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Abstract

Two kinds of order restricted methods, isotonic regression and taut
strings are used in this paper to model brainstem auditory responses
in Alzheimer disease. It is shown that the two methods present similar
result but taut string method is faster in practical use. Residual boot-
strap technique is also used to help analyze features. Order restricted
methods are versatile and help in the identification of main features
in the responses that can help in discriminating between Alzheimer’s
patients and healthy individual.

1 Introduction

1.1 Alzheimer disease

Alzheimer disease (AD), is the most common form of dementia. The disease
is named after a German psychiatrist and neuropathologist Alois Alzheimer,
who first reported a death case of this disease in 1906. Before that, the an-
cient Roman and Greek philosophers have described old patients increasing
dementia. Most often, Alzheimer is diagnosed in people over 65 years of age,
although the less-prevalent early-onset Alzheimer can occur much earlier [5].

Early symptoms of Alzheimer are often mistakenly considered to be ’age-
related’ concerns, or stress [8]. Most often, patients have difficulty in re-
membering recent events after onset of the disease. As the disease advances,
symptoms can include confusion, trouble with language, mood swings, and
long-term memory loss. In the end, patients lose vital bodily functions, ul-
timately leading to death. Alzheimer disease develops for an unknown and
variable amount of time before becoming fully apparent, and it can progress
undiagnosed for years. On average, the life expectancy following diagnosis is
approximately seven years [13]. After diagnosis fewer than three percent of



individuals live more than fourteen years [14].

The cause and progression of Alzheimer’s disease are still unknown. Research
shows that the disease is associated with plaques and tangles in the brain
[15]. When AD is suspected, tests that evaluate behavior and mental abilities
are usually used to confirm the diagnosis, often followed by a brain scan if
available.
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Figure 1: Comparison of a normal aged brain (left) and the brain of a person
with Alzheimer’s (right). Differential characteristics are pointed out. (Taken
from http://en.wikipedia.org/wiki/Alzheimer)

There is still no known cure for the Alzheimer disease. Current treatments
only help with the symptoms of the disease. There are also no available treat-
ments that stop or reverse the progression of the disease. As of 2012, more
than 1000 clinical trials have been or are being conducted to find ways to
treat the disease, but it is unknown if any of the tested treatments will work.
There is no conclusive evidence supporting an effect, although exercise, men-
tal stimulation and a balanced diet have been suggested as methods to delay
symptoms in healthy older individuals.

In 2006, there were 26.6 million patients suffering worldwide. And it is pre-
dicted that Alzheimer is going to affect 1 in 85 people globally by 2050 [4].
Alzheimer disease may be among the most costly diseases not only for soci-
ety in Europe and the United States, but also in south American countries
such as Argentina, or Asian countries such as South Korea. These costs will
probably increase with the ageing of society, becoming an important social
problem. Numbers vary between studies but dementia costs worldwide have
been calculated around 160 billion US dollars [18], while costs of Alzheimer
in the United States may be 100 billion dollars each year [12].

Since Alzheimer disease is an important problem around the whole world,
looking for difference between patients and healthy people in auditory brain-



stem responses may leads to a new direction to find the cause and cure of
Alzheimer disease.

1.2 Awuditory brainstem response

The auditory brainstem response (ABR) is an objective technique that mea-
sures the electrical activity of the subcortical nerve cells along the auditory
pathway upon auditory stimulation [10]. The auditory brainstem response
usually contains seven positive peaks and is recorded within 10 ms following
stimulation onset. This technique’s advantages include that it does not de-
pend on the level of consciousness nor on the cooperation of the subject and
it is not affected by general anesthetics [6].
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Figure 2: The auditory brainstem response waves

2 Data and Problem

The data set we use in this paper is provided by the Sensodetect company.
We compare data of 9 Alzheimer’s patients and 7 reference persons. Each
individual has 2 files. One is a recording from left ear and the other is
recorded from right ear. Each file contains a 1283 x 256 real-valued matrix
which record ABR to 1283 clicks within 10ms.

Type | Female | Male | Total
ALZ 3 6 9
REF 3 4 7
Total 6 10 16

Table 1: Frequency counts for patient group and reference group (each indi-
vidual has 2 ears’ data)



The patient group and reference group contain individuals from different

age and gender.

Gender | Type | Year of birth

Female | ALZ | 1925, 1941, 1942

Female | REF | 1935, 1940, 1944

Male ALZ | 1931, 1936jor, 1936, 1937, 1939, 1946
Male REF | 1934, 1937, 1940, 1944

Table 2: details about data

There are two male patients born in 1936. The younger one is labeled

as "36jor”. So the figure named "F25 Left ALZ” describe the result of the
left ear data of a female patient born in 1925. And a picture named ”M37
Right REF” shows the result of the right ear data of a male born in 1937 in
reference group.
A main problem we discuss in this thesis is modeling ABR data of Alzheimer’s
patient and reference group using order restricted methods. We want to use
nonparametric statistical methods to classify and characterize the patient
group against the healthy controls based on the column mean of the data.
An example of the column mean is shown in figure 3. The ultimate goals
are to find the cause of the disease and contribute to an effective cure and to
prevention.
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Figure 3: The column mean of the data



3 Theory and Method

A nonparametric problem means that we want to estimate a function f which
lies in a function set F which is infinite-dimensional. It is the opposite of
parametric problem. F is not necessary to be closed, and individual variables
can be assumed to belong to parametric distributions.

Example 1. An nonparametric inference problem: given regression data
(ti,yi), fori = 1,...,n, with y; = f(t;) + €;. The problem is to estimate
f when f lies in F. F could be:

1. F={f:R—= R such that f e C?}.
2. F={f:R—R such that f decreasing}.
3. For density estimation, F = {m :[0,1] = R m decreasing}

We have data set(t;,y;), our problem is to find an estimate f of the
unknown function f(¢;) in the model

yi=yt:) = f(t:) +& (1)

where ¢; are identically distributed random variables with E(e;) = 0 and
Var(e;) = o2, and the unknown f € F. F is modeled as the set of all
nonparametric multimode functions with unknown number of mode, and un-
known position of peaks and troughs.

3.1 Kernel smoothing

A kernel smoother is a statistical technique for estimating a real valued
function f(t), by using data (¢;,y;) from (1), when no parametric model for
this function is known. The estimated function is smooth, and the level of
smoothness is set by a single parameter.

Let Ky(to,t) be a kernel defined by

Ka(to,t) = D (%)

where:

t,to € R, ||-|| is the Euclidean norm, d(ty) is a bandwidth, D(-) is a positive
real valued function, called kernel function, which value is decreasing (or not
increasing) for the increasing distance between the ¢ and .

Let y(t) : R — R be a continuous function of t. For each ¢, € R, the
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Nadaraya-Watson kernel-weighted average (smooth y(t) estimation) is de-
fined by

where N is the number of observed points, y(t;) are the observations at t;
points.

kernel smoothing
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Figure 4: kernel smoother using Gaussian kernel

Epanechnikov kernel, Tri-cube kernel and Gaussian kernel are popular
used for smoothing.



kernel type K(u)
Epanechnikov | 3(1 — u?) 1(y<1
Tri-cube | J(1 — |U|3)‘? L{juj<1y
Gaussian \/%7675“

Table 3: popular kernel functions

3.2 Isotonic regression

One way to deal with multimode problem which the number of mode and
the positions of peaks and troughs are known is separating it to several uni-
modes, then treat the unimode as two isotonic functions. This section derives
characterizations for the solution to the isotonic regression and presents algo-
rithms for the calculation of the solution. The main reference for all present

results in following two subsection is [16].

3.2.1 Theory

In order to define an isotonic function, we need to talk about order relations
first. We study functions defined on a set T taking real values, on which is

defined an order relation <.

Definition 1. A binary relation < on T is called a quasi-order if for all s,

t, uin T

(i)t <t,

(1)) s < t,t <u,= s <u,

A quasi-order is called a partial order if it further

(iii) s < t,t < s,=s=t,

A partial order is called a simple order if also

(iv) any two elements s, t in T are comparable, i.e. either s <t, ort < s.

The following examples explain the definitions of orders clearly.

Example 2.

1. The ordinary order < on R s a simple order.




2. The order on R? defined by s <t for s = (s1,82), t = (t1,t2) if 51 < 1y
and sy <ty is a partial order. Because we know order relations in two
axises direction but we cannot compare s,t in any other direction in
figure 5.

3. The order <(strictly less than) on R is a quasi-order.
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Figure 5: example 2.2: partial order

Now we can define an isotonic function given a quasi-order.

Definition 2. If we have given a quasi-order on T we say that a realvalued
function f defined on T is isotonic, if s < t implies that f(s) < f(t). The
class of all wsotonic functions on T is denoted by F.

We can look at isotonic as a substitute for monotonically increasing.
Assume T is a finite set with a quasi-order < defined on it, and assume we
have obtained measurements (t;,y;) for t; € T such that

v = y(t) = f(ti) + &
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where ¢; can be seen as the measurements errors. We want to define a way
to obtain an estimate of f if we know that f is an isotonic function satisfied
common conditions stated above.

Definition 3. If y is any function on T, and {w;}y,er are given weights,
then we define the isotonic regression f of y as

f = argmin . » Z(y(t,) — 2(t;))*w;

t, €T

In our problem, it is not clear how to care weights, so the solution of the
isotonic regression problem is

f=argmincx Y (y(t;) — 2(t:))°

t,€T

Before deriving an algorithm for f , we need to show some properties of
isotonic functions first.

Our optimization problem is that we want to minimize a convex function
©(2) = 32, cr(yi—2(t;))? over the set F of isotonic functions. The conditions
of the set F are listed in the following lemma.

Lemma 1. Assume that T is a finite set. Then the set F is closed, convex
cone, i.€.

1. z1,20 € Fop € (0,1) = pz1 + (1 — p)zg € F, (convexity)

2. z€ F,p>0= pz € F,(cone)

3. {zitis1 € F,|lzn — 2|l = 0, as n — 0o = z € F(closedness).
Thus we want to minimize a convex function over a closed, convex set.

Theorem 1. If F is any convex set of functions on the set T and y is an
arbitrary function on T, then

f = argmin.cr S (yt:) — 2(t:))? (2)

t; €T



if and only if

t, €T

for all z € F. The function f 18 unique if it exists. O

There exists a solution f in F since F is closed and furthermore since
Soner(y(ti) — 2(t;))? is strictly convex, the solution should be unique. We
illustrate the statement of Theorem 1 in figure 6.

Figure 6: theorem 1

The following theorem shows that f always exists.

Theorem 2. If y, w are given functions of the finite set T the isotonic
regression in equation(2) exists.

To prove Theorem 2, from lemma 1, F is a closed convex cone, and ¢(z) =
Soner(y(ti) — 2(t:)? is a convex function. Therefore F has a unique mini-

mum, which we denote by f , in F, and thus the isotonic function f exists.

3.2.2 Algorithm

There are two important corollaries of Theorem 1, and they are needed to
construct algorithms of isotonic regression problem.
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Corollary 1. If F is a convex cone of functions on T and y is an arbitrary
function on T', then f is the solution to inequality 2 if and only if

(y—f.f)=0, (4)
(y—f.2) <0, (5)
forall z € F.
Proof. (f):
y—Fff-2 = ;(y(h) — fEN(f (1) = =(t:)
= tz;(y(tz) — () f(t:) - tz;(y(h) — f(t)=(t:)

= W-f.H-w—1=2

If the inequalities 4, 5 are satisfied, (y — fif- z) > 0. Then by Theorem 1,
J is the solution.
({}): Let z = cf, since inequality 3 holds, then

—ff—chHh=0-ay~f =0
if we apply ¢>1and 0 < ¢ < 1, we will get (y — f, f) =

w-Ff2)=w-fH-w-1f-2
Since inequalities 4 and 3 hold, (y — f, z) <0 for all z € F. O

Corollary 2. If F is a convex cone of functions on T and y is an arbitrary
function on T, and assume it is generated by the function {v}},.then f is
the solution to inequality 3 if and only if

(y—f,vi)g(), for i=1,...,n, (6)

(y— fovi) =0, ifA(i) >0, (7)
where A(i) = f(t;) — f(ti_1).

We can easily prove this corollary by Corollary 1, using

ZA (y — f,v(0))

11



when 2 = f, A(i) = A7) = f(t:) = f(tia). =

By stating a relation between our observations and the solution to the iso-
tonic regression problem below, we will draw three algorithms. First, we
introduce two notations for the cumulative sums:

k
b, = Zf(tz)

k
Yi=> v

Plot the points iy, = (k, M),k = 1,...,n, and points my, = (k,Yy), k =
1,...,n. We can summary our findings in next lemma.

Lemma 2. The cumulative sums of the observations and the solution to an
isotonic regression problem have following relations:

1. The function described by the points my is a continuous convex func-
tion.

2. The function my, is a minorant to my,.

3. my and my, touch at a point where my, s strictly convex.

Before the proof of this lemma, we need rewrite every z € F. Assume
that there are n points in T, then every z € F can be written as

2(ty) = z2(tk) — 2(tk—1) + 2(tg—1) — 2(tg—2) + ... + 2(t2) — 2(t1) + 2(t1)

n

= Z(z(tz) — 2(t;—1)) + max(z(t1),0) + (—min(z(t1),0))

=2
vite) A1) + (—v1 () ) A(—1)

i=1
where

vi(t) = Lyy<py, for teTi=1,... n.

ANi)=z(t;) —z2(t;—1), i=2,...,n.

A(1) = max(z(t1),0),
A(—1) = —min(z(t1),0).

Such that every z € F can be generated based on the increasing functions

—V1, V1, ..., Uy, and the weights A\(—1), A\(1),..., A(n) are nonnegative.
Proof.

12



1. Since f is the solution to an isotonic regression problem, Fy — Fj,_ 1 =
f(tx) is increasing. my = (k, Fy) is continuous and convex.

2. To prove Fy, <Y, for all k = 1,...,n, which means to prove Ef(yl —
f(t;) >0forall k=1,... n.
Apply Corollary 2 to arbitrary z(ty).

n

~

(y—f,on) = Z(yi—fm))vk

Apply Corollary 2 to this situation,

R <0 for k=1,...,n
(y_f’“k){zo if k)= f(tr) = f(tim) >0
if k =1, since (y—f,vl) < 0 and (y—f, —v1) <0, then (y—f,m) = 0.

Since

~ ~

Z(y — f(t) = (y— f,on)

S - f) = (- Fo) - (- Froen)
= _(y - fa Uk+1)
According to our finding,

k

. >0 for k=1,...,n
Z(yi_f(ti)){:() if Ak)=f(ty) = f(tre1) >0 or if k=n

i

Then 7, = my can be obtained when (k) = f(t,) — f(ty_1) > 0. O

The relationship between observations and the solution to an isotonic
regression problem we found can be used to find the solution. We summarize
it in the next theorem.
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Theorem 3. Assume T is a (finite) set of real numbers equipped with the
simple order and F s the set of isotonic functions on T and y is an arbitrary
functions on T. Then the solution to the isotonic regression problem

is obtained as the (left hand) slope of the greatest convexr minorant of the
cumulative sum diagram (k,Y%). O

The geometric interpretation obtained can be used to drive three algo-
rithms for isotonic regression: Pool Adjacent Violators Algorithm (PAVA),
Minimum Lower Set Algorithm (MLSA), and minmaz formulas.

The Minimum Lower Set Algorithm algorithm must start at the left of the
data with the first point £;. MLSA can be described as:

1. First start with the left point ¢;, then add points until finding the
position ¢} that makes the average over ty,...,t] as small as possible

Zf:l ti
=7

! _ .
1, = argmin,

This corresponds to making the slope from t; to ¢} in the cumulative
sum diagram as small as possible.

2. Next step is similar but starts with ¢}. Minimize the average over the
lower sets (t'1, ..., tx) for tx >t so

this corresponds to making the slope from #| to ¢, as small as possible.

3. Go on through the whole sequence tq,...,t,. Then the solution is
obtained as a combination of piece-wised averages of original data.

14
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Figure 7: MLSA method

The PAVA algorithm can start from any position but is only valid for a simple
order. First, if ¢; <t;, we define partial average

i
Av(t,;, c ,tj) = L
j—i+1
Then the PAVA algorithm can be described as:
1. Calculate Awv(t;,t;) for each point. If the averages are ordered
Av(tl,tl) S Ce S Av(tn, tn),

then y itself is an increasing function, and thus f = y is the solution to
the isotonic regression problem.

2. If not, then for (at least) one k we have Av(tg,tr) > An(ter1, trs1)-
y is not increasing between t; and t;;;. The slop of cumulative sum
diagram is decreasing. To make sure that the result line is below ob-
servation cumulative sum, replace both two averages with Av(ty, txi1).
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3. If the new averages are ordered, stop. If not, repeat step 2 until all the
averages are ordered.

The solution to the isotonic problem is piecewise constant on the small in-
tervals respectively (noting that theses intervals might be one-point sets).

PAVA method
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Figure 8: PAVA method

If we only want to calculate the solution at a fixed point ¢, and do not
need the whole function, we can use the third algorithm : minmaz formulas.

They follow easily by studying the graph of the greatest convex minorant of
the cumulative sum diagram, and are given by

mamigkmiankAv ti; e ,tj),
f B maz;<pming>;Av(t;, ..., t;),

mazj<pmini<pAv(t;, ... t;),

maxjgkminiszv(ti, Ce ,tj)

16



3.3 Taut string method

The taut strings method is an efficient way to fit an isotonic function. Ac-
cording to [3], the greatest convex minorant of the integrated data is a taut
string and its derivative is precisely the least squares isotone approximation.
The taut string method introduced here is based with assumptions in [7],
you can find more details and proofs in [7]. In [11] , they first extended its
use to the nonparametric regression.

Recall our problem is to find a function f(¢;), such that data y(¢;) could be
written as

yi = y(t:) = f(t:) +r(t:)

which is a special case of the general Tukey decomposition
Data = Signal + Noise

Taut strings is based on Gaussian white noise. We stop algorithm when
r(t;) may be adequately approximated by Gaussian white noise. Suppose
i = (1,2,...,n). The taut string method is to produce candidate functions
f* with k local extreme values and then to take the smallest K for which the
residuals

ri =y — [*(t)

approximate white noise. Define the integrated process y,, as

o 15~ _
ym—n;yz, m=1,...,n.

17



Data Intergrated Data
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Figure 9: The left shows a small data set and the right panel shows their
partial sums

Consider the lower bound /,, and upper bound w,, for y;, defined by

ln =y, — >
Ym NG
C
Vn
for some C' > 0. Image put a string between [,, and u,,, whose one end at the

start point and the other at the end. Pull the string s until it is taut. The
derivative of the taut string f¥ = s’ is an estimator to the data.

un:y;z—i_
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Taut String Estimate
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Figure 10: Taut string and the derivative of the taut string

The points at which the string coincides with either the lower and upper

boundary are called knots. The function between knots is linear. The largest
convex monorant of the upper bound is achieved between two knots where
the string touches the upper bound and between which it does not touch
the lower bound. Similarly, between knots where string touch lower bounds
but not touch upper bounds, string is the smallest concave majorant of the
lower bound. At points where the string switches from the upper bound to
the lower bound the derivative s has a local maximum. Similarly, at points
where the string switches from the lower bound to the upper bound the
derivative s has a local minimum.
We need to consider local squeezing in taut string method, because a global
radius for the tube will cause spurious local extremes. To solve this problem,
we can accomplish local squeezing on the interval I by shifting the integrated
process y,, and then using the modified lower and upper bounds

b(t, 1) = Y () =,

un(t, 1) = yp,(t) +
for t € I. If the global tube radius is vy, which is \%, then we can define a

local tube radius as 7 = pyy. The research in [7] shows that, if p is around
p = 0.5, then the procedure leads to too many local extreme values although
cost less time. If p nearly 1, say p = 0.95, then the calculations has better
estimation of local extreme values but requires more time.
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3.4 Bootstrap

It is important to give an indication of the precision of a given estimate in
most estimation problem [17]. An effective way to solve this problem is boot-
strap. The bootstrap technique is a very general method to create measures
of uncertainty and bias. Bradley Efron first introduce this new idea in the
Annals of Mathematical Statistics, 1979. The word bootstrap hints at the
saying ”pull oneself up by ones bootstraps” [9].
A standard estimation problem can be describe as following: say we have
some observations of distribution F'(x). Let 0 be an estimator of some pa-
rameter § = G(F(-)). The distribution of the difference § — 6 contains all
the information needed for assessing the precision of 0. For instance, we can
construct a confidence interval of level 1 — 8 — « as [é — 5ﬂ&,é — €1_40],
where e is the upper fg-quantile of the distribution of (é — 0)/6. Here &
may be arbitrary, but it is typically an estimate of the standard deviation
of . Unfortunately, in most cases the distribution F (z) is unknown, so the
quantiles and the distribution of § — 6 depended on F (x) are unknown and
cannot be used to assess the performance of 0.
The bootstrap technique replace the quantiles and distributions by estima-
tors. The distribution of (§ — #)/¢ under F(z) can be written as a function
of F(x). The bootstrap estimator for this distribution is the ”plug-in” esti-
mator obtained by substituting F'(z) for F(z) in this function. Then we can
obtain bootstrap estimator for quantiles and confidence intervals from the
bootstrap estimator for the distribution.
Residual bootstrap is very useful in regression problem. Consider a linear
regression problem as a simple example. There are n observations (z;,v;),
where i = 1,...,n. We want to estimate y; = a+ Sx; +¢; and we get estima-
tor as &, 3 and g(x). So there are residuals after regression e; = y; — g;(z).
By doing N times bootstrap sampling of residuals, we will get N series of
residuals as €}, ..., e, where j = 1,..., N. Using these series of residuals,
we can construct N estimators of §(z) as y*(z)’. There is a finding of the
relation between these bootstrap estimator and original estimator of y(z) as
following;:

n'2(g(x) = y(z)) — Z (8)

'y (x) = §(x)) — Z (9)
And Z has a Gaussian distribution. So we can do quantiles and confidence
interval estimation for y(x) based on the information obtained by y*(z)—g¢(x).
Similar residual bootstrap can be used in our problem. Assume we have

observations (y;,?;) and a estimator f(t). We will have residuals ¢; = y; —
f(t;), where i = 1,...,n. After N times bootstrap sampling of residuals,
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we will get N series of residuals as e’{j ,...,e9 where j = 1,...,N. Using

these series of residuals, we can construct N estimators as f*(¢;)7. Just like
equations 8 and 9, we know a relation between these estimator in our case.

n' () — f(1) — Z
W) — (1) — 2
where Z is depended on different situations. If t is away from a mode, then

1. if f is decreasing at t, Z ~ Tjon(—s* + W (s))'(0), where W(s) is a a
standard two-sided Brownian motion and ”lem” stands for least con-
cave mironant. [19]

2. if f is increasing at t, Z ~ Tyen(s?+ W (s))'(0), where W(s) is a a stan-
dard two-sided Brownian motion and "gecm” stands for great convex
monorant [1].

When t is at a mode, it will be a very complicated situation. Since we will
not consider this case here, we will not explain more about this situation,
but the interested reader can read reference [2] for this situation.

When we have these bootstrap estimator f*, we can do analysis about inter-
ested features in the result. For instance, we are interested in the value of the
sixth peak y,. We get g, from taut string method and y; can be obtained
from f*. We can estimate the empirical distribution function and density
function of y5 and construct a confidence interval of g, using method above.
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Figure 11: Left panel shows estimated ECDF and right panel shows estimated
density function. The red line presents result from taut string method
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4 Data Analysis and Results

To apply isotonic regression to the auditory responses data, I choose the
PAVA algorithm. In order to decide connecting points at which two isotonic
regression functions connect, first using kernel smoother to find these points.
The drawback of this method in practice is that it needs much time and hard
to judge if you choose right connecting points or not, since there is no strict
condition about peaks and troughs.
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Figure 12: Isotonic regression

The taut string method shows advantages in this problem. It cost less
time and has a similar performance to the isotonic regression. In the figure
13, you can see there is little difference between results of two methods.
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Figure 13: isotonic regression method and taut string method

According to the convenience of taut string method, we use results from
taut string method to analysis in following parts.

4.1 Two peaks in first half

One feature of the result which we are interested in is if there is two obvious
peaks in the first half, which means between 1 and 5 ms. From the results,
we could find these peaks in patients and references in most pictures, but we
failed in a female patient born in 1942 and a healthy male person born in
1940.
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Figure 14: The upper two panels show obvious two peaks between 1 and 5
ms; the two panels below show 3 or more peaks

So this feature in not a good point to separate Alzheimer’s patient from
healthy people. If we want to use bootstrap technique here, a hypothesis test
can be constructed as:

1. Hy: z=0
2. Hli z 7£ 0
where

z = 1{twopeaks foundinre ferencegroup}—1{twopeaks f oundinpatientgroup}
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The difficulty here is that how to define a value is a local extreme, since it
is necessary for constructing a automatic judging program for finding peaks.
The value of peaks varies sharply among patients and healthy controls. This
problem remains in next subsection also.

4.2 Two peaks around 7 ms

There are approximately six peaks in 10 millisecond period, and we could
find two peaks around 7 ms in every picture. In some situation, it is easier
to find two peaks that are closed, in both the patient and reference groups.
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Figure 15: The upper two figures show obvious two peaks between 1 and 5
ms; the two pictures below show 3 or more peaks
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4.3 The position of the trough between 4 and 6 ms

If we focus on time period between 4 and 6 millisecond, we will always find
a trough after the third peak. In the reference group, the position of this
trough is near 4.5 ms in most cases. While in the patient group, this position
is around 4 ms in some cases. Sometimes, you even could not find a obvious
trough in the result of a Alzheimer’s patient.
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Figure 16: The upper two pictures show that the position of the trough is
around 4.5 ms in health group; the two pictures in second row show that the
position of the trough is near 4 ms in patient group; the two pictures below
show that there is no obvious trough between 4 and 6 ms in some patients’
results
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If we want to do hypothesis test about if the position of the trough is the
same between patients and healthy control, we could use help from bootstrap
technique. For an example, we want to know the difference between a male
patient born in 1937 and a healthy person in reference group born in the
same year. Let ¢ = P,y — Py, where P,..; stands for the position of the
trough from healthy control data and P,;, is the position from the Alzheimer
patient. Our test is:

1. Hoit:()
2. Hlt#()

Set N = 500,and do residual bootstrap to the data. We can estimate empir-
ical distribution function, density function of the bootstrap difference. The
results are shown in figure 17.
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Figure 17: Left panel shows estimated ECDF and right panel shows estimated
density function. The red point presents result from taut string method

From Ecdf we get, p(Hy) = 0. So reject Hy, which means there is signifi-
cant different position of the trough in two groups.
From the taut string results, the difference between two people is ¢t = 0.51.
After residual bootstrap, a confidence interval of t can be accomplished as
[t — c0.0255d(t*), t + £0.9755d(*)], where ep is the upper S-quantile of the dis-
tribution of (t* — #)/sd(t*). So we can get confidence interval as [0.31,1.52].
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4.4 Range of y-axis

Another efficient way to separate Alzheimer’s patient from healthy people
is checking the range of y-axis. For healthy people, the start value of the
y-axis lies between 260 to 480, usually between 280 to 330. While in patient
group, the value could start 600, even reach 800. As to the range of y-axis,
in healthy group, the range is between 30 to 40. While in patient group, the
range increases to 60 or 70 sometimes.
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Figure 18: The left panels show results of Alzheimer’s patients and the right
panels show results of reference group
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4.5 Difference between left and right ears

A suggestion of the construction of the brain is like the picture below:
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Figure 19: brain construction

We could check if signals pass same area no matter which side it starts
by comparing two pictures of different ears of one same person. The results

in figure 20 show that, area which third and fourth peak happens is shared
by both side signal.
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Figure 20: The left panels show results of left ears data and the right panels
show results of right ears data
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5 Conclusion

Relying on advantages that not easily affected by general anesthetics, the
level of consciousness nor the cooperation of the subject, brainstem auditory
responses supply a new and promising direction for researches in Alzheimer
disease. According to the steady result of each individual, the features which
are found in the results are stationary and reliable.

Isotonic regression and taut strings are two useful methods to model brain-
stem auditory responses. The solution to a isotonic regression problem is
obtained as the slope of the greatest convex minorant of the cumulative sum
diagram. On the other side, taut string method works as pulling a string
until it is taut between upper and lower bound for the integrated data and
the derivative of this string is the estimator that we are looking for. The
two methods shares similar principle, but isotonic regression works as a local
modeling while taut string method acts as a global modeling.

Local squeezing should be considered in this problem using taut string method.
If we use a global tube radius vy to decide the distance between upper and
lower bound of the integrated data, spurious local extremes will appear. So
we reduce it to a local tube radius as 7 = pvyy. It turns out that the calcula-
tions has better estimation of local extreme value and requires tolerable time
when p = 0.95.

As shown in figure 21, we can find just a little difference in the results of
two methods except the points where extreme values occur. The reason is
that isotonic regression method fits a model which reaching the peaks and
troughs of the original data. But taut string method use a tube radius to
decide the distance between upper and lower bound of the integrated data
and calculate the derivative then, which cannot reach the extreme values of
the original data. Even though taut string method presents disadvantage
on extreme values, according to costing less time in practical use, we choose
taut string method in the situation when the positions of extreme values are
important and numerical values of extreme values are not considered.
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Figure 21: isotonic regression method and taut string method

Bootstrap technique helps to analyze results in this problem. Residual
bootstrap provides f* which are helpful to estimate empirical distribution
function, density function and confidence interval of our taut string solution
f. Thanks to bootstrap technique, we have much clearer results in feature
analysis. But there are some problem remained to be solved about the con-
struction of the test statistics.

Final results show that there should be two brainstem waves between 1 and
5 ms and another two around 7 ms in any individual record. Two obvious
differences between Alzheimer’s patients and healthy people are, the time at
which the third trough happened and the y-axis range. We can also check
that no matter which ear it starts from, signals pass the same area in brain-
stem in the middle of whole process. We can find more interested features
once we have a nonparametric model f to describe data. Sometimes we can
reduce the complexity of f to just a few numbers of features and sometimes
the features we are looking for can even be functions of the solution f itself.
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