
Abstract

Myocardial perfusion is an indicator of heart health that can be used to locate dam-
aged areas of the heart. It can be measured by an imaging modality such as magnetic
resonance imaging (MRI).

When measuring myocardial perfusion in a living human we must align images
over time to correct for motion caused by breathing. In this thesis we will introduce
a version of the normalized gradient �elds similarity method, modi�ed to improve
noise robustness and decrease computational complexity. Furthermore we will use a
segmentation in the reference time-frame as a priori information.

The results of this thesis is the development of a registration method that aligns
the myocardium in perfusion MRI images. The myocardial alignment, measured by
the Dice coe�cient, increased from 0.79±0.11 before registration to 0.89±0.028 after
registration. The resulting perfusion curves looks like we would expect from previous
studies of myocardial perfusion.
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Chapter 1

Introduction

In the process of medical imaging, images and data of the interior of the human body
are created by one of the various imaging modalities, such as ultrasound, magnetic
resonance imaging (MRI) and radiography i.e x-ray. This data can then be used
for clinical diagnosis as well as medical research. Depending on the application and
imaging modality, the data can be in 2, 3 or 4 dimensions. When imaging a living
person the subject should preferably hold still during the process. This is especially
important if we want to track changes over time in time-resolved data.

In this thesis we will study the problem that arises when movement cannot be
avoided in one particular imaging application, myocardial perfusion imaging by MRI.
In this case we want to track intensity changes in images the of heart in a living human
over several minutes. The problem to solve is correcting for the breathing motions
that will cause movement and deformation of the heart. A solution to this is to align
the image in every time frame to a common coordinate system where the heart does
not move. To achieve this we need a model to describe how the heart moves and a
method to estimate these movements.
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Chapter 2

Background

2.1 The human heart

Figure 2.1: MRI image of a human heart
where the myocardium of the left ventricle
(LV) has be segmented. The right ventricle
(RV) is also marked.

The heart is the organ that provides cir-
culation of the blood in the body. Figure
2.1 shows an image of a human heart im-
aged with MRI. The heart is divided into
four chambers, the right atrium and ven-
tricle, and the left atrium and ventricle.
De-oxygenated blood enters through the
right atrium and is then pumped to the
lungs via the right ventricle. The arterial
(oxygenated) blood from the lungs then
enters the left atrium and �ows back to
the body via the left ventricle. The mus-
cle surrounding the chambers is called
the myocardium. The innermost layer of
the myocardium is called endocardium
while the outside is called epicardium.

2.1.1 Myocardial Perfusion

Perfusion is the process where arterial
blood is delivered to tissues though the
smallest blood vessels of the body, the
capillaries. In this thesis we are specif-
ically interested in myocardial perfusion
of the left ventricle. Myocardial perfu-
sion is an important indicator of heart
health and function. A region with de-
creased perfusion is called a perfusion defect. Perfusion defects is caused by an oc-
clusion of the coronary arteries or a congenial heart defect.
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2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a technique commonly used for medical imaging
i.e. to produce images of the inside of the human body. The �rst MRI image was
published in 1974 by Paul Lauterbur. Since then, MRI has become an important tool
in medicine and research. To acquire a MR image, the patient is placed inside the
MR scanners powerful magnetic �eld, usually 1.5 or 3 Tesla. The human body consist
mostly of water in di�erent concentrations in di�erent tissue types. A portion of the
hydrogen atoms in the water molecules aligns their magnetization in the direction of
the magnetic �eld. An electromagnetic �eld is then turned of and on with a resonance
frequency that causes protons to adsorb energy from the �eld and �ip its spin when
turned on. When the �eld turns o� again the proton will realign with the �eld i.e relax
and emit an electromagnetic signal which can be detected by the scanner. Protons in
di�erent tissue types have distinct relaxation times allowing us to di�erentiate among
them. The image gathered is a cross section slice of the body, most often a short-axis
image, as in Figure 2.1. The short-axis image plane is perpendicular to the long-axis
of the left ventricle. By acquiring several slices, a 3-D image stack covering the whole
heart can be generated.

2.2.1 Contrast enhanced MRI

To quantitatively study perfusion of the heart a contrast agent, usually gadolinium,
is injected intravenously before using the MR scanner. The agent decreases relax-
ation time where it is present, thus increases the image intensity in proportion to
its concentration. Then several cross-sectional short-axis images is gathered every
heartbeat for 2-3 minutes. To minimize movement due to the heart beating, cardiac
gating is used. Cardiac gating is a technique that synchronize images over the heart
cycle by ECG triggering. By identifying regions in the left myocardium across all
relevant time-frames, perfusion can be measured by tracking the changes in intensity
over time in each region. To locate perfusion defects, the myocardium is divided
into segments, and perfusion is measured separately in each. The American Hearth
Association (AHA) recommends a standardized 17 segment model[1] based on three
cross-sectional images, so that results can be compared across di�erent studies. The
division of the left ventricle into segments are illustrated in Figure 2.2, and Figure
2.3 illustrates the corresponding three slices by contrast enhanced MRI. To identify
these segments we must identify the borders of the left ventricle myocardium, the
epicardium and endocardium. This can be achieved by segmenting every time-frame
separately either automatically or manually. Alternatively segmentation is only per-
formed in one reference time-frame and overlayed to all other frames by registration.
The next section will present the later approach.

2.3 Registration

Registration is the process of aligning several data sets or images to a common co-
ordinate system. Often one image is used as a reference, and thereafter the other
images are aligned to the reference by applying a transformation. For registration
to be successful we want the transformed image to be equivalent to the reference in
some sense. At the same time we want to keep information that genuinely di�ers
between the images. In this thesis we align the myocardium in the images in di�erent
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Figure 2.2: Illustration of the AHA segmentation model, in three short-axis slices and
a long-axis slice.

Figure 2.3: Three contrast enhanced MRI short-axis image slices from a patient.
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time-frames to a reference time-frame. The reference and transformed image becomes
similar in the sense that the myocardium is in the same position in the images. Once
registered, a segmentation in the reference time frame will give a segmentation in
every time frame, i.e the same segmentation as in the reference frame. The reverse is
not true, a segmentation in every time-frame will not immediately yield a registration.
For example; imagine the image and segmentation in Figure 2.1 rotated an unknown
amount, we would know the location of the myocardium, but not how a part of it
corresponds to the original image.

2.3.1 Feature and intensity based methods

There are two main types of image registration methods, feature based and inten-
sity based. In the original feature based method, Scale Invariant Feature Transform
(SIFT)[2] a feature vector is calculated for each image coordinate. The points with
the most unique features in each image is selected. By matching these points feature
vectors from one image to another we can �nd matches between the coordinates of
the points. Using these coordinate matches and assuming a linear transformation
between the images we get a system of linear equations. The equation system can be
solved algebraically, yielding the parameters of the linear transformation.

This approach is most useful when we have di�erent images of the same scene
captured by the same sensor from di�erent perspectives. If we transform the images
to a common coordinate system they become the same in the sense that the matching
points are in the same location. However some parts of the scene may be visible in
one image but not in another.

While feature based methods can be used for deformation models, the number of
good matches will limit the number of parameters that can be used in the transfor-
mation. If the system is under-determined we cannot uniquely solve it, and there is
no guarantee of how many feature points matches we can �nd in a set of images.

Another option is intensity based methods. In these method a cost function is
calculated based on the intensity di�erences between the images. The parameters of
the transformation model can be estimated by numerically minimizing the di�erences
between the reference and transformed image. After transformation the images will
be similar in a sense de�ned by the cost function, which can be an advantage if we
choose a cost function appropriate for our purposes.

2.4 The software Segment

Segment is a software package for Medical image analysis. Segment is developed
by Medviso AB together with Lund Cardiac MR Group at Lund University. The
registration algorithm developed in this thesis is implemented in Segment by using
existing functions and add new features for studying MR perfusion images.
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Chapter 3

Aim

The aim of this thesis is to develop a registration method suitable for time-resolved
contrast enhanced MRI images used in perfusion analysis. The method should be fully
automatic after giving a reference segmentation of the left ventricle in one time-frame
as a priori information.

11



12



Chapter 4

Theory

In this chapter we will go though the theory needed for the image registration method.
The following notation will be used,

� x bold lower case used for coordinate vectors

� A bold upper case used for matrices

� I(x) used for images de�ned on Ω ∈ R2

To register a whole set of MRI images, each short-axis slice will be processed sepa-
rately. One time-frame will be chosen in advance as the reference. Thereafter, we can
either register all other time-frames to the reference directly, or do it step by step and
register each time-frame to the previously registered one, starting from the reference.
When choosing a transformation and cost function for registration we need to keep
the objective of aligning the myocardium in the reference and transformed image.
Myocardial segmentations is only performed in the reference time-frame so we can
not directly compare the overlap of reference and transformed image. Cost functions
must instead rely on related image properties. Figure 4.1 shows three time-frames
from one slice in a perfusion study, with segmentation only in the �rst image.

4.1 Image transformations

To register images we need an image transformation that aligns the base image frame,
Ib, to the coordinate system of the reference image frame, Ir. The registered image
is denoted as the target, It. The image transformation

T (Ib) = It : Ω→ Ω

is de�ned by the coordinate transformation function f(x)

It(f(x)) = Ib(x)

The coordinate transformation function must have su�cient degrees of freedom (DoF)
to allow us to model changes in perspective, i.e movement of heart relative to the
camera as well as deformation of the heart caused by the patient breathing, while
remaining smooth.
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Figure 4.1: Three time-frame MR images from one patient, with segmentation in the
�rst time-frame image.

4.1.1 A�ne transformations

An a�ne transformation is a combination of a 2D linear transform and a translation,
and is used in image registration to model small changes in perspective. The a�ne
transformation is given by

f(x) = Ax +

(
tx
ty

)
WhereA is a 2×2 linear transformation matrix and tx and ty represent the translation
in x and y direction respectively. By using homogeneous coordinates the transform is
expressed by

(
f(x)

1

)
=

A
tx
ty

0 0 1

(x
1

)
A�ne transformations have six DoF, these are shearing i.e rotation of the xy-plane
around the x axis, rotation around the z axis, and scaling and translation in the x
and y directions respectively.

4.1.2 Thin plate spline

For deformation modeling the most commonly used transform is the Thin Plate Spline
(TPS). The name is derived from the analogy of bending a thin sheet of metal, the
sheet or image plane is bent in the z direction causing displacements in the x and
y direction around a set of N control points w1, ...,wi,...,wN, with corresponding
weights c1, ..., ci, ..., cN. The TPS transform is given by

f(x) =

K∑
i=1

ciρ(||x−wi||)

With the kernel ρ(r) = r2log(r) , where r is the euclidean distance between an image
point and a control point. The transformation used in this thesis is a combination
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between TPS and an a�ne transform. By the combination we get a transforma-
tion that can correct for both movement and deformation of the myocardium. The
transformation is given by (

f(x)
1

)
= A

(
x
1

)
+ Kc

Where K(i,j) = ρ(||xi −wj||)

4.2 Cost functions

In some literature the term similarity measure is used analogous to cost function,
where registration is accomplished by maximizing similarity between images. How-
ever, in practice it is generally the di�erences that are minimized. In this thesis we
will use the term cost function, C, to describe di�erences between images. To regis-
ter the base image, Ib, to the reference image, Ir, we estimate the parameters for a
transformation T, by

T = Min
T

(C(T (Ib), Ir) + λE(T )) (4.1)

where E(T) is a regularizing function to keep the transformation smooth, and λ is
the smoothing parameter.

4.2.1 Sum squared di�erence

A simple cost function is sum squared di�erence (SSD)

CSSD(Ir, It) :=

∫
x∈Ω

(Ir(x)− It(x))2dx

The main advantage of usage of CSSD is the low computational complexity. The
disadvantages with comparing intensity directly is related to the nature of the contrast
enhanced MR images we want to study. Di�erences in intensity within an image due
to contrast agent introduce an undesired weighting. In the early time-frames the
intensity will be higher in the ventricles, see Figure 4.1, and then slowly increase
in the myocardium over time. The resulting transformation will register the high
intensity regions well while the low intensity regions will be ignored.

4.2.2 Normalized gradient �elds

Cost functions based on normalized gradient were originally proposed by Haber, Eldad
and Modersitzk[3] to deal with registration of images between di�erent modalities.
Normalized Gradient Fields (NGF) has also been used for contrast enhanced MRI[4].
Using gradient information is intuitive for our problem as the myocardial boundaries
we want to align should have strong gradients. The normalized gradient �eld nε of
an image I is de�ned by

nε(I, x) =
∆I(x)√

|∆I(x)|2 + ε2

Where ε is a soft thresholding of the gradient function. Regions where ε is much
greater than ∆I(x) contribute very little as nε(I, x) is almost zero.
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The choice of ε proposed in [3] is

ε = η

∫
Ω
|∆I(x)dx|∫

Ω
dx

where η is the noise level in the image. Noise level estimation will be described on
the next section. Several cost functions based on NGF have been proposed that uses
directional information for example scalar product.

CNFG∗(Ir, It) :=

∫
x∈Ω

||nε(Ir,x) ∗ nε(It,x)||2dx

For our application the location of strong gradients i.e the endocardium and epi-
cardium is more important than gradient direction. Therefore we will only use the
amplitude of nε in our cost function;

C|NFG|(Ir, It) :=

∫
x∈Ω

(|nε(Ir,x)| − T (|nε(Ib,x)|))2dx

This will also reduce computational complexity when evaluating the cost function, as
nε only has to be calculated once per image.

4.2.3 Noise estimation

In the original NGF implementation, noise is estimated globally by the standard
deviation of the gradient amplitude |∆(Ix)|. This estimation will only be unbiased
for an uniform image with added Gaussian noise. In contrast enhanced MR images
we have boundary gradients that will be averaged with the noise. Perhaps more
importantly the contrast agent will increase noise as well as the desired signal roughly
in proportion to its concentration, which will give the noise a nonuniform spatial
distribution. Shen-chuan Tai and Shih-ming Yang [5] suggest using edge detection to
exclude edge points during noise estimation. In its simplest form it can be done by
thresholding |∆I(x)|, excluding the highest portion as outliers. To account for the
spatial distribution, noise can be made a local feature by estimating it in a point x
by the standard deviation in a neighborhood Nx around x

η2(x) =

∫
Nx

(µ− |∆I(x)|)2dx∫
Nx
dx

µ =

∫
Nx
|∆I(x)|dx∫
Nx
dx

With a global noise estimation, gradients in regions with low intensity that are strong
compared to their neighborhood, may be suppressed due to the higher gradients and
noise in regions with higher contrast agent concentration. By making noise a local
feature we also deal with the undesired weighing caused by di�erences in contrast
concentration. Gradients are normalized with respect to their neighborhood and thus
we can �t the transformation to structures in low intensity regions as well as high.
Figure 4.2a show a contrast enhanced MRI image where the contrast agent is con-
centrated in the left ventricle. With global noise estimation, the gradient amplitudes
of the endocardium are clearly visible, while the epicardal ones are suppressed, as
illustrated by Figure 4.2b. With local noise estimation, this problem is remedied to
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(a) Original image (b) NGF amplitude with global
noise estimation

(c) NGF estimation with local
noise estimation

Figure 4.2: Comparison of NGF amplitudes between global or local noise estimation.

an extent, as illustrated by Figure 4.2c. In our registration method a square neigh-
borhood with a side about half the width of the myocardium was used. This allows
us to normalize the epicardium and endocardium separately.

4.2.4 Regularization

To increase the smoothness of the transformation we add a Laplacian regularization
to our cost function.

E(T ) :=

∫
x∈Ω

||∇f ||2dx

4.2.5 Weights

Images such as Figure 4.1 contains background objects such as the lungs as well as
the heart. Since we are only interested in how the myocardium moves, we will add a
weighting function that emphasize the region of the image we want to register. The
cost function in Equation 4.1 becomes

C|NFG|(Ir, It) :=

∫
x∈Ω

(|nε(Ir, x)| − T (|nε(Ib,x)|))2w(x)dx + λ

∫
x∈Ω

||∇f ||2w(x)dx

w(x) =

{
1 if Υ(x) ≤ R
0 if Υ(x) > R

where the function Υ(x) is the minimum euclidean distance between the point x and
the epicardium or endocardium in the reference frame and R is a constant. With this
weighting function we will use knowledge of the reference frame segmentation to �t
the transformation speci�cally for the myocardium. Its binary nature is especially
useful if we make the assumption that the moments of the myocardium are small so
that we can set the constant R small. The cost function does not need to be evaluated
in the region with zero weights.

4.3 Scale spaces

In the previous section we have suppressed noise by amplitude. Another question is
how small structures we should consider when registering images. The scale space rep-
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resentation of an image, I, is de�ned as the convolution of the image with a Gaussian
kernel

S(x, t) =
1

2πt
e−(x2+y2)/2t ∗ I(x)

Where t is the scale parameter. Structures of size smaller than
√

(t) will be smoothed
out in the scale space at scale t. Fitting a transformation to the scale-space represen-
tation of the reference and base images at a suitable scale will suppress small changes
while taking the larger ones into account.

4.4 Optimization

Finding the optimal parameters for the transformation is a minimization problem
in N = 6 + 2n dimensions. Where n is the number of control points in the TPS
transform, and the additional six are the a�ne parameters. Since the cost function
is always positive, a �nite global minimum exists. There are no guaranties that the
global minimum is unique, i.e that the function is globally convex. An optimization
method explores the parameter space in a number if steps, attempting to locate the
lowest point.

Optimization methods for convex problems, so called greedy methods, will only
take downhill steps. These methods will terminate when a local minimum is reached,
which is determined by either the step size or change in function value is below a
predetermined threshold. Using such a method on a non-convex problem will still
converge to a local minimum. However, we can not know if the minimum is the
global minimum.

Identifying the global minimum can be di�cult in large parameter spaces, instead
we will focus on �nding a good enough solution. The optimization method of choice is
a combination of the downhill simplex and simulated annealing methods, which will
be presented in the following sections.

4.4.1 Downhill simplex

The Downhill simplex or amoeba method is an algorithm for nonlinear optimization
in multiple dimensions. A simplex is a geometric �gure. In N dimensions it consists
of N+1 points and the line segments connecting each point to every other point. In 2
dimensions it is a triangle, in 3 a tetrahedron etc. In the downhill simplex we begin
from an initial simplex, for example the set of points

Pi = P0 + λei

Where P0 is the initial guess and the �rst point in the simplex, λ is a constant and ei
is the unit vector of the N dimensional space. The algorithm then moves the simplex
in a series of steps. The list below and Figure 4.3 shows the basics steps of the method.

� Re�ections moves the point with the highest function value through the lowest
face of the simplex, the step size is designed to conserve the volume of the
simplex.

� Expansions, if the re�ected point is the lowest in the simplex the re�ection is
a downhill step, the simplex will expand in the same direction, taking larger
steps.
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� Contractions, conversely if the re�ected point become the highest point we have
reached a valley �oor and now need to contract the simplex and take smaller
steps.

4.4.2 Simulated annealing

The downhill simplex method will generally only take downhill steps. For a method to
be e�ective in the presence of multiple local minima, we need to be able to sometimes
take uphill steps to transition from one local minimum to another potentially lower
one. One way of accomplishing this is to sometimes take random steps. Simulated
annealing is derived from thermodynamics, in analogy of how metals cool and anneal.
At high temperatures ions can move more freely within the metal, as the temperature
lowers, this mobility is lost. If a metal is cooled slowly the ions line up in a pure
crystal, with the lowest energy state. If the metal instead is cooled quickly it will not
reach this state.

In simulated annealing we introduce a temperature parameter T to the optimiza-
tion method. The method sometimes takes an uphill step, with a probability depen-
dent on T. The temperature is then gradually lowered, and the method will accept
fewer and fewer uphill steps.

In Numerical recipes in C [6] this idea is applied to the downhill simplex method,
with the same basic steps as described in the previous section. In this simulated
annealing version, a logarithmically distributed random variable, proportional to the
temperature T is added to the function value of each point in the simplex, and a
similar random variable is subtracted from each point tried as a replacement point.
This way the method will always accept a true downhill step if available. But if the
method is stuck in a local minimum or on a �at surface it will nevertheless accept a
random step. The temperature is gradually reduced making random steps fewer and
smaller. As T → 0 the method will revert to the original downhill simplex.

Instead of a termination criteria we will budget m moves at each temperature.
Starting at an initial temperature T0 the temperature will be reduced to Ti = T0(1−
α)i every m moves, where 0 < α < 1, until Ti reaches a preset temperature Tend. If
the temperature is reduced slowly enough we are likely to end up in the vicinity of
the global minimum.

The speed that the temperature is reduced by is proportional to α/m, and an
appropriate value can for a speci�c problem be determined by experiment.

4.5 Validation

Ground truth myocardial segmentations can be used to validate how well a trans-
formation registers the myocardium. To evaluate the relative overlap between the
transformed myocardium, Mt, and reference myocardium , Mr, we use Dice coe�-
cient s, calculated by

s(Mr,Mt) =
2|Mr∩Mt|
|Mr|+ |Mt|

The norm |M| is the area of the myocardium or intersection. Dice gives a value
between one and zero where one corresponds to perfect overlap between transformed
and reference myocardium, and zero corresponds to no overlap at all.
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Figure 4.3: Basic moves in the downhill simplex method

20



4.6 Consistency

Simulated annealing is a stochastic method and will converge to di�erent parameter
values each run. Because of this we need to compare the consistency of the algorithm
if we run it several times with the same con�guration and data sets. Every time the
algorithm is run we get a segmentation for each image in the series. By comparing
the Dice similarity between the myocardium in the same image in di�erent iterations,
the consistency of the algorithm can be determined. Running the algorithm 10 times
for each validation set, the Dice similarity s(Mti ,Mtj ) were calculated, where i and j
are the iteration numbers.

4.7 Statistical analysis

Values are presented as mean ± standard deviation. Di�erences in bias were analyzed
by the t-test, and di�erences in the standard deviation were analyzed by the F-test.
A p-value < 0.05 was considered statistically signi�cant.
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Chapter 5

Results

5.1 Validation

To validate the method we used image stacks from four di�erent patients with manual
segmentation of the left ventricle as ground truth. Two patients have segmentations
in �ve time-frames each, one patient have segmentations in 8 time-frames and one
patient has segmentation in 15 time-frames.

The �rst segmented image in every stack was used as the reference, the rest of the
segmented images were the registered to the reference. It was only the segmentation
in the reference time-frame image that was used in the registration. The remaining
segmentations were used in the validation to calculate the Dice coe�cient. Running
the algorithm 10 times for each validation set, the average Dice coe�cient for all
the images was 0.89 ± 0.028. The average Dice coe�cient before registration was
0.79±0.11. Dice coe�cient improved after registration in every image except for one.
The results from the registration is illustrated for one patient in Figure 5.1.

5.2 Consistency

The average consistency Dice coe�cient, s(Mti ,Mtj ), for i 6= j was 0.96±0.016. This
corresponds to an average inconsistency in area of 98mm2 or an average movement of
the epicardium and endocardium of 0.2mm. In the MRI images 0.2mm, corresponds
to around 1/7 pixels, where each image is 146x146 pixels.

5.3 E�ects of segmentation

How we segment the images in the validation sets has an e�ect on the results we mea-
sure. For example if we segmented something completely di�erent in one time-frame
the Dice coe�cient would be (close to) zero regardless of how good the registration
is. Segment has a function that re�nes segmentation based on gradients. In Fig-
ure 5.2 the re�ned segmentation and the registered images resulting from it can be
seen. Running the algorithm 10 times for each validation set results in a average Dice
coe�cient of 0.93± 0.023. The consistency Dice coe�cient was 0.97± 0.014.
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Figure 5.1: Comparison between registered and unregistered images for one patient.
The green and red lines illustrate the epicardium and endocardium respectively, with
the reference segmentation from the �rst time-frame image overlayed to all images.
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Figure 5.2: Comparison between registered and unregistered images with re�ned seg-
mentation, with same images as in Figure 5.2
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Figure 5.3: Comparison between improvements in cost function and Dice coe�cient.

5.3.1 Cost-function validation

For our cost function to performs well, we would expect improvements in the cost
function to correlate to improvement of the validation measurement. Figure 5.3 shows
the dependence of Dice coe�cient improvement on the cost function improvement.
The values are correlated with R2 = 0.52 (p-value < 0.001) and covariance 0.94.

5.3.2 Improvement from initial alignment

As we see in images like the ones in Figure 5.2 some images are more misaligned
before registration than others. Ideally the alignment after registration should not
depend on the initial alignment. Figure 5.4 shows a weak dependence of the �nal
Dice coe�cient upon the initial one.

5.4 Perfusion

Myocardial perfusion is proportional to the increase in intensity over time in the
contrast enhanced MRI image. Figure 5.5 show how the image intensity in the left
ventricle myocardium changes over time for one patient after the contrast agent was
injected. Intensity in the bloodpool, interior of the left ventricle, is also shown.

5.5 Cost function comparisons

After registration using the SSD cost function the average Dice coe�cient was 0.81±
0.073. A feature introduced in this thesis for myocardial perfusion studies is local
noise estimation. To evaluate if this improves the algorithm we will also use the NGF
cost function without it. With global noise estimation, the average Dice coe�cient
was 0.86± 0.043.
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Figure 5.4: Comparison between initial and �nal Dice coe�cient

Figure 5.5: Mean intensity in the LV myocardium and bloodpool, the interior of the
left ventricle.
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Both of these cost function performed worse on average than NGF with local noise
estimation. More importantly they result in higher variability with very poor results
in some images, especially in longer time series. NGF with local noise estimation
performed signi�cantly better than SSD in 89 percent of the images, and signi�cantly
better than NGF with global noise estimation in 79 percent of the images. Figure 5.7
shows an example where SSD performs poorly, and Figure 5.6 shows the same images
registered using NGF with global noise estimation. For comparison see Figure 5.8
where the same images have been registered using the NGF method with local noise
estimation.
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Figure 5.6: Registered images using NGF with global noise estimation.

Figure 5.7: Registered images using SSD cost function.

Figure 5.8: Registered images using NGF with local noise estimation.
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Chapter 6

Discussion and Conclusions

The results of this thesis is the development of a registration method for perfusion MRI
images that allow usage of the same left ventricular segmentation in all time-frames,
in the perfusion analysis. Overall the method performed well, the Dice coe�cient
improved on average from 0.79 ± 0.11 before registration to 0.89 ± 0.028 after regis-
tration. The Dice coe�cient improved the most in images with the lowest coe�cient
prior to registration. The Dice coe�cient improved in all but one image, this image
was already aligned with the reference with Dice coe�cient 0.91 before registration
and decreased to 0.90 after registration i.e still quite well aligned but slightly lower.
Visually the overlayed left ventricular segmentations after registration looked rea-
sonable in the images studied. The perfusion curves produced when analyzing the
intensity in the registered images look like what we would expect from previous stud-
ies of myocardial perfusion. Despite using a stochastic method, variability between
iterations was low with a consistency of 0.96.

6.1 Registration and segmentation

As seen in the previous chapter how we segment images e�ect the overall performance.
In Figure 6.1 we see a manual segmentation in the �rst time-frame that does not follow
the edges in the image perfectly. Hence the segmentation in the registered images will
follow the edges in the image in similar fashion. This is frequent in the segmentations
but is often a deliberate judgment rather then a human error. How to manually
segment images are beyond the scope of this thesis, but we can note that any error
made in segmentation of the reference time-frame image will e�ect all time-frames.

6.2 Limitations

While myocardial alignment improved in almost all images in the validation sets, the
Dice coe�cient never reaches one. Part of this residual error may be be due to small
inconsistencies in segmentation. A more fundamental limitation is representing a 3-D
object such as the heart with a very limited resolution in one dimension, the three
slices along the long axis. In the a�ne model, movement along the long axis of the
left ventricle, i.e perpendicular to the image plane is modeled by scaling. In reality
this kind of movement will result in imaging a di�erent slice along the long axis. This
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Figure 6.1: Segmentation in registered images will follow the image edges in a similarly
to the segmentations in the reference frame.
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can to some extent be modeled by the TPS deformation. However the theory for
the registration algorithm could be extended to 3 dimensions, if we want to study
perfusion in true 3-D in the future.

6.3 Noise Estimation

Local noise estimation signi�cantly improved the robustness of the algorithm, increas-
ing the Dice coe�cient to 0.89 ± 0.028 from 0.86 ± 0.046 compared to global noise
estimation. The improvement and reduction of variability using local noise estimation
was due to improved results in a few images where NGF with global noise estimation
performed poorly. Proving it to be useful to deal with the problems that arise due to
shifting contrast levels in di�erent time-frame images.

In our implementation we used simple square neighborhoods, the shape and size
of the neighborhoods is something that could be studied further.

6.4 Implementation

In its current implementation registration of one image takes about 4 seconds, this is
highly dependent on the hardware we use. The bulk of the computations used in the
method are the matrix multiplications performed when calculating the transformation
in a cost function evaluation. These computations are highly parallelizable and would
be ideal for a graphical processing unit (GPU) implementation.
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