that
was posted. Another initial unforeseen issue was that the Sonix RP had
to be in Reasearch Mode to be allow remote connections from Ulterius.

It seemed as if every time anything new was being introduced into
the program, a different error occurred. This led to hours upon hours
of searching through forums for not only similar problems, but one that
offered a solution let alone one that worked. One could almost argue
that the developers need to hire inexperienced testers that try to follow
their installation steps in order to understand how dreadfully non self-
explanatory the steps are. In our searches we found that close to all
explanations offered as solutions to errors and/or installation steps are
incomplete and/or inaccurate. Despite it being true, admitting that ap-
proximately 50 percent of the time spent working, excluding this report,
on this master’s thesis, consisted of trying to get programs, libraries, and
compilers to function properly, is almost embarrassing.

Even a seemingly simple task of adding a library in order to plot a
simple graph can cause significant mental distress and anguish due to
the installation steps being incomplete and non functioning. Hence we
learned that one should never underestimate how much time might be
needed for a given task, no matter how trivial it might appear.

In hindsight, it would probably have been a good idea to have used
a version control system, like git, for this master’s thesis. A version
control system keeps track of the changes you make to your project.
If you notice that you introduced a serious bug in your program you
can just roll back to an earlier version with a version control system.
It is also possible to fork your program, that is to make a new copy
of the program, for testing purposes. Copying the folders manually
worked well for a while, but when other things like the measurements
or this report was the focus it got confusing which folder kept the newest
version of the program.

The physics of the master’s thesis should probably have been tested
first. We first spent a few weeks fixing the Sonix RP and then started
programming. What we probably should have done was to start by
trying to induce acoustic streaming in milk. Simply assuming it would
work was risky, considering that we spent quite a bit of time on first
fixing the Sonix RP and then writing the program.

While finishing up the program- we found that disconnecting and

47

reconnecting to the Sonix RP caused our program to crash. We first
though this was due to our own code, and so we tried creating scaled
down versions of it to see where things went wrong. When these simple
programs reproduced the same error, we decided to once again contact
Ultrasonix’s support forum, as we had done many times during the
coding process. We were offered this explanation:

Ulterius 5.7 has several known issues when streaming data.
Access violations occur randomly depending on the sequence
of actions performed. With the console demo I ran 10 tests
[connect, set capture flag to BPost32, disconnect]. I got a
crash in ntdll on the first try, then a few consecutive tests
went fine, and then I got an access violation in utx utils.
These crashes are due to some race conditions, lack of thread
safety and buffer management issues.

The upcoming Ulterius fixes these issues. Fixing Ulterius 5.7
would require too much re-engineering so there is no plan to
do it. I suggest that you call setDataToAcquire(0) before
disconnecting. It seems to ease the issue but crashes may
still occur.

It was surprising that such an established developer still had crashes
in an application used in medical diagnosis. While the fault lies within
’Research Mode’ (during which they renounce themselves of all respon-
sibility for the machine’s safety) it is still surprising.

As the response from Ultrasonix indicates, the exam software has
several known issues. Since random occurring errors has forced us to
search for faults in our own code, a simple post on their support forum
of the known errors would have helped. The crashes that occur do
not impose any danger to patients, or loss of data, but when using a
program clinically, stability is important. If the program does not crash
or malfunction it instils confidence to both patient and user. The hope
is that future versions of the exam software handles their race conditions
and Snotalyzer can be successfully updated and finally be really stable.

5.4 Safety

As can be seen in the figures on chapter in section 4.3.2 almost all of the
measurements with a PRF of 5kHz were above FDA’s limit, but during
the measurements with the scale there was no measurable output for

48

5kHz. Only with 12.5kHz did we get a reading at all on the scale. The
hydrophone has not been calibrated for a long time. Thus, our margin
of error is quite large, but the measurement was mainly to get ballpark
figures.

If a PRF of about 3.3kHz is used, there is little-to-no chance to ever
exceed the safety limits set by the FDA. It has come to our attention
that a small amount of heating of the sinus cavity might actually be
a good thing for the patient suffering from rhinosinusitis, and so- this
should be taken into consideration upon evaluating a patient study [16]

As the worst case scenario should always be considered when using
equipment on patient, we always tried to find the absolute maximum
values possible. The most extensive tests, using a PRF of 5kHz, was
used to find out what the PRF should be in order to stay well below
the safety limits. This was possible due to the total amount of energy
being directly proportional to the PRF.

5.5 Milk Trials

During the milk trials, it was found that it is possible to induce de-
tectable streaming inside the acrylic glass container even with a low
PRF. The likelihood of the energy induced would be enough for actual
patients is of course decreasing with lowering the PRF. So what should
be sought after is the maximum PRF while under the safety limits set
by the FDA. It should be noted that with increasing PRF, the minimum
velocity that can be detected increases as well and thus it is not certain
that increasing the PRF the answer. The results were promising for a
possible future patient study using the program.

49

6 Conclusion

Using the Sonix RP as a base for this procedure is not completely op-
timal. It lacks the ability to go through enough different frequencies
in order to obtain a certain point for optimum penetration through
the front wall. However, the results from our phantom with milk sug-
gests that it should be good enough to both induce and detect acoustic
streaming in the low-viscosity fluid. And so it should not be completely
dismissed.

A PRF of 3.3kHz should be used in order to be well below the
safety limits set by the FDA. Whether or not this is enough to induce
detectable streaming in all sorts of the fluid caused by bacteria is yet to
be seen. It is, however, quite definitely not enough to induce anything
detectable in the high viscosity fluid. Hence, it might be used as an
initial guide at least. If there is a constant flow generated, antibiotics
ought not be needed. This statement, however, is merely a speculation.

50

References

[1] P. Hoskins, A. Thrush, K, Martin, T. Whittingam, Diagnostic Ultra-
sound Physics and Equipment, Greenwith Medical Media Limited,
2003.

[2] Szabo, Thomas L. 12 - Nonlinear acoustics and imaging”. Diag-
nostic Ultrasound Imaging, Burlington: Academic Press, 2004.
http://www.sciencedirect.com/science/article/pii/B978012680145350013X.

[3] Whittingham, T.A. Medical diagnostic applications and sources.
Progress in Biophysics and Molecular Biology 93, num. 1–3 (Jan-
uary 2007): 84–110.

[4] P. Sahlstrand Johnson, On Health-Relatade Quality of Life and Di-
agnostic Improvements in Rhinosinusitis, Lund University - Faculty
of Medicine, 2011

[5] W.L. Nyborg Acoustic Streaming Near a Boundary, Journal of the
Acoustical Society of America, May 30, 1958.

[6] Nokia Corp. Qt Creator, NOKIA Corporation, 2012.

[7] DerManu, Qt Plotting Widget, March 2012.
http://www.workslikeclockwork.com/index.php/components/qt-
plotting-widget/

[8] C. Sturesson Medical Laser-Induced Thermotherapy - Models and
Applications,Lund Reports on Atomic Physics, 1998.

[9] B. Stroustrup The C++ Programming Language, 3rd Edition,
AT&T Labs in Murray Hill, New Jersey, June 1997.

[10] Barnett, Stanley B, Gail R Ter Haar, Marvin C Ziskin, Hans-
Dieter Rott, Francis A Duck, and Kazuo Maeda. International rec-
ommendations and guidelines for the safe use of diagnostic ultra-
sound in medicine. Ultrasound in Medicine & Biology 26, num. 3
(Mars 2000): 355–366.

[11] J. A. Jensen. Estimation of Blood Velocities using Ultrasound.
Campbridge University Press, 1996.

[12] F A Duck, G ter Haar. The Safe Use of Ultrasound in Medical
Diagnosis. Brittish Institute of Radiology, London, UK, 2000.

51

[13] Jonathan Ophir, P.A. Narayana. Effect of Half-Wavelength Mem-
branes on the Axial Resolution of Real-Time Ultrasonic Scanners.
Department of Radiology, The University of Texas Medical School,
Houston, Texas, June 1983.

[14] Roy C. Preston. Output Measurements for Medical Ultrasound.
Springer-Verlag, Berlin, 1991

[15] Kathryn R. Nightingale, Phyllis J. Kornguth and Gregg E. Tra-
hey. The Use of Acoustic Streaming in Breast Lesion Diagnosis: A
Clinical Study. Ultrasound in Med. & Biol., Vol. 25, No. 1, USA
1998

[16] D. Young, R. Morton, J. Bartley. Therapeutic ultrasound as treat-
ment for chronic rhinosinusitis: Preliminary observations. J Laryg-
nol Otol 2010;124:495-499.

52

A Snotalyzer User Guide

Turn on the Sonix RP machine. Once in Windows XP, start the Ultra-
sonix Exam Software. Make sure the Exam Software from Ultrasonix
is running in Research Mode (the Research Mode button should be Or-
ange on the console). If Snotalyzer is running on the Sonix RP itself,
minimize the Ultrasonix Exam Software. This step is important,
otherwise the Exam software will capture the mouse pointer during the
Doppler Measurements.

Start Snotalyzer from the shortcut on the desktop or from the exe-
cutable file in the Snotalyzer folder.

Figure 23: Startup. Press B-Mode button to connect. If fails, open
settings window from the drop down menu.

To connect: Press B-Mode button. If this fails, make sure the Ultrasonix
program is running in Research mode, and that the IP is set correctly
by opening the ’Settings’ window.

53

Figure 24: The ’Settings’ options that appears when ’Settings’ is pressed
from the drop down menu.

Upon connecting, a pop-up appears where patient info should be en-
tered. The ’First Name’, ’Last Name’ and ’Date’ from this entry is used
as the patient file name. These files are saved in the folder ’Patient
Data’ inside the ’Snotalyzer’ directory.

Figure 25: Pop-Up Patient Info. Enter the patient information here.

54

Figure 26: The B-Mode is running. Now is the time to use the Time
Gain Control (TGC) sliders to improve the view of the back wall echo.
Once satisfied, press-and-release diagonally over the area of interest.

B-Mode: Press-and-release diagonally over the back wall echo. The
selection made is shown in the smaller display below. If unsatisfied,
simply press-and-release a new one.

Once selection is made: Keep the transducer completely still until
the optimum frequency is found.

Optimum Frequency Found: If satisfied with the graph showing the
amplitudes of the returning echoes from all frequencies, press Doppler.

Doppler: Keep the transducer still and let it measure the acoustic
streaming induced. Default time: 1+10 seconds. The first second is a
simple calibration for the Sonix RP machine, the 10 following are the
time of measure.

Pop-Up Measure Again: Press ’Yes’ and go through another Doppler
measurement. ’No’ to finish. If finished: The program goes back into
B-Mode.

55

Figure 27: The Doppler runs for 10 seconds. After this time, the highest
velocity found is displayed and written to the patient file.

Figure 28: The pop-up that appears when the Doppler measurement is
finished.

56

To switch to another Patient, press the New Patient button from
the drop down Menu.

Figure 29: New Patient from the drop-down Menu.

If the program crashes for any reason, restart Snotalyzer and the
Ultrasonix Exam Software.

Patient information files are saved in Snotalyzer/Patient Data.

57

B Source Code

B.1 main.cpp

#include <QtGui/ QApplication>
#include ”mainwindow . h”

int main (int argc , char ∗argv [])
{

QApplication a (argc , argv) ;
MainWindow w;
w. show () ;

return a . exec () ;
}

B.2 mainwindow.h

#ifndef MAINWINDOW H
#define MAINWINDOW H

#include <QMainWindow>
#include ” keypresswidget . h”
#include ” worker . h”
#include <QtGui>
#include <QtCore>
//#inc l ude <QTimer>
#include ” qcustomplot . h”
#include ” p a t i e n t d i a l o g . h”
#include ” s e t t i n g s d i a l o g . h”

namespace Ui {
class MainWindow ;
}

class MainWindow : public QMainWindow
{

Q OBJECT

public :
expl ic it MainWindow(QWidget ∗parent = 0) ;
˜MainWindow () ;
stat ic void s e t S e l e c t i o n 1 (int x , int y) ;
stat ic void s e t S e l e c t i o n 2 (int x , int y) ;
void drawGraph (QVector<double> y , QVector<double> x , int

s t a r t , int s t e p s i z e , int stop , int maxVal) ;

58

public s l o t s :
void measureAgain (double v e l o c i t y) ;

private s l o t s :
// vo id on Di s connec t c l i c k ed () ;
void on Connect c l i cked () ;
void on Dopp l e r c l i ck ed () ;
void updateBDisplay (QImage∗ ptr) ;
void updateSpect (QImage∗ ptr , double v e l o c i t y) ;

void on ac t i onNew Pat i en t t r i gge r ed () ;

void o n a c t i o n E x i t t r i g g e r e d () ;

void on ac t i onAbout t r i gge r ed () ;

void o n a c t i o n S e t t i n g s t r i g g e r e d () ;

private :
// vo id on p rp s l i d e r s l i d e rMoved (i n t p o s i t i o n) ;
bool MainWindow : : f i l e W r i t e (QVector<double> plotValues ,

QVector<double> f r e q u e n c i e s , int s ta r t , int s t epS i ze ,
int endVal , int maxVal , int bestFreq) ;

void updateTGC () ;
Ui : : MainWindow ∗ ui ;
QPixmap ∗ image ;
stat ic keyPressWidget∗ bDisplay ;
stat ic keyPressWidget∗ s e l e c t e d ;
QString ge t da t e () ;
QString FirstName ;
QString LastName ;
QString PNumber ;
QString o t h e r I n f o ;

// s t a t i c S e t t i n g sD i a l o g se tDiag ;
// s t a t i c Pa t i en tDia log pDialog ;

} ;

#endif // MAINWINDOWH

B.3 mainwindow.cpp

#include ”mainwindow . h”
#include ”ui mainwindow . h”
#include ” ushandler . h”

59

#include <cmath>
#include <c s t d l i b >
#include <time . h>
/∗
#inc lude <QDebug>
#inc lude <QDesktopWidget>
#inc lude <QMessageBox>
#inc lude <QDateTime>
#inc lude <QString>
#inc lude <QFile>
#inc lude <QCoreApplication>
#inc lude <QTextStream>
∗/

#define MAX DATE 12
//USHandler hand ler ;
USHandler∗ hptr ;

keyPressWidget∗ MainWindow : : bDisplay ;
keyPressWidget∗ MainWindow : : s e l e c t e d ;
MainWindow∗ mptr ;
Worker ∗wThread ;

//Dia logs

//Coordinates f o r s e l e c t e d to view area
int x1 , x2 , y11 , y2 ;
bool se lect ionMade ;
bool wr i t t en ;

MainWindow : : MainWindow(QWidget ∗parent) :
QMainWindow(parent) ,
u i (new Ui : : MainWindow)

{
/∗ Se t t i n g up the GUI and c r ea t i n g o ther c l a s s o b j e c t s
∗/

mptr = this ;
ui−>setupUi (mptr) ;
mptr−>removeToolBar (ui−>mainToolBar) ;
mptr−>setWindowTitle (” Snota lyze r ”) ;
mptr−>ui−>l i n e−>s e t V i s i b l e (fa l se) ;
hptr= new USHandler () ;

wr i t t en=fa l se ;

60

mptr−>ui−>customPlot−>s e t V i s i b l e (fa l se) ;
mptr−>ui−>echoSumLabel−>s e t V i s i b l e (fa l se) ;

se l ect ionMade=fa l se ;

MainWindow : : bDisplay = new keyPressWidget (bDisplay) ;
MainWindow : : s e l e c t e d = new keyPressWidget (s e l e c t e d) ;

ui−>vlayout−>addWidget (bDisplay) ;
ui−>MaxValText−>setText (”Not Connected . ”) ;
ui−>keyP−>addWidget (s e l e c t e d) ;

QImage frame (” : / images / d i s connected . jpg ”) ;
bDisplay−>setPixmap (QPixmap : : fromImage (frame)) ;
bDisplay−>setEnabled (true) ;

wThread = new Worker (mptr , hptr) ;

QObject : : connect (hptr ,SIGNAL(newBFrame ()) , wThread ,SLOT(
BWork())) ;

//QObject : : connect (hptr ,SIGNAL(newBDisplay (QImage)) ,mptr
,SLOT(updateBDisplay (QImage))) ;

QObject : : connect (hptr ,SIGNAL(newBDisplay (QImage∗)) , mptr ,
SLOT(updateBDisplay (QImage∗))) ;

QObject : : connect (hptr ,SIGNAL(newDoppler ()) , wThread ,SLOT(
dopplerWork ())) ;

//QObject : : connect (hptr ,SIGNAL(newSpect (QImage , doub le))
,mptr ,SLOT(updateSpect (QImage , doub le))) ;

QObject : : connect (hptr ,SIGNAL(newSpect (QImage∗ , double)) ,
mptr ,SLOT(updateSpect (QImage∗ , double))) ;

QObject : : connect (hptr ,SIGNAL(measureFinished (double)) ,
mptr ,SLOT(measureAgain (double))) ;

FirstName = ”FirstName” ;
LastName=”LastName” ;

//MainWindow : : se tDiag . setModal (t rue) ;
// MainWindow : : pDia log . setModal (t rue) ;
//MainWindow : : pDia log . setWindowTit le (” Pat i en t In fo ”) ;

}

MainWindow : : ˜ MainWindow ()
{

61

hptr−>Disconnect () ;
delete hptr ;
delete s e l e c t e d ;
delete bDisplay ;
delete wThread ;
delete ui ;

}

/∗ Function s e t s up the connect ion to the SonixRP ∗/
void MainWindow : : on Connect c l i cked ()
{

i f (hptr−>Connect ())
{

mptr−>ui−>MaxValText−>setText (”Connected . ”) ;
i f (hptr−>BMode()) {

mptr−>s e l e c t e d−>s e t V i s i b l e (fa l se) ;
mptr−>ui−>MaxValText−>setText (”Connected . P lease

c l i c k−drag−and−r e l e a s e the back−wal l echo . ”)
;

ui−>l i n e−>s e t V i s i b l e (fa l se) ;
se l ect ionMade=fa l se ;
return ;

}
}
mptr−>ui−>MaxValText−>setText (” Fa i l ed to connect . ”) ;

}

/∗ Switch to PWD ∗/
void MainWindow : : on Dopp l e r c l i ck ed ()
{

hptr−>Doppler () ;
ui−>l i n e−>s e t V i s i b l e (true) ;
mptr−>s e l e c t e d−>s e t V i s i b l e (true) ;
mptr−>ui−>MaxValText−>setText (”PW Doppler . ”) ;

}

/∗ Update the images on QLabels
and d i s p l a y f requency progre s s on a
QTextEdit ∗/

void MainWindow : : updateBDisplay (QImage ∗ptr)
{

i f (se l ect ionMade) {// v i s a s e l e c t e d area ocksa
s e l e c t e d−>setPixmap (QPixmap : : fromImage (hptr−>

s e l e c t edArea)) ;
i f (hptr−>bestFound) {

i f (! wr i t t en) {
ui−>MaxValText−>setText (” Best Frequency f o r

62

the area : ” + QString : : number (hptr−>
getbestFreq ())) ;

mptr−>drawGraph (hptr−>getSums () , hptr−>
getFreqs () , hptr−>getStar tFreq () , hptr−>
ge tS t epS i z e () , hptr−>getMaxFreq () , hptr−>
getMaxVal ()) ;

wr i t t en=true ;
}

} else {
ui−>MaxValText−>setText (” Ca l cu l a t ing optimum

frequency .\ nCurrent ly at : ”+QString : : number (
hptr−>getCurrFreq ()) + ”\nBest Frequency so
f a r : ” + QString : : number (hptr−>getbestFreq ())
) ;

wr i t t en=fa l se ;
}
//}

}
mptr−>updateTGC () ;

// bDisp lay−>setPixmap (QPixmap : : fromImage (frame)) ;
bDisplay−>setPixmap (QPixmap : : fromImage (∗ (ptr))) ;

}

/∗ Update s p e c t r a l image on QLabel ∗/
void MainWindow : : updateSpect (QImage ∗ptr , double v e l o c i t y)
{

s e l e c t e d−>setPixmap (QPixmap : : fromImage (∗ (ptr))) ;
ui−>MaxValText−>setText (” Ve loc i ty : ” + QString : : number (

v e l o c i t y)) ;
}

/∗ Function to s e t one corner o f the r e c t angu l a r area ∗/
void MainWindow : : s e t S e l e c t i o n 1 (int x , int y) {

x1=x ;
y11=y ;

x2=x1+1;
y2=y11+1;

}

/∗ Function to s e t the o ther corner o f the r e c t angu l a r area ,
Also sw i t che s coords i f needed (Cl ick , draw l e f t or Cl ick

, draw r i g h t) ∗/
void MainWindow : : s e t S e l e c t i o n 2 (int x , int y) {

i f (x>x1) {x2=x ;} else {x2=x1 ; x1=x ;}
i f (y>y11) {y2=y ;} else {y2=y11 ; y11=y ;}

63

se lect ionMade=true ;
hptr−>s e tSe lArea (y11 , y2 , x1 , x2) ;

p r i n t f (”X1 : %d , Y1 : %d , X2 : %d , Y2 : %d” , x1 , y11 , x2 , y2
) ;

f f l u s h (stdout) ;

mptr−>ui−>MaxValText−>setText (”Area Se l ec ted ,
c a l c u l a t i n g optimum frequency . ”) ;

mptr−>s e l e c t e d−>s e t V i s i b l e (true) ;
}

// Set the Time Gain Contro l
void MainWindow : : updateTGC () {

hptr−>updateTGC(ui−>hs1−>value () ,
ui−>hs2−>value () ,
ui−>hs3−>value () ,
ui−>hs4−>value () ,
ui−>hs5−>value () ,
ui−>hs6−>value () ,
ui−>hs7−>value () ,
ui−>hs8−>value ()) ;

}

/∗ After the f requency scan i s complete , t h i s f unc t i on i s
run to draw a graph o f the normal ized f requency response

o f the s e l e c t e d area ∗/
void MainWindow : : drawGraph (QVector<double> y , QVector<double

> x , int s ta r t , int s t e p s i z e , int stop , int maxVal)
{

mptr−>ui−>customPlot−>s e t V i s i b l e (true) ;
mptr−>ui−>echoSumLabel−>s e t V i s i b l e (true) ;
int s=(stop−s t a r t) / s t e p s i z e −1;
p r i n t f (” S i z e : %d . y1 : %f . y2 : %f . Maxval : %d” , s , y [4] ,

y [8] , maxVal) ;
f f l u s h (stdout) ;
// i n i t i a l i z e wi th e n t r i e s 0 . . 100

s=s izeof (x) / s izeof (x [0]) ;
for (int i =0; i <21; ++i)
{

x [i] = x [i] /1000000 ;
y [i]=y [i] / maxVal ; // take away the f i r s t number and

count up to the second l a s t
}

64

// crea t e graph and as s i gn data to i t :
mptr−>ui−>customPlot−>addGraph () ;
p r i n t f (”y1 : %f , y2 : %f , x1 : %f , x2 : %f ” , y [1] , y [2] , x

[1] , x [2]) ;
f f l u s h (stdout) ;
// QCPDataMap : :
mptr−>ui−>customPlot−>graph (0)−>setData (x , y) ;
// g i v e the ax i s some l a b e l s :
mptr−>ui−>customPlot−>xAxis−>s e tLabe l (” Frequenc ie s in

MHz”) ;
mptr−>ui−>customPlot−>yAxis−>s e tLabe l (”Amplitude”) ;
// s e t a x i s ranges , so we see a l l data :
mptr−>ui−>customPlot−>xAxis−>setRange (4 , 10) ;
mptr−>ui−>customPlot−>yAxis−>setRange (0 , 1 . 0 1) ; //maxVal

+100) ;

mptr−>ui−>customPlot−>r e p l o t () ;

f i l e W r i t e (y , x , s t a r t , s t e p s i z e , stop , maxVal , hptr−>
getbestFreq ()) ;

}

/∗ Funciton to save Pat i en t data to d i s c ∗/
bool MainWindow : : f i l e W r i t e (QVector<double> plotValues ,

QVector<double> f r e q u e n c i e s , int s t a r t , int s t epS i ze , int
endVal , int maxVal , int bestFreq) {
t ime t rawtime ;

time (&rawtime) ;
// p r i n t f (”The curren t l o c a l time i s : %s ” , ct ime (&

rawtime)) ;

// f f l u s h (s t dou t) ;
i f (FirstName==”FirstName”) {

mptr−>on ac t i onNew Pat i en t t r i gge r ed () ;
}
//QString f i lnamn=ctime(&rawtime) ;
i f (! QDir (” Pat ient Data”) . e x i s t s ()) {

QDir () . mkdir (” Pat ient Data”) ;
}
QFile f i l e (” Pat ient Data/”+FirstName + ” ”+ LastName +”

”+PNumber+” a t ” +ge t da t e () + ” . txt ”) ;
f i l e . open (QIODevice : : Append | QIODevice : : Text) ;
QTextStream out(& f i l e) ;
out <<”\n

//
”<< ” \nName : ” << FirstName <<” , ”<< LastName <<” .

65

Id number : ”<<PNumber<<” .\ nOther i n f o : ”<<other In fo<<
” .\n The date and time i s : ”<< ctime(&rawtime) <<
” .

”<<”\nFrequenc ies Used : \n” ;
for (int k=0;k<f r e q u e n c i e s . s i z e () ; k++)
{

out << f r e q u e n c i e s [k]<<” , ” ; //Outputs array to the
t e x t f i l e

}
out <<” .\ n I n t e n s i t y va lue s : \n” ;
for (int k=0;k<plotValues . s i z e () ; k++)
{

out << plotValues [k]<<” , ” ; //Outputs array to the
t e x t f i l e

}
out << ” .\n End o f p lotVa lues . MaxVal : ”<<maxVal<<” .

Best Frequency was : ”<<bestFreq<< ”Hz . \n
. ” ;

f i l e . c l o s e () ;
return true ;

}

// Function to ge t the date o f examination
QString MainWindow : : g e t da t e ()
{

t ime t now ;
char the date [MAX DATE] ;

the date [0] = ’ \0 ’ ;

now = time (NULL) ;

i f (now != −1)
{

s t r f t i m e (the date , MAX DATE, ”%d %m %Y” , gmtime(&now
)) ;

} else {
return ”NoDate” ;

}
return QString (the date) ;

}

/∗ Function t ha t a l l ow s repea ted measurements in Doppler
mode ∗/

void MainWindow : : measureAgain (double v e l o c i t y) {
QMessageBox again ;
again . setText (”Would you l i k e to measure again ? Previous

66

v e l o c i t y measured was : ” + QString : : number (v e l o c i t y)
+”mm/ s . ”) ;

i f (! QDir (” Pat ient Data”) . e x i s t s ()) {
QDir () . mkdir (” Pat ient Data”) ;

}
QFile f i l e (” Pat ient Data/”+FirstName + ” ”+ LastName +”

”+PNumber+” a t ” +ge t da t e () + ” . txt ”) ;
f i l e . open (QIODevice : : Append | QIODevice : : Text) ;
QTextStream out(& f i l e) ;
out<<”\ nVeloc i ty found : ” << v e l o c i t y<<” . ” ;
f i l e . c l o s e () ;

again . setStandardButtons (QMessageBox : : Yes | QMessageBox
: : No) ;

i f (again . exec ()==QMessageBox : : Yes) { //Yes
hptr−>Doppler () ;

} else {//No, go back to B−Mode
mptr−>on Connect c l i cked () ;

}
}

/∗ Set up the Pat i en tDia log and pop up the Dia log to
r e t r e i v e p a t i e n t data ∗/

void MainWindow : : on ac t i onNew Pat i en t t r i gge r ed ()
{

Pat ientDia log pDialog ;
pDialog . setModal (true) ;
pDialog . setWindowTitle (” Pat ient In f o ”) ;
i f (pDialog . exec ()==QDialog : : Accepted) {

FirstName = pDialog . getItem (0) ;
LastName=pDialog . getItem (1) ;
PNumber =pDialog . getItem (2) ;
o t h e r I n f o=pDialog . getItem (3) ;

}
}

//Quit
void MainWindow : : o n a c t i o n E x i t t r i g g e r e d ()
{

// hptr−>Disconnect () ;
e x i t (0) ;

}

void MainWindow : : on ac t i onAbout t r i gge r ed ()
{

QMessageBox about ;

67

about . setText (” This program was wr i t t en by Danie l
Andersson & Peter Zanden . For use on s i n u s i t i s
p a t i e n t s . I t was done by reque s t from Tomas Jansson
and P e r n i l l a Sahl s t rand Johnson”) ;

about . exec () ;
}

/∗ Pop up the Se t t i ng sD ia l o g , a l l ow s change o f IP , pu l s e
f requency and measurement time ∗/

void MainWindow : : o n a c t i o n S e t t i n g s t r i g g e r e d ()
{

Se t t i ng s D ia l og setDiag ;
setDiag . setModal (true) ;
i f (setDiag . exec ()==QDialog : : Accepted) {

QString address=setDiag . getIP () ;
hptr−>se t IP (address) ;
hptr−>setPRP (setDiag . getPRP ()) ;
hptr−>setTime (setDiag . getTime ()) ;

}
}

B.4 mainwindow.ui

<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<ui v e r s i on=” 4 .0 ”>
<class>MainWindow</class>
<widget class=”QMainWindow” name=”MainWindow”>
<property name=”geometry”>
<rect>
<x>0</x>
<y>0</y>
<width>947</width>
<height >859</height>

</rect>
</property>
<property name=” windowTitle ”>
<s t r i ng>MainWindow</s t r i ng>

</property>
<widget class=”QWidget” name=” centra lWidget ”>
<widget class=”QWidget” name=” vert ica lLayoutWidget ”>
<property name=”geometry”>
<rect>
<x>300</x>
<y>0</y>
<width>641</width>
<height >481</height>

</rect>
</property>

68

<l ayout class=”QVBoxLayout” name=” vlayout ”>
<property name=” spac ing ”>
<number>6</number>

</property>
<property name=” s i z e C o n s t r a i n t ”>
<enum>QLayout : : SetFixedSize </enum>

</property>
</layout>

</widget>
<widget class=”QWidget” name=” vert i ca lLayoutWidget 2 ”>
<property name=”geometry”>
<rect>
<x>100</x>
<y>10</y>
<width>81</width>
<height >71</height>

</rect>
</property>
<l ayout class=”QVBoxLayout” name=” ve r t i c a lLayout ”>
<item>
<widget class=”QPushButton” name=”Connect”>
<property name=” text ”>
<s t r i ng>B−Mode</s t r i ng>

</property>
</widget>

</item>
<item>
<widget class=”QPushButton” name=” Doppler ”>
<property name=” text ”>
<s t r i ng>Doppler</s t r i ng>

</property>
</widget>

</item>
</layout>

</widget>
<widget class=”QWidget” name=” vert i ca lLayoutWidget 4 ”>
<property name=”geometry”>
<rect>
<x>300</x>
<y>490</y>
<width>641</width>
<height >301</height>

</rect>
</property>
<l ayout class=”QVBoxLayout” name=”keyP”/>

</widget>
<widget class=”QTextEdit” name=”MaxValText”>

69

<property name=”geometry”>
<rect>
<x>30</x>
<y>450</y>
<width>221</width>
<height >91</height>

</rect>
</property>

</widget>
<widget class=”QGroupBox” name=”groupBox”>
<property name=”geometry”>
<rect>
<x>50</x>
<y>100</y>
<width>191</width>
<height >301</height>

</rect>
</property>
<property name=” t i t l e ”>
<s t r i ng>TGC</s t r i ng>

</property>
<property name=” al ignment ”>
<set>Qt : : AlignCenter</set>

</property>
<widget class=”QWidget” name=” vert i ca lLayoutWidget 3 ”>
<property name=”geometry”>
<rect>
<x>9</x>
<y>20</y>
<width>171</width>
<height >281</height>

</rect>
</property>
<l ayout class=”QVBoxLayout” name=” v e r t i c a l L a y o u t 2 ”>
<item>
<widget class=” QSl ider ” name=”hs1”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>

70

<item>
<widget class=” QSl ider ” name=”hs2”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs3”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs4”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs5”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>

71

<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs6”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs7”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
<item>
<widget class=” QSl ider ” name=”hs8”>
<property name=”maximum”>
<number>255</number>

</property>
<property name=” value ”>
<number>127</number>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>

</item>
</layout>

</widget>
</widget>

72

<widget class=”QLabel” name=” l a b e l 3 ”>
<property name=”geometry”>
<rect>
<x>190</x>
<y>20</y>
<width>111</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>&l t ;− Press this to s ta r t </s t r i ng>

</property>
</widget>
<widget class=” Line ” name=” l i n e ”>
<property name=”geometry”>
<rect>
<x>290</x>
<y>630</y>
<width>651</width>
<height >16</height>

</rect>
</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
</widget>
<widget class=”QCustomPlot” name=” customPlot ” nat ive=”

true ”>
<property name=”geometry”>
<rect>
<x>0</x>
<y>560</y>
<width>281</width>
<height >221</height>

</rect>
</property>

</widget>
<widget class=”QLabel” name=”echoSumLabel”>
<property name=”geometry”>
<rect>
<x>10</x>
<y>790</y>
<width>251</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>

73

<s t r i ng>Amplitude o f echoes for the d i f f e r e n t
f r e q u e n c i e s </s t r i ng>

</property>
</widget>
<zorder>groupBox</zorder>
<zorder>vert ica lLayoutWidget </zorder>
<zorder>vert ica lLayoutWidget 2 </zorder>
<zorder>vert ica lLayoutWidget 4 </zorder>
<zorder>MaxValText</zorder>
<zorder>l a b e l 3 </zorder>
<zorder>l i n e </zorder>
<zorder>customPlot</zorder>
<zorder>echoSumLabel</zorder>

</widget>
<widget class=”QMenuBar” name=”menuBar”>
<property name=”geometry”>
<rect>
<x>0</x>
<y>0</y>
<width>947</width>
<height >21</height>

</rect>
</property>
<widget class=”QMenu” name=”menuMenu”>
<property name=” t i t l e ”>
<s t r i ng>Menu</s t r i ng>

</property>
<addact ion name=” act ionNew Patient ”/>
<addact ion name=” separa to r ”/>
<addact ion name=” ac t i onEx i t ”/>

</widget>
<widget class=”QMenu” name=” menuSettings ”>
<property name=” t i t l e ”>
<s t r i ng>Set t ings </s t r i ng>

</property>
<addact ion name=” a c t i o n S e t t i n g s ”/>
<addact ion name=” separa to r ”/>
<addact ion name=” actionAbout ”/>

</widget>
<addact ion name=”menuMenu”/>
<addact ion name=” menuSettings ”/>

</widget>
<widget class=”QToolBar” name=”mainToolBar”>
<a t t r i b u t e name=” toolBarArea ”>
<enum>TopToolBarArea</enum>

</a t t r i bu t e>
<a t t r i b u t e name=” toolBarBreak ”>

74

<bool>false</bool>
</a t t r i bu t e>

</widget>
<widget class=”QStatusBar” name=” statusBar ”/>
<ac t i on name=” act ionNew Patient ”>
<property name=” text ”>
<s t r i ng>New Patient</s t r i ng>

</property>
</act ion>
<ac t i on name=” ac t i onEx i t ”>
<property name=” text ”>
<s t r i ng>Exit</s t r i ng>

</property>
</act ion>
<ac t i on name=” a c t i o n S e t t i n g s ”>
<property name=” text ”>
<s t r i ng>Set t ings </s t r i ng>

</property>
</act ion>
<ac t i on name=” actionAbout ”>
<property name=” text ”>
<s t r i ng>About</s t r i ng>

</property>
</act ion>

</widget>
< l a y o u t d e f a u l t spac ing=”6” margin=”11”/>
<customwidgets>
<customwidget>
<class>QCustomPlot</class>
<extends>QWidget</extends>
<header > . ./ qcustomplot . h</header>
<conta iner >1</conta iner>

</customwidget>
</customwidgets>
<r e s o u r c e s/>
<connec t i ons/>

</ui>

B.5 ushandler.h

#ifndef USHANDLER H
#define USHANDLER H
#include ” u l t e r i u s . h”
#include <s t d i o . h>
#include <QtCore>
#include <QtGui>
#include <QTimer>
#include <QWaitCondition>

75

class USHandler : public QObject
{

Q OBJECT

public :
USHandler () ;
˜USHandler () ;

stat ic bool Connect () ;
stat ic void Disconnect () ;
stat ic bool BMode() ;
stat ic void s e tSe lArea (int selTop , int se lBot , int

s e l L e f t , int s e lR igh t) ;
stat ic bool i s S e l () ;
stat ic void updateBFrame () ;
stat ic void Doppler () ;
stat ic void updateDoppler () ;
stat ic QImage se l e c t edArea ;
void s e t S e l e c t e d () ;
void updateTGC(int tgc1 , int tgc2 , int tgc3 , int tgc4 , int

tgc5 , int tgc6 , int tgc7 , int tgc8) ;
void changePRP(int prpPos) ;

QVector<double> getSums () ;
QVector<double> getFreqs () ;
int getStar tFreq () ;
int getMaxFreq () ;
int ge tS t epS i z e () ;
int getMaxVal () ;
int getCurrFreq () ;

double ge tVe l o c i t y () ;
int getbestFreq () ;

stat ic bool bestFound ;

stat ic void se t IP (QString address) ;
void setPRP (int prp) ;
void setTime (int time) ;

s i g n a l s :
void newBFrame () ;
void newDoppler () ;

76

void newBDisplay (QImage∗ ptr) ;
void newSpect (QImage∗ ptr , double v e l o c i t y) ;
void measureFinished (double v e l o c i t y) ;

private :
stat ic u l t e r i u s u l t ;
stat ic uchar∗ b u f f e r ;
stat ic uchar∗ buf f e rDopp le r ;
// s t a t i c QMutex∗ mutex ;
stat ic void f reqChanger (int se lect ionMax) ;
stat ic double adjustPRP () ;

stat ic QVector<double> se l ec t ionSums ;
// s t a t i c boo l l o c a l h o s t ;

stat ic bool processBFrame (void∗ data , int type , int s i z e
, bool fromCine , int frameNo) ;

stat ic bool processDoppler (void∗ data , int type , int
s i z e , bool fromCine , int frameNo) ;

private s l o t s :
void stopDoppler () ;

} ;

#endif // USHANDLER H

B.6 ushandler.cpp

#include ” ushandler . h”

uchar∗ USHandler : : b u f f e r ;
uchar∗ USHandler : : bu f f e rDopp le r ;
QVector<double> USHandler : : s e l ec t ionSums ;

QImage frame ;
QImage∗ imPtr= &frame ;

u l t e r i u s USHandler : : u l t ;
stat ic int imSize= 640∗480∗4; //Dunno what the a c t ua l

maxsize i s supposed to be . . .
QMutex mutex ;
stat ic USHandler∗ usptr ;
uDataDesc desc ;
QVector<QRgb> v (256) ;

77

QImage USHandler : : s e l e c t edArea ;
bool USHandler : : bestFound ;

// Globa l image in f o
int wid=632;
int he i = 228 ;
int sumSpect [1 0 0 0] ;
int b a s e l i n e ;
// i n t v e l o c i t y ;

//

//Frequency and v e l o c i t y v a r i a b l e s
double maxVal ;
int bestFreq ;
int maxFreq ;
int currFreq ;
int s ta r tFreq ;
int currMax ;
int s t e p S i z e ;
int spectSumCount ;
double maxVelocity ;
int maxSum;
int pulseRepeat ;

// Steps : 4−4.2 4.3−4.7
4.8−5.3

5.4−6.1
6.2−7.2

7.3−8.8
8.9−10

int f r eqVect [] = {4000000 , 4150000 , 4290000 , 4400000 ,
4500000 , 4790000 , 4800000 , 5200000 , 5390000 , 5400000 ,
5700000 , 6190000 , 6200000 , 6500000 , 7200000 , 7300000 ,
8000000 , 8700000 , 9100000 , 9500000 , 10000000} ;

int freqCount ;
int f r eqVec tS i z e ;

uTGC tgc ;
int PRPsetting ;
int measurementTime ;

//Coordinates f o r s e l e c t e d to view area
int xx1 , xx2 , yy11 , yy2 ;
bool selMade ;

//Remote & l o c a l h o s t suppor t

78

QString ipAddr ;
bool l o c a l h o s t ;

USHandler : : USHandler ()
{//Constructor . I n i t i a t e s v a r i a b l e s and s e t s t h e i r va l u e s .

//A po in t e r to t h i s i s needed in some s t a t i c f unc t i on s .
usptr=this ;

// S t a t i c b u f f e r on ly needs to be i n i t i a l i z e d once .
USHandler : : b u f f e r = (uchar ∗) mal loc (imSize ∗ s izeof (

uchar)) ;

// Se l e c t i o n v a r i a b l e s i n i t i a l i z e d .
selMade=fa l se ;
xx1=10;xx2=15;yy11=5;yy2=10;
maxVal=0;

// Frequencies are in Hz .
maxFreq=10000000;
s ta r tFreq =4000000;
// bes tFreq=s t a r tFr e q ;
freqCount =0;
f r eqVec tS i z e=s izeof (f reqVect) / s izeof (f reqVect [0]) ;
bestFreq=freqVect [0] ;
s t e p S i z e =1000000;
// currFreq=s ta r tFr e q ;
currFreq=freqVect [0] ;
PRPsetting =400;
measurementTime = 10 ;

// I n i t i a l i z i n g the vec to r o f doub l e s which w i l l be used
to p l o t the ampl i tudes o f the d i f f e r e n t echoes .

// se lec t ionSums= QVector<double >((maxFreq−s t a r tFr e q)/
s t e pS i z e) ;

se l ec t ionSums= QVector<double>(f r eqVec tS i z e) ;
// p r i n t f (” s i z e : %d .\n” , s i z e o f (f r eqVec t) / s i z e o f (

f r eqVec t [0])) ;
// f f l u s h (s t dou t) ;
bestFound=fa l se ;
spectSumCount=0;

//For remote och l o c a l use
ipAddr=” 1 2 7 . 0 . 0 . 1 ” ; // d e f a u l t l o c a l h o s t
l o c a l h o s t=true ;

79

//Creat ing an RGB vec to r f o r dopp l e r usage .
for (int i = 0 ; i < 256 ; ++i)
{

v [i] = qRgb(i , i , i) ;
}

}

USHandler : : ˜ USHandler ()
{ //Deconstructor o f USHandler .

// i f (u l t . i sConnected ()){ u l t . d i s connec t () ;}
f r e e (b u f f e r) ;

f r e e (bu f f e rDopp le r) ;
// i f (se lec tedSums){ d e l e t e se l ec t ionSums ;

/∗ i f (sumSpect){ d e l e t e [] sumSpect ;}
i f (sumSpect){ d e l e t e sumSpect ;}

i f (b u f f e r){ d e l e t e b u f f e r ;}
i f (bu f f e rDopp l e r){ d e l e t e bu f f e rDopp l e r ;} ∗/

}

bool USHandler : : Connect ()
{

/∗Connect f u n c t i o n a l i t y
I f one i s a l r eady connected , noth ing needs to be done .
The probe i s s e t to the f i r s t s l o t i f the connect in i s

s u c c e s s f u l .
∗/

// boo lean f o r the c a l l b a c k f u n c t i o n s
i f (! QString : : compare (ipAddr , ” 1 2 7 . 0 . 0 . 1 ”)) {

l o c a l h o s t=true ;
} else {

l o c a l h o s t=fa l se ;
}

//QString to ip
QByteArray bArr = ipAddr . toLoca l8Bi t () ;
const char ∗ cStr = bArr . data () ;

i f (u l t . i sConnected ()) {return true ;}
// i f (u l t . connect (”130 .235 .53 .125”))
i f (u l t . connect (cStr))
{

80

u l t . s e l e c tProbe (0) ;
return true ;

}
else

return fa l se ;
}

void USHandler : : Disconnect ()
{// I f one s imply wants to d i s connec t .

u l t . d i s connec t () ;
}

bool USHandler : : BMode()
{

/∗ S t a r t i n g in B−mode (0) .
Ca l l back func t i on needs to be s e t .
We know the depth i s about 6 cm, and so 60 mm.
S ta r t wi th the b e s t f requency found , t h i s i s the same

as the s t a r t i n g one
i f no c a l c u l a t i o n has been made .
∗/

mutex . l o ck () ;
u l t . se lectMode (0) ;
u l t . s e tCa l lback (&USHandler : : processBFrame) ;
u l t . setDataToAcquire (udtBPost32) ;
u l t . setParamValue (”b−depth” ,60) ;
u l t . setParamValue (”b−f r e q ” , bestFreq) ;
mutex . unlock () ;
return true ;

}

bool USHandler : : processBFrame (void∗ data , int type , int s i z e
, bool fromCine , int frameNo) {
/∗ This func t i on i s be ing c a l l e d as a c a l l b a c k . Each

time the Sonix RP has crea t ed a new frame ,
t h i s f unc t i on i s c a l l e d .

I f the program runs as l o c a l host , we need to s k i p
frames , o the rw i s e the program can ’ t keep up .

Copys the data from the Sonix RP to ’ b u f f e r ’ and emits
a s i g n a l t h a t a new frame has been r e c i e v ed .

∗/
i f (data !=NULL && l o c a l h o s t && frameNo % 3==0 | | data !=

NULL && l o c a l h o s t==fa l se) {
mutex . l o ck () ;
memcpy(bu f f e r , data , s i z e) ;

81

mutex . unlock () ;

emit usptr−>newBFrame () ;
return true ;

} else {
return fa l se ;

}
}

bool USHandler : : processDoppler (void∗ data , int type , int
s i z e , bool fromCine , int frameNo) {
/∗ F i r s t determining how one i s connected to the machine .

I f the program i s run at l o c a l h o s t , images are be ing
send to rap id l y ,

hence the % as modulo 3 . So every t h i r d image i s used .
∗/

i f (data !=NULL && l o c a l h o s t && frameNo % 3==0 | | data !=
NULL && l o c a l h o s t==fa l se) {
mutex . l o ck () ;
memcpy(buf ferDoppler , data , s i z e) ;
mutex . unlock () ;

emit usptr−>newDoppler () ;
return true ;

} else {
return fa l se ;

}

}

void USHandler : : updateBFrame ()
{

/∗ This func t i on updates the image to t ha t which has
been sen t from the Ul t raSonix RP

A de s c r i p t o r i s used in order to determine the
c h a r a c t e r i s t i c s o f the image r e c i e v ed .

A temporary image i s c rea t ed and ’ . b i t s () ’ f o r c e s a
deep copy .

Mutex i s used to prevent the image from be ing changed
wh i l e working .

∗/
mutex . l o ck () ;
u l t . getDataDescr iptor (udtBPost32 , desc) ;

{

82

QImage tmpFrame(bu f f e r , desc .w, desc . h , QImage : :
Format RGB32) ;

frame = tmpFrame ;
frame . b i t s () ; // Should f o r c e frame to perform a

deep copy o f the b u f f e r .
} // At the end o f the b lock , tmpFrame d i e s and so

the b u f f e r can now be f r e ed .

//
∗∗

// Se l e c t i o n making i f an area has been s e l e c t e d .
i f (selMade) {

int w = xx2−xx1 ;
int h=yy2−yy11 ;
int s e l e c t i o n t o p = yy11 ;
int s e l e c t i onbot tom = yy2 ;
int s e l e c t i o n l e f t=xx1 ;
int s e l e c t i o n r i g h t=xx2 ;

/∗Ca l cu l a t e s the sum of the combined p i x e l
va lues , o f the s e l e c t e d area .

F i r s t , the s e l e c t e d area i s e x t r a c t e d from the B
−mode image and put in t o the ’ s e l e c t edArea ’ .

Second , ’ s e l e c t edArea ’ i s used to c a l c u l a t e the
sum c a l l e d currMax .

∗/
currMax=0;
uchar currVal ;
s e l e c t edArea = frame . copy (s e l e c t i o n l e f t ,

s e l e c t i o n t o p , s e l e c t i o n r i g h t − s e l e c t i o n l e f t ,
s e l e c t i onbot tom − s e l e c t i o n t o p) ;

for (int m = 0 ;m<h;++m) {
for (int n=0;n<w;++n) {

currVal = se l e c t edArea . p i x e l (n ,m) ;
i f (currVal >10){

currMax+=currVal ;
}

}
}
//When the c a l c u l a t i o n i s done , freqChanger

changes the t r an sm i t t i n g f requency and s t o r e s
the c a l c u l a t e d sum .

f reqChanger (currMax) ;

83

}

//A po in t e r to the updated image i s sen t in a s i g n a l
.

emit usptr−>newBDisplay (imPtr) ;
mutex . unlock () ;

}

void USHandler : : updateDoppler ()
{

/∗ Simi lar to the updateBFrame , t h i s f unc t i on hand les a
new Dopplerframe .

A c o l o r t a b l e i s se t , in case t h i s i s needed .
Using the b u f f e r sen t by the Ul t raSonix RP, an image

i s c rea t ed through the use o f memcpy .
This because the the image i s c rea t ed d i f f e r e n t l y from

the B−mode frame .
∗/

mutex . l o ck () ;
USHandler : : u l t . getDataDescr iptor (udtPWSpectrum , desc)

;

QImage tempIm(QSize (desc .w, desc . h) , QImage : :
Format Indexed8) ;

tempIm . setColorTable (v) ; // kanske i n t e maste s a t t a

// Copying from the bu f f e r , l i n e by l i n e .
for (int l i n e = 0 ; l i n e < tempIm . he ight () ; ++l i n e)
{

std : : memcpy(tempIm . scanLine (l i n e) , bu f f e rDopp le r
+ l i n e ∗ tempIm . width () , tempIm . width ()) ;

}

//Creat ing a po in t e r to the image ’ s p o s i t i o n in the
memory .

QImage∗ tmpPtr = &tempIm ;

//
∗∗∗

/∗Here s t a r t s the c a l c u l a t i o n o f the v e l o c i t y from
the b u f f e r data .

The sumSpect v ec t o r i s f i l l e d wi th zeros , and

84

o ther needed v a r i a b l e s are i n i t i a t e d .
The doub le loop goes through

∗/

memset (sumSpect , 0 , 1000) ;
int currsum =0;
double tomte=0;
double v e l o c i t y =0;

for (int row = 0 ; row<desc . h;++row) {
for (int column=20;column<desc .w;++column) {

currsum = qRed(tempIm . p i x e l (column , row))
; // de t t a maste e r s a t t a s .

// c=c+1;

i f (currsum>10){
//c++;
sumSpect [row]+=currsum ;

// i f (c>v e l o c i t y){ v e l o c i t y=c ;}//
// i f (s t a t i c c a s t <double>(m)>

v e l o c i t y){ v e l o c i t y=s t a t i c c a s t <
double>(m) ;}

}
}
tomte=(double) sumSpect [row] / (double) desc .w;
i f (tomte>5){

i f ((double) row>v e l o c i t y) { v e l o c i t y =(
double) row ;}

}
}

/∗
f o r (i n t rows=0;rows<desc . h ; rows++){

f o r (i n t columns =0;columns<desc .w; columns++) {
currsum = s t a t i c c a s t <double >(∗(

bu f f e rDopp l e r + (rows∗ desc .w+columns)∗
s i z e o f (uchar))) ;

i f (currsum>10) {
sumSpect [rows]+=currsum ;

85

}
}

tomte=sumSpect [rows] / (doub le) desc .w;
i f (tomte>5){

i f ((doub le) rows>v e l o c i t y){ v e l o c i t y=(doub le)
rows ;}

}
}∗/

//These are c a l c u l a t i o n s to ad j u s t f o r prp and image
p r o p e r t i e s .

double n o l l =0;
double hojd = (double) desc . h ;
i f (v e l o c i t y != n o l l) {

v e l o c i t y=hojd/2− v e l o c i t y ;
double d e l t a=USHandler : : adjustPRP () / hojd ;
v e l o c i t y=v e l o c i t y ∗ d e l t a ;
// p r i n t f (” Del ta : %f ” , d e l t a) ;
// f f l u s h (s t dou t) ;
i f (v e l o c i t y<maxVelocity) {

maxVelocity=v e l o c i t y ;
}

} else { v e l o c i t y =0;}

// emit usptr−>newSpect (tempIm , v e l o c i t y) ;
emit usptr−>newSpect (tmpPtr , v e l o c i t y) ;
mutex . unlock () ;

}

void USHandler : : freqChanger (int se lect ionMax) {

/∗This func t i on hand les the change in f requency once the
p i x e l sums o f a s e l e c t e d area has been c a l c u l a t e d

f o r
the current f requency .
The se l ec t ionSums vec to r needs to ho ld doub les , the

s t a t i c c a s t ensures t ha t se l ec t ionMax va lue i s
conver ted in t o a

doub le . This i s f o r comparison reasons .
∗/

se l ec t ionSums [spectSumCount]= static cast<double>(
se lect ionMax) ;

86

spectSumCount++;

//Checks to see i f the new sum found i s the l a r g e s t one
ye t .

i f (se lect ionMax>maxVal) {
maxVal=se lect ionMax ;
bestFreq=currFreq ;

}

/∗Updates the t r an sm i t t i n g f requency . I t i n c r ea s e s t h i s
by the s t e p s i z e s e t in the cons t ruc t o r
u n t i l the maximum frequency i s reached . ∗/

i f (freqCount<f r eqVectS i ze −1){
// currFreq=currFreq+s t e pS i z e ;

// p r i n t f (” f r e qcoun t = %d \n” , freqCount) ;
// f f l u s h (s t dou t) ;

currFreq=freqVect [freqCount] ;

u l t . setParamValue (”b−f r e q ” , currFreq) ;
int va l =0;
while (va l != currFreq) {

u l t . getParamValue (”b−f r e q ” , va l) ;
}

}
else {//The frequency sweep i s done . Rese t ing some

v a r i a b l e s and s e t the f requency to the optimum found .
spectSumCount=0;
// p r i n t f (”Am I here ? \n”) ;
// f f l u s h (s t dou t) ;
freqCount =0;
u l t . setParamValue (”b−f r e q ” , bestFreq) ;
bestFound=true ;
currFreq=freqVect [0] ;
selMade=fa l se ;

}
freqCount++;

}

void USHandler : : Doppler ()
{

/∗This func t i on changes the mode to pu l s ed dopp l e r (3)

87

and ad j u s t s some parameters .
I f the machine i s not ye t connected , i t s imply does

noth ing .
Once a l l the parameters are se t , a t imer s t a r t s . When

the time i s up , ’ s topDopp ler ’ i s c a l l e d .
∗/

i f (! u l t . i sConnected ()) {return ;}
i f (u l t . g e tFreezeSta te ()) {

u l t . t ogg l eFr e e z e () ;
}
USHandler : : bu f f e rDopp le r = (uchar ∗) mal loc (imSize ∗

s izeof (uchar)) ;
u l t . se lectMode (3) ;
u l t . setParamValue (”b−f r e q ” , bestFreq) ;
u l t . setParamValue (”pw−f r e q ” , bestFreq) ;
u l t . setParamValue (”pw−vo l tage [−] rng1 ” ,15) ;
u l t . setParamValue (”pw−vo l tage [−] rng2 ” ,15) ;
u l t . setParamValue (”pw−vo l tage [−] rng3 ” ,15) ;
u l t . setParamValue (”pw−gate pos” ,100) ;
u l t . setParamValue (”pw−gate depth” ,16000) ;
u l t . setParamValue (”pw−gate s i z e ” ,13000) ;
u l t . setParamValue (”pw−wf” ,1) ;
u l t . setParamValue (”pw−s t e e r ” ,0) ;
u l t . setParamValue (”pw−prp” , PRPsetting) ;
u l t . setParamValue (”pw−no i s e l e v e l ” ,50) ;
u l t . setParamValue (”pw/ co lo r−pu l s e repeat ” ,4) ;
u l t . setParamValue (”pw−gain audio ” ,0) ;
u l t . setParamValue (”pw−LRP” ,4000) ;
u l t . setParamValue (”pw−b a s e l i n e ” ,0) ;

u l t . setDataToAcquire (udtPWSpectrum) ;
u l t . s e tCa l lback (&USHandler : : processDoppler) ;

//The top v e l o c i t y found i s s e t to 0 .
maxVelocity =0;

/∗A timer i s s t a r t e d . The v e l o c i t y measurement goes on
f o r 10 seconds .

When the time i s up , an i n t e r r u p t i s sen t out , f o r c i n g ’
s topDopp ler ’ to execu te .

The maximum v e l o c i t y found during the 10 second i n t e r v a l
i s then r e g i s t r e d and wr i t t en to the pa t i e n t f i l e .

∗/
int time = measurementTime ∗ 1000 ;
QTimer : : s i n g l e S h o t (time , usptr , SLOT(stopDoppler ())) ;

}

88

bool USHandler : : i s S e l ()
{

return selMade ;
}

void USHandler : : s e t S e l e c t e d () {
selMade=true ;

}
void USHandler : : s e tSe lArea (int selTop , int se lBot , int

s e l L e f t , int s e lR igh t)
{

/∗ This f unc t i n i s c a l l e d once an area has been s e l e c t e d
in the B−mode image .

I t s e t s the r equ i r ed parameters in order to s t a r t a
f requency op t im i za t i on .

∗/
selMade=true ;
yy11=selTop ;
yy2=se lBot ;
xx1=s e l L e f t ;
xx2=se lR igh t ;
maxVal=0;
bestFound=fa l se ;
currFreq=sta r tFreq ;
spectSumCount=0;

}

double USHandler : : adjustPRP () {
/∗This func t i on re turns the mu l t i p l i e r to v e l o c i t y

determined from PRF and Frequency
I t f i r s t f e t c h e s the prp va lue from the u l t r a s on i x

machine , and puts the va lue in t o prp .
Then i t c a l c u l a t e s the proper va lue .
The equat ion might l ook odd , but t h i s i s in order to

avoid going ou t s i d e the range o f a doub le .
∗/

int prp ;
u l t . getParamValue (”pw−prp” , prp) ;

double va l = (15400000/(double) bestFreq) ∗2∗100000/(4∗(
double) prp) ; //mm/s //∗2 fran desc . h

return va l ;

}

89

void USHandler : : updateTGC(int tgc1 , int tgc2 , int tgc3 , int
tgc4 , int tgc5 , int tgc6 , int tgc7 , int tgc8) {
//Simply a funcion to update the Time Gain Contro l from

the s l i d e r s in the user i n t e r f a c e .

tgc . v1=tgc1 ;
tgc . v2=tgc2 ;
tgc . v3=tgc3 ;
tgc . v4=tgc4 ;
tgc . v5=tgc5 ;
tgc . v6=tgc6 ;
tgc . v7=tgc7 ;
tgc . v8=tgc8 ;

u l t . setParamValue (” gain curve ” , tgc) ;
}

/∗ Help func t i on to change Pulse f requency depending on
s l i d e r in Se t t i n g sD i a l o g ∗/

void USHandler : : changePRP(int prpPos) {

switch (prpPos) {
case 1 :

u l t . setParamValue (”pw−prp” ,200) ;
PRPsetting =200;
break ;

case 2 :
u l t . setParamValue (”pw−prp” ,250) ;
PRPsetting =250;
break ;

case 3 :
u l t . setParamValue (”pw−prp” ,300) ;
PRPsetting =300;
break ;

case 4 :
u l t . setParamValue (”pw−prp” ,400) ;
PRPsetting =400;
break ;

case 5 :
u l t . setParamValue (”pw−prp” ,600) ;
PRPsetting =600;
break ;

case 6 :
u l t . setParamValue (”pw−prp” ,800) ;
PRPsetting =800;
break ;

}

90

}

int USHandler : : ge tbes tFreq () {
return bestFreq ;

}
int USHandler : : getCurrFreq () {

return currFreq ;
}

QVector<double> USHandler : : getSums () {
return se l ec t ionSums ;

}
QVector<double> USHandler : : getFreqs () {

QVector<double> x (f r eqVec tS i z e) ;
for (int i =0; i<f r eqVec tS i z e ; i++){

x [i]=(double) f reqVect [i] ;
}
return x ;

}

int USHandler : : ge tStar tFreq () {
return s ta r tFreq ;

}

int USHandler : : getMaxFreq () {
return maxFreq ;

}

int USHandler : : g e tS t epS i z e () {
return s t e p S i z e ;

}

int USHandler : : getMaxVal () {
return maxVal ;

}

/∗ Function t ha t makes i t p o s s i b l e to i n t e r r u p t a dopp l e r
measurement mid run ∗/

void USHandler : : stopDoppler () {
i f (u l t . getActiveImagingMode () == 3) {

u l t . t ogg l eFr e e z e () ;
emit usptr−>measureFinished (maxVelocity) ;

}
}

void USHandler : : s e t IP (QString address) {
ipAddr=address ;

91

}

// Set the pu l s e f requency
void USHandler : : setPRP (int prp) {

i f (u l t . i sConnected ()) {
i f (u l t . getActiveImagingMode ()==3){

changePRP(prp) ;
int va l ;
u l t . getParamValue (”pw−prp” , va l) ;
p r i n t f (”Prp s e t to : %d” , va l) ;
f f l u s h (stdout) ;

}
}

}

void USHandler : : setTime (int time) {measurementTime=time ;}

B.7 patientdialog.h

#ifndef PATIENTDIALOG H
#define PATIENTDIALOG H

#include <QDialog>

namespace Ui {
class Pat ientDia log ;
}

class Pat ientDia log : public QDialog
{

Q OBJECT

public :
expl ic it Pat ientDia log (QWidget ∗parent = 0) ;
˜ Pat i entDia log () ;
QString getItem (int index) ;

private s l o t s :

void on f i r s tName lo s tFocus () ;

void on lastName lostFocus () ;

void on ssNbr lo s tFocus () ;

void o n o th e r l o s t F oc u s () ;

92

private :
Ui : : Pat i entDia log ∗ ui ;
QString∗ array ;

} ;

#endif // PATIENTDIALOG H

B.8 patientdialog.cpp

#include ” p a t i e n t d i a l o g . h”
#include ” u i p a t i e n t d i a l o g . h”

Pat i entDia log : : Pat i entDia log (QWidget ∗parent) :
QDialog (parent) ,
u i (new Ui : : Pat i entDia log)

{
ui−>setupUi (this) ;
array = new QString [4] ;

}

Pat ientDia log : : ˜ Pat i entDia log ()
{

delete ui ;
}

QString Pat i entDia log : : getItem (int index) {
return array [index] ;

}

void Pat ientDia log : : on f i r s tName lo s tFocus ()
{

array [0]= ui−>f irstName−>t ex t () ;
}

void Pat ientDia log : : on lastName lostFocus ()
{

array [1]= ui−>lastName−>t ex t () ;
}

void Pat ientDia log : : on s sNbr lo s tFocus ()
{

array [2]= ui−>ssNbr−>t ex t () ;
}

void Pat ientDia log : : o n o th e r l o s t F oc u s ()
{

93

array [3]= ui−>other−>t ex t () ;
}

B.9 settingsdialog.ui

<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<ui v e r s i on=” 4 .0 ”>
<class>Set t ingsDia log </class>
<widget class=”QDialog” name=” Se t t i ng s D ia l og ”>
<property name=”geometry”>
<rect>
<x>0</x>
<y>0</y>
<width>400</width>
<height >300</height>

</rect>
</property>
<property name=” windowTitle ”>
<s t r i ng>Dialog</s t r i ng>

</property>
<widget class=”QWidget” name=” horizontalLayoutWidget ”>
<property name=”geometry”>
<rect>
<x>30</x>
<y>60</y>
<width>111</width>
<height >31</height>

</rect>
</property>
<l ayout class=”QHBoxLayout” name=” hor i zonta lLayout ”>
<item>
<widget class=”QLabel” name=” ipLabe l ”>
<property name=” text ”>
<s t r i ng>IP:</ s t r i ng>

</property>
</widget>

</item>
<item>
<widget class=”QLineEdit” name=” ipLine ”>
<property name=” text ”>
<s t r i ng >127.0.0.1</ s t r i ng>

</property>
</widget>

</item>
</layout>

</widget>
<widget class=”QLabel” name=” ipDesc ”>
<property name=”geometry”>

94

<rect>
<x>20</x>
<y>10</y>
<width>161</width>
<height >41</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>IP address o f SonixRP

1 2 7 . 0 . 0 . 1 i f the program
i s run on the SonixRP (Defau l t)</s t r i ng>

</property>
</widget>
<widget class=” QSl ider ” name=” p r p S l i d e r ”>
<property name=”geometry”>
<rect>
<x>20</x>
<y>170</y>
<width>191</width>
<height >20</height>

</rect>
</property>
<property name=”minimum”>
<number>1</number>

</property>
<property name=”maximum”>
<number>6</number>

</property>
<property name=” s i n g l e S t e p ”>
<number>1</number>

</property>
<property name=” pageStep ”>
<number>10</number>

</property>
<property name=” value ”>
<number>4</number>

</property>
<property name=” t rack ing ”>
<bool>true</bool>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
<property name=” t i c k P o s i t i o n ”>
<enum>QSl ider : : TicksBelow</enum>

</property>
<property name=” t i c k I n t e r v a l ”>

95

<number>1</number>
</property>

</widget>
<widget class=”QLabel” name=” l a b e l ”>
<property name=”geometry”>
<rect>
<x>40</x>
<y>140</y>
<width>161</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>PRP Adjustment .</ s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 2 ”>
<property name=”geometry”>
<rect>
<x>240</x>
<y>120</y>
<width>141</width>
<height >51</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>Doppler Measurement Time</s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 3 ”>
<property name=”geometry”>
<rect>
<x>20</x>
<y>200</y>
<width>201</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng >200 250 300 400 600

800</ s t r i ng>
</property>

</widget>
<widget class=”QLineEdit” name=” timeLine ”>
<property name=”geometry”>
<rect>
<x>260</x>

96

<y>170</y>
<width>89</width>
<height >20</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng >10</s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 4 ”>
<property name=”geometry”>
<rect>
<x>350</x>
<y>170</y>
<width>20</width>
<height >20</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>s</s t r i ng>

</property>
</widget>
<widget class=”QWidget” name=” hor izonta lLayoutWidget 2 ”>
<property name=”geometry”>
<rect>
<x>170</x>
<y>259</y>
<width>160</width>
<height >31</height>

</rect>
</property>
<l ayout class=”QHBoxLayout” name=”hLayout”>
<item>
<widget class=”QPushButton” name=”OKButton”>
<property name=” text ”>
<s t r i ng>OK</s t r i ng>

</property>
</widget>

</item>
<item>
<widget class=”QPushButton” name=” CancelButton ”>
<property name=” text ”>
<s t r i ng>Cancel</s t r i ng>

</property>
</widget>

</item>
</layout>

97

</widget>
</widget>
<r e s o u r c e s/>
<connec t i ons/>

</ui>

B.10 settingsdialog.h

#ifndef SETTINGSDIALOG H
#define SETTINGSDIALOG H

#include <QDialog>
#include <QMessageBox>
#include <QRegexp>

namespace Ui {
class Se t t i ng s D ia l og ;
}

class Se t t i ng s D ia l og : public QDialog
{

Q OBJECT

public :
expl ic it Se t t i ng s D ia l og (QWidget ∗parent = 0) ;
˜ S e t t i ng sD i a l o g () ;
QString getIP () ;
int getPRP () ;
int getTime () ;

private s l o t s :
void o n i p L i n e l o s t F o c u s () ;
void checkValues () ;

void on Cance lButton c l i cked () ;

private :
Ui : : S e t t i ng sD ia l og ∗ ui ;
QString s t r i n g ;
QRegExp rx ;
bool va l idIPv4 (QString s t r i n g) ;

} ;

#endif // SETTINGSDIALOG H

B.11 settingsdialog.cpp

#include ” s e t t i n g s d i a l o g . h”

98

#include ” u i s e t t i n g s d i a l o g . h”

Se t t i ng s D ia l og : : S e t t i ng sD i a l o g (QWidget ∗parent) :
QDialog (parent) ,
u i (new Ui : : S e t t i n g sD ia l og)

{
ui−>setupUi (this) ;
ui−>ipLine−>setText (” 1 2 7 . 0 . 0 . 1 ”) ;
//ui−>ipLine−>se tTex t (”130 .235 .53 .125”) ;
ui−>OKButton−>setAutoDefault (fa l se) ;
ui−>CancelButton−>setAutoDefault (fa l se) ;

// Set Regular expre s s i on to check f o r i n v a l i d IPv4
address

rx . s e tPat t e rn (” ((25 [0 −5] |2 [0 −4]\\d |1\\d\\d | [1 −9]\\d | \\d)
\\ .) {3}(25 [0−5] |2[0−4]\\d |1\\d\\d | [1 −9]\\d | \\d) ”) ;

connect (ui−>OKButton ,SIGNAL(c l i c k e d ()) , this , SLOT(
checkValues ())) ;

}

Se t t i ng s D ia l og : : ˜ S e t t i ng sD i a l o g ()
{

delete ui ;
}

//Get IP
QString Se t t i ng s D ia l og : : getIP ()
{

return s t r i n g ;
}

void Se t t i ng s D ia l og : : o n i p L i n e l o s t F o c u s ()
{

s t r i n g = ui−>ipLine−>t ex t () ;
}

/∗ Get pu l s e f requency ∗/
int Se t t i ng s D ia l og : : getPRP () {

int va l = (ui−>prpS l ide r−>value ()) ;
return va l ;

}

/∗ Fetch time f o r Doppler measurement ∗/
int Se t t i ng s D ia l og : : getTime () {

QString t imeStr ing = ui−>timeLine−>t ex t () ;
int time = t imeStr ing . t o In t () ;

99

return time ;
}

/∗ Ver i fy v a l i d IPv4 address ∗/
void Se t t i ng s D ia l og : : checkValues ()
{

i f (rx . exactMatch (s t r i n g)) {
accept () ;

} else {
QMessageBox : : in fo rmat ion (this , ” F a i l ” , ” I n v a l i d IPv4

address , t ry again . ”) ;
}

}

void Se t t i ng s D ia l og : : on Cance lButton c l i cked ()
{

r e j e c t () ;
}

B.12 settingsdialog.ui

<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<ui v e r s i on=” 4 .0 ”>
<class>Set t ingsDia log </class>
<widget class=”QDialog” name=” Se t t i ng s D ia l og ”>
<property name=”geometry”>
<rect>
<x>0</x>
<y>0</y>
<width>400</width>
<height >300</height>

</rect>
</property>
<property name=” windowTitle ”>
<s t r i ng>Dialog</s t r i ng>

</property>
<widget class=”QWidget” name=” horizontalLayoutWidget ”>
<property name=”geometry”>
<rect>
<x>30</x>
<y>60</y>
<width>111</width>
<height >31</height>

</rect>
</property>
<l ayout class=”QHBoxLayout” name=” hor i zonta lLayout ”>
<item>

100

<widget class=”QLabel” name=” ipLabe l ”>
<property name=” text ”>
<s t r i ng>IP:</ s t r i ng>

</property>
</widget>

</item>
<item>
<widget class=”QLineEdit” name=” ipLine ”>
<property name=” text ”>
<s t r i ng >127.0.0.1</ s t r i ng>

</property>
</widget>

</item>
</layout>

</widget>
<widget class=”QLabel” name=” ipDesc ”>
<property name=”geometry”>
<rect>
<x>20</x>
<y>10</y>
<width>161</width>
<height >41</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>IP address o f SonixRP

1 2 7 . 0 . 0 . 1 i f the program
i s run on the SonixRP (Defau l t)</s t r i ng>

</property>
</widget>
<widget class=” QSl ider ” name=” p r p S l i d e r ”>
<property name=”geometry”>
<rect>
<x>20</x>
<y>170</y>
<width>191</width>
<height >20</height>

</rect>
</property>
<property name=”minimum”>
<number>1</number>

</property>
<property name=”maximum”>
<number>6</number>

</property>
<property name=” s i n g l e S t e p ”>
<number>1</number>

101

</property>
<property name=” pageStep ”>
<number>10</number>

</property>
<property name=” value ”>
<number>4</number>

</property>
<property name=” t rack ing ”>
<bool>true</bool>

</property>
<property name=” o r i e n t a t i o n ”>
<enum>Qt : : Hor izonta l </enum>

</property>
<property name=” t i c k P o s i t i o n ”>
<enum>QSl ider : : TicksBelow</enum>

</property>
<property name=” t i c k I n t e r v a l ”>
<number>1</number>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l ”>
<property name=”geometry”>
<rect>
<x>40</x>
<y>140</y>
<width>161</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>PRP Adjustment .</ s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 2 ”>
<property name=”geometry”>
<rect>
<x>240</x>
<y>120</y>
<width>141</width>
<height >51</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>Doppler Measurement Time</s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 3 ”>

102

<property name=”geometry”>
<rect>
<x>20</x>
<y>200</y>
<width>201</width>
<height >16</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng >200 250 300 400 600

800</ s t r i ng>
</property>

</widget>
<widget class=”QLineEdit” name=” timeLine ”>
<property name=”geometry”>
<rect>
<x>260</x>
<y>170</y>
<width>89</width>
<height >20</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng >10</s t r i ng>

</property>
</widget>
<widget class=”QLabel” name=” l a b e l 4 ”>
<property name=”geometry”>
<rect>
<x>350</x>
<y>170</y>
<width>20</width>
<height >20</height>

</rect>
</property>
<property name=” text ”>
<s t r i ng>s</s t r i ng>

</property>
</widget>
<widget class=”QWidget” name=” hor izonta lLayoutWidget 2 ”>
<property name=”geometry”>
<rect>
<x>170</x>
<y>259</y>
<width>160</width>
<height >31</height>

</rect>

103

</property>
<l ayout class=”QHBoxLayout” name=”hLayout”>
<item>
<widget class=”QPushButton” name=”OKButton”>
<property name=” text ”>
<s t r i ng>OK</s t r i ng>

</property>
</widget>

</item>
<item>
<widget class=”QPushButton” name=” CancelButton ”>
<property name=” text ”>
<s t r i ng>Cancel</s t r i ng>

</property>
</widget>

</item>
</layout>

</widget>
</widget>
<r e s o u r c e s/>
<connec t i ons/>

</ui>

B.13 keypresswidget.h

#ifndef KEYPRESSWIDGET H
#define KEYPRESSWIDGET H

#include <QLabel>
#include <QMouseEvent>
#include <QPainter>

class keyPressWidget : public QLabel
{

Q OBJECT
public :

expl ic it keyPressWidget (QLabel ∗parent = 0) ;
void mousePressEvent (QMouseEvent ∗e) ;
void mouseReleaseEvent (QMouseEvent ∗e) ;

s i g n a l s :

public s l o t s :

} ;

#endif // KEYPRESSWIDGET H

104

B.14 keypresswidget.cpp

#include ” keypresswidget . h”
#include ”mainwindow . h”

QPainter pa in t e r ;

QPainter pa int () ;
keyPressWidget : : keyPressWidget (QLabel ∗parent) :

QLabel (parent)
{

keyPressWidget : : setEnabled (true) ;
QPainter pa in t e r (this) ;

}

/∗ Function to ge t mouse coords f o r where the mouse but ton
i s

pres sed down ∗/
void keyPressWidget : : mousePressEvent (QMouseEvent ∗e) {

MainWindow : : s e t S e l e c t i o n 1 (e−>x () , e−>y ()) ;
}

/∗ Function to ge t mouse coords f o r where the mouse but ton
i s

r e l e a s e d ∗/
void keyPressWidget : : mouseReleaseEvent (QMouseEvent ∗e) {

MainWindow : : s e t S e l e c t i o n 2 (e−>x () , e−>y ()) ;
}

B.15 worker.h

#ifndef WORKERH
#define WORKERH
#include <QtGui>
#include ” ushandler . h”

class Worker : public QThread
{

Q OBJECT

public :
Worker (QObject ∗parent = 0 , USHandler ∗ptr = 0) ;
˜Worker () ;
void run () ;

private :
USHandler ∗ usptr ;

105

private s l o t s :
void BWork() ;
void dopplerWork () ;

s i g n a l s :
void BFrameDone () ;
void SpectDone () ;

} ;

#endif // WORKERH

B.16 worker.cpp

#include ” worker . h”

Worker : : Worker (QObject ∗parent , USHandler ∗ptr)
: QThread (parent)

{
usptr=ptr ;

}

Worker : : ˜ Worker ()
{

}

void Worker : : run ()
{
}

/∗ S ta r t heavy computat ions in t h i s worker
thread in s t ead o f MainWindow ∗/

void Worker : : BWork()
{

usptr−>updateBFrame () ;
emit BFrameDone () ;

}

/∗ S ta r t heavy computat ions in t h i s worker
thread in s t ead o f MainWindow ∗/

void Worker : : dopplerWork ()
{

usptr−>updateDoppler () ;
emit SpectDone () ;

}

106

