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Abstract

The size and power of tests for smooth structural change are evaluated in the presence of
random measurement error in the explanatory variable or outliers in the dependent vari-
able of a univariate regression model. It is shown that the considered tests are robust to
measurement error of a magnitude that can be found in real economic data. By contrast,
outliers are found to distort both the size and the power of test for structural breaks. It is
shown that the effects of outliers can be compensated by a simple wavelet-based outlier
detection algorithm.
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1 Introduction

The detection of presumed structural breaks is an integral part of economic time series anal-
ysis. If an econometric model is meant to reflect the optimal decision rules of individuals, its
structure will be altered by changes in the environment of the economic agents that are studied
(Lucas, 1976). Still, studies of longitudinal data are often conducted under the assumption of
parameter constancy over the entire sample length. But ignoring the presence of a structural
break in the sample generally leads to a misspecification of the econometric model and can
have severe consequences for the practical use of the analysis. More specifically, it is difficult
to rely on statistical inference and forecasts from the model in this situation (see for example
Stock and Watson, 2007, p. 565).

This thesis attempts to measure the size and power distortions of tests for smooth structural
changes in the presence of data disturbances using Monte Carlo simulations. More explicitly,
tests that show power against gradual parameter shifts are evaluated in the presence of either
measurement error in the explanatory variable or outliers in the dependent variable. It is ob-
served that the considered testing procedures are robust to measurement error, but that outliers
constitute a severe threat to size and power of all tests, irrespective of the chosen scenario. In
order to correct the data, a wavelet-based outlier detection algorithm is applied. Further simu-
lations show that this correction method helps to mitigate size and power distortions to a large
extent.

Procedures to identify the existence of structural change in an econometric model have at-
tracted substantial research effort. The most influential contribution in this regard is Chow’s
(1960) analysis-of-variance test which is a comparison of the sum of squared residuals in mod-
els with and without parameter change. An extension of the testing principle to situations
where the break point is unknown has been proposed by Quandt (1958, 1960), who suggests
taking the highest test statistic in within the set of Chow test statistics at all possible break
points, a method that is know as the Quandt likelihood ratio test. Critical values for this test
have been provided by Andrews (1993). Andrews and Ploberger (1994) have suggested an opti-
mal alternative test to Quandt’s procedure. Instead of choosing the maximum test statistic over
all possible break points, the authors calculate the average exponential test statistic. They show
further that another principle, namely the simple average of all test statistics, can be derived
as a special case of their optimal method. Not requiring the break date to be known ex ante
allows to apply the tests in a vast variety of situations and according to Hansen (2001, p.121)
“[t]he Quandt-Andrews and Andrews-Ploberger family of statistics have essentially replaced
the Chow statistic in recent econometric practice.” Applications of the tests can be found in e.g.
McConnell and Perez-Quiros (2000), Dees et al. (2007) or Laubach (2009).

An alternative testing approach is the CUSUM test of Brown et al. (1975) that investigates
the cumulated recursive residuals of a model. Its is designed to capture more general forms of
structural change, but suffers from a tendency to lose power for structural change that occurs
late in the sample. Bauer and Hackl (1978) propose MOSUM, a moving average of the recursive
residuals, to improve on this problem of the CUSUM test.

In many situations it is plausible to assume that structural change does not happen immedi-
ately, but develops over a certain period. This reasoning can be motivated by the inability of
economic agents to adjust immediately to a changing environment. Yet, structural breaks are
usually assumed to be discrete the sake of parsimony and conceptual simplicity, even though
they might not be intuitively plausible (Hansen, 2001, p. 118). Testing procedures for discrete
breaks may have power against smooth structural change. But as shown in Chen and Hong
(2008), their power is outperformed by testing procedures that directly address gradual pa-
rameter changes. In contrast to the extensive literature on abrupt structural breaks, only few
articles focus on testing for smooth structural change. Farley et al. (1975) provide a first mod-
eling approach by assuming the time-varying parameter to be a continuous linear function



of time. Lin and Terdsvirta (1994) expand this approach to non-linear shifts by proposing a
smooth transition function (STR) depending on time. Depending on the chosen function, the
STR method allows to address monotonous as well as non-monotonous smooth changes and
to establish the most powerful test for a known transition form in the sample. However, Farley
et al.’s and Lin and Terésvirta’s models have the disadvantage of imposing restrictive ex-ante
assumptions about the exact nature of structural change and of testing the model only against
a very specific chosen alternative. By contrast, Chen and Hong (2012a) circumvent the need to
specify the nature of the parameter shift by using non-parametric methods, or more specifically
local linear smoothing. Their approach does not involve any assumption about the parameter
vector B. Instead, the authors estimate the value of § at every point in the sample by conduct-
ing linear regressions in a local subsample around the respective time point. Their unrestricted
parameter estimator is obtained by gathering all values of B from the local regressions. This
approach leads potentially to great flexibility with regards to different smooth shifts that may
appear in the data. Using the non-parametric parameter estimator, the null hypothesis of no
structural change is testing by applying either a general Chow test or a general Hausman test.

With regards to the intention of this thesis to measure the size and power distortions of
tests for smooth structural changes in the presence of data disturbances, the only study that is
related to this idea to some extent is performed by Li (2012). The author examines the effect
of measurement error in a setup with discrete structural changes and shows that the tests of
Andrews (1993) and Andrews and Ploberger (1994) experience significant power losses when
the explanatory variable of a univariate model is measured with error.

Besides targeting smooth structural change, this thesis extends the perspective with respect
to relevant testing procedures. The tests in question are the Quandt LR test plus the average
Chow and exponential average Chow procedures of Andrews and Ploberger (1994) on the one
hand as well as the two tests for smooth structural break of Chen and Hong (2012a) on the
other hand. Their performance will be evaluated given two different types disturbances in the
data: First, measurement error in the explanatory variable of an econometric model is taken
into account. Such error margins are a quite common problem in empirical work, as economic
statistics practically cannot be produced without some degree of imperfection or incomplete-
ness (Morgenstern, 1963, p. 13). Additionally, the consequences of outliers in the dependent
variable are considered. As shown by Balke and Fomby (1994), their presence is given in most
macroeconomic indicators and accounts for a significant share of the overall variance in the
sampling period. Finally, the scenario choice of the analysis follows Chen and Hong (2008)
by putting emphasis on either a monotonous smooth shift, a non-monotonous equivalent or a
series of highly frequent smooth shifts.

The results show in a first instance that observations of Li (2012) cannot be made in the case
of smooth structural change. In fact, all considered tests prove to be robust to measurement
error. This fact is, however, strongly related to the chosen, empirically motivated magnitude of
measurement error in the study and it may be guessed that substantially higher error margins
will have a significant detrimental effect. In a second instance, it is shown that outliers in the
dependent variable lead to an increased probability of Type 1 errors for most test in the study,
although the dimension of the changes is not excessive. Additionally, it is observed that the
power of tests for smooth structural breaks is substantially altered by the presence of outliers,
where the extent of power losses depends on the outlier magnitude and the relative amount
of outliers in the sample. A wavelet-based algorithm, suggested by Grané and Veiga (2010),
is then applied to detect and eliminate the outliers. Conducting a simulation study with the
corrected data, it is shown that the power losses due to outliers in the data can be compensated
to a large extent.

Section 2 contains an exposition of the tests that are used in this thesis. The performance of
tests for smooth structural breaks in the presence of measurement error and outliers is evalu-
ated using a simulation study in Section 3. Section 4 introduces the algorithm of Grané and



Veiga (2010) and repeats the simulation study for the corrected data. Finally, section 5 con-
cludes.

2 Testing for smooth structural change

Andrews (1993) and Andrews and Ploberger (1994) propose three different test statistics that
are applied in situations where the timing of a discrete break point is unknown. The imple-
mentation of the tests can employ either a Wald, a Lagrange multiplier or a likelihood ratio
test, where all three variations are asymptotically equivalent. Emphasis will be put on the Wald
form of the testing statistics, as implemented by Zeileis et al. (2002) for the program package R.
Due to the absence of the break point parameter in the null hypothesis of tests for struc-
tural breaks at unknown time point, the asymptotic distribution of the related test statistic has
initially been unknown and was first derived by Kim and Siegmund (1989). Andrews (1993)
presents a fully operational version, including asymptotic critical values, of the Quandt likeli-
hood ratio (Quandt, 1958, 1960) test that consists in picking the largest value from breakpoint
tests at every point 77 in an interval of possible breakpoints IT = [rr;77]. The test statistic is
hence given by
sup-F = sup F(n) (2.1)
nell
Two additional testing principles for Wald, LM and LR-like tests are suggested by Andrews
and Ploberger (1994). The authors introduce a test statistic that takes the (weighted) average
of the exponentials of the different test statistics at each presumed break data. Its simple form
from Zeileis et al. (2002) is given by

7
exp-F = log ( j'c Z exp(0.5F;) ) (2.2)

Andrews and Ploberger (1994) show further that a special case of their test is a simple average
over all individual breakpoint tests:

ave-F = — F; (2.3)
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As in the case of the sup-F test, deriving the asymptotic distribution of the test statistic is a fairly
difficult issue due to the fact that the formulation of the hypotheses is nonstandard. However,
Andrews and Ploberger (1994) provide asymptotic critical values.

The three tests of Andrews (1993) and Andrews and Ploberger (1994), henceforth denoted
Andrews-Ploberger tests, are initially tests for discrete structural breaks. Still, Andrews (1993)
points out the potential of the Quandt LR test in detecting more general break forms. This
potential has indeed been observed by Chen and Hong (2008, 2012a) for all three Andrews-
Ploberger tests in the case of smooth structural change. Chen and Hong also propose two new
tests that are specifically designed to identify gradual parameter shifts. They employ local
linear smoothing, a non-parametric estimation technique to avoid making assumptions about
the form of the transmission. Instead, the coefficient vector under the alternative is estimated
by a collection of parameter values from local regressions. This allows to test for parameter
constancy under the alternative of having a varying coefficient vector that is some undefined
function of time, i.e.

Ho: fi=pot Ho pi=po( 1)



The time-varying parameter under the alternative is obtained by running local regressions
around every time point in the sample. These regressions include the initial regressors and
interactions of the explanatory variables with the temporal distance to the midpoint of the lo-
cal regression relative to the entire sample size. The model around a point ¢ is formally denoted
as

s—1t
YS == a;/oxs + “;,1 <T) XS (24)

The subsample is chosen according to a bandwidth i = \/%T_O'z, a value that Chen and Hong

assume for convenience. This implies that the | 1T | observations before and after the time point
of interest are included in the sample:

s€ [t— |hT|;t+ |hT]]

where |hT ]| is the next integer below hT. In order to allow the estimation of the local model at
the beginning and the end of the sample, Chen and Hong create pseudo-data by reflecting the
sample at its borders.

Moreover, the local parameters are estimated with weighted least squares, using a kernel
function with respect to 3-f. That is, observations that are far from the center of the subsample
contribute only little to the estimation of the regression coefficients. Having obtained the WLS
estimators of the local regression around ¢, the value of the regression coefficients of the global
model at time ¢ is the value of the local coefficient vector a;. By contrast, the the local interac-
tion coefficients between the regressors and time are not used in the global model. Finally, the
global non-parametric estimator 3, (#), t =1,...,T is obtained by collecting the estimated
coefficients & from all local regressions.

Using this time-varying estimator, Chen and Hong (2012a,b) propose two tests:

1. A generalized Chow test. The test statistic is given by

Vh(SSRg — SSR,) — Ac

Bc

¢ =

(2.5)

where SSRp and SSR, denote the sum of squared residuals for a model with standard
OLS parameters and a model with the variable non-parametric coefficients respectively.

Furthermore,
Ac = h2dCuct? and Be = 4dCpe & (2.6)
with
1 I j Lo
Cac = 2k(0) + 1 — = ZL;MJ <1 T) k <Th) [k <Th> +h/_1k <Th—|—2u> du}
2.7)
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are centering and scaling parameters that normalize the asymptotic distribution of the
test statistic to N(0,1). As in the classical Chow test, the test statistic measures whether a
model that allows for variable coefficients is able to explain the data better than a model
that assumes constant parameters.



2. A generalized Hausman test. Its test statistic is denoted as

0 — m (2.9)
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normalize the asymptotic distribution of the test statistic to a standard normal distribu-
tion. The general intuition behind the test is to look, whether the fits of the model with
non-parametric estimator differ significantly from those of a simple OLS model. If so,
the parameter vector must vary somehow with respect to time, which implies a smooth
structural change.

1 N (L j Y
Cant = o Z&m <1 - T) k (Th> [k <Th) +h/_lk <Th +2u> du] (2.12)

1
CBH—ﬁ

Chen and Hong also provide a heteroskedasticity-robust version of the centering and scaling
parameters. The Chow centering and scaling parameters are reformulated

Ac_pet = h’%CAC trace(OM 1) and Bc_je = 4Cpc trace(M1OM 1)) (2.14)

where M = T7' Y XX} and O = T Y[ e2X,X]. Likewise, the corresponding parameters
in the Hausman test are modified to

Ay et = h_%CAH trace(OM ™) and Bpy_je = 4Cppy trace(M1OM 1)) (2.15)

As the tests procedures of Andrews (1993), Andrews and Ploberger (1994) and Chen and
Hong (2012a) involve estimating a large number of regressions, it can be suspected that they
are sensitive to inaccuracy in the data. With regards to measurement error, the resulting atten-
uation bias of the estimated coefficients (see for example Bound et al., 2001, p. 3712ff) provides
a rationale to suspect an influence on test powers and sizes in general.

As regards outliers, the bias they may introduce into the estimated coefficients via the weight
that is assigned to influential observations in OLS estimation may be specifically harmful if the
sample is split up in two sub-samples: The coefficients in both samples are likely to differ solely
because of the presence of an outlier in one sub-sample. Consequently, it can be assumed that
tests for structural breaks tend to overreject, as local regression models are part of all considered
testing procedures.

3 Monte Carlo simulations

The impact of measurement errors and outliers on the power of tests for smooth structural
change is studied using R, as the program provides the required routines for the Andrews-
Ploberger tests and especially wavelet methods via user-written commands. The simulation



setup is oriented towards the model specification of Chen and Hong (2008, 2012a). The au-
thors design a simple univariate regression framework where the explanatory variable itself is
modeled as a stationary AR(1)-process. Formally, this is expressed as:

Yt = F(T)(l + 05Xt) + &
Xy =05X; 1+
e~ iid.(0,1) and v ~i.i.d.(0,1)

Smooth structural change is introduced into the model through the function F(t), which de-
pends on the relative position of the observation at time point ¢ within the entire sample. In the
case of no structural change, F(7) can be set to one. Apart from this simple case, three scenarios
from Chen and Hong (2008) will be considered:

1. A monotonous smooth structural change:
F(t) = (1 + exp[—1500(7® — 312 + 31 — 1)]) '

2. A non-monotonous smooth structural change:

F(t) =1 —exp[-3(t — 0.5)]

3. A smooth structural change with high frequency:

F(t) = 0.5+ sin(257T)

For the case of measurement error, it will be assumed that the true explanatory variable
X; cannot be observed exactly. Instead, the information at disposal consists of the observed
variable X; = X; +&;, ¢ ~ i.i.d(0,0¢), which expresses the erroneously measured data for
the explanatory variable. Information about the variance of the measurement error can be
translated to match the notion of signal and noise from wavelet thresholding. The signal-to-
noise ratio will be used, which is the ratio of the sum of squared deviations from zero between
the true time series and the measurement error. Formally, it is given by

Y X?
Y &2

In the case at hand, these sums of squared deviations from zero are equal to the variances of
X and ¢. In order to make the concept more tangible in the case of no measurement error, the
inverse signal-to-noise ratio will be considered (which will be called the noise-to-signal ratio
NSR). Reasonable values for the NSR can be derived from previous studies that attempted to
measure the extent of measurement error in economic data. These exercises are in most cases
conducted for international trade data, where an exemplary case is the calculations of van
Bergeijk (1995) and Makhoul and Otterstrom (1998) who indicate an error margin of around
8.5%-10% for OECD countries and 29% for non-OECD countries. Likewise, confidence inter-
vals in the quarterly labor market reports of Statistics Sweden lead to error margins that vary
mostly between 2% and 15%, depending on the extent of aggregation. The model setup is ori-
ented towards an upper limit of these values by assuming an error margin of 15% and 30%
respectively. In the latter case, this implies that the mean absolute deviation (MAD) of the mea-
surement error from zero is 0.3 times the MAD of the true time series from zero. Taking the
square of this number results in the respective target NSR of 0.09. In the following simula-
tion this value will be chosen as well as a smaller value of 0.0225, the NSR-equivalent to an

SNR =

(3.1)



error margin of 15%. Finally, the choice of sample size deviates slightly from the values that
Chen and Hong (2012a) choose, as dyadic sample sizes are chosen to prepare the use of wavelet
methods for data correction. Fortunately, the closest powers of two to the sample sizes of 100,
250 and 500 are given by the numbers 128, 256 and 512, which implies only very slight changes.
The simulation runs with 1000 iterations and incorporates the F-sup, F-ave and F-exp tests of
Andrews (1993) and Andrews and Ploberger (1994) plus the generalized Chow and Hausman
tests of Chen and Hong (2012a) in their homoskedasticity-specific and their heteroskedasticity-
robust form. Information about the size of the tests is collected and their power is measured
for all possible combinations of model type, sample size and noise-to-signal ratio. All results
are based on empirical critical values at a significance level of 95%.

The effects of outliers are studied in the same model setup that was given for measurement
error. But instead of altering the explanatory variable, adjustments will be made to the depen-
dent variable. Emphasis is put on type 1 or additive outliers, i.e. an outlier that affects the
observation at the same time point without having any influence on subsequent observations
(Fox, 1972, p. 351). At four random time points in the sample, an impulse of A = z * ¢, will be
added to the observed value, where z is an arbitrarily chosen magnitude parameter. The two
cases z;1 = 5 and zp = 10 will be considered. Define a set T* = {t],...,t; } that contains the
position of the four outliers. The model including outliers is then given by

v — {F(T)(1+0.5Xt) +e ifre T 32)
F(T)(1+05X;)+A+¢ ifteT*

where the properties of F(7), X;, and ¢; remain unchanged.

Table 1 depicts the resulting test sizes for the chosen scenarios. It becomes obvious that
measurement error does not have a significant influence on the size of test for smooth struc-
tural change. The obtained values remain more or less constant, regardless of how large the
error margin is for the explanatory variable. Solely for Chen and Hong’s Hausman-type test, a
marginal increase can be observed, although the change of at most 1.6 percentage points lacks
practical relevance. However, the exact value do not remain completely unchanged. This sug-
gests some form of impact of measurement error that is negligible in the chosen setup. With
regards to outliers, it can be observed that their presence generally leads to inflated size when
the number of observations is small. A clear positive relation between outlier magnitude and
test sizes can be observed in this case. In medium-sized and large samples, size distortions
are not given for the smallest chosen outlier magnitude, but appear when outliers have a di-
mension of ten standard deviations of the dependent variable. In addition, a negative relation
between the sample size and the test size increases can be observed, which is at least partially
due to the relative amount of outliers within the entire sample. It is worth noting, that the test
of Chen and Hong react on average stronger than the Andrews-Ploberger tests and notably the
Ave-F test, whose size remains approximately constant over all considered outlier magnitudes.
An exception to this observation is the heteroskedasticity-robust version of Chen and Hong's
(2012a) Hausman-type test, which experiences only very slight changes. All other tests have
size increases of up to ten percentage points when outliers are present.



Table 1: Test sizes

# obs 128 256 512

nts ratio 0 0.15 0.3 0 0.15 0.3 0 0.15 0.3
test

Sup-F 0.043 0.047 0.051 0.058 0.044 0.043 0.051 0.045 0.045
Ave-F 0.036 0.052 0.056 0.051 0.053 0.053 0.057 0.059 0.057
Exp-F 0.041 0.053 0.054 0.058 0.048 0.045 0.047 0.052 0.043
C 0.028 0.023 0.025 0.036 0.031 0.033 0.034 0.038 0.039
Chet 0.043 0.041 0.047 0.051 0.051 0.05 0.046 0.049 0.051
H 0.155 0.143 0.147 0.126 0.119 012 0.097 0.107 0.101
Hpet 0.078 0.072 0.073 0.082 0.069 0.067 0.066 0.059 0.067
Outlier magnitude 0 5 10 0 5 10 0 5 10
test

Sup-F 0.043 0072 0.117 0.058 0.049 0.075 0.051 0.051 0.063
Ave-F 0.036 0.055 0.062 0.051 0.044 0.048 0.057 0.061 0.059
Exp-F 0.041 0.071 0.094 0.058 0.047 0.067 0.047 0.054 0.06
C 0.028 0.05 0094 0.036 0.044 0.082 0.034 0.037 0.073
Chet 0.043 0.066 0.094 0.051 0.058 0.096 0.046 0.044 0.083
H 0.155 0.163 018 0.126 0.119 0.156 0.097 0.086 0.123
Hiet 0.078 0.082 0.099 0.082 007 0.067 0066 0.049 0.057

From Table 2 it can be inferred that measurement error is has a very small influence to the
performance of the tests considered if the given smooth change is either monotonic or non-
monotonic. In small samples, hardly any of the tests shows any reaction to measurement error.
But as the sample size increases, marginal power losses become apparent. The Hausman-type
test seems to be affected most by an error margin in the explanatory variable. Still, the dimen-
sion of the power loss is at most four percentage points, a magnitude that can be considered
meaningless. The testing procedures appear especially robust in the case of a non-monotonous
smooth shift, as test powers may even increase slightly in some cases.

Table 2: Test powers with measurement error

# obs 128 256 512

nts ratio 0 0.15 0.3 0 0.15 0.3 0 0.15 0.3

Change type  test
monotonous  Sup-F 0138 0.135 0.134 0247 0231 0221 0504 0492 0491
Ave-F 0.111 0.111 0116 0171 0.164 0.168 0369 0.364 0.361
Exp-F 0132 0126 0.131 0223 0.199 0.198 0471 0469 0.456

C 0.075 0.071 0.07 0.148 0.142 0.151 0.366 0.358 0.35
Chet 0.113 0.114 0.11 02 0196 0182 0412 0.397 0.392
H 0298 0287 0.281 0404 0.391 0378 0.634 0.61  0.606
Hye 0.184 0.175 0.167 0304 0.289 0279 0563 0.533 0.522

non-monotonous  Sup-F 0151  0.159 0.156 0309 0313 0314 0.681 0.671 0.658
Ave-F 0.094 0.108 0.103 0183 019 018 0521 0529 0.507
Exp-F 0.143 0.136 0144 0272 0297 0.281 0.657 0.663 0.657

c 011 0118 0118 027 0259 0258 0619 0636 0.634
Chet 0153 0166 0164 034 0321 0315 0678 0684 0.695
H 0391 039 0385 0601 0604 0599 0875 0896 0.888
Hit 0252 0264 0259 0483 0502 0492 0822 0848 0.833

high frequency ~ Sup-F 0.105 0.088 0.083 0.199 0.183 0.176 0.287 0.264 0.26
Ave-F 0.068 0.072 0.066 0.121 0.117 0.116 0.167 0.156 0.149
Exp-F 0.097 0.084 0.082 0.173 0.158 0.155 0252 0.235 0.219

C 0.106  0.094 0.079 0.163 0.171 0.151 026 0251 0.223
Chet 0.148 0.122 0111 0197 0218 0.196 0292 0.276 0.258
H 0282 0254 0225 0371 0357 0344 0462 0437 0.402
Hye 0.137  0.127 012 0216 0.231 0211 0292 0.267 0.253

Looking at the scenario that involves a highly frequent smooth shift reveals a stronger rela-
tion between the extent of measurement error and test powers. The negative impact is strongest



for the tests of Chen and Hong (2012a), although the evidence is mixed at medium sized sam-
ples. By contrast, the ave-F test experiences the smallest power losses. But generally and
similarly to previous observations, the impact of measurement error on powers increases with
the sample size.

Table 3: Powers in the presence of outliers

# obs 128 256 512

outmag 0 5 10 0 5 10 0 5 10
Change type  test
monotonous  Sup-F 0.138 0.108 0.128 0247 0163 0.118 0504 0.392 0.232
Ave-F 0.111 0.079 0.066 0171 0122 0.089 0369 0.292 0.19
Exp-F 0132 0102 0.105 0223 0.138 0.108 0.471 036 0225

C 0075 0.059 0.094 0148 0.102 01 0366 0266 0.173
Chet 0113 0.081 0.097 02 0127 012 0412 0311 0.197
H 0298 0211 0.198 0404 0281 0192 0634 0517 0327
Hyet 0184 0.119 0.103 0304 018 0103 0563 0425 0252

non-monotonous  Sup-F 0.151 0.144 0.138 0309 0.245 0.16 0.681 0.534 0.354
Ave-F 0.094 0.081 0.066 0.183 0.131 0.081 0.521 0.39 0.208
Exp-F 0.143 0.127 0118 0272 0208 0.136 0.657 053 0.339

C 011 0.076 0.094 027 0.159 0109 0.619 049 0.265
Chet 0.153 0.104 0.094 034 0212 0129 0678 0546 0.292
H 0391 0279 0204 0.601 044 0238 0.875 0.78 0.52
Hpey 0252 0.159 0107 0.483 033 0153 0.822 0713 0427

high frequency ~ Sup-F 0.105 0.087 0.108 0.199 0.122 0.088 0.287 0.208 0.138
Ave-F 0.068 0.072 0.059 0121 0.092 0.061 0.167 0.123 0.088
Exp-F 0.097 0.084 0.093 0173 0.104 0.086 0252 0.178 0.126

C 0.106 0078 0094 0163 0119 0106 026 0211 0.14
Chet 0148 0093 0092 0197 0156 0119 0292 024 0.168
H 0282 0206 0204 0371 0275 02 0462 0358 0.257
Hior 0137 0111 0104 0216 0162 009% 0292 0226 0.151

When considering outliers instead of measurement error, a substantial negative effect on the
tests power can be observed (Table 3). The pattern that can be observed depends largely on
the sample size. In small samples, the presence of outliers itself has a negative impact on the
powers of the test, whereas the magnitude of the outliers has only a small impact. In fact,
the powers of the tests either converge towards some fixed value as the outliers become larger
or increase with increasing outlier magnitude. By contrast, in large samples significant and
strictly monotonous power losses can be observed for all tests as the outlier magnitude goes
from 0 to 10. Most strikingly, the heteroskedasticity-robust Hausman-type tests statistic of
Chen and Hong (2012a) has the largest power losses, despite the good behavior of its sizes.
This power loss is probably due to the construction of the test statistic itself, as actually both
Hausman-type test statistics experience similar power losses that exceed those of all other tests.
It can also be observed that the power of each test increases with sample size at given outlier
magnitude. One explanation is that the tests are less sensitive towards outliers at large sample
sizes. Alternatively, the positive relation can simply be a result of a declining number of outliers
relative to the entire sample size. In order to study this point further, the absolute number of
outliers is changed from 4 to 8 and then 16 in a simulation study that is based on a sample of
512 observation and an outlier magnitude of ten standard deviations. As can be observed from
Table 4, the results are mixed for test sizes. No clear tendency can be observed for the size of
the concerned tests when the number of outliers changes. Hence it can be assumed that size is
solely dependent on the magnitude of the outliers.



Table 4: Size and powers for an outlier magnitude of z, = 10

# obs 512
# outliers 4 8 16
Change type
none (sizes) ~ Sup-F 0.063 0.068 0.068
Ave-F 0.059 0.064 0.048
Exp-F 0.06  0.072  0.062
C 0.073 0.056 0.085
Chet 0.083  0.07 0.101
H 0123 011 0.147
Hyet 0.057  0.06 0.056
monotonous  Sup-F 0.232  0.151 0.086
Ave-F 0.19 0.109 0.058
Exp-F 0225 014 0.077
C 0.173  0.093  0.092
Chet 0.197 0.109  0.11
H 0327 0.196 0.158
Hiet 0252 0123 0.082
non-monotonous  Sup-F 0.354 0223 0.102
Ave-F 0208 0.115 0.056
Exp-F 0339 0.199 0.097
C 0265 0.144 0.094
Chet 0292 0167 0.113
H 052 0282 0.181
Hiet 0427 0.198 0.096
high frequency ~ Sup-F 0.138  0.081  0.068
Ave-F 0.088 0.067 0.046
Exp-F 0.126  0.085 0.063
C 0.14  0.07 0.095
Chet 0.168  0.091 0.11
H 0.257 0.164 0.157
Hiet 0.151  0.083 0.073

A different impression is obtained from the simulated test powers. These decline unani-
mously when the relative number of outliers in the sample is raised. Only the Chow-based
tests appear to be indifferent to the number of outliers when a monotonous or highly frequent
shift is given and if more than eight outliers are given. In fact, the powers that are obtained
with 16 outliers in the sample, a ratio that is equal to that of 4 outliers in a sample of 128 obser-
vations, are for the most part slightly below the comparator values that are given in the small
sample. This implies that the test actually perform slightly worse in large samples than if the
number of observations is small. The only exception to this observation are, again, the Chow-
based tests of Chen and Hong (2012a), which perform similarly in samples of different sizes
when the relative number of outliers is held constant or can even improve their performance
slightly in large samples.

Still, the clear tendency of test powers to decrease in the presence of outliers is astonish-
ing, as outliers may be expected to promote the detection of structural change due to the bias
they introduce in coefficient estimators. But regardless of whether the observed development
matches initial expectations or not, the severe power losses call for an adjustment procedure to
eliminate outliers from the sample at hand.

4 Introducing wavelet-based outlier detection

In order to remove outliers from the data, an outlier-detection algorithm of Grané and Veiga
(2010) is applied. The method is chosen for its emphasis on the residuals of an estimated econo-
metric model and because it requires the model to be estimated only once, as opposed to e.g.
Tsay (1986) who suggests an iterative procedure. Furthermore, the algorithm does not derive
its threshold value from rules of thumb or asymptotical probabilistic reasoning (as e.g. Bilen
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and Huzurbazar, 2002), but obtains critical values for model residuals through simulation of
similar processes of the same size. The simulation-based derivation of critical values allows as
well to assume different distribution in case the standard assumption of normally distributed
residuals is questionable. Finally, the algorithm addresses exclusively patterns of small range
in the underlying data by employing the wavelet representation of a sequence. In this way,
it restricts the scope to characteristics in the sample that are relevant for outliers and hence
reduces the probability of errors.

Wavelet methods generally exploit a transformation that turns a time-dependent sequence
into coefficients that capture activity at different frequency bands. This property is analogous
to Fourier analysis, but unlike the infinitely oscillating sinoids used in spectral theory, wavelet
analysis builds upon small wavelike functions that are nonzero in only a limited amount of
time. The local scope of wavelets implies as well that, in contrast to Fourier analysis, informa-
tion about the range and the position of a pattern in the sequence in question is captured by the
resulting coefficients of the Discrete Wavelet Transform (DWT).

Due to two important results in Fourier analysis, only a small fraction of all possible frequen-
cies has to be considered. Considering the Discrete Fourier Transform {X (&)} of a finite time
series { X;}, where

k T

X(o) =Y Xe2rn(-D) 4.1)
N t=1

it generally holds that X' (£ +m) = X (&) V m € Z. Hence, it is only necessary to consider
frequencies over a unit interval. A convenient choice is the Nyqvist frequency + € [—1;1],
which has also logical appeal as the cyclic movements with the highest frequency that can
be observed in a discrete sequence are patterns that spread over two adjacent observations.
Moreover, it can be shown that X (%) =X (—%) as long as {X;} € R. Consequently, the
frequencies that have to be considered reduce to those in the interval [0; %]

The DWT can be conducted in a number of ways of whom the fastest is the pyramid algo-
rithm of Mallat (1989). The algorithm consists in applying a cascade of high-pass and low-pass
filters to a time series that subsequently separate its characteristics at different frequency bands.
A certain wavelet gives rise to a wavelet filter {h; : | = 1,..., L} that satisfies the orthonormal-
ity conditions

L )

Y m=0, Y hi=1 Y hhiy=0VneZ (4.2)
=1 I=1 I=—o00

The wavelet filter is an approximation to a ideal high pass filter that extracts the upper half of

the entire frequency band. A corresponding low-pass filter, the scaling filter, of the same length

L can be derived from {,;} by applying the quadrature mirror relationship:

g = (D1 (4.3)

Applying the two filters to a certain sequence thus amounts to splitting its frequency band in
half. Filtering is achieved by circularly convoluting the input sequence at hand with the corre-
sponding filter and subsampling the result by two, i.e retaining only the odd-indiced elements
of the filter output. This results in two (% x 1) vectors W1 and V; that contain patterns at
frequencies in the intervals [}, 1] and [0, ;] respectively and whose j-th element is given by

T
. . T
Wij=3 M Xoit moar, j=1...,5 (4.4)
=1
d . T
Vij=Y 8Xoi | modr, j=1L..., 5 (4.5)

I=1
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where {h7} and {g7} are the wavelet and scaling filters periodised to the length T of the se-
quence and mod T implies that the series {X; : t =1,..., T} is periodically repeating outside
of its borders, i.e. Xyt = Xy Vm € Z,t = 1,...,T. Given that a pattern with frequency %
spans over 2 observations, each DWT coefficient Wy ; captures the variation over the two ob-
servations Xp; and Xp; 1. The pyramid algorithm of Mallat (1989) conducts the filtering for
the initial sequence and subsequently for the obtained scaling coefficients. In this way, at k-th
stage it summarizes the contribution of the time series over the frequency band [1/2k1;1/2¥]
in a column vector Wy, that contains T/2* coefficients. Obviously, the pyramid algorithm hence
requires that the sample size is dyadic!: If the time series consists of T = 2K observations, the
pyramid algorithm has K stages. This also implies that the low pass filter output at stage K,
summarizing the frequency band [0; 1/2X*1], is not processed further.

The DWT coefficients that result from applying the pyramid algorithm are keptina (T x 1)-
vector W that stacks the wavelet coefficient vectors from all stages of the pyramid algorithm
plus the scaling coefficient from its last stage. Summarizing the transform operations in a ma-
trix W, the DWT coefficients can be obtained by matrix multiplication:

W = WX (4.6)
where
Wi
w=| ° 4.7)
Wk
Vk

Furthermore, given the orthonormality conditions of the wavelet filters the original time se-
ries can be reconstructed from the DWT coefficients by pre-multiplying the latter with W7, as
WIW = WITWX = X. Another implication of the orthonormality conditions is that the DWT
coefficients preserve the energy of the initial sequence:

T
13

T K 2
2 2
X" =3 X2 =3} W =W (4.8)
t=1 k=1j=1

For a more extensive treatment of the DWT using the same notation, the interested reader is
referred to Percival and Walden (2002).

Analyzing DWT coefficients is generally extremely valuable when the feature of interest
within a time series is characterized by activity at a certain limited frequency band. Infor-
mation in the time domain, as given by an initial untransformed series, cannot capture these
features separately from irrelevant patterns at other frequencies. Without making a frequency-
based distinction, it is possible to be taken in by spurious patterns or to fail to detect interesting
characteristics that are masked by variation at other frequency bands. The possibility to select
the information of interest from DWT coefficients at different scales hence constitutes a clear
advantage of wavelet-based methods over procedures that purely rely on information from the
time domain.

Outliers in the time-dimension of a given sequence can be seen as variation at very high
frequency, as they span only over one single observation. Consequently, they will have an
impact on the finest scale coefficients of the wavelet transform . Due to the energy preserving
property of the DWT, the wavelet coefficients that capture an outlier in the initial series will be
characterized by a high absolute value. In addition, as the DWT provides information about

IThis restriction can be weakened by conducting the Partial Discrete Wavelet Transform which manually imposes
number of stages k < K
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variation at different frequency bands and the position of this variation in the time domain, it
is possible to localize an outlier from the DWT coefficients.

Outlier detection according to the method of Grané and Veiga (2010) is based upon the finest-
scale DWT coefficients of the residuals {e; : t = 1,...,T} of a chosen econometric model and
hence addresses precisely the set of information that is assumed to contain information about
the position of outliers. The distributional properties of model residuals provide generally an
excellent basis for outlier detection, as it is solely required to investigate which residuals do
not fit into an i.i.d distribution around a mean of zero. The algorithm employs a threshold rule
to distinguish outliers from ordinary errors, where the threshold itself is the 95% percentile
for the maximum of simulated normally distributed series of length T. The threshold choice
is motivated by the assumption that the residuals of a correctly specified model should be
white noise and the fact that the DWT as an orthonormal transform preserves the distributional
properties of the underlying time series (Percival and Walden, 2002). All coefficients whose
absolute value exceeds the threshold are considered outliers and their indice is noted, which
results in a set S = {s1,...,sn} of identified outlier positions. Outlier correction is conducted
in the time domain. As each finest-scale DWT coefficient spans over two observations of the
initial sequence, the corresponding time-domain values are compared to the average of all
other elements of the sequence ér_,. The observation that deviates most from the average is
identifier as the outlier and set to zero. This procedure is summarized by the following decision
rule:

if —er_o| < 1 —eér_
e, = €2s,, 1 |€25n iT 2| !625,1 1 €_T 2! (4.9)
0 if |eas, — 72| > |eas,—1 — 1_2|
and
R L if |eps,—1 — er—2| < |eas, — &2 (4.10)
S— - . - — *
! 0 if |eps,—1 — er—2| > |eas, — €72

where s, € S is the position of a DWT coefficient that exceeded the threshold.

It is desirable to implement the algorithm into the simulation study in order to assess whether
it helps compensating the power losses that are due to outliers without impairing the results
too much in cases where outliers are not present. In the simulation study, wavelet based outlier
detection is conducted using the Haar wavelet, the simplest possible wavelet that gives rise to
the wavelet and scaling filters

1 1 1 1

=) e =15 s @1
As depticted in Table 5, applying the algorithm to data that do not have any outliers results only
in very marginal size decreases. Hence, the outlier elimination technique is sensitive enough to
maintain the underlying data. When the magnitude of the outliers is increased subsequently,
the test sizes of the corrected data do not increase substantially, as it was the case for the un-
adjusted samples. In most cases, only minuscule changes upwards can be observed, but these
can be considered negligible. Only the homeskedasticity-specific version of the Hausman test
experiences size losses that are significant at the lowest sample size. But given the high initial
size of the test, such an adjustment is not alarming.
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Table 5: Sizes of corrected data

# obs 128 256 512

outmag 0* 0 5 10 0* 0 5 10 0* 0 5 10
test

Sup-F 0.043  0.04 0065 0.053 0.058 0.054 0.057 0.054 0.051 0.055 0.059 0.059
Ave-F 0.036 0.046 0.059 0.048 0.051 0.049 0049 0.05 0.057 0.047 0.053 0.052
Exp-F 0.041 0.039 0.061 0.051 0.058 0.051 0.056 0.052 0.047 0.057 0.065 0.063

C 0.028 0.026 0.049 0.043 0.036 0.025 0.039 0.032 0.034 0.025 0.034 0.028
Chet 0.043 0.045 0.067 0056 0.051 0.044 0.052 0.049 0.046 0.036 0.041 0.037
H 0155 0.139 0174 0151 0126 0.104 0.123 0111 0.097 0.077 0.083 0.075
Hyet 0.078 0.07 0.089 0.079 0.082 0.065 0.073 0.076 0.066 0.05 0.059 0.052

* = uncorrected data

With regards to the powers of the tests for smooth structural change, the algorithm of Grané
and Veiga (2010) leads only to small power losses in samples where outliers are not given. The
exact results are quite mixed, but generally the power losses do not exceed 5 percentage points.
Notably the Ave-F test and both Hausman-type tests appear to be robust to the data correction
in small and medium size samples, as the power declines only marginally or increases slightly.
The powers for samples that include outliers with a magnitude of 5 or 10 times the standard
deviation of the dependent variable are restored almost entirely by the data correction mech-
anism, irrespectively of which test is considered. For an outlier magnitude of five standard
deviations, power losses in some medium size and most large samples exist with respect to
the comparator values. This indicates that Grané and Veiga’s (2010) algorithm fails to detect a
small number of outliers in these cases. However, test powers for larger outliers generally ap-
proach those of the comparator samples, although their values still may lie up to 5 percentage
points below in the scenario of a single monotonous gradual change.

Table 6: Test powers of adjusted samples

# obs 128 256 512

outmag 0* 0 5 10 0* 0 5 10 0* 0 5 10

Change type  test
monotonous  Sup-F 0.138 0.104 0.136 0119 0247 0224 0219 0223 0504 0469 0432 0.47
Ave-F 0.111  0.104 012 0112 0171 0173 0.167 0164 0369 0339 0322 0.341
Exp-F 0.132 0111 0138 0121 0223 0.199 0201 0205 0471 0431 0404 0.426

c 0.075 0.068 0.091 0.079 0.148 0.142 0.147 0.147 0366 0336 0312 0.319
Chet 0113  0.095 0.117 0.104 02 0189 0192 0.189 0412 0392 0.372 0.38
H 0.298 0285 0.288 0287 0404 0384 0367 0382 0.634 0587 0566 0.593
Hye 0.184 0.175 0185 0.166 0304 0275 0266 0269 0563 0513 0477 0.513

non-monotonous  Sup-F 0.151  0.141 019 0.155 0309 0323 0299 0312 0681 0.647 0.607 0.634
Ave-F 0.094 0105 0.122 0.111 0.183 0198 0.173 0.186 0.521 0488 0433 0478
Exp-F 0.143 0.144 0172 0149 0272 0297 0277 0291 0.657 0.62 0.588 0.624

C 011 0112 0129 0.119 027 0255 0242 0245 0.619 0597 0.569 0.602
Chet 0.153 0.158 0.177 0.166 0.34 0.33 031 0312 0.678 0.655 0.625 0.645
H 0391 0401 0411 038 0.601 0615 0571 0.605 0875 0.873 0.835 0.862
Hyet 0252 0268 0274 0257 0483 0492 0453 0474 0.822 082 0772 0811

high frequency ~ Sup-F 0.105 0.112 0117 0.106 0.199 0174 0169 0.176 0.287 0257 0.258 0.258
Ave-F 0.068  0.073 0.09 008 0121 0107 0.106 0.105 0.167 0.139 0.137 0.141
Exp-F 0.097 0.106 0114 0.111 0.173 0.153 0.151 0.153 0.252 0213 0.223 0.233

c 0.106  0.099 0.112 01 0163 0.161 0172 0.173 026 0247 0.247 0.245
Chet 0.148 0.126 0137 0126 0.197 0199 0209 0206 0292 0276 0.276 0.268
H 0282 0257 0275 0261 0371 0361 0356 0358 0462 0426 0423 0423
Hye 0.137  0.131 015 0.133 0.216 0.219 022 0223 0292 0257 0258 0.253

* = uncorrected data
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5 Conclusion

This thesis has studied the effect of two types of data inaccuracies on the size and power of test
sfor smooth structural change. It has been shown that random measurement error of a magni-
tude that can be found in real economic data does not impair the performance of the considered
tests. This results holds irrespectively of the sample size and the type of structural change. As
the chosen error magnitudes can be seen as an upper bound to possible error magnitudes in
available data, it can be said that tests for smooth structural change are robust to measurement
error. In the unlikely case of substantially larger measurement error, however, similar detri-
mental effects of error margins in the explanatory variable, as observed by Li (2012), are likely
to appear.

By contrast, outliers do have a significant impact by inflating the size and lowering the pow-
ers of tests for smooth structural change. The extent of these performance deterioration calls for
an adjustment mechanism in order to remove outliers from the data. The algorithm of Grané
and Veiga (2010) is conceptually suited to perform this adjustment as it focuses strictly on the
unexplained portion of a chosen econometric model and uses wavelet techniques to address
strictly high-frequency variations in the underlying series. Simulation results show that the
algorithm indeed succeeds in compensating the power losses due to outliers to a large extent,
although its performance is not perfect in large samples and in cases where the outliers do not
differ excessively from regular observations.
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