MOTION DETECTION AND
TEMPORAL FILTERING OF
NOISY IMAGE SEQUENCES

HELENA OLEN, MARCUS WENNERMARK

Master’s thesis
2012:E32

LUND UNIVERSITY

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

WNNYVIILVINFHLVIN INNYVILNIIDS WNYLN3ID

Motion Detection and Temporal Filtering of

Noisy Image Sequences

Helena Olén 707
Marcus Wennermark FO7

September 14, 2012

Abstract

When capturing digital video there is always some amount of noise in the re-
sulting signal. This is more pronounced in low-light conditions. In this thesis
we have evaluated five algorithms for motion detection and noise reduction. All
algorithms produce a filtered image and a motion mask. One of the algorithms
is based on block-matching, one on fuzzy logic and one on low-rank matrix
completion. The final two are much simpler. The first of these estimates the
standard deviation of the noise and thresholds the grey-level differences based
on that. The last one is a novel approach, relying on spatial smoothing to create
motion masks. The generated motion masks are then used to determine what
parts of the image that can be filtered temporally. Temporal filtering is done
using weighted averaging.

MATLAB is used for implementation and evaluation of all algorithms. Some are
then implemented in OpenCL for testing in real-time using actual cameras.

The methods have been analysed regarding the quality of the filtered output as
well as the accuracy of the generated motion masks. This has been done using
a synthetic image sequence, where a noise-free reference exists. Real-world
captured sequences have been judged subjectively.

The results indicate that the two simplest methods are the most efficient and
the best of the evaluated algorithms for light and moderate noise. For images
corrupted by heavier noise, the method based on low-rank matrix completion
seems the most promising.

Acknowledgements

We would like to thank Axis Communications AB for enabling this the-
sis. In particular we want to thank our supervisors Fredrik Olofsson and
Andreas Nilsson at Axis for all the help and support during this project.
Further, we would like to thank our supervisor at LTH, Kalle Astrém. Fi-
nally, a thank you to everyone else who have provided us with input and
support. All the feedback has been greatly appreciated and invaluable in
the evolution of this project.

iii

Contents

1 Introduction
1.1 Problem description L.
1.2 Overview o o e e e e e e

2 Background
2.1 Related work

3 Quality Metrics and Data Sets

3.1 Quality metricso
3.1.1 Error
3.1.2 SNR . . . o
3.1.3 MSE . . . o
3.1.4 PSNR
3.1.5 SSIM . . . e e
3.1.6 Motionmasks oo
3.1.7 Comparison between methods

3.2 Datasets

4 Theory

4.1 TImage representation L.
411 RGB
4.1.2 YCbCOr
413 Grey-scale L
4.1.4 Bayer patternfilter

4.2 NOISE SOUTCES . . « . v v v vt et e e e
4.2.1 Signal shotnoise L .
4.2.2 Fixed patternnoise
423 Readmnoise oo

4.3 Block-matching oL o oo

44 Fuzzylogic e

4.5 FErosion and dilationo

5 Methods
5.1 Adaptive fuzzy filter algorithm,

=~ o

© 00 00 0o W 0 I N

[
o O

13
13
13
13
14
14
14
14
14
15
15
16
17

19

vi

CONTENTS

5.1.1 Algorithm summary

5.2 Hierarchical block-matching algorithm

5.2.1 Algorithm summary
5.3 Fuzzy logic algorithm
5.3.1 Modifications
5.3.2 Algorithm summary

5.4 Low-rank matrix completion algorithm

54.1 Algorithm summary
5.5 Blur Filtering
5.5.1 Algorithm summary

6 Camera Implementation

6.1 Camera calibration
6.2 Implementations

7 Results

7.1 Result overview,
7.2 Adaptive fuzzy filter algorithm

7.3 Hierarchical block-matching algorithm

7.4 Fuzzy logic algorithm

7.5 Low-rank matrix completion algorithm

7.6 Blur Filtering

8 Discussion and Conclusions

8.1 Conclusion overview
8.2 Adaptive fuzzy filter algorithm

8.3 Hierarchical block-matching algorithm

8.4 Fuzzy logic algorithm

8.5 Low-rank matrix completion algorithm

8.6 Blur Filtering
8.7 Comparison between the methods
8.8 Conclusion
89 Futurework

A Additional Images

Chapter 1

Introduction

1.1 Problem description

The goal of this thesis is to do a survey of the literature, investigate algorithms
for noise robust scene change detection and temporal filtering, and to evaluate
a few such methods on real data.

After the initial literature review, a few algorithms will be selected for imple-
mentation and further investigation. These algorithms will be evaluated mainly
based on their change detection and/or their denoising performance. Also the
feasibility of implementing them in hardware will be taken into consideration.

Some datasets with different characteristics will be chosen for the evaluation.
In order to evaluate the effectiveness of the algorithms, some quality metrics are
needed.

Ideally an algorithm should be able to accurately separate motion from noise and
perform filtering using the correct pixel information from all available frames.
Unfortunately, it is no simple task to achieve this. There are many problems
with detecting true pixel change in the presence of heavy noise or in weak
contrast areas. With strong noise, pixel values will fluctuate heavily and are
easily confused with motion. This problem is the motivation of the thesis.

1.2 Overview

The layout of this thesis is as follows. Firstly, the background of the problem
is explained in chapter 2. Then, a few metrics regarding the output quality of
the algorithms are described in chapter 3. In chapter 4 we explain the under-
lying theory that is needed to understand the implemented algorithms. The
algorithms themselves, and the changes or improvements we have made are de-

2 CHAPTER 1. INTRODUCTION

scribed in chapter 5. Details about the OpenCL implementations can be found
in chapter 6. In chapter 7 our results are presented, followed by discussion and
conclusions in chapter 8.

Chapter 2
Background

New generations of noise filtering often utilize temporal image data in order to
suppress random noise without severe loss of spatial resolution. The most basic
form of temporal filtering is a simple average on a per pixel basis of several
consecutive images. This technique is very beneficial in comparison to spatial
filtering for static scenes, i.e. scenes without motion. However, in case of a
sudden change in scene content, the naive temporal average method fails and
other methods must be used.

The difficulty of differentiating motion from noise is what causes problems in
the temporal filtering step. If an object moves in a noisy image, and temporal
averaging is performed on incorrectly classified pixels, a ghosting effect of the
object will be seen in the subsequent images. An example of this can be seen
in Figure 2.1.

Figure 2.1: An example of where the temporal averaging technique fails due to motion
in the image.

Thus, there is a need for a robust method for detecting sudden scene changes.
The challenge for such methods is to detect true scene changes in situations
when the signal-to-noise ratio, SNR, is low. Typically this happens when the
scene illumination is poor.

4 CHAPTER 2. BACKGROUND

2.1 Related work

The problem of motion detection in images is a widely explored area, although
most of the existing methods are either not suitable for images containing a
high amount of noise, they require too much memory or have excessively high
computational complexity.

A short description of the reviewed literature will follow. The curious reader is
referred to the original articles for a more thorough explanation of each algo-
rithm.

Binary motion detection

Several algorithms have been proposed to avoid these artifacts. The most com-
mon are the binary motion detectors, which classify each pixel as a motion pixel
or a non-motion pixel. A pixel is averaged temporally if it is a non-motion pixel,
otherwise the value of the pixel in the filtered frame takes the unprocessed value.
An example of this approach is the method used by Bosco et al. [2]. This method
uses a small working window in two consecutive frames. The algorithm works
directly on the Bayer pattern data and is based on something called Duncan
filtering, which requires a noise estimate to work. The motion detection is a
two step method that first tries to detect the possibility of a ghost tail. The
second step in the motion detection is to threshold the sum of absolute differ-
ences for the two working windows. Thereafter temporal averaging is executed
on the non-motion pixels. The benefit with this approach is the speed, but the
accuracy suffers in low-light conditions.

Another binary motion detector, based on the difference in grey level between
the same pixel in two following frames, is proposed by Wu et al. [23]. The
threshold for motion classification varies linearly with the standard deviation of
the noise, which is assumed to be Gaussian noise.

A completely different motion detection approach is proposed by Stauffer and
Grimson [18] and also later improved by Kaewtrakulpong and Bowden [11],
where each pixel is modelled using a mixture of Gaussians. Here, objects that
are not moving are integrated into the background, and motion is detected when
a pixel differ too much from the background model corresponding to that pixel.
These methods do not detect small movements, and the authors are not clear
about the application of the algorithms on noisy images. Also, the background
takes a long time to update. That is, it takes a long time for new stationary
objects to be integrated in the background model, which is disadvantageous
when many objects are leaving or entering the scene. This is may be the case
in surveillance applications.

2.1. RELATED WORK 5

Non-binary motion detection

When a high level of noise is present in the image, many binary detectors in-
troduce motion blurring and artifacts due to misclassification caused by motion
ambiguity. To find ways to detect errors, or decrease uncertainties in the tempo-
ral filtering, algorithms that do not use binary motion detection are considered.
Instead of determining whether the pixel is a motion pixel or not, some degree of
motion probability or motion confidence is determined. The degree of motion,
is typically a real number in the range [0, 1], where 0 represents no motion and
1 represents motion for sure. This number then decides, directly or indirectly,
the weights that are used to average the previous filtered frame and the cur-
rent frame. Bennett and McMillan [1] use temporal filtering when no motion is
detected, and a mixture between spatial and temporal filtering based on local
motion characteristics when motion is present. The motion is detected using a
normalized Gaussian weighted dissimilarity formula.

Another approach, suggested by Malm et al. [14], is based on edge detection
and that filtering is performed in the direction in which the edges propagate in
time. The method models the principle of nocturnal vision.

The algorithm proposed by Kim et al. [12], uses two consecutive frames to do
hierarchical block matching and sum of absolute differences to determine the
correlation between the two matched blocks. The degree of motion is then
calculated from the correlation. The temporal filtering is thereafter performed
with different weights for the current pixel in the new frame and the matched
pixel in the previous frame. Filtering in the motion direction makes it a motion-
compensated method.

Portz et al. [15] use optical flow to perform temporal filtering. If the flow is
defined as reliable, then the image is filtered in the flow direction. Otherwise
mostly spatial filtering is used. For areas with uniform colour and texture, the
flow is determined as unreliable, which is a major drawback for our purpose.

Another approach is to use fuzzy logic to detect motion. This is described by
Zlokolica et al. [25]. Temporal filtering is performed with adaptive weights using
the new unfiltered image and the previous filtered one, depending on the motion
confidence for the pixel. More details regarding fuzzy logic will be explained in
chapter 5.

Yet another approach is to use a modified version of Non-local means as proposed
by Xu et al. [24]. They separate temporal and spatial filtering and combine
them with different spatial and temporal weights that vary depending on how
much motion that is detected. The motion detection is based on computing
the average similarities of the spatial and temporal neighbourhoods. One of
the most important parts is this weighting of the spatial and temporal filtering.
Only using the temporal part of this algorithm would not produce a meaningful
result. This means that it falls too far outside the scope of this project and is
therefore discarded.

6 CHAPTER 2. BACKGROUND

Level sets is another way to solve the motion detection problem, which is dis-
cussed in Woo et al. [22] and ho Lee et al. [6]. These methods have shown very
good results in differentiating the moving objects from the static background.
However, these approaches are not suitable for our problem, since they detect
the whole object. Detecting the whole object might be a disadvantage if the
object is big and has areas with uniform colours. Even if the object has moved a
bit, the temporal averaging could still be performed when the areas are similar
in order to reduce the noise.

Veit et al. [19] proposed an algorithm based on motion detection in regions,
which is very successful in finding moving objects. Unfortunately they only seem
to detect edges of the moving objects, which is not adequate for our motion
detection application. There are also issues with low-contrast regions. This
method falls more into the higher-level image analysis category.

Several statistical methods using Markov random fields have been presented to
solve the motion detection problem. In Crivelli et al. [4] the proposed algorithm
simultaneously detects motion and updates the background image. Motion
dynamics are modelled with mized-state discrete-continuous Markov random
fields, and to create the joint decision-estimation solution no training samples
are needed. The motion is estimated by minimizing an energy function. The
method suggested by Chen and keung Tang [3] uses a non-parametric noise
model to allow the noise to change over time. Optical flow is used as a basic
motion detector and to model and utilize the motion uncertainty, a probabilistic
motion field is used. Due to limitation of time, these methods have not been
implemented, even though they are certainly interesting.

An algorithm that differs from most temporal filtering algorithms is described
in Ji et al. [10]. A patch matching is done, both spatially and temporally, by
a fast block-matching algorithm. Thereafter a noise estimation is performed
for all pixels. The matched patches are concatenated into a matrix, and the
pixels that are estimated to be noise pixels are removed. The noise removal
problem is hereby converted to a low rank matrix completion problem, which
is solved by a minimization algorithm. This method is interesting both for the
denoising performance of the sample images in the paper as well as for being
such a different method.

The methods we have chosen to implement can be seen in the table below.
Furthermore. a novel algorithm is presented in addition to the algorithms found
in the literature.

Method Author Section
Adaptive Fuzzy Filtering Wu et al. [23] 5.1
Hierarchical Block Matching Algorithm Kim et al. [12] 5.2
Fuzzy Logic Algorithm Zlokolica et al. [25] 5.3
Low-Rank Matrix Completion Algorithm Ji et al. [10] 5.4
Blur Filtering Algorithm H. Olén and M. Wennermark 5.5

Chapter 3

Quality Metrics and Data
Sets

3.1 Quality metrics

When looking at different filters, it is important to be able to somehow quan-
tify and measure the effectiveness of the filters. This is especially important
when trying to determine optimal parameters for each filter and each sequence.
There are of course many ways to do this. The number of options available is
also different depending on whether a clean reference sequence is available or
not. If no reference sequence is available then one usually resorts to measuring
subjectively, i.e. one simply looks at the images and decides if the result is good
or not. Typically there is no reference when using real image sequences which
is why synthetic sequences are also needed. A synthetic sequence is a noise-free
sequence where noise is added. With a synthetic sequence it is possible to know
exactly which pixels should be considered moving or not since the sequence is
manually corrupted.

The problem of finding good quality metrics is very difficult, and a research
field in its own right. There exists many error measures. Two very common
are mean square error (MSE) and peak signal to noise ratio (PSNR). These are
popular because of their simplicity of implementation. The main objection to
using these measures is their inability to factor in information about the visually
perceived error, or the structure in the image. Another common quality metric
is structural similarity index (SSIM), which also takes structural similarities
into consideration [20].

The quality of the motion mask must also be measured. This can be done
in many ways if there exists a reference mask. The reference mask represents
the true motion pixels and can be compared to the mask generated by the
algorithms.

8 CHAPTER 3. QUALITY METRICS AND DATA SETS

3.1.1 Error

The error of a measured, or corrupted, pixel is defined as the difference from a,
clean, reference pixel. ILe.

BT’TOT(x, y) = I(x, y)ref - I('ra y)noisy~

3.1.2 SNR

Signal to Noise Ratio is defined as the ratio of the power of the signal to the
power of the noise. An alternative definition is

SNR = Hsignal ’

Onoise
where ftsignai is the mean of the signal and opeise is the standard deviation of
the noise [17].

3.1.3 MSE

Mean Square Error is the mean of the squared error of all pixels:

Zv(gﬁ7y) (error(x, y))2

MSE =
Npixels

This is a popular error metric because it is trivial to implement and requires no
parameters.

3.1.4 PSNR

Peak Signal to Noise Ratio is another error metric that is easy to implement.
The definition is
R2
PSNR = ——
MSE’

where R is the maximum signal value, often 1 or 255 when dealing with images.

3.1.5 SSIM

One measure that attempts to improve on the shortcomings of metrics such
as PSNR or MSE is Structural SIMilarity index [20], which is the objective
measure of choice in this thesis. Although not a true perceptual error metric it
does at least take into account changes in structural information. The closer to
1 the SSIM value gets, the more similar the two images are. An index value of 1
can really only be achieved when comparing identical images. An ideal measure
would also consider things like human visual response functions. SSIM is also
relatively easy to implement and several versions exist online. The one used in
this project is a MATLAB implementation [21] by Wang et al.

3.1. QUALITY METRICS 9

prediction outcome

p n total
True False
p’ | positive negative | p’
(TP) (FN)
actual
value
False True
n’ | positive negative N’
(FP) (TN)
total P N

Figure 3.1: A confusion matrix.

3.1.6 Motion masks

For the synthetic sequences, a reference motion mask can be produced by sub-
tracting two subsequent noiseless images. This motion mask can be compared
to the motion mask that the different methods generate. By measuring which
pixels that are classified correctly in the motion masks from the methods, a
confusion matriz can be obtained, see Figure 3.1. The motion mask contains
the numbers 0 and 1, where 0 is defined as a non-motion pixel and 1 is defined
as a motion pixel. When comparing the method motion mask with the refer-
ence motion mask, four different detection statistics can be obtained. These are
true positives (TP), false positives (FP), true negatives (TN) and false nega-
tives (FN), where true positives represent the number of actual motion pixels
classified as motion, false positives represent the number of non-motion pixels
classified as motion pixels, true negatives represent the number of correctly clas-
sified non-motion pixels and false negatives corresponds to the number of actual
motion pixels classified as non-motion pixels.

From this confusion matrix, many statistics can be extracted. Only the ones
that are used in this thesis will be covered.
The true positive rate, TPR, also called the sensitivity can be obtained by
TP TP
P TP+FN’
This is equivalent to the hit rate. Another measurement is the false postive
rate, FPR, which can be seen as the fall-out. FPR is calculated by

FpP FP

TPR = (3.1)

FPR= 7 = pprTn (3:2)
The accuracy, ACC, of the classification is obtained by
TP+TN
AcC = L2 (3.3)

P/+Nl

10 CHAPTER 3. QUALITY METRICS AND DATA SETS

Depending on the distribution of the number of motion and non-motion pixels,
the accuracy is more or less important. If the distribution is similar for the two
classes, then the accuracy is a good measurement, while if the distribution is
very different, the information about the accuracy should have less influence on
the conclusions.

3.1.7 Comparison between methods

Several ways of evaluating the methods are described above, but a way of com-
paring them to each other is just as important. One can always compare them
subjectively by simply looking at the filtered images to find artifacts and see
how much the noise is reduced. In this thesis we have decided to use the SSIM
values and the statistics from the motion masks and plot them with the average
SSIM value for a sequence on the x-axis and a value from the average motion
statistics on the y-axis. The closer to 1 on both axis, the better the method is.
The formula for calculating the value from the motion mask statistics is chosen
to be

y=;TPR+ {(1~ FPR)+ {ACC. (3.4)

The motion mask is supposed to be good if the TPR and the ACC are high
and the FPR is low, i.e. the true negative rate, TNR = (1 — FPR) is high.
Classifying a motion-pixel as a non-motion pixel is worse than classifying a
non-motion pixel as a motion pixel, since that will lead to ghosting. For this
reason, the weight for the T'PR is set to be higher. This plot will show if there
is any correlation between the average SSIM value and the value generated from
the average motion mask statistics.

3.2 Data sets

To evaluate the algorithms, some data sets are needed. Both image sequences
captured by a real camera, and synthetic images are needed in order to test
the methods properly. The reason for this is that the noise characteristics are
different in the images captured by the actual camera compared to the images
with artificially added noise. The real-world sequences contain noise that is
correlated with the intensity of the signal. Pixels with higher intensity, i.e.
bright pixels, are corrupted by noise with higher standard deviation compared
to the darker pixels. In the synthetic sequences, where the original image is
noise-free and Gaussian noise with different standard deviation is added, the
standard deviation of the noise is constant in the whole image and independent
of the intensity.

Also, the quality metrics from Section 3.1 can only be performed on synthetic
data sets where a noise-free reference image and a motion mask are available.

3.2. DATA SETS 11

It is entirely possible to add signal dependent noise to the synthetic sequences as
well. The reason for not doing so is that it would add another level of complexity
when studying the synthetic sequences.

In this thesis, mainly three different sequences are used to evaluate the per-
formance of the algorithms. The first one is a sequence of a bus captured by
a surveillance camera in a low-light condition. The second and third ones are
taken from the animated movie Big Buck Bunny, [5]. Two sequences from the
movie are used: frames 2195-2394 and frames 2495-2704. They contain static
backgrounds with varying amount of texture as well as both small and large
movements.

In the Appendix, a few more sequences are presented but the performance of
the filtering did not differ much from the sequences mentioned above and is
therefore not included in the results or discussion.

Chapter 4

Theory

4.1 Image representation

Images can be stored in different ways. In this section, the colour models used
in this thesis are presented.

4.1.1 RGB

The way to describe colour image data that is most familiar to people is probably
the RGB model. In the RGB colour model, each pixel is described by one red,
one green and one blue component. These components are added together to
produce different colours. There are several ways to represent these components.
Two examples are the arithmetic, where each colour is represented by a real
number in the range [0, 1] and the digital 8-bit per channel, where each colour
is assigned an integer number in the range [0,255]. In these representations
(0,0,0) means black while (1,1, 1) or (255,255, 255) corresponds to white.

4.1.2 YCbCr

YCbCr is another colour image model, where Y represents the luminance, and
Cb and Cr are the blue and red difference chrominance components respectively.
The luminance is essentially a grey-scale image of the original colour image.
YCbCr is a way of encoding RGB, meaning that the two representations are
equivalent and it is easy to convert the image from YCbCr to RGB and back.

13

14 CHAPTER 4. THEORY

4.1.3 Grey-scale

A grey-scale image is an image containing different shades of grey. An image in
RGB can easily be converted to grey-scale by e.g. computing a weighted average
of the three components. Doing so yields a single number in the range [0, 1] or
[0, 255], using the same ranges as above. The process of converting to grey-scale
is not invertible, meaning that there is no way to get back the colour information
from the grey-scale image.

4.1.4 Bayer pattern filter

Image sensors only respond to the intensity of the incoming light and as such
they can really only capture grey-scale images. In order to get colour informa-
tion, a colour filter array is placed in front of the sensor. This array is called a
Bayer pattern filter. The Bayer filter array arranges RGB colour filters such that
the filter pattern is 50% green 25% blue and 25% red. To obtain a full-colour
image, the captured patterned grey-scale image is interpolated. This process of
converting Bayer pattern data to RGB data is called demosaicing.

4.2 Noise sources

According to Janesick [9], sensor data is typically corrupted by four different
types of noise; signal shot noise, Fano noise, fixed pattern noise and read noise.
A sensor can be characterised using a method called photon transfer, see [9].
Whenever using cameras in this thesis, mainly photon shot noise, read noise
and fixed pattern noise are considered.

4.2.1 Signal shot noise

Shot noise relates to how incoming photons interact with the sensor. The spatial
distribution of the photons across the sensor is not uniform and this gives rise to
what is called signal shot noise. This noise is signal dependent, o410t x v/ Stgnal.

4.2.2 Fixed pattern noise

The pixels in the sensor gather photons with slightly varying efficiency. These
small differences generate a pattern that is the same in all frames, for a certain
signal level. Because this noise is not random it is called "fixed pattern”. It is
possible to remove this type of noise through a process called flat-fielding. Fixed
pattern noise standard deviation is proportional to the signal level, oppy
Signal.

4.3. BLOCK-MATCHING 15

4.2.3 Read noise

Read noise encompasses all remaining noise sources that are independent of the
signal level. There are a number of sources that goes into this, but it will be
treated as a single source in this thesis.

4.3 Block-matching

Block-matching is a method that locates a block from one image in another
image or other areas in the same image. The match can be measured in several
ways. One of the most common ways to measure the degree of similarity be-
tween two blocks is to use SAD. The smaller the SAD-value, the more alike the
two blocks are. Another common similarity measure is to use mean absolute
difference, MAD, which uses the average of all absolute differences between two
blocks.

There are different types of block-matching. The most accurate, but also the
most computationally expensive one, is the full search, also called exhaustive
search. Other block-matching techniques use different subsampling patterns and
interpolation methods to reduce the computational complexity.

Exhaustive search

The exhaustive search compares the block to be matched with all possible blocks
in the search area to find the optimal match in the other image. This match can
then be used to compute, for example, a motion vector. For matching a block
of size k x k in a m x n-image (m — k)(n — k)k? pixels need to be visited.

Subsampled block matching

To reduce the computational load of the block matching, many algorithms have
been proposed. One of them is the algorithm by Liu and Zaccarin [13]. This
algorithm reduces the computational complexity of a full search by a factor of 8
by limiting the number of search locations and the number of pixels evaluated.

First, only every second block in the original image is matched to the blocks in
the other image. For the blocks that are evaluated, a 4 : 1 subsampling pattern
is used. This means that only i of the pixels are used when evaluating the
pixel differences. Having four different patterns, see Figure 4.1 and alternating
between them in a specific way, four matches are produced for each block, which
leads to four motion vectors. These four motion vectors are then used to evaluate
the full block, e.g. without subsampling, at the four resulting locations. The
best match among these four is then selected as the final matching block. For
a more complete explanation, consult [13].

16 CHAPTER 4. THEORY

a/blaj/bla/bla|b
c/d cld|c|d c|d
a/blaj/bla/bla|b
c/d cld|c|d c|d
al/blalblalbla|b
cldic|d/ c|d|c|d
al/blalblalbla|b
cldic|d/ c|d|c|d

Figure 4.1: The 4 : 1 subsampling patterns for an 8 x 8 block.

The blocks that were ignored in the previous step, now need to be matched.
This is done by looking at the motion vectors for the four neighbouring blocks,
and among them choose the motion vector that gives the best match for the
new block. This relies on the assumption that neighbouring blocks are likely to
have similar behaviour, that is, they are likely to move in the same direction
with the same speed. When motion vectors for all blocks in the original image
are found, the block matching is finished.

4.4 Fuzzy logic

Fuzzy logic is an extension of ordinary binary logic. Instead of hard values of
true and false it uses degrees of truth. This degree spans the entire continuous
interval of [false,true] which is often represented as a real number in [0, 1].
Just like binary logic, fuzzy logic also defines operations like AND and OR.
These operations, however, are a little different when used in a fuzzy sense and
there are several ways to define them. One property that should always be
maintained is consistency with the binary versions of the operations. That is,
when performing for example 1 AN D 0 the result should be 0 just like in the
binary case. The definitions of these two operations, for the purposes of this
thesis, are:

a AND b=a-b, (4.1)

aORb=a+b—a-b. (4.2)

where the variables a and b are fuzzy values defined by what is known as a
membership function. Such a function takes as input some measurement and
maps a truth-value to it. One example would be a glass that has a certain
volume, V', of water in it. To get the degree of truth that this glass is full, the
value is passed into a membership function pi¢,,;;. This function then outputs
to what degree the glass is full. In this case the membership function could
be very simple, e.g. prui(V) = V/Vias. The term membership refers to what
degree the glass can be said to belong to the group, or set, of full glasses [7].

4.5. EROSION AND DILATION 17

Using these membership functions, a system of if-then rules can be set up to
determine what action to take. In the case of the somewhat full glass, one could
say that

IF pyuu(z) AND pupirsty(y) THEN DRINK.

The output variable DRINK would then be a fuzzy value quantitatively stating
the degree of certainty that you can drink.

4.5 FErosion and dilation

Binary images can be processed using morphological operations called dilation
and erosion. In a black and white image, a cluster of white pixels is said to be
an object. Dilation makes these objects bigger, and fill holes in the objects by
adding pixels to the object boundaries. Erosion, on the other hand, shrinks the
objects by removing pixels on the object boundaries. To add or remove pixels,
a structuring element is needed. This structuring element can assume different
shapes and sizes. How many pixels of each object that is added or removed
depends on the shape, as well as the size of the structuring element. Erosion
and dilation are often combined to get the desired results. When combining
them, the order in which they are performed is important. First doing erosion
and then dilation is not equivalent to first dilating and then eroding. Erosion
followed by dilation results in opening and dilation followed by erosion results
in closing of the objects. An example of this is shown in Figure 4.2.

Dilation Erosion

(a) Original image (b) Dilated image (¢) Eroded image

Dilation followed by erosion Erosion followed by dilation

ilation followed by ero- (e) Erosion followed by dila-
d) Dilation followed b; Erosion followed by dil
sion tion

Figure 4.2: An image processed using dilation and erosion with a disk of radius r = 12
as structuring element.

Chapter 5

Methods

From the methods that we have looked at we have selected four from the lit-
erature study and one new method for further study and comparison. These
are prototyped using MATLAB and some are then selected for implementation
in OpenCL to achieve the goal of real-time performance.

5.1 Adaptive fuzzy filter algorithm

A fairly simple and fast algorithm is presented by Wu et al. [23]. Firstly, a
noise estimation for the image is done. Thereafter, an average of the luminance
values for the 3 x 3 block centred at the current pixel is calculated both in the
current and the previous frame. The absolute difference between the previous
and current average luminances is calculated. This absolute difference is then
thresholded. The threshold is based on the standard deviation of the noise. If
the absolute difference is larger, the processed center pixel obtains the current
value. If it is lower, the new center pixel is an average of the previous filtered
pixel and the new unfiltered pixel.

Noise estimation

The standard deviation of the noise in each image is a measure of the noise
intensity in the image, and is therefore calculated before the actual motion
detection step is performed.

Here, differential operator based method [23], is used for the estimation. The
procedure starts by calculating the difference of two Laplacian directional oper-

19

20 CHAPTER 5. METHODS

ators dl, = —2(Ly — L Ly), where

2

1 0 1
L= —4
1 0 1
and
1
Lo=1|1 -4 1|,
1 0
resulting in the matrix
1 -2 1
dL=| -2 4 =2 |. (5.1)
1 -2 1

Applying the operator dL (5.1) reduces the impact of the underlying image
according to [16]. The noise information is obtained for each pixel by

n(z,y)= > > dL(+i, 1+ j)v(x+i,y+), (5.2)

j=—1i=—1

where v(z,y) is the grey value of pixel I(z,y). Then, the standard deviation of
the noise can be calculated as

I D)
" (36(W —2)(H — 2)) ’
where H and W is the height and width of the image respectively.

(5.3)

Motion detection

Once the noise is estimated, the pixels need to be classified. Assuming that
the noise is zero-mean additive Gaussian noise, the average value of the closest
neighbouring grey values

1 , .
Zj:—l Z;:—l v(z 41,y + j)
9
is the value resisting the most noise according to Wu et al. [23]. It is therefore

(5.4)

v(z,y) =

used to classify motion.

For the grey pixel v(z,y,t) of image I(z,y,t) at time ¢ and pixel (x,y) the
motion a(z,y,t) is determined by
0, if | o(x,y,t) —v(x,y,t —1) |< ko
Ol(:L‘,ZJ,t) _ ’ . ‘ 7(Y,) 7(' Ys) |— n , (55)
1, if | o(z,y,t) —0(z,y,t — 1) |> ko,
where o, is the estimated standard deviation of the noise, and v(x, y,t—1) is the
average grey value of the previous filtered frame at pixel (x,y). The reference
implementation always uses k& = 3. This is a parameter that can be varied to
tune the algorithm.

5.2. HIERARCHICAL BLOCK-MATCHING ALGORITHM 21

Temporal filtering

Here, a simple averaging of the pixels from the previous filtered frame and the
current noisy frame is calculated when the pixel is determined to be a non-
motion pixel. To avoid blurring and artifacts, the pixel value obtains the same
value as the same pixel in the noisy frame when it is classified as a motion
pixel. Using simple averaging, e.g. taking half of each image means that there
will always be some noise left. By giving less weight to the unprocessed image,
the denoising performance can be improved. This requires an accurate motion
detection or there will be ghosting again.

5.1.1 Algorithm summary

Algorithm 5.1.1: ADAPTIVE Fuzzy FILTERING ALGORITHM

1.Estimate the standard deviation of the noise.

2.Calculate the average grey value for the neighboring
pixels in the current frame and previous filtered frame.

3.Classify motion pixels.

4.Filter the image temporally.

5.2 Hierarchical block-matching algorithm

This algorithm is based on the method proposed by Kim et al. [12]. First, block
matching is used to detect motion and compute motion vectors. Thereafter, the
image is filtered with the previous filtered frame in the motion vector direction
for each pixel. If no match is found, the new pixel obtains the same value as
the noisy frame. Both the block-matching and the filtering are performed on
the luminance channel only. In order to get a good result and to avoid error
propagation, colour correction and a post processing step are done before the
new filtered image is finished.

Motion detection

The motion detection is done hierarchically using block-matching. Hierarchi-
cally means that the size of the blocks to be matched starts relatively big, for
example 9 x 9, and if no sufficient matching is found, the block size is reduced.
Starting with a frame of 9 x 9 pixels around the current pixel in the new un-
filtered image, the matching is performed in an 11 x 11 frame in the previous
filtered image, centred around the same pixel. If both the difference between

22 CHAPTER 5. METHODS

the maximum and the minimum SAD-value, and the minimum SAD-value are
smaller than a predefined threshold, a matching block in the previous frame is
considered to have been found. If not, the block size is reduced and the same
procedure is repeated until the block size reaches 3 x 3. The sizes of the search
windows, as well as the block sizes, can be varied to obtain different results.

When a match is found, the correlation p between the two blocks, i.e. the cor-
relation between the current pixel and the motion compensated pixel, is set to
p = 1. A correlation of p = 1 means that the block from the new unfiltered
frame is considered to be exactly the same as the matched block in the old
filtered frame. Using this fact, the motion vector for the pixel can be found by
subtracting the position of the matched pixel in the previous frame from the
position of the current pixel in the new frame.

In the case where no "perfect” match is found, and the block size already is the
minimum block size, the correlation, p, is calculated by (5.6).

SADmin
B-h-w’

where h is the block height, w is the width of the block and 3 is a user-defined
parameter that can be used to tweak the method. Usually 5 = 1.

p=1 (5.6)

The whole motion estimation process can be seen in a flow chart in Figure 5.1.

The order in which the blocks are evaluated is an important aspect of this
algorithm. It assumes that it is more likely that a pixel has moved a shorter
distance than a longer and traverses the blocks in a way that reflects this. The
search pattern is an outwards spiral with the current pixel as the center. In the
case that the minimum SAD-value is found at more than one place in the spiral,
the algorithm favours the position closest to the center.

Filtering

The filtering weight, «, that is used when interpolating between the old filtered
frame I;(Z,y,t — 1) and the new frame I,,(z,y,t) is determined by subtracting
the sensitivity from the correlation, see (5.7). The indices for the block in the
previous frame (Z,y) is the motion compensated, or matched, pixel position.

a=p-—s, (5.7)
where a = 0, if p — s < 0. s is a user-defined sensitivity parameter.
The new filtered pixel is calculated by (5.8).
If(z,y,t) = alf(Z,9,t — 1) + (1 — o) In (2,9, 1), (5.8)

meaning that for « = 0, the filtered image attains the value from the noisy
frame. Hence, a = 0 indicates motion, while & = aunee = 1 — s is considered as
non-motion.

5.2.

HIERARCHICAL BLOCK-MATCHING ALGORITHM

23

Block Matching Decrease block size

Get max and
min SAD values

|MazSAD — MinSAD| < v

& No
MinSAD < v
Yes Block size=min block size

Get correlation value

Get motion

Correlation—=1
Get motion

vector value vector value

Figure 5.1: The motion estimation process for the hierarchical block-matching algo-

rithm.

24 CHAPTER 5. METHODS

Colour correction

The images in this algorithm are assumed to be in the YCbCr model, but all
steps above are only performed in the luminance channel Y. According to Kim
et al. [12], the human eye is more sensitive to errors in the chrominance channels,
Cb and Cr. Therefore, colour correction is necessary for these values in order to
obtain a satisfactory result. If the Cb value and the Cr value for a pixel (z,y)
have the same sign, equation (5.8) is applied to both chrominance channels,
otherwise the previous values are used without any processing.

Post processing

In order to prevent error propagation some post processing is needed. If the
differences between the three channels in the filtered frame and in the noisy
frame, after the temporal filtering and the colour correction, are bigger than
a threshold, the pixel is considered to be in error. The error pixel is then
replaced by the value of the original unfiltered pixel. The threshold for the
luminance difference, AY, is the same - as above, and the threshold for the two
chrominance channels ¢ - v, where c is a user-defined constant 0 < ¢ < 1. The
threshold is lower for the chrominances, due to the higher sensitivity to errors
in these channels.

Modifications

In addition to the algorithm, we have also implemented some extensions and
changes to optimize the result for our purpose.

To make the method closer to a binary method, a mapping of a is made. In the
original method « attains a value in the range [0,1—s], where s is the sensitivity
parameter, and if it is in the middle of the higher and lower limit it is as likely
to be a motion pixel as a non-motion pixel. Since a pixel actually is motion or
not motion, we try a mapping of « to make more definite decisions on the pixel
classification. Two different S-curve mappings are made, see (5.9) and (5.10).

Anew = 3a3ld - 2agld (59)

Unew = 602,y — 150, +10a3,, (5.10)
The shape of these functions can be found in Figure 5.2.

To make the algorithm work properly, a new « is calculated for each block size.
The different block sizes are specified in a vector to make it more user adaptive.
The optimal v parameter varies with the standard deviation of the noise.

5.3. Fuzzy LOGIC ALGORITHM 25

Figure 5.2: The two mappings of « in equations (5.9) and (5.10).

5.2.1 Algorithm summary

Algorithm 5.2.1: HIERARCHICAL BLOCK MATCHING ALGORITHM

1.Perform block matching on the images.
2.Calculate motion vectors and correlation between
the matched blocks.
3.Filter in the motion vector direction, using the filtering weight.
4.Do colour correction.
5.Do post processing step.
6.0btain output image.

5.3 Fuzzy logic algorithm

This implementation is based on the propositions made by Zlokolica et al. [25]
and it takes the fuzzy logic approach to determine at what degree a pixel should
be considered being in motion. The original algorithm includes a spatial filtering
method as well. This part is completely independent from the temporal filtering
and hence ignored by us.

The algorithm uses two frames from the image sequence, the previous processed
frame, I¢(¢t — 1) and the new unprocessed frame, I,,(¢). In addition to the two
images, it also needs the previous per-pixel noise variance estimates and filtering
weights.

Computing the motion confidence

The first step is to compare the current noisy frame to the previous one using
absolute differences. For each pixel a neighbourhood of 3 x 3 pixels, centred
around the current pixel, is considered. The absolute difference matrix for
this neighbourhood is computed and the results are used in a fuzzy rule that

26 CHAPTER 5. METHODS

determines the motion confidence 6(x,y,t), i.e the degree to which the pixel
can be said to be a motion pixel. The absolute difference matrix for such a 2D
neighbourhood, centred at position (z,y) at time ¢ is defined as

Az, y,t) = [In(x+ i,y + j,t) — If(z+i,y+5,t—1) (4,7) € {-1,0,1}.
(5.11)
To obtain the motion confidence, the whole neighbourhood is analysed. The
degree of membership, fgrge(A(z,y,t)), is used in the fuzzy rule. All possi-
ble combinations of three neighbours out of the existing eight being large are
evaluated, resulting in the motion confidence

0(1;; Y, t) = ,ularge(Acenter) AND

((Nlarge(A%) AND MlaTQE(A%) AND /llarge(Ail’))) OR

(Hiarge(AT) AND piiarge(A3) AND puarge(A3)) OR

(1arge (A7) AND Jutarye () AND uzarge(Aé‘))> (512)

where A means the absolute difference for some neighbour d € {1,2,3} for
some combination of neighbours ¢ € 1...n. In short, this means that to get
a non-zero motion confidence, the current pixel and at least three neighbours
must have non-zero pqrqe- If there are more than three neighbours that do,
all n possible combinations of those are evaluated. The maximum number of
combinations to evaluate is then n,,,, = (g) = 56.

Calculation of parameters

The motion confidence 0(x,y,t) is used to compute the weights a(x,y,t) and a
parameter, B(x,y,t) that is used for the temporal adaptation of the o-estimates.
Specifically, the method needs to adapt to changes in noise and illumination.
The membership function parge is defined as a piecewise linear function

0 0<z<a

ularge(xv a, b) = gg:s a<lz<b, (513)
1 b 1

The parameters a and b, that control the slope, are updated at each frame
depending on the noise estimate from the previous frame. The update formulas
are

a(z,y,t) = kgo(z,y,t — 1), (5.14)

5.3. Fuzzy LOGIC ALGORITHM 27

b(z,y,t) = kpo(z,y,t — 1) + v(z,y,1), (5.15)
J(Iayatfl) . 5(‘T>y7t)
14+ 6(z,y,t) fél—&—a(sc,y,t—l)7

1
and d(x,y,t) = g ZA(x,y,t).

where v(x,y,t) = ks

v(x,y,t) is a correction factor and 6(x,y,t) is a rough estimate of the variance
of the 3 x 3-neighbourhood. The constants k,, ky, ks, ks are found empirically
in [25].

Once the motion confidence is determined, the weighting parameters can be
computed. There is one parameter, 3, that is used for updating ¢ and one
parameter for the actual inter-frame weighting denoted «. The variance update
formula is rather straightforward:

o(z,y,t) = (1 — B(z,y,1)0(z,y,t) + B(z,y,t)o(x,y,t — 1), (5.16)

where (x,y,t) = min(1, 1.5/0(x,y,t)) and 6(x, y, t) is the same as in equation
5.15. The variance update formula needs starting values. This starting value is
simply set uniformly across the whole first frame, i.e. o(z,y,0) =09 V(z,y) €
1.

The updating of the «a(z,y, t)-parameters is almost just as straightforward:
afz,y,t) = 0.5a(x,y,t — 1)% + (1 — 0.5a(z,y,t — 1))/ (x,y,1), (5.17)

where o' (z,y,t) = min(l, 1.154/0(z,y,t)) is a rough initial estimate solely
based on the motion confidence in the current frame. The initial value for
a(z,y,t) is constant for all (z,y) at ¢ = 0. Different values will only affect
the time it takes for the algorithm to settle in. In the long run it makes no
difference.

Temporal filtering

Now, finally the new processed pixel value can be computed by interpolation
between the previous filtered and the new current noisy pixel using the newly
obtained a(z,y,t):

Iy(z,y,t) = a(z,y, t) L (2, y,t) + (1 — a(z,y,t) [, (z,y,t — 1), (5.18)

5.3.1 Modifications

Weight parameter, «

A variation of the proposed algorithm has also been tested. The modification
affects the behaviour of the weighting parameter, a. This parameter can be
tweaked to include more or less information from the previous frames. Instead

28 CHAPTER 5. METHODS

of using a(x,y,t —1) directly in (5.17), the mapping in (5.9) is used. Doing this
shifts the a to depend more on the current motion estimate.

The function pqrg. does not have to be a linear function. Experiments have
also been done using (5.9).

Motion mask

A modification to how the motion mask is generated is also used. The mod-
ification uses scaling to suppress noise in the motion mask. It works by first
downscaling and then upscaling the motion mask that the original Fuzzy logic
algorithm produces. The scale factor used is 4. Also, the erosion/dilation tech-
nique has been used. The modifications to the motion mask does not affect
the algorithm itself and the resulting modified mask can only used for binary
filtering.

5.3.2 Algorithm summary

Algorithm 5.3.1: Fuzzy LOGIC ALGORITHM

1.Update membership function.

2.Compute motion confidence for blocks.
3.Compute o and «, save for next iteration.
4.Interpolate using new «.

5.4 Low-rank matrix completion algorithm

All algorithms described above are based on the assumption that the noise is
Gaussian. In reality, that is not the case. Therefore there is a need for a noise
robust algorithm which can handle other types of noise, e.g. the noise types
described in section 4.2.

This algorithm, as described by Ji et al. [10], transforms the denoising problem to
a low-rank matrix completion problem by keeping the pixels that are considered
reliable, removing the pixels corrupted by noise, and thereafter concatenate
columns of matched blocks to a matrix. This matrix is assumed to be a low-
rank matrix since the matched blocks are supposed to be similar. The low-rank
matrix problem is solved using a minimization algorithm. The motion detection
is based on a fast block matching algorithm, which matches blocks both spatially
and temporally. Temporally, the a — 1 previous frames are used, and in each

5.4. LOW-RANK MATRIX COMPLETION ALGORITHM 29

frame b similar blocks are found. Thus a - b matching blocks are used for each
block that is denoised.

Preprocessing

The preprocessing step accomplishes two things. First, the pixels corrupted by
impulse noise, also called salt-and-pepper noise, are identified and removed. This
is done by applying an adaptive median filter [8], on the images. In addition to
identifying the impulse-corrupted pixels, this denoising is used as a preprocessing
step for the block matching to obtain better matches. The actual denoising
however, uses the unprocessed frames.

Patch matching

Let I be the k:th image in the sequence I _,, where I, is the image to be
denoised. Each image can be described as I = gi + ng, where gi is the clean
image and ny is the noise in image k.

To reduce the high complexity of the block matching, the algorithm proposed
in [13] is used. As seen in section 4.3, this reduces the computational time
complexity by a factor of 8.

The block matching is used to find b blocks in each of the a images used to
denoise I,. These 8 x 8 blocks are then stacked as columns in a matrix P =
(P1,---Pm), where m = a - b is the number of patches. Thus P is a n? x m
matrix, where n is the block size. In our case n = 8.

Denoising a patch matrix

The unreliable pixels have to be found in order to create an incomplete matrix.
These consist of two subsets, the pixels found by the adaptive median filter and
the pixels that are too far from the mean value of each row in the patch-matched
matrix P. The unreliable pixels are then replaced by 0, to form the incomplete
matrix P |q. Indices of all reliable pixels form the set (.

Let @ denote the clean patch matrix from the image, i.e. P = @Q + N, where N
is the noise matrix for the patches. The goal is to recover @ from the incomplete
observation P |. To do this, a minimization problem is considered. Before the
minimization problem is defined, a few notations will be introduced.

The Frobenious norm of a matrix X is defined as

1/2
| X = (Z Y F) . (5.19)
]

30 CHAPTER 5. METHODS

Furthermore, the nuclear norm of a matrix X is defined by
| X [li=)_(0:(X)), (5.20)
where o; is the i:th largest singular value.
Let X = UXVT be the singular value decomposition, SVD, of X. The soft
shrinkage operator D, (X) is defined as
D,(X)=U%, VT, (5.21)

where ¥, = diag(max(co; — 7,0)), for a constant 7. Also, let X | denote the
vector, concatenated from the matrix X, including the elements in the set
only.

The minimization problem, i.e. to recover) from its incomplete observation
P |q using the fact that the rank of @ should be small is not itself a convex
problem. Therefore the nuclear norm (5.20), which leads to a convex minimiza-
tion problem, is used to approximate the rank of the matrix. Thus, we need to
solve the following problem:

min | Q . (5.22)

st [1Qla =P lalf< #(2)5%

where #(Q) is the number of elements in the set 2 and & is the estimation of
the standard deviation of the unfiltered observations in €.

Instead of solving (5.22), an unconstrained Lagrangian version of the problem
is derived.

.1
min s | Qla —P lalf +4 1 Q - (523)
where p is a constant s.t.
1= (V2 + /m) /o, (5.24)
#(Q)

T+, i.e. the ratio between the number of pixels in the set {2 and
the total number of pixels in the patch matrix.

where p =

This problem is then solved by fixed point iteration.

Algorithm 5.4.1: FIXED POINT ITERATION

comment: Solve Minimization Problem (5.23)

let Q°:=0
while || Q% — Q"1 [p< ¢
RF = QF — 7Po(Q* — P)
do Qk—H — DTM(Rk)
k=k+1
return (Q := QF),

5.4. LOW-RANK MATRIX COMPLETION ALGORITHM 31

where p and 7 € [1,2] are predefined parameters, D is the shrinkage operator
defined in (5.21) and Pgq is the projection operator of Q defined as

Qi j) if (i,5) € ©

(5.25)
0 otherwise

Pa(Q)(i,j) = {

Denoising the image

Now, a set of denoised patches for the image is available. Since an overlap of the
blocks is used when performing the matching, the final pixel will get an average
value of the corresponding pixel in all overlapping denoised blocks.

After this step, the denoised image is obtained.

The motion mask

It is not a straightforward task to extract a meaningful motion mask from this
algorithm. The reason for that is the fact that filtering is done using multiple
matching patches. This means that there is not a single unique motion vector
to use. The way it is done now is that we look at all motion vectors from the
current to the previous frame only. These motion vectors are then summed and
if the length of the sum is less than a certain threshold the block is considered to
not be in motion. The very nature of this algorithm makes it hard to compare
the motion mask it produces to that of the other algorithms.

5.4.1 Algorithm summary

Algorithm 5.4.2: Low RANK MATRIX COMPLETION ALGORITHM

1.Filter the images using Adaptive Median Filter.

2.Match the images using a block matching algorithm.

3.Concatenate all columns for the blocks, and create a matrix
from the matching blocks.

4.Identify unreliable pixels.

5.S0lve the minimization problem to calculate the low rank matrix.

6.Average the values of each pixel in the denoised patches.

32 CHAPTER 5. METHODS

5.5 Blur Filtering

This is an algorithm that has developed during the course of this thesis. The
algorithm is based on spatial smoothing of the input images and consists of two
steps.

Similar to most other methods, the blur filtering method works with the pre-
vious filtered frame and the current unfiltered frame. First, the current frame
is smoothed using a weighted average of the surrounding pixels. This spatially
smoothed image is then used with the previous filtered image to create a differ-
ence frame that is then thresholded. This motion mask is then processed using
a down-/upscaling technique.

Blurring

The spatial blurring amounts to convolving the image with a kernel containing
the weights. There are many ways to choose the kernel, but to get the smoothing
effect typically a symmetric kernel, with a relatively high weight in the center,
is used. One example of such a kernel is

1 3 1
K=|3 9 3
1 3 1

The same kernel is applied to both the current and the previous, processed
frame.

The motion mask

The first step in creating the motion mask is simply differencing the blurred
noisy frame and the blurred previous filtered frame. The absolute values are
then thresholded. This however is only an intermediate mask that is potentially
still very noisy. Finally, scaling of the mask is used to fill in holes, remove noise
and smooth the edges. To scale the image, bilinear and bicubic scaling is used
for down- and up scaling respectively.

Denoising

The actual denoising is performed by simple binary filtering using the newly
obtained mask.

5.5. BLUR FILTERING

33

5.5.1 Algorithm summary

Algorithm 5.5.1: BLUR FILTERING ALGORITHM

1.Blur images.

2.Create difference frame.
3.Threshold to get motion mask.
4.Down- /upscale mask.
5.Perform binary filtering.

Chapter 6
Camera Implementation

Implementations on actual cameras are done using a simulation framework based
on OpenCL. This framework runs on a computer but uses the video stream from
a camera. OpenCL is a programming language based on the C99-standard. The
purpose of the language is to provide a simple and effective way to run highly
parallel workloads using highly parallel hardware such as graphics processors,
GPU:s. The syntax is very similar to C, with some parallelism-specific additions.

6.1 Camera calibration

When detecting scene-change in real time on actual cameras, performance can
often be improved by calibrating the camera. In this case that means analysing
the noise at different levels of illumination. The output is the standard deviation
of the noise as a function of the signal level, which is linear with respect to
the intensity of the incoming light. The calibration is mainly used to adjust
thresholds in the detection algorithms.

In order to calculate the standard deviation of the noise, a completely static and
evenly illuminated scene is required. This is accomplished in a lab by using the
inside of a sphere that is lit by a precisely controlled lamp. The first step is to
acquire image sequences at several different levels of illumination, ranging from
black to the point when the sensor is saturated, i.e. when everything is white.
From each sequence, a series of difference images is created. The only thing
that remains in the difference images is the noise, since the scene itself does not
change. Now, computing the standard deviation of the noise simply amounts
to computing the standard deviation of the difference images and dividing by
V2, [9]. Having many noise estimates means that they can be averaged to get

a more accurate result. The factor % is derived as

35

36 CHAPTER 6. CAMERA IMPLEMENTATION

o3 =E((S+F+X)—(S+F+Y))%)-
E(S+F+X)—(S+F+Y))’ =

—E(X-Y)?)—EX-Y)?=...=0% +02 =

noise
Odiff

Nl

where o2, ¢ 1s the standard deviation of the difference frame. The signal S and
the fixed pattern noise F' are both constant, which means that they will cancel
out in the difference image. The random noise X and Y from the two frames

=20

(6.1)

< Onoise =

used to construct the difference frame is all that remains. The characteristics of
the noise, X and Y, does not change between frames which is why ox = oy =

Onoise-

All algorithms work on demosaiced images and not directly on Bayer data.
Because of this the calibration has been performed on the demosaiced images.
This means that the result is not strictly the correlation between the signal and
the standard deviation. Instead it is the dependence of the standard deviation
of the noise in the grey levels of the demosaiced input data. Using the data
points, a polynomial can be fitted to approximate the noise level which then
can be used to adjust thresholds in the algorithms.

6.2 Implementations

Out of the five evaluated methods, three were chosen for OpenCL implemen-
tation: Fuzzy Logic, Adaptive Fuzzy Filtering and Hierarchical block matching.
They were chosen because we felt that they are the most promising, and also
because they are not overly complex. The generally high complexity of the
low-rank method, and in particular the need for SVD, make it unreasonable to
implement in OpenCL within the timespan of this thesis.

Chapter 7

Results

7.1 Result overview

The methods have been tested on several image sequences, to find where the
methods perform well and where they give less satisfactory results. Both existing
image sequences from surveillance cameras and artificial, computer animated,
sequences with noise added have been used to evaluate the methods. For the
sequences where noise has been added, a comparison between the original noise-
free frame and the filtered frame can be made.

A motion mask is created for all methods. These method-generated masks are
compared to the reference mask when one exists, i.e. when using the synthetic
sequences. The number of true positives, true negatives, false positives and
false negatives are measured to determine how similar the motion mask for the
method is to the real motion mask. These statistics are then used to compute
the TPR, FPR and accuracy.

Moreover, the performance of the different methods is measured using structural
similarities, SSIM.

The statistics alone are not enough to evaluate the methods, since human visual
system aspects are not included. Therefore, we have also included a subjective
measurement in order to differ and compare the methods. The subjective mea-
surement is only a qualitative measurement.

The parameters for each method is optimised for each sequence, thus generating
the best possible results in all cases. This ought to give the most fair comparison.

Mainly, the three datasets described in Section 3.2 have been used to test the
methods. One is a sequence of a bus passing on a road. This is captured in low-
light conditions, which makes the sequence quite noisy. A few of the challenges
in this sequence is to preserve the arrow pattern on the bus, where the contrast

37

38 CHAPTER 7. RESULTS

is low, keep the text on the bus clear and readable and avoid ghosting artifacts
where motion has occurred.

The other sequences are taken from the computer animated movie Big Buck
Bunny [5]. The sequences are chosen so that they include static backgrounds,
many details and contain both small and big movements. Noise, here a zero-
mean normal distribution, is added to the sequences. Several different standard
deviations are used to test the methods on various levels of noise. All images,
when presented here, are 8 bits per channel meaning that the range of the
colours is [0, 255].

For binary filtering, different weights can be used for the old filtered frame and
the new noisy frame, for pixels which are classified as non-motion pixels. When
a higher weight is set to to the old filtered image, the noise reduction becomes
much higher for static scenes after some start-up time. However, there are
some issues with this approach. One issue is that if a motion pixel is classified
incorrectly as a non-motion pixel, the error will propagate and will be seen much
longer. Another problem is that the areas where motion is detected become
extremely noisy compared to the filtered static areas. This results in that motion
areas look like artifacts or ghosting due to the very different appearance between
the two areas. In an image processing pipeline, where the image is processed and
noise is removed, several denoising steps are performed. To solve the problem
described above, spatial filtering in these areas is performed. Spatial filtering is
not included in this thesis, and therefore the resulting filtered images can look
strange. In Figure 7.1, two images filtered with the same method but using
different weights between the previous filtered frame and the new noisy frame
are shown. Here, one image is filtered using equal weights, e.g. 0.5, for both
images. The other image use the weights 0.8 and 0.2 for the old filtered frame
and the new noisy frame respectively. Filtering only occurs where no motion is
detected.

7.2. ADAPTIVE FUZZY FILTER ALGORITHM 39

(a) Original noisy image b) Filtering I¢(x,y,t) = 0.5-I(z,y,t—1)+
0.5 - In(z,y,t) for non-motion pixels

(c) Filtering I¢(x,y,t) = 0.8-I¢(x,y,t—1)+
0.2 - In(z,y,t) for non-motion pixels

Figure 7.1: One image from the Big Buck Bunny sequence filtered using different
weights in the binary filtering. The added noise has standard deviation o = 100.

7.2 Adaptive fuzzy filter algorithm

The Adaptive fuzzy filter algorithm appears to be one of the most efficient and
fastest algorithms of the ones that have been implemented, it also performs well
for all image sequences.

The bus sequence

The motion mask generated here is very good. There are some pixels, classified
as motion that probably should have been classified as non-motion, but it is
hard, even manually, to determine if the trees in the background are moving or
not.

The algorithm finds both the low contrast arrows and the small details, such as
the text on the bus, and very little artifacts are introduced, see Figure 7.2.

40 CHAPTER 7. RESULTS

a) Original noisy image)} Filtered image
) Original) Filtered

(e) Motion mask

Figure 7.2: Frame 9 from the bus sequence and corresponding filtered image and
motion mask using the adaptive fuzzy filter algorithm.

The Big Buck Bunny sequences

The adaptive fuzzy filter algorithm detects the bunny in the sequences fairly
well. The higher the standard deviation of the noise is, the less movement the
method detects. For a sequence where noise with standard deviation o = 20 is
added, see an example of an image in Figure 7.3, the method detects most of
the major movements, but when the standard deviation of the noise increases
to o = 40, much less is detected unless the threshold for the motion detection
is lowered. With a lower threshold, the motion mask looks noisier. An example
image where standard deviation ¢ = 40 has been used can be seen in Figure

7.2. ADAPTIVE FUZZY FILTER ALGORITHM 41

7.5. The statistics for the sequence using the original adaptive fuzzy filter with
o =20, 0 =40 and ¢ = 100 can be seen in Figure 7.4, 7.6 and 7.8.

(a) Original image (b) Original noisy image

b e e b

4

SR B
(d) Original (e) Original noisy (f) Filtered

(g) Reference motion mask (h) Motion mask

Figure 7.3: Frame 2323 from the Big Buck Bunny sequence filtered using adaptive
fuzzy filter algorithm. The added noise has standard deviation o = 20.

When the SNR is low, the adaptive fuzzy filter algorithm runs into some issues.
The number of false positives tends to follow the true positives a bit too closely.
It either detects more motion, but also classifies slightly more noise as motion,
or when trying to avoid classifying the noise as motion, it does not detect enough

42 CHAPTER 7. RESULTS

affa filter mod affa filter mod/

Processed Processed
— — Noisy —— Noisy

SSIM index
&
SSIM index

120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100
Frame number Frame number

(a) SSIM for the original adaptive fuzzy fil- (b) SSIM for the post processed adaptive
ter method. fuzzy filter method.

affa fiter mod

T,

True pos. rate
False pos. rate
Accuracy AFFA postprocessed
[S
\/ "/ T
‘\/\\M*/ True pos.
False pos.

/K’F\JN

08 Accuracy

SSIM index
o

A
0 20 40 60 80 100 120 140 160 180 200
Frame number

100
Frame number

(c) Detection statistics for the original adap- (d) Detection statistics for the post pro-
tive fuzzy filter method. cessed adaptive fuzzy filter method.

Figure 7.4: Statistics from one of the sequences from the Big Buck Bunny movie
using the original and modified adaptive fuzzy filter algorithm. The added noise has
standard deviation o = 20.

motion. The difference is quite small, but might matter in some cases. For an
example of an image with SNR ~ 1.5 see Figure 7.7. When the image is as
noisy as in that case, where the standard deviation is ¢ = 100, the filtering
can sometimes look very strange. This is because the difference between the
filtered parts of the image and the non-filtered parts, i.e. the parts where motion
is detected, is very big. Therefore it can look like the filtering has created
ghosting effects and artifacts in the image in areas that are simply unfiltered.
This happens when there are unfiltered “islands” surrounded by filtered areas.
For an example, take a close look at the butterfly in Figure 7.9. The wings of
the butterfly are moving, and one can clearly see where the wings have moved
from the previous image in the sequence since no filtering is performed there.

Since some of the motion masks look noisy, the erosion/dilation method is ap-
plied. First, dilation with a disk of radius r = 2 is performed, thereafter an
erosion of radius r = 3 is applied, and at last one more dilation is used. This

7.2. ADAPTIVE FUZZY FILTER ALGORITHM 43

(a) Original image (b) Original noisy image

(¢) Filtered image

. ﬁ‘l -

v
(f) Filtered

t-'

(d) Original

(g) Reference motion mask (h) Motion mask

Figure 7.5: Frame 2323 from the Big Buck Bunny sequence filtered using adaptive
fuzzy filter algorithm. The added noise has standard deviation o = 40.

time the structuring element of the dilation is a disk with radius » = 1. Some
results can be seen in Figure 7.10.

afa fiter mod afa fiter mod/
1 T T T T T T T 1 T T T T T T T
Processed Processed
~ — Noisy — — Noisy
o0sf st 4
o8l o8l 1
o7t 07t 1
s 06 1
] §
< osp S osf 1
2 2
3 3
04t 04 1
o3l o3 1
02f oz2f 1
[] e TN e o T T T T T T T T T T T T e g
o 20 4 60 80 1 120 140 160 180 200 20 40 60 8 _ 100 120 140 160 180 200

00
Frame number

(a) SSIM for the original adaptive fuzzy fil-
ter method.

affa filter mod

09k

e SN

True pos. rate
Ise pos. rate
Accuracy

T e —

80 100 120 140 160 180 200
Frame number

(c) Detection statistics for the original adap-
tive fuzzy filter method.

Frame number

(b) SSIM for the post processed adaptive
fuzzy filter method.

SSIM index

AFFA postprocessed

True pos.
False pos.
Accuracy

40 60 80 100 120 140 160 180
Frame number

200

(d) Detection statistics for the post pro-
cessed adaptive fuzzy filter method.

Figure 7.6: Statistics from one of the sequences from the Big Buck Bunny movie

using the original and modified adaptive fuzzy filter algorithm. The added noise has

standard deviation o = 40.

7.2. ADAPTIVE FUZZY FILTER ALGORITHM 45

(a) Original image (b) Original noisy image

(c) Filtered image

-

. =
£ | i

(d) Original

(g) Reference motion mask (h) Motion mask

Figure 7.7: Frame 2597 from the Big Buck Bunny sequence filtered using adaptive
fuzzy filter algorithm. The added noise has standard deviation o = 100.

affa fiter mod affa fiter mod/
1 1 T T T
~ — Processed ~ ~ Processed
- ~ - Noisy
osf Nolsy 09 !
o8l 08
07 07
osf 06
§ £
= 05¢ S 05
2 2
0af 04
0af 03
o0zf 02
o1 o B o1 - - S
0 50 100 150 200 250 20 40 60 8 100 120 140 160 180 200

Frame number

(a) SSIM for the original adaptive fuzzy fil-
ter method.

AFFA

True pos.
alse pos.
ccuracy

SSIM index

20 40 60 80 100 120 140 160 180 200
Frame number

(c) Detection statistics for the original adap-
tive fuzzy filter method.

Frame number

(b) SSIM for the post processed adaptive
fuzzy filter method.

AFFA postprocessed

SSIM index

A Aepr™ _— A
I 1 e S S e e e el waea
20 40 60 80 100 120 140 160 180 200
Frame number

(d) Detection statistics for the post pro-
cessed adaptive fuzzy filter method.

Figure 7.8: Statistics from one of the sequences from the Big Buck Bunny movie

using the original and modified adaptive fuzzy filter algorithm. The added noise has

standard deviation o = 100.

Figure 7.9: An image filtered with the adaptive fuzzy filtering algorithm. The butterfly
has moved and that part is therefore unfiltered. Since the image is very noisy, the
unfiltered parts around the butterfly look like artifacts. The added noise has standard

deviation o = 100.

7.2. ADAPTIVE FUZZY FILTER ALGORITHM 47

(a) Reference motion mask

(¢) Modified motion mask o = 20

(d) Motion mask o = 40 (e) Modified motion mask o = 40

(f) Motion mask o = 100 (g) Modified motion mask o = 100

Figure 7.10: Motion masks for the adaptive fuzzy filtering algorithm and modified
masks using dilation and erosion for noise with different standard deviation o.

48 CHAPTER 7. RESULTS

7.3 Hierarchical block-matching algorithm

The hierarchical block-matching algorithm performs, according to our subjective
observations, better using our suggested mapping of « from eq. (5.9). In all tests
this remapping of the filtering coefficient o has been used. The difference when
using the mapping in eq. (5.10) is very small. The block sizes are varied to see
how much a bigger search area can affect the result. This is done because many
movements are bigger than 5 pixels.

The bus sequence

Using a search window of 11 x 11 and block sizes 9 x 9 and 7 x 7 and another
search window of 25 x 25 with block sizes 13 x 13, 9 x 9 and 7 x 7, the filtered
images can be seen in Figure 7.11 together with the motion masks and the
original noisy image.

7.3. HIERARCHICAL BLOCK-MATCHING ALGORITHM 49

a) Original noisy image

) Filtered, search window 11 x 11)} Filtered, search window 25 x 25
) Original) Filtered, 11 x 11) Filtered, 25 x 25

iffla'&"iﬁ‘"}l “¥a

(g) Motion mask, search window 11 x 11 (h) Motion mask, search window 25 x 25

Figure 7.11: An image from the bus sequence and corresponding filtered images and
motion masks using hierarchical block-matching algorithm with search windows 11x11
and 25 x 25 and block sizes 9 X 9, 7 x 7 and 13 x 13, 9 X 9, 7 X 7 respectively.

50 CHAPTER 7. RESULTS

Big Buck Bunny sequences

One of the images from one of the sequences from the Big Buck Bunny movie
can be seen in Figure 7.12. This figure shows the original image, the image with
added noise with standard deviation o = 20, the filtered image for two different
search window sizes, and also the motion mask. The whole sequence consists of
200 images, and the statistics are shown in Figure 7.13.

When the noise level is higher, the algorithm has more problems with differen-
tiating motion from noise. This can be seen in Figure 7.14. Also the statistics
from the sequence can be viewed in Figure 7.15.

The behaviour of the algorithms when the SNR is low have to be investigated.
Here, by adding noise of standard deviation ¢ = 100 for one of the sequences
from the Big Buck Bunny movie we obtain a signal-to-noise ratio of approx-
imately SNR ~ 1.5. For the hierarchical block-matching algorithm with the
same search windows and block-sizes as above, the result is shown in Figure
7.16. The statistics are shown in 7.17.

7.3. HIERARCHICAL BLOCK-MATCHING ALGORITHM 51

(c) Filtered image, search window 11 x 11 (d) Filtered image, search window 25 x 25

\
)

=i i

(e) Original (f) Original noisy (g) Filtered, 11 x 11

A\

L

(h) Filtered, 25 x 25 (i) Reference motion mask

(j) Motion mask, search window 11 x 11 (k) Motion mask, search window 25 x 25

Figure 7.12: Frame 2309 from the Big Buck Bunny sequence filtered using the hier-
archical block-matching method for search windows 11 x 11 and 25 x 25 with block
sizes 9 — 7 and 13 — 9 — 7 respectively. The noise added has a standard deviation
of o = 20.

, hiera slow mod hiera siow long mod
T T T T T T T 1 T T T T T T T
~ ~ Noisy -
ol I ol Noisy ||
o8| 1 08|]
07 1 07l 1
o6 1 06 1
SO5f. e e] ;05’ 7777777777777777777 R |
2 2
04f 1 04f 1
03l 1 o03f 1
o2f 1 02l]
o1t 1 oif 1
20 40 60 80 100 120 140 160 180 () 20 40 60 80 10 120 140 160 180 200

Frame number

(a) SSIM for the original image and the fil-
tered image for search window 11 x 11

hiera slow mod

Frame number

(b) SSIM for the original image and the fil-
tered image for search window 25 x 25

hiera slow long mod
T

O Ve

09

A N ey

T

True pos. rate
False pos. rate
Accuracy

0.1 N 1
R A

True pos. rate

L L L
100 120 140
Frame number

—
20 40 60 80

160

(c) Detection statistics for search window

11 x 11

100 120
Frame number

0 20 40 60 80

140 160 180 200

(d) Detection statistics for search window

25 x 25

Figure 7.13: Statistics from one of the sequences from the Big Buck Bunny movie,

where the added noise has standard deviation ¢ = 20. The sequence is run through

the hierarchical block-matching algorithm with search windows 11 x 11 and 25 X 25
and with block sizes 9 — 7 and 13 — 9 — 7 respectively.

7.3. HIERARCHICAL BLOCK-MATCHING ALGORITHM 53

(b) Original noisy image

(c) Filtered image, search window11 x 11 (d) Filtered image,search window 25 X 25
| 1 .-._ ."::.
S = o i
/ e k e
(e) Original (f) Original noisy (g) Filtered, 11 x 11

(j) Motion mask, search window 11 x 11 (k) Motion mask,search window25 x 25

Figure 7.14: Frame 2309 from the Big Buck Bunny sequence filtered using the hier-
archical block-matching method for search windows 11 x 11 and 25 x 25 with block
sizes 9 — 7 and 13 — 9 — 7 respectively. The noise added has a standard deviation
of o = 40.

hiera slow mod hiera slow long mod
1 - - - - - - - 1 - - - - - - -
Processed Processed
Noisy ~ — Noisy
ost st ol
o8 st 1
07t o7 1
osf osf 1
< osp < ost 1
2 2
3 3
04t 04]
oaf, oa, 1
02 T o2t N
o1} o1} 1
o 20 40 e 8 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200

Frame number

(a) SSIM for the original image and the fil-

tered image for search window 11 x 11

hiera slow mod

Frame number

(b) SSIM for the original image

and the fil-

tered image for search window 25 x 25

1 T T T T

w*f/mﬁ%\\

True pos. rate

Accuracy osf SN TN Accuracy
/
08 1 o7/
|
07| 1 |
0.6
06 N
051
05 N
0.4p
04 |
03t
03 \
0.2r|
02 N Mwa\mm

— T T

False pos. rate

hiera slow long mod

True pos. rate
False pos. rate

80 100 120 140 160 180
Frame number

200

(c) Detection statistics for search window

11 x 11

80 100 120 140
Frame number

160 180 200

(d) Detection statistics for search window

25 X 25

Figure 7.15: Statistics from one of the sequences from the Big Buck Bunny movie,
where the added noise has standard deviation ¢ = 40. The sequence is run through
the hierarchical block-matching algorithm with search windows 11 x 11 and 25 x 25
and with block sizes 9 — 7 and 13 — 9 — 7 respectively.

7.3. HIERARCHICAL BLOCK-MATCHING ALGORITHM 55

(c) Filtered image, search window11 x 11 (d) Filtered image,search window 25 X 25

(i) Reference motion mask

(j) Motion mask, search window 11 x 11 (k) Motion mask,search window 25 x 25

Figure 7.16: Frame 2553 from the Big Buck Bunny sequence filtered using the hier-
archical block-matching method for search windows 11 x 11 and 25 x 25 with block
sizes 9 — 7 and 13 — 9 — 7 respectively. The noise added has a standard deviation
of ¢ = 100.

56 CHAPTER 7. RESULTS

hiera slow mod | hiera slow long mod
— — Noisy

ool Noisy 08 f]
08 08 4
0.7 07 4
06 06 4
5 $
< os- S 05 1
7 2
04 04 4
03[03 4
02f 02 A

Frame number Frame number

(a) SSIM for the original image and the fil- (b) SSIM for the original image and the fil-

tered image for search window 11 x 11 tered image for search window 25 x 25
h\eras\cw mevas\ow‘cng
: !
A A - N A T e
e S ARV VAN Vi e e YT VTN

09

curacy 09r couracy

Y, v
08 Bl 08 4
07 4 07k 4
06 Bl 06 4
05 Bl 05 4
1 0.4 4
1 03[4
] 02]
1 0.1H 4

| \ /\

—~ MR, UL Y Ay N\
o 50 10 200 250 o 50 10 200 250

0 150 0
Frame number Frame number

(c) Detection statistics for search window (d) Detection statistics for search window
11 x 11 25 x 25

Figure 7.17: Statistics from one of the sequences from the Big Buck Bunny movie,
where the added noise has standard deviation ¢ = 100. The sequence is run through
the hierarchical block-matching algorithm with search windows 11 x 11 and 25 x 25
and with block sizes 9 — 7 and 13 — 9 — 7 respectively.

7.4. Fuzzy LOGIC ALGORITHM 57

7.4 Fuzzy logic algorithm

The fuzzy logic algorithm tends to produce very noisy motion masks. A way
of reducing the noise is to use dilation and erosion. The combination used here
is this: first dilate with radius r = 2, then erode with » = 3 and finally dilate
with » = 1. The structuring element is a disk. This approach is used since
the first dilation clusters unconnected pixels that are close enough. Then the
erosion of r = 3 removes single pixels, which often are noise pixels. The new
eroded/dilated motion mask can now be used for binary filtering. The filtering
in the original fuzzy logic algorithm is not binary and does not depend on the
motion mask, rather the motion mask is a by-product of the algorithm. The
results can be seen for the different sequences under the respective sections.

Another way of reducing the noise in the motion mask is to use a down-
/upscaling technique.

Bus sequence

The fuzzy logic algorithm seems to detect the arrows with low contrast partly,
but not enough to avoid blurring. This can be seen in Figure 7.18.

58 CHAPTER 7. RESULTS

a) Original noisy image)} Filtered image

) Original) Filtered

(e) Motion mask

Figure 7.18: An image from the bus sequence and corresponding filtered image and
motion mask using fuzzy logic filtering algorithm.

The Big Buck Bunny sequences

In the Big Buck Bunny sequences, the fuzzy logic algorithm, in addition to
the real motion pixels, detects much noise. The erosion/dilation technique is
beneficial when the noise level is not extremely high, but at a mean SNR of
approximately 1.5, the noise is quite dense”, meaning that the erosion/dilation
will cluster the noise as in Figure 7.23. For higher SNR, as in Figures 7.19 and
7.21, the erosion/dilation improves the motion mask. Also, the filtered image
resulting from binary filtering using the new motion mask, has less ghosting
effects compared to the filtered image from the original fuzzy logic filtering

7.4. Fuzzy LOGIC ALGORITHM 59

algorithm.

The SSIM values and detection statistics from the motion masks for the Big
Buck Bunny sequence with o = 20, 0 = 40 and ¢ = 100 can be seen in Figure
7.20, 7.22 and 7.24 respectively.

In Figure 7.25 the difference in filtering when using the faster-decaying o-
modification is seen. When suppressing the influence of the older weight, there
is less ghosting but also more remaining noise. The masks from the two methods
are also shown along with the motion mask after down-/upscaling.

60 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image
-
-
e

(c) Filtered, orignal algo (d) Filtered, binary
— i """"“',.:h_-:l I . :
i ¥ £ : : 4 p.e\:-
/‘ : f*ﬁ " o
ool %
(e) Original (f) Original noisy (g) Filtered, original algo

--lﬂ'l"l'l'.l'__;‘.

s

wTE

(h) Filtered, binary (i) Reference motion mask

(j) Motion mask, orignal (k) Motion mask, binary after ero-
sion/dilation

Figure 7.19: Frame 2309 from the Big Buck Bunny sequence filtered using the fuzzy
logic algorithm. Both the original filtering and the binary filtering from the mask
created using erosion and dilation are included. The noise added has a standard
deviation of o = 20.

7.4. Fuzzy LOGIC ALGORITHM

61

fuzzy fitter
1 T T T T T

06

SSIM index

Processed
— — Noisy
09 8

o 20 40 60 80 100 120 140 160 180
Frame number

200

(a) SSIM for the filtered image using original

fuzzy logic algorithm and noisy image.

fuzzy fitter

fuzzy filter mod

09t

08

07

06

05

SSIM index

04

03t

02

04t

Processed
— — Noisy

80 100 120 140 160 180
Frame number

200

(b) SSIM for the filtered image using modi-
fied fuzzy logic algorithm and noisy image.

1 T T T T

Accuracy

09 /_\A\/VM\/F\A/\,M,
08F ,//

i
o7
06
05

04

02

01

1 T T T

TN N T

fuzzy filer mod

-]

100 120 140 160
Frame number

(¢) Detection statistics for original fuzzy

logic algorithm.

80

100 120 140 160
Frame number

(d) Detection statistics for modified fuzzy

logic algorithm.

Figure 7.20: Statistics from one of the sequences from the Big Buck Bunny movie,
where the added noise has standard deviation o = 20. The statistics are generated
from the original fuzzy logic algorithm and the modified fuzzy logic algorithm.

62 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image

(c) Filtered, orignal algo (d) Filtered, binary

=

Ay
"a;:-.

(e) Original (g) Filtered, original algo

(h) Filtered, binary (i) Reference motion mask

(j) Motion mask, orignal (k) Motion mask, binary after ero-
sion/dilation

Figure 7.21: Frame 2309 from the Big Buck Bunny sequence filtered using the fuzzy
logic algorithm. Both the original filtering and the binary filtering from the mask
created using erosion and dilation are included. The noise added has a standard
deviation of o = 40.

7.4. Fuzzy LOGIC ALGORITHM 63

fuzzy fiter fuzzy fiter mod
1 T T T T T T T 1 T T T T T T T
Processed Processed
— — Noisy — — Noisy
09 8 o9t
08 B o8
07 B 07p
06 B osf
s 08 B S o5
2 2
8 &
04 B 04f
03 B o
02 B LIS
L e LR I i
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200
Frame number Frame number

(a) SSIM for the filtered image using original (b) SSIM for the filtered image using modi-
fuzzy logic algorithm and noisy image. fied fuzzy logic algorithm and noisy image.

fuzzy fitter fuzzy filer mod

1 T T T T T T T 1 T T T T T T

Accuracy

08 N N T — T 08

0 20 40 60 80 100 120 140 160 180 200 (] 20 40 60 80 100 120 140 160 180 200
Frame number Frame number

(¢) Detection statistics for original fuzzy (d) Detection statistics for modified fuzzy
logic algorithm. logic algorithm.

Figure 7.22: Statistics from one of the sequences from the Big Buck Bunny movie,
where the added noise has standard deviation o = 40. The statistics are generated
from the original fuzzy logic algorithm and the modified fuzzy logic algorithm.

64 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image

(g) Filtered, original algo

(j) Motion mask, orignal (k) Motion mask, binary after ero-
sion/dilation

Figure 7.23: Frame 2597 from the Big Buck Bunny sequence filtered using the fuzzy
logic algorithm. Both the results from the original filtering and the binary filtering from
the mask created using erosion/dilation are shown. The added noise has a standard
deviation of o = 100.

7.4. Fuzzy LOGIC ALGORITHM

65

tuzzy fitter
1 T T T

SSIM index

Processed
— — Noisy

Frame number

(a) SSIM for the filtered image using original

200 250

fuzzy logic algorithm and noisy image.

fuzzy fitter

fuzzy filter mod

09

08

07F

06

05

SSIM index

04

03t

02F

01

Processed
Noisy

Frame number

(b) SSIM for the filtered image using modi-
fied fuzzy logic algorithm and noisy image.

fuzzy filter mod

09

Accuracy

Frame number

(c) Detection statistics for original fuzzy

logic algorithm.

200 250

Frame number

(d) Detection statistics for modified fuzzy

logic algorithm.

Figure 7.24: Statistics from one of the sequences from the Big Buck Bunny movie,

where the added noise has standard deviation o = 100. The statistics are generated

from the original fuzzy logic algorithm and the modified fuzzy logic algorithm.

66 CHAPTER 7. RESULTS

(a) Filtered, original algo (b) Filtered, a-modification

(c) Mask, original algo (d) Mask, a-modification

(e) Mask, scaling-modification (also a-
mod.)

Figure 7.25: One image from the Big Buck Bunny sequence filtered using the fuzzy
logic algorithm. The masks from the original and modified methods are shown as well
as the mask created using down-/upscaling. The noise added has a standard deviation
of o = 40.

7.5. LOW-RANK MATRIX COMPLETION ALGORITHM 67

7.5 Low-rank matrix completion algorithm

This algorithm is very time-consuming but it seems to work fairly well in a
variety of cases. No motion masks are provided here, simply because of the
way the algorithm works. There is no way to determine the motion status of a
single-pixel, only blocks can be classified as motion or non-motion. This is not
the biggest problem with the motion mask however. Since the algorithm always
finds several, more or less accurate, matching blocks there is no clear way to
extract a motion mask at all.

Bus sequence

The results from the bus sequence can be found in Figure 7.26. In some areas,
where motion has occurred, for example the arrows on the bus and the car
passing the bus, almost all noise is suppressed and no artifacts can be seen. In
the rest of the image, however, the noise is still present and not reduced by
any noticeable amount. This strange phenomenon can be seen clearly in Figure
7.26(d).

68 CHAPTER 7. RESULTS

a) Original noisy image)} Filtered image

) Original) Filtered

(e) Motion mask

Figure 7.26: An image from the bus sequence and corresponding filtered image and
motion mask using low-rank matrix completion with 35 images and 2 matches in each
image.

Big Buck Bunny sequences

In Figure 7.27 and 7.28 the results from the low-rank matrix completion algo-
rithm can be seen.

As explained earlier, the motion mask for this algorithm is complicated to create.
Since the method is not a per-pixel method, the motion mask will look very
different from the reference motion mask, regardless of which sequence that is
used. Therefore, we have chosen not to provide any detection statistics for the
motion mask. Because of the high complexity of the low-rank matrix completion

7.5. LOW-RANK MATRIX COMPLETION ALGORITHM 69

(a) Original image (b) Original noisy image

]

(d) Original

(g) Original (h) Original noisy (i) Filtered

Figure 7.27: Frame 2305 from the Big Buck Bunny sequence filtered using the low-rank
matrix completion method. The added noise has standard deviation o = 40.

algorithm no SSIM-plots for the complete sequences are provided. The SSIM
value for frame 2305 when processed is =~ 0.092 while the noisy image has an
SSIM value of 0.032.

70 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image

(g) Original (h) Original noisy (i) Filtered

Figure 7.28: Frame 2305 from the Big Buck Bunny sequence filtered using the low-rank
matrix completion method. The added noise has standard deviation ¢ = 100.

7.6 Blur Filtering

This is a very fast algorithm that seems to work well in most test cases.

7.6. BLUR FILTERING 71

The bus sequence

The blur filtering algorithm detects the difficult parts, e.g. the arrow pattern,
in the bus sequence as seen in Figure 7.29.

a) Original noisy image) Filtered image

¢) Original) Filtered

(e) Motion mask

Figure 7.29: Frame 9 from the bus sequence and corresponding filtered image and
motion mask using the blur filter algorithm.

The Big Buck Bunny sequences

The results from the big buck bunny sequence can be seen in Figure 7.30, Fig-
ure 7.32 and Figure 7.34. The statistics for the sequence using the blur filter
with ¢ = 20, 0 = 40 and ¢ = 100 can be seen in Figure 7.31, 7.33 and 7.35

72 CHAPTER 7. RESULTS

respectively.

(a) Original image (b) Original noisy image

-'1,.4.- -'1,.4.-
B i
(d) Original (e) Original noisy (f) Filtered

(g) Reference motion mask (h) Motion mask

Figure 7.30: Frame 2323 from the Big Buck Bunny sequence filtered using the blur
filter algorithm. The added noise has standard deviation o = 20.

7.6. BLUR FILTERING 73

blur fiter

1 T T T T T —
, ‘ ‘ ‘ ‘ blur‘mler / True pos. rate
e False pos. rate
Accuracy

osf 1
08F]
o8t 1
- o 07F]
07 [
SR 06F i
osf 1
05F
osf 1
0ar
04t 1
osb o 1 03F 1
0ol | 02r]
01 1 orr ST |
-
40 60 80 10

SSIM index

, . . \) ,
20 40 60 80 100 120 140 160 180 200 20 120 140 160 180
Frame number Frame number
(a) SSIM. (b) Detection statistics .

Figure 7.31: Statistics from one of the sequences from the Big Buck Bunny movie
using blur filter algorithm. The added noise has standard deviation o = 20.

74 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image

tld'

(d) Original (f) Filtered

(g) Reference motion mask (h) Motion mask

Figure 7.32: Frame 2323 from the Big Buck Bunny sequence filtered using the blur
filter algorithm. The added noise has standard deviation o = 40.

7.6. BLUR FILTERING 75

blur fiter
1
T ———— T
, ‘ ‘ ‘ ot ‘ P \\ BN Troe pos. e
Processed L N False pos. rate
09 N Accuracy
Noisy
osf i
08F
08
07F
07
06F
osf
g 05
sos
2 N -
@ - - 0.4
04
03 03
02 02 4
2] e o1 //—"’V”\,\A B
- |
. . n
80

L L L . . L L . . L L L
20 40 60 80 100 120 140 160 180 200 20 40 60 100 120 140 160 180
Frame number Frame number

(a) SSIM. (b) Detection statistics.

Figure 7.33: Statistics from one of the sequences from the Big Buck Bunny movie
using the blur filter algorithm. The added noise has standard deviation o = 40.

76 CHAPTER 7. RESULTS

(a) Original image (b) Original noisy image

-

o

=
i

|

(d) Original (e) Original noisy

.
i

o g]
..!::::".!'3!9-'\'.":‘". et

(g) Reference motion mask (h) Motion mask

Figure 7.34: Frame 2597 from the Big Buck Bunny sequence filtered using blur filter
algorithm. The added noise has standard deviation o = 100.

7.6. BLUR FILTERING

7

blur fiter
1 T T T T T T T T 1
AN
osf 09 Ay
/«\/\(\ﬂNVWA vy
o8l 08
o7t 07
osf 06
S osp so0s
2 2
2 2
0af 04
o03f 03
o0zf 02
ot T T - - 0.1
20 40 60 8 10 120 140 160 180 20 40 6 8 _ 100 120 140 160 180 200

Frame number

(a) SSIM.

Frame number

(b) Detection statistics.

Figure 7.35: Statistics from one of the sequences from the Big Buck Bunny movie

using the blur filter algorithm. The added noise has standard deviation o = 100.

Chapter 8

Discussion and Conclusions

8.1 Conclusion overview

After having tested all methods in varying conditions, it is time to judge the
algorithms. We will look at the results and compare the methods among them-
selves. The goal here is to evaluate them both subjectively and objectively by
using both filtered results and plots of objective measures.

The artificial noise in the computer generated sequences differ from the noise
in the real-world sequences captured by actual cameras. This is because there
is a correlation between the noise and the captured intensity. The noise scales
as o «x /Signal |9]. As a consequence, dark parts of the images are corrupted

by noise with lower standard deviation and lower SNR since SNR = j% =

\/Signal. The artificial noise has a constant distribution, independent of the
signal. The methods, when used on real camera-captured sequences, can behave
differently and probably better if the camera is calibrated, because calibrating
means that we know something about how the noise behaves with respect to
the signal.

Calibration is not possible to do for the sequence with the bus. The reason for
this is that the camera used to capture it is not available to us and hence impos-
sible to calibrate. The calibration data cannot be used in the MATLAB versions
of our algorithms without rewriting much of the code. For that reason we only
use the data for the methods implemented in OpenCL since those work directly
with the camera.

There is one effect that is common to all temporal filtering algorithms that have
been tested here. It stems from the fact that none of them use any spatial filter-
ing whatsoever. It occurs when motion is detected in a small region surrounded
by stationary pixels. What happens is that since the motion area is not filtered,
while the non-motion area is, the noise in the unfiltered area can become ex-
tremely prominent. This could be mistaken for an artifact, but is actually the

79

80 CHAPTER 8. DISCUSSION AND CONCLUSIONS

way it should be.

8.2 Adaptive fuzzy filter algorithm

This method mostly produces good motion masks, and with the dilation and
erosion post processing they get even better. Sometimes, too little motion is
detected, but no obvious artifacts can be seen in the image sequences we have
tested.

To work optimally, some tuning of the parameters is needed even though the
threshold is based on the estimated standard deviation of the noise in each
image. In the original paper [23], the threshold is set to thresh = 3 - 0.5, but
instead we have used a variable x such that thresh = x-0¢5. Optimal results in
each sequence was achieved with 1 < 2 < 4. A method for estimating x for each
image would be better, perhaps by using calibration data. The advantage with
no calibration is that it works for all cameras. The higher the noise standard
deviation estimate, the lower x was needed.

This method is one of the best when it comes to the real camera sequences.
The variable z did not vary as much for the real camera sequences as for the
synthetic sequences. One reason for this might be that the standard deviation
of the noise was much higher for the synthetic sequences. None of the available
real-camera sequences were as noisy as the synthetic ones.

The adaptive fuzzy filter algorithm is also one of the fastest of our methods. In
OpenCL, it is limited by the frame rate of the camera and the refresh rate of
the screen.

8.3 Hierarchical block-matching algorithm

The hierarchical block matching algorithm worked fairly well for most sequences.
The main concern is the speed of the algorithm. It is extremely memory
bandwidth hungry and performance degrades quickly when using larger search-
windows. The advantage of bigger search windows, however, is that larger
motion can be detected and compensated for. In some areas, too much motion
is detected. This can be seen in Figure 7.11 and Figure 7.12.

A drawback of the hierarchical block-matching algorithm sometimes is revealed
in smooth areas with uniform colour. In such areas, the block-matching algo-
rithm can sometimes find structures in the noise and match those blocks. This
both leads to emphasizing of the noise as well as incorrect motion detection.
The problem could be reduced or avoided by again thresholding the difference
between the block at vector (0,0) and the matched block and favouring the
(0,0)-block if the difference is small.

8.4. Fuzzy LOGIC ALGORITHM 81

The speed of the algorithm does not achieve real-time performance in OpenCL,
especially not when the search windows were bigger than 11 x 11. Even though
only two frames are required, the block-matching algorithm is expensive when
the search window sizes are increased.

8.4 Fuzzy logic algorithm

The Fuzzy logic approach suffers from artifacts such as ghosting and excessive
blurring. The blurring is most severe in low-contrast areas. The arrows in the
bus-sequence is one such problem-area. This effect can be slightly improved with
a little tweaking but not avoided completely. The worst problem, perceptually,
is the ghosting that appears. The ghosting appears due to the fact that the
decay of the a-parameter is sometimes too slow. The slowness is a problem
when misclassification happens, i.e. when a motion pixel is not detected as such
in the previous step. This has proven to be a very difficult problem to deal with.
We have experimented with using different update formulas but are unable to
find one that completely removes the problem. We end up with either too much
or too little filtering.

By modifying the previous alpha-parameter we reduce the influence of old mo-
tion data. This means that the filtering weight is more dependent on the motion
estimate from the current frame. This reduces, but does not completely elimi-
nate, ghosting but also results in generally lower noise reduction.

When the noise level is not extremely high, the motion masks can be post-
processed using dilation and erosion or scaling. This removes noise in the motion
mask. The binary filtered images from this modified mask look much better
compared to the filtered images using the original fuzzy logic filtering.

When implemented in OpenCL, this method performs very well. It is only
slightly slower than the adaptive fuzzy filter algorithm.

8.5 Low-rank matrix completion algorithm

This algorithm retains its denoising abilities for higher noise-levels than the
others. It performs better in the sequences with ¢ = 100, for example, than
the rest of the methods. Quite a lot of detail is preserved, or restored, even in
that rather extreme case. The drawback is that the potential for denoising in
static areas is lower than when using binary filtering with low weight for the
new noisy image.

The low-rank matrix completion algorithm has a strange effect on the bus se-
quence. It reduces the noise very well in some areas while almost no difference
in noise can be seen in other areas. Unfortunately, we do not find an explanation
for that behaviour, and it does not occur in any other sequence.

82 CHAPTER 8. DISCUSSION AND CONCLUSIONS

This method is different from the rest because it is not just a motion detector or
temporal filter. This algorithm also performs spatial filtering which is a benefit
because it removes the false artifacts mentioned in section 8.1. This means that
no additional spatial filtering is necessary.

The overall impression of this rather “expensive” method is that the method
definitely has its strong points, but it is does not always perform better than
cheaper, simpler, methods.

8.6 Blur Filtering

This method works well for most noise-levels and produces usable motion masks
for a whole range of noise levels. The method appears tunable enough that
reasonable results can be obtained even for the highest levels of noise.

The method can be tweaked with using things like different blurring kernels,
different scaling factors or methods and thresholds. It is a very light-weight
algorithm which makes it interesting from a hardware implementation perspec-
tive.

Currently, the algorithm has some problems correctly detecting the butterfly
when the noise is very heavy.

8.7 Comparison between the methods

The methods can be compared in more than one way, as discussed in chapter 3.
One of the aspects that can be compared, is of course the SSIM statistics, but
in many cases they are not enough. Therefore, one has to look at the images
and compare them subjectively to include all human aspects.

To easily compare the results from the algorithms, the same image from the bus
sequence is filtered using the different methods and the corresponding motion
masks are displayed in Figure 8.1 and 8.2. The filtered images of the bus se-
quence, for example, cannot be measured using SSIM since no reference image
or reference motion mask exist. Therefore, only subjective measurements can
be used. The adaptive fuzzy filtering algorithm seem to generate the best out-
put when considering the whole image. Although the arrows that actually were
filtered in the low-rank matrix completion algorithm were even better, the noise
in the rest of the image remains more or less unchanged.

Note that the comparison with the hierarchical block-matching is slightly unfair.
This is because the conversion to grey-scale from RGB suppresses the standard
deviation of the noise by a factor of v/3.

It is easier to compare the performance of the algorithms using synthetic im-
ages since the SSIM-plots are available. The SSIM-plots have to be considered

8.7. COMPARISON BETWEEN THE METHODS 83

(a) Noisy image (b) Hierarchical block-matching, 11 x 11

(¢) Hierarchical block-matching, 25 x 25 (d) Adaptive fuzzy filter

(e) Adaptive fuzzy filter, post-processed (f) Modified fuzzy logic algorithm

(g) Low-rank matrix completion algo- (h) Blur filter algorithm
rithm

Figure 8.1: One image from the bus sequence filtered using a few our methods.

84 CHAPTER 8. DISCUSSION AND CONCLUSIONS

(a) Hierarchical block-matching, 11 x 11 (b) Hierarchical block-matching, 25 x 25

(e) Modified fuzzy logic algorithm (f) Blur filter algorithm

Figure 8.2: Motion masks from the bus sequence, corresponding to the filtered images
in Figure 8.1.

together with the subjective measurements, to come to a conclusion of which
method that performs the best. Also, the method that is best for one sequence
may not be best for another. Noise level also plays a role since some methods
break down faster than others. One image from the Big Buck Bunny sequence
where the noise added has a standard deviation of o = 40 is filtered using all
methods. The filtered images and corresponding motion masks can be viewed in
Figure 8.3 and 8.4. The SSIM-plots for the whole sequence with this particular
static scene can be seen in Figure 8.5.

The SSIM values for the filtered output of all methods and for the noisy images
are plotted in Figure 8.5(a). For comparison, the SSIM values using binary

8.7. COMPARISON BETWEEN THE METHODS 85

(a) Noisy image (b) Original image

T

(c) Hierarchical block-matching search win- (d) Hierarchical block-matching, search win-
dow 11 x 11 dow 25 X 25

(g) Modified fuzzy logic (h) Blur filter

Figure 8.3: Frame 2323 from the Big Buck Bunny sequence filtered using a few of our
methods. The added noise has standard deviation o = 40.

filtering with the reference motion mask are also included.

In Figure 8.5, it is shown that the hierarchical block-matching algorithm has
potential when the size of the search window increases. The problem, however,
is that the algorithm becomes extremely computationally complex when the
window size gets bigger. The post-processed adatptive fuzzy filtering algorithm

86 CHAPTER 8. DISCUSSION AND CONCLUSIONS

(b) Hierarchical block-matching, 11 x 11 (c) Hierarchical block-matching, 25 x 25

(d) Adaptive fuzzy filter

(f) Modified fuzzy logic (g) Blur filter

Figure 8.4: Motion masks for the image in Figure 8.3. The added noise has standard
deviation o = 40.

performs better than the original algorithm, which can be seen both on the
images and in the statistics plots. One reason that the SSIM values are better for
this method, compared to the others, might be that it is a motion compensated
method and not that many “false” artifacts are introduced since the filtering is
performed in the motion direction.

There seems to be a correlation between the SSIM values and the motion mask

8.7. COMPARISON BETWEEN THE METHODS 87

statistics. A better SSIM value yields a better motion mask statistic value in
most cases, as seen in Figure 8.5.

SSIM comparison

AFFA
AFFA postoracessed| Quality metrics comparison
09 Hiera 11x11 1

05

SSIM index

—s#— Original AFFA
—— AFFA postprocessed
03 Hiera 11x11

Hiera 25x25

02 Original Fuzzy
—+— Fuzzy Mod

—+— Blur

Motion mask statistics value

08 1

o 20 40 60 80 100 120 140 160 180 200
Frame number

0 0.2

04 06
Average SSIM value

(a) SSIM (b) Detection statistics value vs. SSIM

Figure 8.5: The SSIM plots and the detecion statistics value vs. the average SSIM
value. The added noise has standard deviation o = 40.

Generally it seems that the blur filtering algorithm and the adaptive fuzzy filter-
ing algorithm work best for moderate noise, i.e. up to about o = 55. For noise
with ¢ > 100 the method that works best is the low-rank matrix completion
algorithm. Figure 8.6 shows how one method behaves when the other performs
well and vice versa. Here, the blur filtering algorithm is used.

(a) o = 100, Blur filtering algorithm. (b) o = 40, Blur filtering algorithm.

G

(¢) o = 100, Low-rank matrix completion (d) o = 40, Low-rank matrix completion al-
algorithm. gorithm.

Figure 8.6: Comparison of frame 2305 from the Big Buck Bunny sequence filtered
using the two best algorithms.

For more figures where the same image for all methods is filtered, see Appendix.

88 CHAPTER 8. DISCUSSION AND CONCLUSIONS

8.8 Conclusion

For noise levels not extremely high, the adaptive fuzzy filter algorithm seems
to perform the best along with the blur algorithm. Although in some cases
the hierarchical block matching algorithm with large search windows performs
better. The drawback is that when the window size increases, the algorithm
gets extremely computationally heavy. Increasing the windows to more than the
25 x 25 windows used here is simply not feasible. We have therefore not been
able to experiment that much with bigger search windows for long sequences.

When the noise level increases, to around ¢ = 100, the low-rank matrix comple-
tion algorithm seems to outperform the other methods. However, it is sometimes
hard to say how well the methods behave since the "false” artifacts can be ex-
tremely hard to distinguish from real artifacts in some cases. When looking at
Figure 8.5 it may seem that the hierarchical block-matching is the best method,
but we trust our own subjective judgement more. Therefore, we think that the
adaptive fuzzy filtering method is better.

8.9 Future work

If the camera is calibrated, that data could perhaps be used to automatically
determine the parameter x for the adaptive fuzzy filter algorithm. This could
possibly be achieved by combining calibration with the standard deviation es-
timate of the method.

The parameters have been tuned manually to give the best result for each im-
age sequence. Especially the hierarchical block-matching algorithm has many
parameters that can be tweaked. A future work would be to optimize these pa-
rameters automatically. Here, calibration of the camera is probably not enough.
The parameters are simply too many.

Another important aspect is that all algorithms, except the hierarchical block-
matching algorithm need to be extended to work with colour images. This
can probably be done similarly to how the hierarchical algorithm performs the
colour correction. Since the results of the algorithms can be seen clearly, even
with grey-scale images, this has been ignored due to limitations of time.

The low-rank algorithm could perhaps also be improved by progressively using
the denoised images in the sequence. By doing so, the denoising of static areas
should hopefully approach the same potential denoising performance as binary
filtering with high weight to the previous filtered image.

Due to time constraints, the blur filtering algorithm has not received as much
attention as we would have liked. It shows real potential but needs further
investigation. Things like choosing the blur kernel and threshold adjustment
could perhaps be automated, which would be a very nice improvement.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

7]

8]

[9]

[10]

Eric P. Bennett and Leonard McMillan. Video enhancement using per-pixel
virtual exposures. ACM Trans. Graph., 24(3):845-852, July 2005. ISSN
0730-0301. doi: 10.1145/1073204.1073272. URL http://doi.acm.org/
10.1145/1073204.1073272.

A. Bosco, M. Mancuso, S. Battiato, and G. Spampinato. Temporal noise
reduction of bayer matrixed video data. In Multimedia and Expo, 2002.
ICME ’02. Proceedings. 2002 IEEFE International Conference on, volume 1,
pages 681 — 684 vol.1, 2002. doi: 10.1109/ICME.2002.1035873.

Jia Chen and Chi keung Tang. Spatio-temporal markov random field for
video denoising. In In CVPR, 2007.

Tomas Crivelli, Patrick Bouthemy, Bruno Cernuschi-Frias, and Jian-Feng
Yao. Simultaneous motion detection and background reconstruction with
a conditional mixed-state markov random field. International Journal of
Computer Vision, 94(3):295-316, 2011. doi: 10.1007/s11263-011-0429-z.
URL http://hal.archives-ouvertes.fr/hal-00628797.

Blender Foundation. Big buck bunny, June 2012. URL http://wuw.
bigbuckbunny.org.

Suk ho Lee, Nam seok Choi, and Moon Gi Kang. Motion detection with
level set-based segmentation. volume 7538, page 753800. SPIE, 2010.
doi: 10.1117/12.839159. URL http://link.aip.org/link/?PSI/7538/
753800/1.

M. Hiirlimann and P.D.A. Schenker-Wicki. Dealing with Real-World Com-
plexity: Limits, Enhancements and New Approaches for Policy Makers.
Gabler Edition Wissenschaft. Gabler Verlag, 2009. ISBN 9783834914934.

H. Hwang and R.A. Haddad. Adaptive median filters: new algorithms and
results. Image Processing, IEEE Transactions on, 4(4):499 502, apr 1995.
ISSN 1057-7149. doi: 10.1109/83.370679.

J.R. Janesick. Photon Transfer: Dn [Lambda]. Press Monographs. SPIE,
2007. ISBN 9780819467225.

Hui Ji, Chaogiang Liu, Zuowei Shen, and Yuhong Xu. Robust video denois-

89

http://doi.acm.org/10.1145/1073204.1073272
http://doi.acm.org/10.1145/1073204.1073272
http://hal.archives-ouvertes.fr/hal-00628797
http://www.bigbuckbunny.org
http://www.bigbuckbunny.org
http://link.aip.org/link/?PSI/7538/75380O/1
http://link.aip.org/link/?PSI/7538/75380O/1

90

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ing using low rank matrix completion. In CVPR, pages 1791-1798. IEEE,
2010. URL http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#
JiLSX10.

P. Kaewtrakulpong and R. Bowden. An improved adaptive background
mixture model for realtime tracking with shadow detection, September
2001. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.12.3705.

Yoon-Jong Kim, Jung-Jae Oh, Byung-Tae Choi, Seung-Jong Choi, and
Eung-Tae Kim. Robust noise reduction using a hierarchical motion com-
pensation in noisy image sequences. Computers in Education, International
Conference on, 0:1-2, 2009. doi: http://doi.ieeecomputersociety.org/10.
1109/ICCE.2009.5012248.

B. Liu and A. Zaccarin. New fast algorithms for the estimation of block
motion vectors. Circuits and Systems for Video Technology, IEEE Transac-
tions on, 3(2):148 —157, apr 1993. ISSN 1051-8215. doi: 10.1109/76.212720.

Henrik Malm, Magnus Oskarsson, Petrik Clarberg, Jon Hasselgren, Calle
Lejdfors, and Eric Warrant. Adaptive enhancement and noise reduction
in very low light-level video. In International Conference on Computer
Vision, Rio de Janeiro, Brazil, 2007.

Travis Portz, Li Zhang, and Hongrui Jiang. High-quality video denoising
for motion-based exposure control. In ICCV Workshops, pages 9-16. IEEE,
2011. ISBN 978-1-4673-0062-9. URL http://dblp.uni-trier.de/db/
conf/iccvw/iccvw2011.html#PortzZJ11.

K. Rank, M. Lendl, and R. Unbehauen. Estimation of image noise variance.
Vision, Image and Signal Processing, IEE Proceedings -, 146(2):80 -84, aug
1999. ISSN 1350-245X. doi: 10.1049/ip-vis:19990238.

Daniel J. Schroeder. Chapter 17 - detectors, signal-to-noise, and detec-
tion limits. In Astronomical Optics (Second Edition), pages 425 — 443.
Academic Press, San Diego, second edition edition, 2000. ISBN 978-0-12-
629810-9. doi: 10.1016/B978-012629810-9/50018-9. URL http://wuw.
sciencedirect.com/science/article/pii/B9780126298109500189.

C. Stauffer and W. E. L. Grimson. Adaptive background mixture models
for real-time tracking. volume 2, pages 246252, Los Alamitos, CA, USA,
August 1999. IEEE Computer Society. doi: 10.1109/CVPR.1999.784637.
URL http://dx.doi.org/10.1109/CVPR.1999.784637.

Thomas Veit, Frédéric Cao, and Patrick Bouthemy. An a contrario decision
framework for region-based motion detection. Int. J. Comput. Vision, 68
(2):163-178, June 2006. ISSN 0920-5691. doi: 10.1007/s11263-006-6661-2.
URL http://dx.doi.org/10.1007/s11263-006-6661-2.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#JiLSX10
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#JiLSX10
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3705
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3705
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#PortzZJ11
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#PortzZJ11
http://www.sciencedirect.com/science/article/pii/B9780126298109500189
http://www.sciencedirect.com/science/article/pii/B9780126298109500189
http://dx.doi.org/10.1109/CVPR.1999.784637
http://dx.doi.org/10.1007/s11263-006-6661-2

BIBLIOGRAPHY 91

[21]

[22]

[23]

[24]

[25]

assessment: from error visibility to structural similarity. Image Processing,
IEEFE Transactions on, 13(4):600 —612, april 2004. ISSN 1057-7149. doi:
10.1109/TTP.2003.819861.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. The ssim index
for image quality assessment, June 2012. URL https://ece.uwaterloo.
ca/"z70wang/research/ssim/.

Hyenkyun Woo, Yoon Mo Jung, Jeong-Gyoo Kim, and Jin Keun Seo.
Environmentally robust motion detection for video surveillance. Trans.
Img. Proc., 19(11):2838-2848, November 2010. ISSN 1057-7149. doi: 10.
1109/TIP.2010.2050644. URL http://dx.doi.org/10.1109/TIP.2010.
2050644.

Jing Wu, Xin Du, Yun fang Zhu, and Gu Wei-kang. Adaptive fuzzy filter
algorithm for real-time video denoising. In International Conference on
Signal Processing Proceedings, 2008. doi: 10.1109/ICOSP.2008.4697367.

Qing Xu, Hailin Jiang, Riccardo Scopigno, and Mateu Sbert. A new ap-
proach for very dark video denoising and enhancement. In Image Pro-
cessing, IEEE International Conference, pages 1185-1188, 2010. doi:
10.1109/ICIP.2010.5651838.

Vladimir Zlokolica, Aleksandra Pizurica, Wilfried Philips, Stefan Schulte,
and Etienne Kerre. Fuzzy logic recursive motion detection and denoising
of video sequences. Journal of Electronic Imaging, 15(2):023008, 2006. doi:
10.1117/1.2201548. URL http://link.aip.org/link/?JEI/15/023008/
1.

https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/
http://dx.doi.org/10.1109/TIP.2010.2050644
http://dx.doi.org/10.1109/TIP.2010.2050644
http://link.aip.org/link/?JEI/15/023008/1
http://link.aip.org/link/?JEI/15/023008/1

Appendix A

Additional Images

93

94 APPENDIX A. ADDITIONAL IMAGES

Wit V0

(a) Noisy image (b) Original image

(c¢) Hierarchical block-matching, 11 x 11 (d) Hierarchical block-matching, 25 x 25

(e) Adaptive fuzzy filter algorithm (f) post-processed adaptive fuzzy filter algo-
rithm

(g) Modified fuzzy logic algorithm (h) Blur filter algorithm

Figure A.1: Frame 2323 from the Big Buck Bunny sequence filtered using our methods.
The added noise has standard deviation o = 20.

95

(a) Reference motion mask

(d) Adaptive fuzzy filter algorithm (e) post-processed adaptive fuzzy filter algo-
rithm

(f) Modified fuzzy logic algorithm (g) Blur filter algorithm

Figure A.2: Motion masks for the corresponding filtered images in Figure A.1. The
added noise has standard deviation o = 20.

96 APPENDIX A. ADDITIONAL IMAGES

(c) Hierarchical block-matching, 11 x 11 (d) Hierarchical block-matching, 25 x 25

(e) Adaptive fuzzy filter algorithm (f) Post-processed adaptive fuzzy filter
algorithm

(g) Modified fuzzy logic algorithm (h) Blur filter algorithm

Figure A.3: Frame 2543 from the Big Buck Bunny sequence filtered using a few of our
methods. The added noise has standard deviation o = 30.

97

(d) Adaptive fuzzy filter algorithm (e) Post-processed adaptive fuzzy filter
algorithm

(f) Modified fuzzy logic algorithm (g) Blur filter algorithm

Figure A.4: Motion masks for the corresponding filtered images in Figure A.3. The
added noise has standard deviation o = 30.

98 APPENDIX A. ADDITIONAL IMAGES

(a) Noisy image (b) Original image

(c) Hierarchical block-matching, 11 x 11 (d) Hierarchical block-matching, 25 x 25

(e) Adaptive fuzzy filter algorithm (f) Post-processed adaptive fuzzy filter
algorithm

(g) Modified fuzzy logic algorithm (h) Blur filter algorithm

Figure A.5: Frame 2543 from the Big Buck Bunny sequence filtered using our methods.
The added noise has standard deviation o = 100.

99

(b) Hierarchical block-matching, 11 x 11 (c) Hierarchical block-matching, 25 x 25

(d) Adaptive fuzzy filter (e) Post-processed adaptive fuzzy filter

(f) Modified fuzzy logic algorithm (g) Blur filter algorithm

Figure A.6: Motion masks for the corresponding filtered images in Figure A.5. The
added noise has standard deviation ¢ = 100.

100 APPENDIX A. ADDITIONAL IMAGES

a) Noisy image Hierarchical block-matching algor-
tlhm
¢) Adaptive fuzzy filter algorithm d) Fuzzy logic algorithm

(e) Blur filter algorithm

Figure A.7: One image from the polaris sequence filtered using a few of our methods.

101

(a) Hierarchical block-matching (b) Adaptive fuzzy filter

(¢) Fuzzy logic algorithm (d) Blur filter algorithm

Figure A.8: Motion mask fo the filtered images in Figure A.7.

Master’s Theses in Mathematical Sciences 2012:E32
ISSN 1404-6342

LUTFMA-3232-2012

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.Ith.se/

	Introduction
	Problem description
	Overview

	Background
	Related work

	Quality Metrics and Data Sets
	Quality metrics
	Error
	SNR
	MSE
	PSNR
	SSIM
	Motion masks
	Comparison between methods

	Data sets

	Theory
	Image representation
	RGB
	YCbCr
	Grey-scale
	Bayer pattern filter

	Noise sources
	Signal shot noise
	Fixed pattern noise
	Read noise

	Block-matching
	Fuzzy logic
	Erosion and dilation

	Methods
	Adaptive fuzzy filter algorithm
	Algorithm summary

	Hierarchical block-matching algorithm
	Algorithm summary

	Fuzzy logic algorithm
	Modifications
	Algorithm summary

	Low-rank matrix completion algorithm
	Algorithm summary

	Blur Filtering
	Algorithm summary

	Camera Implementation
	Camera calibration
	Implementations

	Results
	Result overview
	Adaptive fuzzy filter algorithm
	Hierarchical block-matching algorithm
	Fuzzy logic algorithm
	Low-rank matrix completion algorithm
	Blur Filtering

	Discussion and Conclusions
	Conclusion overview
	Adaptive fuzzy filter algorithm
	Hierarchical block-matching algorithm
	Fuzzy logic algorithm
	Low-rank matrix completion algorithm
	Blur Filtering
	Comparison between the methods
	Conclusion
	Future work

	Additional Images

