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Abstract 
Sustainable Bridges is an EU-project. The objective of the project is to demonstrate 
that it is possible to enhance the load capacity of a bridge with refined analytical 
methods. This thesis will be a small part of the project. My objective in this thesis is 
to examine the dynamic loads generated in a bridge when trafficked.  
 Since there are uncertainties concerning the dynamic effect this 
variable should be considered stochastic. Previous research confirms that the size of 
this variable is dependent on the force, the bending stiffness, the damping, the 
frequency and the velocity among others. In reliability analysis of a bridge there is a 
need of statistical information. This information is scarce for dynamic effects, 
therefore it will be examined. 



 
 
 

 II 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Report TVBK-5145 
ISSN: 0349-4969 
ISRN: LUTVDG/TVBK-06/5145+92p 
 
 
 
 
Thesis 
Supervisor: Senior researcher Fredrik Carlsson 
Examiner: Professor Sven Thelandersson 
November, 2006 



 
 
 

 III 

 

ACKNOWLEDGEMENT 

This thesis has become a reality with the excellent help of my supervisor, 
senior researcher Mr. Fredrik Carlsson. From start to finish he has been there 
to support and guide me. I would also like to thank Professor Mr. Sven 
Thelandersson for his advice and contributions. 
 
A special dedication goes to my grandfather Uno Rylander, who has always 
been my inspiration and of course to my sunshine Lejla Šehović.  
 

 
 

 
 
 



 
 
 

 IV 

 

ABSTRACT 

The concept of dynamic effects imposed by train loads on bridges is a 
scarcely researched area, compared to the effects imposed by the static 
loads. The comprehension of dynamic behavior is therefore limited. 
Today it is common to add the dynamic loads to the static load using a 
very general multiplication factor. This conservative method of treating 
dynamic effects in the codes is in general not economically justified 
since the bridge elements become unnecessarily large.  
 To improve the understanding of dynamic load effects a 
theoretical study is conducted, where several variables are taken under 
consideration to evaluate which of these are the important ones. The 
base to determine these important parameters is a standard bridge 
taken from the SRA. This bridge is a simply supported concrete bridge 
with a span of 10 meters. Values for static bending moment and 
dynamic bending moment are calculated and the dynamic 
amplification factors are determined.  
 
A statistical study is made to examine the variation of the dynamic 
amplification factor by simulating several trains traversing the same 
bridge. In this study the parameters are treated as random variables to 
make the analysis realistic and exclude any uncertainties.  
 
When satisfactory results are achieved, statistical distributions of the 
dynamic amplification are determined and presented in a table for 
different spans and velocities.      
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Short summary 

The thesis consists of: 
 

1. Introduction – description of the area of research. The origins and the 
benefits of the analysis are put forward, with the objective and 
restrictions of this thesis.  

2. State of the art – contains today’s coverage of dynamic factors and 
loads in different codes. Describes how the dynamic amplification 
factor is represented in the different codes and gives an account of the 
dynamic loads. The main objective is to extract important details from 
the codes and shed light on the important content for this case.  

3. Analytical model – contains the analytical model to determine 
dynamic amplification factors, static and dynamic moment and a 
description of the correspondent Matlab code.  

4. Parametric study – the influence of the dynamic effect for different 
parameters is investigated. The studied parameters are axle loads, train 
velocity, bending stiffness, frequency and damping of the bridge. 
Several dynamic amplification factors, dynamic and static moment are 
presented for the different parameters. 

5. Statistical evaluation – contains statistical distributions for the 
dynamic amplification factor, which are determined by simulations. 
The Monte Carlo simulation is performed to evaluate the statistical 
dynamic amplification factors that encompass all the important 
parameters. 

6. Dynamic amplification factors – consists of the dynamic factors, 
collected to give an overview of the results in the form of a table. A 
discussion concerning the results is provided.  

 



 
 
 

 VI 

 

LIST OF ABBREVIATIONS 

BV BRO BV Bro 2004, release 7 (utgåva 7), Swedish bridge design 

code, (Banverkets ändringar och tillägg till vägverkets Bro 

2004)  

EC1 Eurocode 1: Actions on structures, Traffic load on bridges, 

European standard 2002 

SRA   Swedish rail road administration, (Banverket) 

HSML   Theoretical dynamic train load 

MSE Mean square distance from diagonal line in the quantile plot,  

(Eq. 5.6) 

 

LIST OF SYMBOLS 

 
Chapter 1 

 

TS  Total traffic load 

SS  Static load 

DS  Dynamic load 

.ε  Dynamic amplification factor 
 

Chapter 2 

 

φ  Dynamic amplification factor, EC1  

φL  Determinant length associated with φ   

D  Dynamic amplification factor, BV BRO  

bestL  Determinant length 

d∆  Coefficient for reducing the dynamic amplification factor 

designv  Design speed  

maxv  Maximum allowable speed  

 
 

 



 
 
 

 VII 

 

Chapter 3 
 

F  Force 
t  Time 
f  First natural frequency 

l  Span length 
c  Train velocity 
EI  Bending stiffness 
ν  Damping 
h  Axle coefficient 
j  Mode 

x  Distance 

nt  Time when the th
n  axle starts traversing the bridge 

nT  Time when the th
n  axle finishes traversing the bridge 

M  Bending moment 
d  Distance between axle loads 
ω  Excitation frequency  
 

Chapter 4 
 

DAF  Dynamic amplification factor 
Md  Dynamic bending moment 
Ms  Static bending moment 
 

Chapter 5 

 
F  Cumulative distribution function  

F̂  Empirical distribution function   
n  Number of simulations 

  

 



 
 
 

 VIII 

 

  



 
 
 

 IX 

 

TABLE OF CONTENT 

1 INTRODUCTION_____________________________________________1 

1.1 Background____________________________________________________________ 1 
1.2 Objectives _____________________________________________________________ 2 
1.3 Limitations ____________________________________________________________ 3 
 

2 STATE OF THE ART, DYNAMIC FACTORS______________________5 

2.1 EC1 __________________________________________________________________ 5 
2.1.1 Definition and application of dynamic factors .φ _______________________5 
2.1.2 Limitations ____________________________________________________6 
2.1.3 Dynamic analysis _______________________________________________7 
2.1.4 Definition of dynamic loads _______________________________________7 
2.1.5 Application of dynamic loads______________________________________8 
2.1.6 Train type A6, EC1______________________________________________9 

2.2 BV Bro_______________________________________________________________ 10 
2.2.1 Definition and application of the dynamic factor______________________10 
2.2.2 Limitations ___________________________________________________10 
2.2.3 Dynamic loads ________________________________________________11 

2.3 Conclusions ___________________________________________________________ 12 
 

3 ANALYTICAL MODEL _______________________________________13 

3.1 Introduction __________________________________________________________ 13 
3.2 Frýba model __________________________________________________________ 13 

3.2.1 Description of the parameters involved in the Frýba model______________14 
3.3 Matlab code___________________________________________________________ 17 

3.3.1 Converting into Matlab language __________________________________17 
3.3.2 Definition and application of the parameters _________________________17 

 

4 PARAMETRIC STUDY _______________________________________21 

4.1 General ______________________________________________________________ 21 
4.2 Force ________________________________________________________________ 24 
4.3 Velocity ______________________________________________________________ 25 
4.4 Bending stiffness _______________________________________________________ 27 
4.5 Frequency ____________________________________________________________ 28 
4.6 Damping _____________________________________________________________ 29 
4.7 Conclusions ___________________________________________________________ 31 
 

5 STATISTICAL EVALUATION _________________________________33 

5.1 Introduction __________________________________________________________ 33 
5.2 Monte Carlo simulation _________________________________________________ 33 



 
 
 

 X 

 

5.3 Statistical parameter composition_________________________________________ 33 
5.4 Goodness of fit ________________________________________________________ 35 
 

6 DYNAMIC AMPLIFICATION FACTORS________________________37 

6.1 Introduction __________________________________________________________ 37 
6.2 Final results___________________________________________________________ 39 
6.3 Conclusions ___________________________________________________________ 40 
 

REFERENCES _______________________________________________42 

 

APPENDIX __________________________________________________44 

A Matlab Code ___________________________________________________________ 45 
B Figures Matlab _________________________________________________________ 49 
C Monte Carlo simulation __________________________________________________ 51 
D Figures Monte Carlo ____________________________________________________ 55 

D.1 Bridge span of 5 meters, velocity of 150 km/h, standard deviation of 22,5 km/h ____ 55 
D.2 Bridge span of 5 meters, velocity of 200 km/h, standard deviation of 30 km/h ______ 58 
D.3 Bridge span of 5 meters, velocity of 250 km/h, standard deviation of 37,5 km/h ____ 60 
D.4 Bridge span of 10 meters, velocity of 150 km/h, standard deviation of 22,5 km/h ___ 62 
D.5 Bridge span of 10 meters, velocity of 200 km/h, standard deviation of 30 km/h _____ 65 
D.6 Bridge span of 10 meters, velocity of 250 km/h, standard deviation of 37,5 km/h ___ 67 
D.7 Bridge span of 15 meters, velocity of 150 km/h, standard deviation of 22,5 km/h ___ 69 
D.8 Bridge span of 15 meters, velocity of 200 km/h, standard deviation of 22,5 km/h ___ 72 
D.9 Bridge span of 15 meters, velocity of 250 km/h, standard deviation of 37,5 km/h ___ 74 
D.10 Bridge span of 20 meters, velocity of 150 km/h, standard deviation of 22,5 km/h __ 76 
D.11 Bridge span of 20 meters, velocity of 200 km/h, standard deviation of 30 km/h ____ 79 
D.12 Bridge span of 20 meters, velocity of 250 km/h, standard deviation of 37,5 km/h __ 81 

 

 

 

 



1 

1 Introduction 

1.1 Background 
Times are constantly changing. Trains are getting larger, ergo heavier. Since 
people always are in a hurry and trains want to compete with airplanes, trains 
are also getting faster.  
 
How does this affect existing European railway bridges? 
 
The increasing need to upgrade bridges in Europe brings us to the main area of 
study for this thesis. The dynamic effects imposed on bridges due to increased 
velocity and weight are examined. 

The economical benefit of improving values of dynamic effects is 
significant, because this will optimize the bridge design compared to the 
conservative dynamic amplification values currently used. This optimization 
will be beneficial for new bridges as well as for maintenance and upgrading of 
existing bridges.  
 

In this thesis, focus will be kept on the dynamic part of the traffic load. 
Parameters with significant importance when dealing with dynamic behavior 
are:  
 

• the bridge damping  
• the train velocity 
• the mass of the structure 
• the span length 
• the number of axles  
• distance between the axles  
• the axle loads  
• the construction materials behavior  
• the dynamic properties of the train and of the track  
• the suspension characteristics  
• the unsprung/sprung mass of the train  
• vertical irregularities in the track  
• the natural frequencies of the whole structure  
• relevant elements with associated eigenmodes   

 
The most dominating variable load on railway bridges is the load generated by 
trains. The traffic load imposed on a bridge consists of two parts, one part 
from the static load and the other from the dynamic load. Static loads are 
generated in the bridge from the weight of the train and placing of the point 
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loads from the axles. Dynamic loads are generated in the bridge because the 
train is brought into vertical sway.  
 

The total traffic load TS  is composed of the static load SS  and the dynamic 

load DS   

 

DST SSS +=                Eq. 1.1 

 
It is very common in different codes that the dynamic load is replaced by a 
dynamic amplification factor, .ε  
 

ε⋅=







+⋅=+= S

S

D

SDST S
S

S
SSSS 1            Eq. 1.2 

 
The dynamic amplification factors described today in different codes are very 
general and therefore conservative since they have to be applicable on 
different bridge systems. The dynamic part could in some cases be as much as 
50 % of the total traffic load (EC1 2002). This implies that dynamic loads 
have a large influence in the design of a new bridge or when examining the 
safety level of existing bridges. Therefore it is of great importance to get a 
wider knowledge of the dynamic amplification factor, which is exactly the 
purpose of this study. 
 

1.2 Objectives 
How are the dynamic effects described in the different codes, and can they be 
improved to give a more precise value of the dynamic effects in specific 
cases? 
 
The traffic load from a train is the most important variable load imposed on a 
bridge (SRA). In current standards the dynamic amplification factor is 
between 1.00 and 2.00, ergo it is of great importance. In a probability based 
analysis there is a need for information about the statistical distribution of the 
factor. The statistical distribution of the dynamic amplification factor will be 
the final result of this thesis.  
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1.3 Limitations 
The thesis will contain a study of the dynamic effects on simply supported 
bridges with shorter spans. The main construction material under observation 
will be reinforced concrete.  In this thesis the area of focus will be kept to 
European railway bridges. The main literature will be EC1 2002 and BV BRO 
2004 and dynamic loads according to these codes will be used for the study.  
  

The parameters studied will be limited to: 
 

• axle force  

• train velocity 

• bending stiffness  

• frequency  

• damping     
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2 State of the art, dynamic factors 

2.1 EC1 

2.1.1 Definition and application of dynamic factors .φ   

The dynamic factors are specified as 2φ or 3φ . 2φ  is the dynamic amplification 

factor used for carefully maintained tracks as seen in equation 2.1 and 3φ  is the 

dynamic amplification factor used for tracks with standard maintenance 
according to equation 2.2. The factors take into account the dynamic 
magnification of stresses and vibration effects but do not take resonance 
effects into account.  

In the quasi static method used to determine dynamic effects, the static 
load is multiplied by a deterministic dynamic factorφ . To take into account 

resonance effects a dynamic analysis is required.  

 The dynamic factors 2φ and 3φ  are determined depending on the 

condition of the track. For carefully maintained tracks the maximum value of 
the dynamic factor is 67,12 =φ  which is smaller than the value for tracks with 

standard maintenance, where 00,23 ≤φ . φL  is the determinant length1 in 

meters, associated with .φ Table 6.2 in EC1 – Part 2: Traffic load on structures, 

pages 79 – 81, describes how to evaluate the correct determinant length for 
different bridge constructions.  
 
Carefully maintained tracks: 
 

 82,0
2,0

44,1
2 +

−
=

φ

φ
L

             Eq. 2.1 

 
Tracks with standard maintenance: 
 

 73,0
2,0

16,2
3 +

−
=

φ

φ
L

             Eq. 2.2 

                                                 
1 Determinant length for the simply supported bridge considered in this thesis is the span 
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2.1.2 Limitations 

In EC1, the dynamic factors were established for simply supported girders, 
since this construction is the easiest to analyze. If no dynamic factor is 
established because of difficulties in deciding the condition of the tracks, 3φ  

will be used, which is the most conservative factor. 
 In the case of arch bridges and concrete bridges with a cover2 
of mh 00,1> , the dynamic factor may be reduced to: 

 

00,1
10

00,1
3,23,2 ≥

−
−=

h
red φφ             Eq. 2.3 

 
In this value of dynamic amplification factors, impact and resonance effects 
are not taken into account. Excessive vibration of the bridge could lead to 
ballast instability, excessive deflection and stresses. To take into account these 
unwanted effects a dynamic analysis is required. The dynamic factor shall not 
be used with the loading due to Real Trains, (which are also theoretical trains 
described in EC1), the loading due to Fatigue Trains, load Model HSLM or the 
load model unloaded train (EC1 2002). 

                                                 
2 The cover is the thickness of the overlaying ballast on the bridge   
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2.1.3 Dynamic analysis 

A dynamic analysis is 
required according to the 
flow chart in Figure 2.1 
taken from EC1 – Part 2: 
Traffic load on structures, 
page 75, Figure 6.9. Some 
of the involved parameters 
are the train speed, type of 
construction, span length, 
eigenforms and frequency. 
From Figure 2.1 it is 
obvious that for train speeds 
less than 200 km/h on 
continuous bridges, a 
dynamic analysis is not 
required. For some simple 
constructions a dynamic 
analysis could be required, 
depending on the natural 
frequency. Exceeding the 
speed of 200 km/h on 
continuous bridges 
immediately requires a 
dynamic analysis. For some 
simple constructions a 
dynamic analysis is 
required depending on the 
span length and the natural 
frequency of the bridge.
                 Figure 2.1 Flow chart for determining whether 

 a dynamic analysis is required (EC1, 2002) 

2.1.4 Definition of dynamic loads  

A dynamic analysis is performed using characteristic values of the loading 
from Real Trains specified for every particular project. Load Model 71, SW/0 
for continuous bridges and SW/2 for heavy loads are all static loads. The load 
model “unloaded train” represents the effect of an unloaded train which 
consists of vertical uniformly distributed load with a characteristic value of 10 
kN/m.     

The dynamic load model HSML represents trains that exceed 200 km/h 
(124.3 miles/h) which consists of two separate universal trains with variable 
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coach lengths, HSML-A and HSML-B. Together they represent the dynamic 
load effects of a single axle, an articulated axle and a conventional high speed 
passenger trains.   

2.1.5 Application of dynamic loads 

The area of application for the dynamic loads is shown in Table 2.1. Load case 
HSML-B is used for simply supported structures with a short span. It is 
constituted of any number of point loads of 170 kN with a specified distance 
in between.  
 

Table 2.1 Application for dynamic loads, EC1 

Span Structural configuration 
mL 7<  mL 7≥  

Simply supported span HSML-B HSML-A 
Continuous structure  
or 
Complex Structure 

HSML-A 
Trains A1 to A10 
inclusive  

HSML-A 
Trains A1 to A10 
inclusive 

 
When designing a continuous or complex structure all the train load models 
A1 to A10 according to Table 2.2 should be used. For simply supported 
constructions with a span equal to or greater than 7 meters a single critical 
Universal Train from HSML-A (Train load model A1 to A10) can be used. To 
achieve a more complete dynamic analysis all the train load models could be 
used.  
 If the leading and trailing power cars are not identical on a train then a 
consultation must be made with the National Annex of the European standard.  
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Table 2.2 Train load models, EC1 

Load 
Model 

Number of 
wagons in 
between  

Length of 
wagons (m) 

Wheel spacing 
between boogie 
(m) 

Axle load 
(kN) 

A1 18 18 2,0 170 
A2 17 19 3,5 200 
A3 16 20 2,0 180 
A4 15 21 3,0 190 
A5 14 22 2,0 170 
A6 13 23 2,0 180 
A7 13 24 2,0 190 
A8 12 25 2,5 190 
A9 11 26 2,0 210 
A10 11 27 2,0 210 
For passenger trains the maximum allowable speed of 350 km/h (217,5 
miles/h) is used, to make a valid assessment of the dynamic effects. The 
maximum design speed shall be multiplied by 1.2 with the maximum line 
speed at the site. 
 

2,1max ⋅= vvdesign               Eq. 2.4 

 

2.1.6 Train type A6, EC1  

Figure 2.2 represents the train model A6. This train model is the one that will 
be used in this research. Every wheel on the train is seen as a point load F of 
180 kN. D is the coach length and d is the wheel spacing within a boogie.   
 
 

 
Figure 2.2 Train type A6, according to EC1 

 
 

d 
D 

d d 

D 

F 

ln 

n 

Direction of the train 

         1 2 
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2.2 BV Bro  

2.2.1 Definition and application of the dynamic factor   

The first thing that is obvious to the reader is that looking for a specific 
chapter after dynamic action is meaningless. The dynamic influence is 
integrated in the Swedish standard as a deterministic dynamic amplification 
factor, D . 
 The dynamic amplification factor is to be integrated into the vertical 
load acting on the foundation and the bridge, given by:  
 

bestL
D

+
+=

8

4
00,1                 Eq. 2.5 

 
where bestL  is the determinant length3 in meters, always larger than 2 meters, 

which is the minimum span for a bridge to be classified as a bridge (SRA). 

bestL  is described in two different tables in BV BRO, one table for support on 

both ends Table BV 21.2216a, page 40 and one for brackets Table BV 
21.2216b, on page 41. 

2.2.2 Limitations 

The dynamic influence is not considered when/if it gives a favorable effect. 
The dynamic influence should not be considered in calculations concerning 
impact on the ground, on pile groups consisting of more than 4 piles and for 
deformation. All horizontal forces (breaking and acceleration force, wind load, 
centrifugal force and friction force) acting on the bridge deck are not to be 
increased with the dynamic multiplication factor. 
 For bridges that are planned to support trains with speeds over 200 
km/h (124,3 miles/h) a special investigation of the dynamical behavior of the 
bridge is necessary according to BV BRO, Appendix BV 2-2, pages 60-66. 
 
In the case of bridges with a cover4

mh 20,1> , the dynamic factor may be 

reduced by: 
 

( )20,110,0 −⋅=∆ hd               Eq. 2.6 

 
It results in a reduced dynamic amplification factor 00,1≥D . 

 
00,1≥∆− dD                Eq. 2.7 

                                                 
3 Determinant length for the simply supported bridge considered in this thesis is the span 
4 The cover is the thickness of the overlaying ballast on the bridge   
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A special load case for the Swedish code is for a railway track changing 
machine with the load of 900 kN equally distributed on two surfaces where a 
dynamic multiplication factor of 1,20 is applicable.  

2.2.3 Dynamic loads  

Dynamic loads come into focus when a dynamic analysis is required, i.e. when 
train speeds exceed 200 km/h (124.3 miles/h). The dynamic loads HSML-A 
and HSML-B represent axle loads, trains with a common boogie and 
conventional high speed trains.   
 HSLM-A shall be used for all bridges with train load models A1-A10, 
according to Table 2.2. 
 
HSML-B is used for simply supported bridges with a span less than 7 meters. 
HSML-B is constituted of any number of point loads of 170 kN with a 
specified wheel spacing between boogie.  
  
A dynamic analysis is performed for the interval of 100 km/h (62.1 miles/h) to 
the maximum line speed at the site plus 20%. 
 

2,12,0 maxmaxmax ⋅=⋅+= vvvvdesign             Eq. 2.8
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2.3 Conclusions 
The area of focus is Europe and especially Sweden where the study is 
conducted.  
It is obvious that the span length is of great importance when dealing with 
static moments as well as dynamic moments.  
EC1 dated July 2002 takes the maintenance of the tracks into account which is 
not a parameter in the Swedish code, BV BRO dated first of October 2004. 
Resonance and impact effects are not accounted for in the different codes, only 
the dynamic magnification of stresses and vibrations imposed on a bridge. The 
Dynamic amplification factors used are deterministic.  
 Similarities between the codes are that when trains exceed 200 km/h 
(124.3 miles/h) a dynamic analysis is required, but in the EC1 a dynamic 
analysis is applicable on continuous bridges and on some simple constructions 
depending on the span length and natural frequency. 
 
In the EC1 the maximum allowable vehicle speed is 350 km/h (217.5 miles/h), 
a limit that is not mentioned in the BV BRO. The BV BRO states that if the 
dynamic influence gives a favorable effect it should not be taken into account 
for horizontal or vertical forces.  
 A reduced dynamic factor is used in the EC1 for arch or concrete 
bridges with a cover more than 1 meter, in the BV BRO for bridges with a 
cover greater than 1.20 meters. The BV BRO takes into account a special load 
case, which is the railway track changing machine with a dynamic 
amplification factor of 1.20, which is surplus information not mentioned in the 
EC1.  
 
The codes are similar but in some aspect they complete each other. The 
important thing to keep in mind when dealing with dynamic loads is to 
determine a determinant length, multiply the maximum line speed with 1.2, 
see equation 2.4 and 2.8, and use the right train load model.  
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3 Analytical Model 

3.1 Introduction 
Chapter 3 describes the Frýba model, which is the foundation to determine 
dynamic amplification factors in this thesis. The parameters involved in the 
Frýba model (L. Frýba 2003) are described to give an understanding of the 
content in the model. The parameters are converted into Matlab language and 
then an explanation follows of the procedure in the Matlab programming code.   

3.2 Frýba model 
To determine the total static and dynamic bending moment a model by Frýba 
is used. This equation has been the building stone of the analytical model 
which is built upon the famous Bernoulli-Euler differential equation with 
further development from the Fourier and Laplace-Carson transformations (L. 
Frýba 2003).  
 
The simply supported bridge is subjected to several moving point loads. To 
study the bending moment time histories the Frýba equation is used. For a 
simply supported bridge, the moment at location x  at time t  is given by: 
 

( )
( )

( ) ( ) ( ) ( ) ( )[ ]∑∑
∞

= =

−−−−−−=
∂

∂
−=

1 1

2
1

3
02

2

sin1
,

,
j

N

n

nn

j

nn

n

l

xj
TthTtftthttfj

F

F
M

x

tx
EItxM

π
ωω

ν Eq. 3.1 

 
where 0M is the static bending moment at location x  and nF  is the static axle 

load of axle n according to Figure 3.1. N and j are the total number of axles 

and modes respectively. nt  and nT  are the times when the number n axle 

enters and leaves the bridge respectively.  
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Figure 3.1 Visual declaration of variables related to the Frýba model. l is the 

span of the bridge and c is the velocity of the train (L. Frýba, 2003). 

3.2.1 Description of the parameters involved in the Frýba 
model 

A short description follows which clarifies the variables involved in the model 
by Frýba (L. Frýba, 2003). 
 
[ ]

[ ]
[ ]

[ ]
[ ]

[ ] span Mid 2Lx

 thesisin this considered be  willmodefirst  only the Mode,1

 loads axlebetween  Distance

Velocity

lengthSpan 

frequency naturalFirst 

Time

1

⇒=

⇒=

⇒

⇒

⇒

⇒=

⇒

m

j

md

s
mc

ml

Hzff

st

 

 

0M is the initial mid span bending moment according to Frýba, given by: 

[ ]kNm
FlFl

M
4

2
20 ≈=

π
            Eq. 3.2 

 
In the special case when all axel loads are equal equation 3.3 is valid.     
  

[ ] FFkN
F

F
n

n =⇒= 1             Eq. 3.3 

 

l 
ct 

x 

d2 
dn 

Fn F1 F2 
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Equation 3.4 describes the time nt  when the th
n  axle load begins traversing 

the bridge. A visual declaration of nl  is presented in Figure 2.2.  

[ ]s
c

l
t n

n =              Eq. 3.4 

 

Equation 3.5 describes the time nT  when the th
n  axle load finishes traversing 

the bridge. A visual declaration of nl  is presented in Figure 2.2. 

[ ]s
c

ll
T n

n

+
=              Eq. 3.5

  
 

)(th  is the Heaviside unit function given by: 

 
01

00
)(





≥

<
=

tif

tif
th             Eq. 3.6 

 
The excitation frequency ω , is given by: 

[ ] [ ]Hz
sl

c
=

⋅
= 1π

ω              Eq. 3.7 

where l  is the span of the bridge and c is the velocity of the train. The natural 

frequency of the bridge jω  for mode j  is given by: 

[ ]Hz
l

EIj
j

µ

π
ω

⋅

⋅⋅
=

4

44

           Eq. 3.8 

 

where EI is the bending stiffness for a constant cross section of the beam and 
µ  is the constant mass per unit length of the beam.  

 
The function ( )tf  is given by: 

( ) ( ) ( ) [ ]Hzttj
jD

tf j

tj

j

d












+⋅⋅++⋅⋅

⋅⋅
=

⋅− γωλω
ω

ω

ω

ω '

'

'
sinexpsin

1
       Eq. 3.9 

 
where dω  is the circular frequency of damping, given by: 

[ ]Hzfd νω ⋅= 1            Eq. 3.10 

where ν  is the logarithmic decrement of damping and 1f  is the first natural 

frequency. 
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j'ω  is given by: 

[ ]Hzdjj

22' ωωω +=                  Eq. 3.11 

 
D  is given by:  

( ) [ ]HzjjD dj

2222222 4 ωωωω ⋅+⋅−=            Eq. 3.12 

 
λ and γ  are given by: 

[ ]Hz
j

j

j

d

222

2
arctan

ωω

ωω
λ
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In this study the interesting load position on the beam is in the middle
2

lx = . 

Equation 3.1 can be rewritten as: 
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3.3 Matlab code 
In order to study the important parameters influencing the dynamic effects in 
railway bridges, a code describing all the parameters is constructed in the 
software program Matlab. The Matlab code is constructed to understand and 
examine what happens when a train traverses a bridge. The written program 
determines the static and dynamic mid span moment as a function of time. 
Different types of dynamic amplification factors are also evaluated to give a 
wider perspective.  
 
This thesis consists of two parts. The first part is constituted of a parametric 
study with the purpose of determining parameters which have a large influence 
on dynamic effects. The second part is constituted of a statistical parameter 
composition. The purpose is to determine a statistical description for the 
dynamic amplification factors. The statistical variables are used in the Monte 
Carlo simulation which is a modification of the initial Matlab code.  Once the 
basic code is constructed it is easy to change the parameters to evaluate the 
different results.  
 
The Matlab code is described in appendix A, accompanied by diagrams in 
appendix B. The Monte Carlo simulation is described in appendix C, 
accompanied by diagrams in appendix D. 

3.3.1 Converting into Matlab language 

Shown in Table 3.1 is the conversion of the equation symbols into Matlab 
code. Some of the variables are not available in the Matlab program so they 
had to be modified.  
 

Table 3.1 Conversion table 

ν  v 
µ  my 
ω  w 

dω  wd 

jω  wj 

'
jω  wjj 

λ  lambda 
γ  gamma 

 

3.3.2 Definition and application of the parameters 

This section describes the Matlab code shown in appendix A with related 
figures in appendix B. The results of running this program is the dynamic and 
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static mid span moment in a simply supported bridge generated by train model 
A6 as a function of time. The program also calculates different types of 
dynamic amplification factors which will be accounted for further on. 
 
General 
A security measure is imposed to close and clear all preceding information 
that the program may have saved. Results are delivered with proximity of four 
decimals. The semicolon after the text is applied in order to not show any 
excessive information. 
 
 
Static mid span moment 
Input to the program are the span l  of the bridge, the axle loads, F  and 
positions of axles, d . For the first axle load 01 =d . Axle loads and axle 

positions are taken from train model A6 according to EC1. t  is a vector 
starting from 0 which represent when the first axle of the train starts traversing 
the bridge and ends a couple of seconds after the train has finished traversing 
the bridge. To determine the position of the train front x  at different est : , t  

is multiplied by the train velocity, c . The static moment, sM  in the mid span 

of the bridge is calculated in each time step. To enable identification of the 
total number of axles that are present on the bridge in each time step, a new 
variable, a  is introduced. At some time steps there are more than one axle 
simultaneously on the bridge which are accounted for by the Heaviside 
function h . The for commands consider every separate positioning of the 

axles, resulting in the output of a continuous moment diagram. 
 
If the axle load is on the first half of the bridge, then the mid span moment is 
increasing, hence the composition of the formula in the for  loop results in 

( ) 2paFM ⋅= , if “a” is the first half of the bridge. If the load is on the 

second half of the bridge then the moment is decreasing 
with ( )( ) 2paLFM −⋅= . If there is not any axle on the bridge, there is no 

moment, hence the last formula 0=M .     
    
 
Dynamic mid span moment 
To calculate the dynamic mid span moment, dM  some new inputs are 

necessary such as bending stiffness EI , self weight of the bridge µ , first 

natural frequency 1f  , damping ν  and time for when the th
n  axle enter and 

leaves the bridge nt  and nT  respectively. Then the new variables are defined as 

functions according to Table 3,1 involved in equation 3.15.  
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The for  loop in this part of the code works in the same manner as the 

correspondent for the static moment, i.e. h  takes account for how many axles 
there are simultaneously on the bridge. The or f loop processes the dynamic 

behavior for the whole train. 1K  and 2K  are Heaviside functions. 1K  and 

2K  are equal to zero before the th
n  axle starts traversing and after the th

n  
finishes traversing the bridge respectively else they have time dependent 
values. The parameters represent a vital part of the frequency, which is 
summed up to take part of the dynamic mid span moment. In the formula for 
the dynamic moment it is apparent that the modes represented in the sinus 

equation 
2

sin
2

sin
ππ ⋅

⇒=→
⋅⋅ jlx

l

xj
 results in zero, if the thj  (mode) is 

even numbered. The dynamic mid span moment are determined for the same 
time steps as for the static moment. 
 
The diagrams in appendix B illustrates the time variation of the static mid span 
moment, Figure B.1, the dynamic mid span moment, Figure B.2 and both the 
static and dynamic mid span moment, is depicted in Figure B.3. 
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4 Parametric study 

4.1 General 
In this parametric study the important parameters affecting the dynamic 
amplification factor are studied using the Matlab program, described in 
chapter 3. These parameters are the force, the velocity, the bending stiffness, 
the frequency and the damping. Variation of these parameters will affect the 
amplification of the dynamical contribution. In this parametric study the base 
is a standard concrete bridge taken from the Swedish railway administration. 
Figure 4.1 shows the standard bridge and Table 4.1 gives the necessary 
characteristics. The load model HSLM-A6 that affects the bridge is taken from 
EC1. 
 

 
Figure 4.1 General bridge according to the SRA 

 

Table 4.1 Start values for parameters involved in the parametric study 

Variable Symbol Value 

Axel position d  A6 Nominal  
Axel load F  kN 180  
Velocity c  km/h 200  

Span l  m 10  
Elasticity modulus E  GPa 30  

Second moment of inertia I  4m 3946.0  
Self weight u    t/m11,5  

1:st Natural frequency 1f  Hz 15,09  

Damping ν  0,34  

 
In this parametric study one variable at the time is studied while the 

others remain constant with their initial values according to Table 4.1. This 
approach is appropriate when examining the effect on the dynamical 
amplification factor for the particular variable in question. The results are 
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shown below assisted by the visual aid of diagrams. Three different Dynamic 
Amplification Factors are presented to give an easy overview of their progress. 

DAF1 is described as the Dynamic Amplification Factor in the point of 
the maximum static moment. This value is divided by the value of the 
dynamic moment at the same time. So to be clear, if the maximum static 
moment occurs at time at , the dynamic moment is divided with the static 

moment at this point, 
)(

)(
1

max, as

ad

tM

tM
DAF =  .           Eq. 4.1 

DAF2 is described as the Dynamic Amplification Factor at the point of 
the maximum dynamic moment instead. This value is divided with the value 
of the static moment at the same time. If this time is defined as bt  then  

)(

)(
2 max,

bs

bd

tM

tM
DAF = .                  Eq. 4.2 

DAF3 is not fixed to a specific time. This factor gives the most 
accurate value for the dynamic amplification, since it divides the highest 
dynamic moment with the highest static moment. This value will give the real 
highest dynamic amplification possible at the most interesting point of 

maximum static moment 
max,

max,
3

s

d

M

M
DAF = .                       Eq. 4.3 

See Figure 4.2 for a graphic illustration of the bending moments.  
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Figure 4.2 Depiction of dynamic and static mid span moment as a function of 

time 
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DAF1 and DAF2 are examined to give a wider knowledge of the dynamic 
amplification but the only DAF3 is of real interest for a structural engineer.  

As seen in the diagrams the static moment does only increase when 
increasing the force. The dynamic moment increases with higher force and 
velocity but decreases with higher bending stiffness, frequency and remaining 
constant even though slightly decreasing for the damping. 

Span length is obviously of such a great importance that it is not 
introduced in the parameter study. Instead it is embedded in the final 
examination with different common lengths to form a vital part of the results.   
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4.2 Force 
The force is obviously the most important factor when dealing with static 
moments, but this is not the case for dynamic moments. The dynamic moment 
is always slightly higher than the static moment with a dynamic amplification 
factor around 1.18 for DAF3. If it would be a frog bouncing on the bridge, this 
would give impulses in the bridge thus a higher force probably would result in 
a higher dynamic response (No frogs are studied in this thesis) but since the 
train results in a linear force spectra, any kind of force amplitude absorbs the 
bridge’s dynamic response, induced by it self. Naturally it follows that if the 
force is higher the response will be higher and the dynamic amplification 
almost constant. The important thing is consequently to make sure that the 
bridge can manage the static moment with the additional dynamic moment. 
The diagram in Figure 4.3 for the dynamic amplification factors shows 
fluctuating curves but the dynamic amplification factors are all under 1.30, 
which can be considered as a low dynamic impact. The low dynamic influence 
from the force is also obvious when examining the moment diagram in Figure 
4.4, where the static mid span bending moment does not differ much from the 
dynamic mid span bending moment.    
 

Dynamic amplification versus force
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Figure 4.3 The three different dynamic amplification factors as a function of 

the force 
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Static and dynamic moment versus force
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Figure 4.4 Maximum static and dynamic mid span bending moment in a 

simply supported bridge of 10 meters.  

4.3 Velocity 
The reason for this study is because the train is moving, Static = still, dynamic 
= in motion, hence the most important parameter, when dealing with dynamic 
effects in railway bridges, is the motion of the train. Of course, as shown in 
figure 4.5, the motion of the train is by far the most important, when dealing 
with the general bridge studied in this paper.  
 

Dynamic amplification versus velocity
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Figure 4.5 The three different dynamic amplification factors as a function of 

the velocity 
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Static and dynamic moment versus velocity
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Figure 4.6 Maximum static and dynamic mid span bending moment in a 

simply supported bridge of 10 meters. 

 
Speeds under 50 km/h (31.1 miles/h) gave a very small favorable dynamic 
effect since the vertical acceleration work in favor for this particular bridge 
model resulting in an upwardly directed force which worked against the 
downwardly directed force that constituted the static moment. In this speed 
range and for the span length studied of 10 meters (32.8 feet) the bridge 
construction had time to absorb the vertical downward directed movement, 
which is the natural response, and gives away a vertically upward directed 
response, which is favorable. For different span length the speed range for 
favorable effects will differ from the standard model presented here. Naturally, 
when the train is at a stand still, no dynamic contribution exists.  

 

 
Figure 4.7 Train at 25 km/h, the static moment is higher than the dynamic 

moment at around 4 seconds and 7 seconds 
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Increases in train speeds enlarge the dynamic contribution almost 
exponentially, which results in greater vertical swaying/deflections and 
possible material fatigue or failure.     

4.4 Bending stiffness 
The bending stiffness is a measure of a construction to resist deflection. 

A stiff bridge is of course a good choice for reducing the dynamic 
amplification and the dynamic moment, as shown in Figure 4.8 & 4.9. A rigid 
bridge construction has the observed behavior of not being able to deflect to a 
great extent before failure. It is hence essential to design a bridge construction 
after determining the intended usage. A reasonable value of bending stiffness 

is in the range of 291011 Nm⋅ . 

 

Dynamic amplification versus bending stiffness
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Figure 4.8 The three different dynamic amplification factors as a function of 

the bending stiffness 
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Static and dynamic moment versus bending 

stiffness
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Figure 4.9 Maximum static and dynamic mid span bending moment in a 

simply supported bridge of 10 meters. 

4.5 Frequency 
Every material has its own natural frequency which also depends on its form. 
A moving load, e.g. a crowd of people walking on a bridge, wind load acting 
on a bridge, or even a train passing over a bridge can bring the bridge into a 
swaying motion, equal to the bridges natural frequency, which makes it more 
vulnerable to fatigue. At the point of the construction’s natural frequency, the 
construction will come into an enhanced sway which with a persistent critical 
loading which causes the construction to collapse.  Therefore the natural 
frequency is a very important safety parameter. The natural frequency can be 
estimated as a function of the mass and the bending stiffness. The Tacoma 
bridge collapse is an important example of how natural frequencies can lead to 
disaster (Fuller, 1982).   
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Dynamic amplification versus frequency
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Figure 4.10 The three different dynamic amplification factors as a function of 

the frequency 
 

Static and dynamic moment versus frequency
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Figure 4.11 Maximum static and dynamic mid span bending moment in a 

simply supported bridge of 10 meters. 

4.6 Damping 
One of the most important variables to consider in earthquake engineering is 
damping. In some parts of Europe earthquakes are a prevalent danger which 
requires special consideration in design. Damping is also an important 
parameter when reducing regular dynamic effects (Elnashai, 2005). 

To avoid over stressing and damage of bridges elastic rubber bearing 
pads can be used as a damping material. Damping is important because it 
reduces reaction forces and bending movements, if installed properly a 
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damping material should isolate and absorb vibration from lateral movements 
without transmitting stresses.  

Figure 4.12 shows a high value, with a damping value of 0. It is of 
importance to recognize that a damping value of 0 is theoretical and is not 
applicable in practice. The damping does not have a significant effect after a 
critical damping value of around 0.15. 

 

Dynamic amplification versus damping
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Figure 4.12 The three different dynamic amplification factors as a function of 

the damping 

 

Static and dynamic moment versus damping
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Figure 4.13 Maximum static and dynamic mid span bending moment in a 

simply supported bridge of 10 meters. 
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4.7 Conclusions 
The most reasonable DAF to use is the third one. The third DAF is the most 
realistic since it takes into account the actual highest static and dynamic mid 
span bending moment. The conclusion is that the highest possible Dynamic 
amplification factor is DAF3. For structural engineers the most interesting 
moments are the highest bending moments and therefore DAF3 is the most 
useful dynamic amplification factor. 

Five variables are examined and their dynamic importance established. 
The force is NOT an important dynamic amplification factor since it almost 
constantly remains in the range of 1.2. In other words, the dynamic moment is 
20 % larger than the static moment. The velocity is the MOST important 
factor since the amplification increases almost exponentially after 200 km/h 
and has a strong upward trend curve leading up to 200 km/h as well. The 
bending stiffness is important in reducing the amplification, but is still NOT of 
crucial significance, especially when considering the economical aspects. The 
frequency is also NOT of dynamic importance since it remains in the range of 
amplification of 1.2 even if slightly decreasing. Finally the damping is NOT 
important after exceeding the damping value of 0.12. When the damping value 
of 0.12 is over come the amplification factor is almost constant around 1.15, 
even though slightly decreasing. A theoretical damping of 0 results in an 
amplification that starts from 1.5 and then normalizing at 1.2 at 0.12 damping.  

The Monte Carlo simulation will consist of different speeds and of 
course different span lengths. The span length is always of importance, in both 
static and dynamic analysis.   
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5 Statistical evaluation   

5.1 Introduction 
In reliability analyses of different types of structures a statistical description of 
all the variables involved in the limit state function is necessary. The traffic 
load on railway bridges is the most dominating variable load and has therefore 
large influence on the result in analysis of railway bridges. This is a 
motivation to get better knowledge of this random variable. The train load is 
divided into two parts, a static and a dynamic part. Focus in this thesis is kept 
on the dynamic part. The purpose of this chapter is to investigate how the 
dynamic amplification factor is statistically distributed. To enable an 
investigation of the statistical distribution a method called Monte Carlo 
simulation is used, for information about the method the author refers to 
Melchers (1999). 

5.2 Monte Carlo simulation 
The Monte Carlo simulation is a useful tool, since it randomly generates 
values for uncertain variables repeatedly to build up a reliable model. The 
model randomly picks values from the decided distributions in the statistical 
parameter composition and presents the results. The model is used to minimize 
uncertainty during the life time of the bridge construction. It can be explained 
as a technique of statistical sampling used to approximate solutions to 
quantitative problems, where the quantity is the number of train passes over a 
bridge for the entire expected lifespan of the bridge.  
 Numerical modeling is a much needed tool when a physical 
experimentation data is difficult to obtain, since this thesis would take 50-100 
years of observation and trains will probably fly by then, this is not really an 
option. The computer code used for the Monte Carlo simulation can be seen in 
Appendix C.  

5.3 Statistical parameter composition 
The random variable composition is chosen according to equations 5.1 to 5.5. 
There are no rules for which distribution is the best for most variables, since 
they have not been investigated. The variables have to be connected with a 
distribution depending on which of the distributions fits the closest to the 
reality. The statistical randomness is vital to the description of the whole 
process where a train traverses a railway bridge. The variables in equation 5.1 
to 5.5 will be used to simulate a general event of train traffic on a bridge using 
the Monte Carlo simulation.  
 Each variable is connected with a probability distribution.   
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Statistical description of the random variables: 
The axle force is normally distributed with a mean value of kN180  and a 

standard deviation of kN36 , which is %20  of the mean value of the force.  

 
)36,180(NF ∈               Eq. 5.1 

 
The velocity is also normally distributed with a mean value of 

s
m

h
km 56.55200 = and a standard deviation of 

s
m

h
km 33.830 = , which is 

%15 of the mean value of the velocity.   

 
)33.8,56.55(Nc ∈               Eq. 5.2 

 
The bending stiffness is logarithmically distributed with a mean value of 

2

3
61011838

s
kgm

×  and a standard deviation of 2

3
610592

s
kgm

× , which is 

%5 of the mean value of the bending stiffness.  

 

)10592,1011838( 66 ××∈ LNEI             Eq. 5.3 

 
The frequency is normally distributed with a mean value of Hz09.15 and a 

standard deviation of Hz76.0 , which is %5 of the mean value of the 

frequency.  
 

)76.0,09.15(Nf ∈              Eq. 5.4 

 
The damping is also normally distributed with a mean value of 34.0  and a 
standard deviation of 017.0 , which is %5  of the mean value of the damping.  

 
)017.0,34.0(N∈ν              Eq. 5.5 

 
The other parameters are deterministic. 
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5.4 Goodness of fit 
To assist with clarification, the results from the simulation diagrams of the 
static and dynamic moments will be shown. The results will be compared with 
the normal and lognormal distribution to analyze how compatible they are to 
these curves. The mean square distance, MSE (Montgomery, D, 1997) is a 
measure of the variation for the empirical model and the chosen model given 
by: 
 

( )( )

1

ˆ)(
1

2

−

−

=

∑
=

n

xFxF

MSE

n

j

ii

            Eq. 5.6 

 

where F  is the theoretical distribution function and F̂  is the empirical 
distribution function. n is the number of trains traversing the bridge.  

A quantile plot will further enhance the understanding of which 
distribution is the closest to the reality. The estimated values are here 
compared with the theoretical values and mean square distance value from the 
diagonal line will be shown to even further enhance the analysis of which 
distribution is the most accurate. Several quantile plots are presented in 
Appendix D. 
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 6 Dynamic Amplification Factors 

6.1 Introduction 
The dynamic amplification factor is a relative measure of the importance of 
the dynamic impact.  
 Short span bridges can withstand very high velocities with a low level 
of influence. The short span bridges have a natural character which resists 
vertical accelerations compared to the long span bridges which are easier to 
induce into a vertical movement, for these types of bridges. As shown in Table 
6.1 and Table 6.2 the dynamic amplification factors mean value is less than 
1.2 for spans up to 10 meters and velocities up to 200 km/h. The interesting 
finding is that the Table 6.1 and 6.2 shows how different the values are for 
different spans and different velocities.    

To assist with comprehension of the results it is important to 
understand that this is a general Swedish bridge taken from the Swedish rail 
road administration and therefore it is not designed for high speed trains, 
which becomes apparent when the 20 meter span bridge with a velocity of 250 
km/h is studied. The bridge in its current configuration will probably not be 
able to withstand a dynamic amplification impact of around 2, if it is not 
considered when designing the bridge. The magnitude of the dynamic 
amplification factor is in it self also an important confirmation of how 
significant the dynamic effects are.  
 Interesting is also the dynamic amplification for longer spans, by 
studying figure D.11.1 for example, when it becomes apparent that the bridge 
has no time to respond with a peaking dynamic amplification. This is due to 
the span length and the train coach length. Before the bridge has any 
possibility to respond in an accentuated peak the next axle is loaded on the 
bridge and therefore the dynamic impulses are more concentrated in the 
middle of the bridge with increased speed and span length. After the train has 
finished traversing the bridge, the magnitude of the dynamic impact is 
obvious. The after vibrations inducted in the bridge are large, with higher 
peaks for higher velocities. Figure 6.1 shows an example of the after 
vibrations inducted in the bridge when the train has finished traversing it.  
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Figure 6.1 Example of long span bridge of 20 meters being traversed by a 

high speed train, Static and dynamic mid span bending moment 

 
The final results are presented below, which help in displaying the importance 
of the dynamic effects on a bridge. This standard bridge is not constructed for 
high speeds and with a span of 20 meters and a velocity of 250 km/h the 
bridge would probably fail.  
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6.2 Final results 
Table 6.1 Final results of the dynamic amplification factors, Normal 

distribution 

DAF 

     

 Span Length (m) 

Velocity (km/h) 5 10 15 20 

150 1.013 1.117 1.199 1.1981 

200 1.037 1.195 1.279 1.352 

250 1.031 1.330 1.402 2.062 

     

Variance 
     

Span Length (m) 

Velocity (km/h) 5 10 15 20 

150 0.1375 0.1353 0.1487 0.1575 

200 0.1296 0.1513 0.1847 0.3095 

250 0.1308 0.2133 0.2291 0.7316 

 
Table 6.2 Final results of the dynamic amplification factors, Lognormal 

distribution 

DAF 

     

 Span Length (m)    

Velocity (km/h) 5 10 15 20 

150 1.004 1.109 1.199 1.188 

200 1.030 1.185 1.266 1.323 

250 1.023 1.314 1.385 1.95 

     

Variance 
     

Span Length (m) 

Velocity (km/h) 5 10 15 20 

150 0.134 0.1191 0.1225 0.1281 

200 0.122 0.1257 0.1382 0.2027 

250 0.125 0.1552 0.1575 0.3262 

 
After examination of Table 6.3 and Table 6.4 one can see that the appropriate 
distribution for small spans and low speed is the lognormal distribution but it 
does not follow an easy to explain pattern, since the 20 meter span, 200 km/h 
simulation shows that the lognormal distribution is the closest to the reality.  
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Table 6.3 MSE factor for the normal distribution  

Span Length (m) 

Velocity (km/h) 5 10 15 20 

150 0,000725 0,000765 0,000998 0,000727 

200 0,000916 0,000233 0,003721 0,006339 

250 0,000474 0,001186 0,00059 0,013689 

 
Table 6.4 MSE factor for the lognormal distribution 

Span Length (m) 

Velocity (km/h) 5 10 15 20 

150 0,000411 0,000732 0,001356 0,000914 

200 0,000379 0,001289 0,003902 0,003918 

250 0,000258 0,00214 0,003638 0,037969 

 
In an overall average the normal distribution can better describe these 
phenomena with a value of 0,002530 compared with the lognormal 
distributions value of 0,004742.  
 

6.3 Conclusions 
To reduce the dynamic effects imposed on a bridge it is possible to use the 
damping and the bending stiffness and also the frequency that are a function of 
the bending stiffness and mass. It is possible to build bridges that can 
withstand high velocity trains, if they are designed in an accurate manner. 
High velocity trains are already in use in Germany, Japan and China for 
example. Span lengths and velocity impact on bridges are very important to 
understand, when constructing a bridge appropriate for high velocity trains, 
and one should also have a wide understanding of the safety and security from 
both the technical and human perspectives. The tracks should be periodically 
and carefully maintained to minimize risks. In Germany an accident occurred 
on the 24 of September 2006 involving a high velocity train, the Transrapid 
(Daily newspaper, La Repubblica). This was due to a track maintenance 
vehicle being left on the tracks. Human errors should of course also be brought 
into the security thinking. In China high speed trains travel from Shanghai to 
the airport in Pudong at speeds of up to 430 km/h, so it can be seen as a good 
option instead of driving, from an environmental point of view as well.      
 When designing bridges the vertical forces are not to be neglected, 
though especially from a static point of view. The resonance effect is also a 
vital variable which if neglected could and have caused disasters. Several 
accidents have occurred due to the resonance effect imposed by wind load as 
well as other loads.  
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Finally taking economy into consideration, which is of course always an 
important parameter, an economically justified and well-designed bridge, 
appropriate for high speed trains can be constructed with assistance from 
reliable dynamic amplification factors.    
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A Matlab Code 
 
close all; 
clear all; 
format short; 
 
%% Static %% 
 
F=180;                    % Axle load [kN] 
L=10;                      % Span [m] 
c=200/3.6;               % Velocity [m/s] 
t=[0:0.005:9];          % Time [s] 
d=[0 3 14 17 20.525 22.525 40.7625 42.7625 63.7625 65.7625 86.7625 
88.7625 109.7625 111.7625 132.7625 134.7625 155.7625 157.7625 178.7625 
180.7625 201.7625 203.7625 224.7625 226.7625 247.7625 249.7625 
270.7625 272.7625 293.7625 295.7625 316.7625 318.7625 339.7625 
341.7625 360 362 365.525 368.525 379.525 382.525];  
      % Placement of axles [m] 
 
x=t*c;      % Distance in elapsed time 
 
for i=1:length(x); 
    a=x(i)-d; 
    h=1; 
     
    for p=1:length(a); 
        if a(p)>=0 & a(p)<=L/2 
            M(h)=F*a(p)/2; 
            h=h+1; 
        elseif a(p)>L/2 & a(p)<=L 
            M(h)=F*(L-a(p))/2; 
            h=h+1; 
        else 
            M(h)=0; 
            h=h+1; 
        end 
    end 
     
    Ms(i)=sum(M); 
    clear M; 
 
end 
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figure(1) 
plot(t,Ms) 
title('static') 
xlabel('time [s]') 
ylabel('moment [kNm]') 
 
%% Dynamic %% 
 
j=1;                                        % Mode 
EI=11838000000;                 % Bending stiffness [kgm3/s2] 
f=15.09;                                % Frequency [1/s] 
v=0.34;                                 % Damping 
my=11538+F*1000/9.81;    % constant mass per unit length of the beam 
[kg/m] 
 
M0=2*F*L/(pi^2); 
 
w=pi*c/L; 
 
wd=f*v; 
 
wj=sqrt(j^4*pi^4*EI/(L^4*my)); 
 
wjj=sqrt(wj^2-wd^2); 
 
D=sqrt((wj^2-j^2*w^2)^2+4*j^2*w^2*wd^2); 
 
lamda=atan((-2)*j*w*wd/(wj^2-j^2*w^2)); 
 
gamma=atan(2*wd*wjj/(wd^2-wjj^2+j^2*w^2)); 
 
tn=d/c; 
 
Tn=(L+d)/c; 
 
 
for i=1:length(t); 
    for N=1:length(tn); 
        K1=t(i)-tn(N); 
        K2=t(i)-Tn(N); 
            if K1<0 & K2>=0; 
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            h1=0; 
f1(N)=0; 
            h2=1; 
f2(N)=1/(wjj*D)*(wjj/(j*w)*sin(j*w*K2+lamda)+ 
exp(-wd*K2)*sin(wjj*K2+gamma)); 
          
    
        elseif K1>=0 & K2>=0; 
            h1=1; 
f1(N)=1/(wjj*D)*(wjj/(j*w)*sin(j*w*K1+lamda)+ 
exp(-wd*K1)*sin(wjj*K1+gamma)); 
            h2=1; 
f2(N)=1/(wjj*D)*(wjj/(j*w)*sin(j*w*K2+lamda)+ 
exp(-wd*K2)*sin(wjj*K2+gamma)); 
             
        elseif K1>=0 & K2<0;  
            h1=1; 
f1(N)=1/(wjj*D)*(wjj/(j*w)*sin(j*w*K1+lamda)+ 
exp(-wd*K1)*sin(wjj*K1+gamma)); 
            h2=0; 
f2(N)=0; 
 
        else K1<0 & K2<0; 
            h1=0; 
f1(N)=0; 
            h2=0; 
f2(N)=0; 
            
        end 
 
        ftot(N)=f1(N)*h1-(-1)^j*f2(N)*h2; 
    end     
 
fp=1/(wjj*D)*(wjj/(j*w)*sin(j*w*t+lamda)+exp(-wd*t).*sin(wjj*t+gamma)); 
 
Md(i)=M0*j^3*w*wj^2*sum(ftot)*sin(j*pi/2); 
 
clear M; 
end 
 
figure(2) 
plot(t,Md) 
title('dynamic') 
xlabel('time [s]') 
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ylabel('moment [kNm]') 
 
figure(3) 
plot(t,Md,'r') 
hold on 
plot(t,Ms,'b') 
hold off 
title('static & dynamic') 
xlabel('time [s]') 
ylabel('moment [kNm]') 
 
[a,b]=max(Ms); 
 
DAF1=Md(b)/max(Ms) 
 
[a,b]=max(Md); 
 
DAF2=max(Md)/Ms(b) 
 
DAF3=max(Md)/max(Ms) 
 
max(Ms) 
 
max(Md) 
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B Figures Matlab 
 

 
Figure B.1 Static moment over time 

 

 
Figure B.2 Dynamic moment over time 
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Figure B.3 Static and dynamic moment over time 
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C Monte Carlo simulation 
 
close all; 
clear all; 
format short; 
 
 
L=5;                                                                            % Span [m] 
t=[0:0.005:9];                                                        % Time [s] 
 
d=[ 0 3 14 17 20.525 22.525 40.7625 42.7625 63.7625 65.7625 86.7625 
88.7625 109.7625 111.7625 132.7625 134.7625 155.7625 157.7625 178.7625 
180.7625 201.7625 203.7625 224.7625 226.7625 247.7625 249.7625 
270.7625 272.7625 293.7625 295.7625 316.7625 318.7625 339.7625 
341.7625 360 362 365.525 368.525 379.525 382.525];                     

% Placement of axles [m] 
 
j=1;                                                                          % Mode 
F=180;                                                                    % Axel load 
EI=5530000000;                                                         % Bending stiffness 
[kgm3/s2] 
c=250/3.6;                                                                % Velocity [m/s] 
ff=51.5;                                                                   % Frequency [1/s] 
v=0.63;                                                                     % Damping 
my=9700+F*1000/9.81;                                          % Self weight 
n=400;                                                                      % Number of simulations  
 
 
for b=1:n 
     
    %%%  Random values  %%% 
     
    FS=wnormrnd(F,(0.1*F)^2,40,1);                        % Axle load [kN] 
    dslump=wnormrnd(0,0.5^2,40,1)+d';                    % Placement of axles [m] 
    dslump(1,1)=0;                                                      % Placement of axles [m] 
    m=EI; 
    s=0.05*EI; 
    e=2*log(m)-0.5*log(s^2+m^2); 
    s=(2*(log(m)-e))^0.5; 
    EIr=lognrnd(e,s,1,1);                                        % Bending stiffness 

[kgm3/s2] 
    cs=wnormrnd(c,(c*0.15)^2,1,1);                          % Velocity [m/s] 
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    ffs=wnormrnd(ff,(ff*0.05)^2,1,1);                       % Frequency [1/s] 
    vs=wnormrnd(v,(v*0.05)^2,1,1);                          % Damping 
    x=t*cs;      % Train distance [m] 
     
 
 
    %%%  Dynamic factors  %%% 
     
    w=pi*cs/L; 
    wd=ffs*vs; 
    wj=sqrt(j^4*pi^4*EIr/(L^4*my)); 
    wjj=sqrt(wj^2-wd^2); 
    D=sqrt((wj^2-j^2*w^2)^2+4*j^2*w^2*wd^2); 
    lamda=atan((-2)*j*w*wd/(wj^2-j^2*w^2)); 
    gamma=atan(2*wd*wjj/(wd^2-wjj^2+j^2*w^2)); 
    tn=dslump/cs; 
    Tn=(L+dslump)/cs; 
     
    %%%  Static moment  %%% 
     
    for i=1:length(t) 
        a=x(i)-dslump; 
 
        for g=1:length(FS) 
        h=1; 
            for k=1:length(a) 
                if a(k)>=0 & a(k)<=L/2 
                    M(h)=FS(g)*a(k)/2; 
                    h=h+1; 
                elseif a(k)>L/2 & a(k)<=L 
                    M(h)=FS(g)*(L-a(k))/2; 
                    h=h+1; 
                else 
                    M(h)=0; 
                    h=h+1; 
                end 
            end 
        end 
        Ms(i)=sum(M); 
    end 
 
    %%%  Dynamic moment  %%% 
 
    for i=1:length(t); 
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        for N=1:length(FS); 
            K1=t(i)-tn(N); 
            K2=t(i)-Tn(N); 
             
            if K1<0 & K2>=0; 
 
f1(N)=0;              
f2(N)=1/(wjj*D)*((wjj/(j*w))*sin(j*w*K2+lamda)+exp(wd*K2)*sin(wjj*K2
+gamma)); 
                ftot(N)=(FS(N)*2*L/pi^2)*(f1(N)-(-1)^j*f2(N)); 
                 
            elseif K1>=0 & K2>=0; 
f1(N)=1/(wjj*D)*((wjj/(j*w))*sin(j*w*K1+lamda)+exp(-
wd*K1)*sin(wjj*K1+gamma));         
f2(N)=1/(wjj*D)*((wjj/(j*w))*sin(j*w*K2+lamda)+exp(-
wd*K2)*sin(wjj*K2+gamma)); 
                ftot(N)=(FS(N)*2*L/pi^2)*(f1(N)-(-1)^j*f2(N)); 
             
            elseif K1>=0 & K2<0;  
f1(N)=1/(wjj*D)*((wjj/(j*w))*sin(j*w*K1+lamda)+exp(-
wd*K1)*sin(wjj*K1+gamma));          
f2(N)=0; 
                ftot(N)=(FS(N)*2*L/pi^2)*(f1(N)-(-1)^j*f2(N)); 
 
            else K1<0 & K2<0; 
f1(N)=0;          
f2(N)=0; 
                ftot(N)=(FS(N)*2*L/pi^2)*(f1(N)-(-1)^j*f2(N)); 
           end 
       end 
        
       Md(i)=sin(j*pi/2)*j*w*wj^2*sum(ftot);  
       clear f1 f1 ftot 
    end 
     
    DAF(b)=max(Md)/max(Ms) 
end 
 
figure(1) 
plot(t,Ms,'b') 
hold on 
plot(t,Md,'r') 
title('Statit & Dynamic moment') 
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max(Ms) 
max(Md) 
 
figure(2) 
wlognfit(DAF) 
xlabel('DAF') 
ylabel('Fx(x)') 
 
figure(3) 
wnormfit(DAF) 
xlabel('DAF') 
ylabel('Fx(x)') 
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D Figures Monte Carlo 

D.1 Bridge span of 5 meters, velocity of 150 km/h, standard 
deviation of 22,5 km/h 

 
Table D.1.1 Random variables and constants, span 5 m, 150 km/h 

Variable Symbol Distribution Mean value Standard 

dev. 

Axel position F  Normal  A6 Nominal  m 0,25  
Axel load d  Normal  kN 180  kN36  

Velocity c  Normal  km/h 150  km/h 22,5  
Span L  Constant  m 5   

Bending 
stiffness 

EI  normalLog −  GPa  5,53  GPa  0,27  

Self weight u  Constant    t/m9,7   
1:st Natural 
frequency 

1f  Normal  Hz 51,5  Hz 2,57  

Damping ϑ  Normal  0,63  0,032  

 

 
Figure D.1.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
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Figure D.1.2 Lognormal and empirical cumulative distribution function 

 
 

 
Figure D.1.3 Normal and empirical cumulative distribution function 
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Quantile Plot
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Figure D.1.4 Quantile plot for the normal and lognormal distribution 
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D.2 Bridge span of 5 meters, velocity of 200 km/h, standard 
deviation of 30 km/h 

 
Figure D.2.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 

 

 
Figure D.2.2 Lognormal and empirical cumulative distribution function 
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Figure D.2.3 Normal and empirical cumulative distribution function 
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Figure D.2.4 Quantile plot for the normal and lognormal distribution 
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D.3 Bridge span of 5 meters, velocity of 250 km/h, standard 
deviation of 37,5 km/h 

 
Figure D.3.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge  

 

 
Figure I.3.2 Lognormal and empirical cumulative distribution function 
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Figure I.3.3 Normal and empirical cumulative distribution function 
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Figure I.3.4 Quantile plot for the normal and lognormal distribution 
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D.4 Bridge span of 10 meters, velocity of 150 km/h, standard 
deviation of 22,5 km/h 

 
Table D.4.1 Random variables and constants, span 10m, 150 km/h 

Variable Symbol Distribution Mean value Standard 

dev. 

Axel position F  Normal  A6 Nominal  m 0,25  
Axel load d  Normal  kN 180  kN36  

Velocity c  Normal  km/h 150  km/h 22,5  
Span L  Constant  m 10   

Bending stiffness EI  normalLog −  GPa  11,8  GPa  0,6  

Self weight u  Constant    t/m11,5   
1:st Natural 
frequency 

1f  Normal  Hz 15,09  Hz 0,75  

Damping ϑ  Normal  0,34  0,02  

 
 

 
Figure D.4.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
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Figure D.4.2 Lognormal and empirical cumulative distribution function 

 

 
Figure D.4.3 Normal and empirical cumulative distribution function 
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Quantile Plot
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Figure D.4.4 Quantile plot for the normal and lognormal distribution 
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D.5 Bridge span of 10 meters, velocity of 200 km/h, standard 
deviation of 30 km/h 

 
Figure D.5.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 

 

 
Figure D.5.2 Lognormal and empirical cumulative distribution function 
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Figure D.5.3 Normal and empirical cumulative distribution function 
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Figure D.5.4 Quantile plot for the normal and lognormal distribution 
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D.6 Bridge span of 10 meters, velocity of 250 km/h, standard 
deviation of 37,5 km/h 

 
Figure D.6.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 

 

 
Figure D.6.2 Lognormal and empirical cumulative distribution function 

B
en

di
ng

 m
om

en
ts

 [
kN

m
] 

Time [seconds] 



68 

 
Figure D.6.3 Normal and empirical cumulative distribution function 
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Figure D.6.4 Quantile plot for the normal and lognormal distribution 
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D.7 Bridge span of 15 meters, velocity of 150 km/h, standard 
deviation of 22,5 km/h 

 
Table D.7.1 Random variables and constants, span 15m, 150 km/h 

Variable Symbol Distribution Mean value Standard 

dev. 

Axel position F  Normal  A6 Nominal  m 0,25  
Axel load d  Normal  kN 180  kN36  

Velocity c  Normal  km/h 150  km/h 22,5  
Span L  Constant  m 15   

Bending 
stiffness 

EI  normalLog −  GPa  20,6  GPa  1,03  

Self weight u  Constant    t/m12,4   
1:st Natural 
frequency 

1f  Normal  Hz 10,4  Hz 0,52  

Damping ϑ  Normal  0,26  0,013  

 
 

 
Figure D.7.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
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Figure D.7.2 Lognormal and empirical cumulative distribution function 

 

 
Figure D.7.3 Normal and empirical cumulative distribution function 

 
 



71 

Quantile Plot
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Figure D.7.4 Quantile plot for the normal and lognormal distribution 
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D.8 Bridge span of 15 meters, velocity of 200 km/h, standard 
deviation of 22,5 km/h 

 
Figure D.8.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 

 

 
Figure D.8.2 Lognormal and empirical cumulative distribution function 
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Figure D.8.3 Normal and empirical cumulative distribution function 
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Figure D.8.4 Quantile plot for the normal and lognormal distribution 



74 

D.9 Bridge span of 15 meters, velocity of 250 km/h, standard 
deviation of 37,5 km/h 

 
Figure D.9.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
 

 
Figure D.9.2 Lognormal and empirical cumulative distribution function 
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Figure D.9.3 Normal and empirical cumulative distribution function 
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Figure D.9.4 Quantile plot for the normal and lognormal distribution 
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D.10 Bridge span of 20 meters, velocity of 150 km/h, standard 
deviation of 22,5 km/h 

 
Table D.10.1 Random variables and constants, span 20 m, 150 km/h 

Variable Symbol Distribution Mean value Standard 

dev. 

Axel position F  Normal  A6 Nominal  m 0,25  
Axel load d  Normal  kN 180  kN36  

Velocity c  Normal  km/h 150  km/h 22,5  
Span L  Constant  m 20   

Bending 
stiffness 

EI  normalLog −  GPa  28,4   GPa  1,42  

Self weight u  Constant    t/m14,6   
1:st Natural 
frequency 

1f  Normal  Hz 6  Hz 0,3  

Damping ϑ  Normal  0,2  0,01 

 
 

 
Figure D.10.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
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Figure D.10.2 Lognormal and empirical cumulative distribution function 

 

 

 
Figure D.10.3 Normal and empirical cumulative distribution function 

 



78 

Quantile Plot
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Figure D.10.4 Quantile plot for the normal and lognormal distribution 
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D.11 Bridge span of 20 meters, velocity of 200 km/h, standard 
deviation of 30 km/h 

 
Figure D.11.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 
 

 
Figure D.11.2 Lognormal and empirical cumulative distribution function 
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Figure D.11.3 Normal and empirical cumulative distribution function 
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Figure D.11.4 Quantile plot for the normal and lognormal distribution 
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D.12 Bridge span of 20 meters, velocity of 250 km/h, standard 
deviation of 37,5 km/h 

 
Figure D.12.1 Maximum static and dynamic mid span bending moment in a 

simply supported bridge 

 

 
Figure D.12.2 Lognormal and empirical cumulative distribution function 
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Figure D.12.3 Normal and empirical cumulative distribution function 

 

 

 

Quantile Plot

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Theoretical values

E
m

p
ir
ic

a
l 
v
a
lu

e
s

norm

lognorm

 
Figure D.12.4 Quantile plot for the normal and lognormal distribution 


