
CAMERA TRACKING USING A

DENSE 3D MODEL

ERIK BYLOW

Master’s thesis
2012:E41

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

In this thesis we present a method for tracking a depth sensor and building a 3D model in
real-time. The tracking will be done using the current estimated 3D model. We will show
that this approach gives more accurate results and is more robust than the well-known
KinectFusion approach. It will also be shown how to colourise the 3D model in real-time.

In this work we will study different error metrics such as the projective point-to-point
metric and projective point-to-plane metric. Also different norms will be evaluated to find
out which gives the best result. We will also show how to represent a 3D model by using
a so called signed distance function.

1

2

Acknowledgement

I would like to thank my supervisors Fredrik Kahl and Jürgen Sturm for helping me with
this thesis and for that they have together with Daniel Cremers given me the opportunity
to do my thesis as an exchange student at the Technology University of Munich.

I would also like to thank the rest of the computer vision group in Munich for welcoming
me and helping me with all different kinds of problems.

3

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Goal . 8
1.3 Method . 8
1.4 Outline . 9

2 Basics 11
2.1 Notations . 11
2.2 Pinhole Camera Model . 12
2.3 Depth Images . 14
2.4 Fusion of Depth Images . 16
2.5 Signed Distance Function . 17
2.6 Visualization . 20
2.7 Rigid Body Motion . 22
2.8 Registration . 23
2.9 Related Work . 24

3 Reconstruction of 3D Surfaces 27
3.1 Projective Point-To-Point Metric . 27
3.2 Projective Point-To-Plane Metric . 32
3.3 Estimating the Signed Distance Function 38
3.4 Colourising . 41

4 Tracking 45
4.1 Introduction To the Approach . 45
4.2 Optimisation . 47

4.2.1 L2-norm . 47
4.2.2 L1-norm . 51
4.2.3 Truncated L2-norm . 58

4.3 Summary . 58

5 Experimental Results 59
5.1 Qualitative Results . 59

5

6 CONTENTS

5.2 L2-Norm . 63
5.3 L1-Norm . 65
5.4 Truncated L2 . 66

6 Conclusion And Future Work 69

7 Appendix 75

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: A 3D model of a room.

In several tasks, it can be useful to create dense 3D models in real-time. One example is
in robotics where the robot can use a 3D model of the environment calculated in real-time
in order to navigate in the room. An example of how a 3D model of a room might look
like is given in Figure 1.1.

Other applications you can think of concerning 3D models can be internet shopping, if you
can create a 3D model of your room, you can use this to see how new furnitures would fit
into your room without going to IKEA.

It can also be useful if you want to renovate your room, by using the 3D model one
could change colours and change the room to see how the room would look like after the
renovation before it has even started.

7

8 CHAPTER 1. INTRODUCTION

(a) Image of a room from one
view.

(b) The Kinect depth sensor
from Microsoft.

(c) Same room but different
view.

Figure 1.2: Here one can see two different views of the room and the Microsoft Kinect in the middle.

1.2 Goal

The goal with this thesis is to build a complete 3D model in real-time by using images
from different views of the same object, as in Figure 1.2a and Figure 1.2c, using a depth
camera, Figure 1.2b, which generates a surface from each image. To do this one needs to
estimate the camera position and at the same time build the 3D model.

If the position of the camera is known, then it is possible to estimate the surface. On the
other hand, if the position of the surface is known, then one can find where the camera is.

The problem is that in general neither the position of the camera nor the position of the
surface is known in advance.

The goal with this work is to estimate the camera movement and build the 3D model in
real-time.

1.3 Method

To build the 3D model we use the method presented by Levoy and Curless in [10]. They
use a 3D volume to represent the surface by using a so called Signed Distance Function
(SDF).

To build the 3D model, one needs to know how the camera is rotated and translated. Our
approach is to use the SDF to define an error function. That way we use the surface that
we already have in order to find the camera position.

The main contribution with this work is that we track our camera against the complete
dense surface model. In particular we will look at different error metrics and different
norms to evaluate how good the different norms and error metrics are. Furthermore, we
present a method for including colours in the 3D reconstruction.

1.4. OUTLINE 9

1.4 Outline

The outline for the rest of this thesis is:

Chapter 2: Basics - Here we present basic stuff such as the camera model, depth images,
rigid-body motions etc. We will also present how the geometry can be represented and at
the end we present related work.

Chapter 3: Reconstruction of 3D Surfaces - In this chapter we present our approach to
dense 3D reconstruction, assuming the trajectory of the camera is known. We present
different metrics for how one can approximate the signed distance function.

Chapter 4: Tracking - In this chapter we present our method for estimating the trajectory
of the camera. We present different error functions and how to minimize them.

Chapter 5: Experimental Results - Here we show how our tracking works for different
datasets, we do also demonstrate that it works for live data.

Chapter 6: Conclusion And Future Work - Here we summarize the results of our thesis
and possible extensions and improvements of our method.

Chapter 7: Appendix - In this chapter a detailed evaluation of our method is provided.
We compare it in detail between KinFu and RGB-D SLAM.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

In this chapter we introduce basic concepts which are necessary to understand this thesis,
such as the pinhole camera model and depth images. We will also introduce the notations
we will use in the remainder of this thesis.

2.1 Notations

Here we present notations which we will use in the rest of this report.

A 3D point in R3 will be denoted by

X =

xy
z

 .

We will also use homogeneous coordinates to represent a point. The homogeneous coordi-
nates will be denoted by

X̄ = λ


x
y
z
1

 .

We will always assume that λ = 1 if nothing else is said.

To denote a 3D point with respect to the cameras frame of reference we will write

XL =

xy
z

 .

11

12 CHAPTER 2. BASICS

A 3D point in the global frame of reference will be denoted by

XG =

xy
z

 .

We will also work with vertices in a voxel grid which we will use to represent our SDF. A
vertex in the voxel grid will be written

Vi,j,k

where (i, j, k) are non-negative integer coordinates for the vertex in the voxel grid. We will
always assume that the global coordinates for the vertex Vi,j,k are known.

We will denote vectors in RN by boldface, for instance

v ∈ R3.

A depth image will be denoted by
Id

and with
Id(i, j)

we mean the value at pixel (i, j).

2.2 Pinhole Camera Model

We will in this work use the so called pinhole camera model with focal length f , which is
the distance between the image plane and the camera center. We will also use the pixel
coordinates cx and cy, which are the pixel coordinates where the principal axis meets the
image plane. In the model, a 3D point will be projected onto the image plane, illustrated
in Figure 2.1.

By triangulation, illustrated in Figure 2.2, we can calculate the 3D coordinates for the
point (x, y) in the image plane by

x

z
= x′

f
⇐⇒ x = zx′

f
. (2.1)

With help from this we can define some functions we will use in the rest of this report. For
simplicity we will treat the pixel coordinates as real valued, even though an image consists
of discrete pixels. It can be continuously represented by for instance doing interpolation
between the neighbouring pixels.

2.2. PINHOLE CAMERA MODEL 13

Figure 2.1: A sketch of the camera model we will use.

Figure 2.2: Here are two similar triangles (x′, f, Oc) and (x, z,Oc).

14 CHAPTER 2. BASICS

(a) The depth image of a teddy bear. (b) The colour image of the teddy bear.

We define here a function ρ which transforms pixel (i, j) in a depth image to a 3D coordi-
nate. To see where the equation comes from one can look at Figure 2.1.

Definition 1. Let ρ be the vector valued function ρ : R2×R→ R3 which takes the pixels
(i, j) to its 3D coordinates X = (x, y, z):

ρ(i, j, Id(i, j)) = ((i−cx)z
fx

, (j−cy)z
fy

, z)T

where (i, j) ∈ Id, z = Id(i, j) and fx, fy, cx and cy are intrinsic camera parameters.

We also defines a function which projects a 3D point X = (x, y, z) onto the image plane.

Definition 2. Let π be the vector valued function π : R3 → R2 which projects the 3D-point
X = (x, y, z) onto the image plane:

π(x, y, z) = (fxx
z

+ cx,
fyy
z

+ cy)

where fx, fy, cx and cy are intrinsic camera parameters.

2.3 Depth Images

In this work we will use so called depth sensors. From the depth sensors we will use we
will receive one normal colour image and one so called depth image as seen in Figure 2.3a
and 2.3b. The colour image is just a normal image one gets from an ordinary hand held
digital camera or the camera on a cell phone. The speciality with a depth sensor is the
depth image, from which you get information about the distance between the surface and
the camera which you do not get from the colour image.

To get an idea of what an depth image is, we start with an illustrative figure of a depth
image, Figure 2.3.

2.3. DEPTH IMAGES 15

Figure 2.3: An illustrative image of a depth map. The depth is visualized by the intensity of the colour,
darker pixels corresponds to points closer to the camera.

Figure 2.4: The ray between a pixel and the camera center hits the surface. The distance between the
camera center and the surface point is then projected to the principal axis. The projected value is the so
called z-value, which is stored in the corresponding pixel.

In the depth image Id, each pixel has a so called z-value. The z-value is the distance
between the camera center and the surface point projected to the principal axis, as seen in
Figure 2.4.

For a pixel (i, j), we thus get a z-value zij. This makes it possible to calculate the 3D
coordinates X = (x, y, z) corresponding to the pixel (i, j) by computing

x = (i− cx)zij
fx

y = j − cyzij
fy

z = zij

16 CHAPTER 2. BASICS

Figure 2.5: A point cloud generated from a depth image of a teddy bear. The colours are taken from
the corresponding colour image for visualization purposes.

where fx and fy are the focal lengths and cx and cy are the pixel coordinates for the optical
center.

In the sequel, we will instead use our defined function ρ

(x, y, z) = ρ(i, j, Id(i, j)).

The difference between a depth image and a normal image is thus the ability to compute
the exact 3D point. In a colour image one gets from a hand held camera, one can only
compute the line between the pixel (i, j) and the camera center at which the 3D point lies,
the z-value gives us where on the line the 3D point is.

In Figure 2.5 we see an example of a point cloud generated from the Kinect. Note that by
doing the calculations above, we only get the local 3D coordinates in the camera reference
system. To get the global coordinates, we need to know how the camera is rotated and
translated with respect to a global coordinate system.

2.4 Fusion of Depth Images

The goal is to estimate a complete 3D model from depth images. If we look at Figure 2.6
we see three different point clouds from different parts of the same room. By fusing all
images one would like to obtain a 3D model of the whole scene, as illustrated in Figure
2.7.

To achieve this we need to know the global configuration [R t] of the camera so that we
can calculate the global 3D coordinates XG by

2.5. SIGNED DISTANCE FUNCTION 17

Figure 2.6: Resulting point clouds generated from three depth images. The goal with fusion of these
images is to get a 3D model of the whole scene from all these images.

Figure 2.7: Resulting point cloud generated from a couple of depth images, giving a whole 3D model of
what the camera sees from different views.

XG = RXL + t (2.2)
XL = ρ(i, j, Id(i, j)) (2.3)

where (i, j) are pixel coordinates in the depth image Id.

Hence, if we know the rotation and translation for all cameras we can easily calculate the
global position for all the 3D points we obtain from the depth images.

2.5 Signed Distance Function

To fuse all the depth images into a 3D model we need a way to represent the geometry
seen from all different camera positions.

To represent the geometry of the surface we rely on the work by Levoy and Curless, [10].
They use a so called Signed Distance Function to represent the geometry.

Definition 3. A signed distance function ψ is a function which gives the signed distance
d between a point X ∈ R3 and the closest point Xs on a surface S.

ψ : R3 → R

18 CHAPTER 2. BASICS

Figure 2.8: A sketch of how a signed distance function works, the distance between the black points and
the curve is negative in front of the surface and positive behind.

ψ(X) = d

where d < 0 if X is outside the surface and d > 0 if X is inside the surface.

If we look on a two dimensional example in Figure 2.8 we can see how different vertices
have different signs and distances, depending on how close and on which side of the curve
the vertices are on.

The geometry in a signed distance function is implicitly represented by its zero crossing.

The reason we choose to use the method proposed by Levoy and Curless is that there are
no restrictions on how the geometry may look like and the SDF gives us also the possibility
to define an error function which we will minimise to find the rotation and translation of
the camera.

Example:

There are some geometric objects which can be exactly described implicitly and gives a
good example of how the geometry can be represented on a computer with a SDF and a
voxel grid. Since we will be working in 3D, we can look at the equation for a sphere with
radius r

ψ : R3 → R

ψ(x, y, z) =
√
x2 + y2 + z2 − r.

For a point (x, y, z) ∈ R3, ψ(x, y, z) is either positive, negative or zero. If ψ(x, y, z) < 0,
then

√
x2 + y2 + z2 < r and if ψ(x, y, z) > 0, then

√
x2 + y2 + z2 > r and finally, if

ψ(x, y, z) = 0, then
√
x2 + y2 + z2 = r. Thus, all points (x, y, z) ∈ R3 fulfilling ψ(x, y, z) =

0 lie on the surface of the sphere.

2.5. SIGNED DISTANCE FUNCTION 19

Figure 2.9: This is how the voxel grid looks, it has a fixed resolution with equally distanced vertices and
a fixed place in space.

Hence, ψ(x, y, z) is an implicit representation of a sphere and for all points inside the sphere
ψ(x, y, z) < 0 and for all points outside the sphere ψ(x, y, z) > 0. In other words, for an
arbitrary point (x, y, z) ∈ R3, ψ(x, y, z) gives the signed distance between (x, y, z) and the
surface.

We will now illustrate how to represent ψ on a computer. As we can see in the example
image, Figure 2.8, we can use vertices and assign each vertex a distance between the vertex
and the surface. That would then be a discrete version of ψ. Since we are working with
three dimensional objects, we need a discretisation in 3D. The discretisation can be seen
in Figure 2.9. We will call this a voxel grid, each vertex in the voxel grid will be assigned
the signed distance between the vertex and the surface.

To represent ψ with this voxel grid, we do the following calculations for each vertex:

s =
√
x2 + y2 + z2 − r (2.4)

where (x, y, z) are the coordinates for the vertices.

The value s is then stored in the corresponding vertex. The vertices which are inside the
sphere will have negative values and the vertices which are outside the sphere will have
positive values and the vertices which are on the surface will have the distance zero.

This is visualized by plotting the vertices which are inside the surface in yellow and the
other in red in Figure 2.10

This example with the sphere shows how the geometry can be represented implicitly by a
SDF and also how one can represent it on a computer by using a voxel grid.

20 CHAPTER 2. BASICS

Figure 2.10: The vertices with negative distance are plotted yellow, they are the vertices inside the
sphere with radius r.

2.6 Visualization

To visualize the surface represented by our SDF we use the well-known Marching Cubes
algorithm, [14]. By using the fact that in the signed distance function a vertex has a
negative sign if the vertex is in front of the surface and positive if it is behind, one can easily
find a zero crossing by searching for vertex pairs with different signs. The zero crossing is
then found by linear interpolation between these two vertices. A two dimensional sketch
of the idea behind Marching Cubes is seen in Figure 2.11

In the three dimensional case one finds the zero crossing in the voxel grid and then draws
triangles where the function is 0.

The approach is to look at each voxel, or cube, defined by eight neighbouring vertices in the
voxel grid, illustrated in Figure 2.12. In this voxel one finds which vertices have different
signs. If two neighbouring vertices have different signs, the surface goes between these two
vertices and we find where by doing interpolation between the vertices. The triangles are
then drawn between these interpolated points, as illustrated in Figure 2.13.

In [7] it is well described how Marching Cubes works and how one can easily implement it.

2.6. VISUALIZATION 21

Figure 2.11: An example in 2D of how a curve can be extracted from a signed distance function. By
finding the zero-crossing between vertices with different signs, one can extract the curve by drawing lines
between the zero-crossings.

Figure 2.12: An illustration of a cube in the voxel grid with its local vertices and edges. Image obtained
from http://paulbourke.net/geometry/polygonise/, accessed 2012-11-19.

- +

-

-

+-

Figure 2.13: An illustration of how triangles can be drawn between the zero crossings in a voxel.

22 CHAPTER 2. BASICS

2.7 Rigid Body Motion

In this work we assume a static environment, meaning we assume that the objects we want
to reconstruct do not move. The only thing we assume moving is the camera and what we
want to find is a rigid body motion of the camera.

In [15] a rigid-body motion is defined as follows

Definition 4. Rigid-body motion or special Euclidean transformation. A map
g : R3 → R3 is a rigid-body motion or a special Euclidean transformation if it preserves
the norm and the cross product of any two vectors.
1. norm: ||g(v)|| = ||v||, ∀v ∈ R3.
2. cross product: g(u)× g(v) = g(u× v),∀u,v ∈ R3.
The collection of all such motions or transformations is denoted by SE(3).

In a rigid-body motion, the distance between two points and the orientation is preserved
when it is rotated and translated. That is also the reason to why we must assume a static
environment so that the distance between two points is the same when the camera sees
the points from different views. In [15] and in [6] much more is written about rigid-body
motions.

By using homogeneous coordinates a rigid-body motion can be described by a matrix

P =
[
R t
0 1

]
∈ R4×4

where R is a rotation matrix in the special orthogonal group SO(3) and t the translation
in R3.

For simplicity we will write [R t] and omit the last row, but when we write PX̄ we mean
the 4× 4-dimensional matrix.

A rigid-body motion can also be compactly represented by the so called twist coordinates

ξ = (ω1, ω2, ω3, v1, v2, v3).

To go from the twist coordinates ξ to a matrix representation one computes

P =
[
eω̂ (I−eω̂)ω̂v+ωωT v

||ω||
0 1

]
=

[
R t
0 1

]
(2.5)

where

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 and v =

v1
v2
v3

 . (2.6)

2.8. REGISTRATION 23

Figure 2.14: An example of how ICP works, start with two point-clouds, the red and the green. Then
you want to minimize the error so that the two point-clouds fits as good as possible, as the red and blue.

2.8 Registration

To find the rotation and translation of the camera a common approach is to use Iterative
Closest Point, (ICP), which was introduced by Besl and McKay in [4]. The general idea
behind ICP is to align two point clouds to each other as good as possible, as seen in
Figure 2.14. One has some form of error metric, sum of squared distances for instance and
defines an error function. The goal is to find the correct rotation R and translation t of
the camera by minimising the error function

E(R, t) =
M∑
i=0
||(RXi + t)− X̂i||2. (2.7)

where X̂i are the 3D points which one is trying to fit the points Xi against. To do ICP
one thus needs a way of finding these corresponding point pairs (Xi, X̂i) so that the error
metric is correct. One way of choosing point pairs is to take the closest point in the
corresponding point cloud. Other methods also use the normals for each point so that one
takes the closest point only if the angel between the normals are below a certain threshold.
Other alternatives are to include colours if possible. Furthermore, one can measure the
distance differently, one can for example use the point-to-point metric, but one can also
use the so called point-to-plane method to estimate the difference between the point and
the corresponding plane. Point-to-plane metric and point-to-point metric will be described
in this work. In [19] a lot of different versions of ICP are described and evaluated.

24 CHAPTER 2. BASICS

Figure 2.15: The global point cloud is estimated from the last image frame In−1
d and the last known

camera position.

2.9 Related Work

Our work is in many aspects similar to the work done by Newcombe et. al. in [16] and [12].
To represent the surface they also use a voxel grid together with a signed distance function,
just as we do. They use also the signed distance function to track the camera movement.
The difference is that they use the SDF to generate a global point cloud by doing a surface
prediction, illustrated in Figure 2.15. When they have created the global point cloud with
help from the SDF, they use the projective data association algorithm [5] to find which
points belong to each other. Thereafter they do standard ICP to estimate the correct
rotation and translation of the camera.

KinectFusion uses only the information they have from the previous camera to estimate
the global movement of the the camera. In our work, we make use of all the images we
have obtained instead of just using the last frame as KinectFusion does. Furthermore, we
do not use ICP but instead we track the camera directly against the 3D model. Our idea
is that this should make the tracking more stable. Another advantage is that our approach
is simpler, no data association between points in point clouds is needed for instance.

Another work recently presented is the Master Thesis [18] of Daniel Canelhas, Örebro
University. The surface representation is also built on [10]. His approach to track the
camera is the same as we have. This means the signed distance function is used to define
an error function which is minimized in order to find the camera pose.

The difference is that in this thesis we will go deeper into the tracking and compare different
norms and error metrics. We will also include colours in the reconstruction.

Endres et al. presents in [11] a different approach to tracking and fusion of the depth
images. In the tracking part, instead of optimizing against point clouds or the global
model, they use sparse feature points in the colour images. They find corresponding points
in two consecutive frames and reconstruct these points to 3D points. Then a rigid-body
motion is obtained by using three of these corresponding points if they are reconstructed

2.9. RELATED WORK 25

Figure 2.16: The found corresponding points are reconstructed in 3D and the error between them is
calculated and if the error is small enough it can be used for estimating the rigid-body motion of the
camera.

close enough. An illustration of how it works is shown in Figure 2.16

Since the tracking is made by using frame-to-frame, the tracking easily drifts away. There-
fore, in order to create a global consistent trajectory they add additional constraints be-
tween non-consecutive images and use a graph optimizing library called g2o.

The last step when the trajectory is found is to compute a representation of what the
camera sees. To do this they use a 3D occupancy grid, which is a voxel representation
where each voxel is either occupied or unoccupied. To make this memory efficient the
voxels are represented by using so called octrees. More information about octrees and the
representation of geometry using occupancy grid can be found in the work by Wurm et al.
[23].

The advantage with this totally different approach is that they use colours. Tracking
approaches like ICP and ours are prone to fail when there is not enough structure in the
scene. The solution to the error function one minimizes cannot be uniquely determined.
RGB-D SLAM does not suffer from this weakness if there are enough visual features in the
image. On the other hand, if there is only one colour in the image, but a lot of structure,
then ICP and our approach will succeed but RGB-D SLAM will fail.

26 CHAPTER 2. BASICS

Chapter 3

Reconstruction of 3D Surfaces

In this chapter we will present our approach to fuse the depth images into a complete
3D model and our approach to colourise it. We start by defining two different metrics
to estimate the distance between the vertices in our voxel grid and the surface. Then we
present a method to find a signed distance function which can represent the geometry seen
from all cameras and at last we will present a simple method for how one can put colours
onto the surface.

3.1 Projective Point-To-Point Metric

In chapter 2 we saw an example for how a sphere could be represented using a signed
distance function and a voxel grid. The approach is to estimate the distance between each
vertex and the surface on the sphere. This distance can be estimated exactly since we have
a analytical expression for the signed distance function for a sphere. In general we cannot
expect to have that, so we need a method for estimating the distance between the vertices
and the surface no matter how the surface looks like.

There exists a method called the Fast Marching Method, (FMM), which is well described
in [3]. FMM estimates the exact distance for all vertices to the surface. However, it is not
fast enough for our application since we want to do real-time reconstruction. Therefore,
we will instead look at projective metrics which are much faster to compute and it can also
be made in parallel, which is suitable for real-time applications.

The first metric we consider is the projective point-to-point metric which is also used by
Levoy and Curless [10].

The distance will be between a point X in the voxel grid and a point Y on the surface. The
trick now is to choose the point Y on the surface appropriate. Ideally, we want to measure

27

28 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.1: The idea behind projective point-to-point metric is to measure the distance between a point
X and the point Y along the ray between X and the camera center.

the distance between the point X and the point Y on the surface which lies closest to X,
because then we would get the exact signed distance.

However, it is not efficient to estimate the true distance for each vertex. Instead we choose
the point Y on the surface so that Y lies on the line between the camera and the point X,
as in Figure 3.1.

The distance between the point X and the point Y on the surface is then the length of the
line between them.

In general this will not be the true distance, but it is much faster to compute and gives a
good enough approximation if one includes weights and truncations, as we will see soon.

We start with explaining how the projected distance is estimated for each vertex. In this
chapter we will use the functions which are defined in chapter 2.

Our goal now is to estimate the projected point-to-point distance for each vertex in the
voxel grid. Assume for now that we want to find the projected distance for the vertex Vi,j,k.

What we need to get the projected distance as seen in Figure 3.1 is first of all the position
of the vertex in the local coordinate system defined by the camera. Since the vertex Vi,j,k
has a fixed position in the space, we know what global coordinates, XG, the vertex Vi,j,k
has. For the moment, the camera matrix P is also assumed to be known.

Then we can calculate the local coordinates XL for Vi,j,k by

X̄L = P−1X̄G (3.1)

which is also illustrated in Figure 3.2. Now we need to find the point on the surface,
corresponding to the vertex Vi,j,k and the coordinates for that point in the local coordinate
system, as seen in Figure 3.3. Since YL lies on the ray between the camera center and XL,

3.1. PROJECTIVE POINT-TO-POINT METRIC 29

Figure 3.2: Each vertex can be described with the coordinates in the global system, but also with
coordinates in the local camera system.

Figure 3.3: Here one can see the local and global coordinates XG and XL for the vertex and the local
coordinates for the point YL on the surface.

30 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

YL will be projected to the same pixels as XL.

By using our function π we can calculate the pixels corresponding to YL by projecting XL

onto the image plane

(x, y) = π(XL). (3.2)

From the pixel coordinates (x, y), we can now find the z-value by

z = Id(x, y). (3.3)

This is the z-coordinate for the surface point YL we are looking for. To find the coordinates
for YL we use our function ρ

YL = ρ(x, y, z). (3.4)

Now it is simple to compute the projected signed distance for vertex Vi,j,k by taking

||XL|| − ||YL||. (3.5)

If XL is in front of the surface

||XL|| − ||YL|| < 0 (3.6)

and if XL is behind the surface then

||XL|| − ||YL|| > 0. (3.7)

Hence, the distance is signed.

We can now define an algorithm, Algorithm 1, which computes the projected signed dis-
tance for a vertex with index (i, j, k).

Algorithm 1: Estimating the Projected Point-To-Point Distance
Input: (i,j,k)
// Each vertex at position (i, j, k) has known global 3D coordinates

1 XG ← (i, j, k)
// Compute the coordinates in the cameras local coordinate system

2 X̄L ← P−1X̄G

// Project XL onto the image plane
3 (x, y)← π(XL)

// Find the value in the image at that point.
4 z ← Id(x, y)

// Compute the projected point-to-point distance
5 d(i, j, k) = ||XL|| - ||ρ(x, y, z)||

3.1. PROJECTIVE POINT-TO-POINT METRIC 31

Figure 3.4: By measuring the distance along the principal axis instead, one gets an approximated point-
to-point distance.

Another possibility to approximate the signed point-to-point distance is by just using the
z-coordinates for XL, zL, and the z-value for YL, z, as seen in Figure 3.4.

In the last row of Algorithm 1 we then compute

d(i, j, k) = zL − z (3.8)

instead, where zL is the local z-coordinate for the vertex Vi,j,k and z the local z-coordinate
for YL.

The advantage with this simplified version is that it is faster to compute.

Now we have defined a method for computing the distance between the surface and a
vertex. By applying this method to all our vertices, we do get the projected distance for
all the vertices.

Note that we will only measure the distance for those vertices which are projected onto
image plane and in front of the camera.

By looking at Figure 3.5, one sees that the projective point-to-point metric might not
always be the best choice. Therefore, we now introduce the point-to-plane metric.

32 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.5: When measuring the distance against a plane, the projected point-to-point will fail to give
an accurate distance.

3.2 Projective Point-To-Plane Metric

We will now introduce another projective metric which is called point-to-plane. The idea
with the point-to-plane metric is that it gives a more accurate measure of the distance
between a point and the surface, when the surface is locally planar. Point-to-plane is
presented in [9] to improve ICP, we propose the following method to estimate the point-
to-plane distance for each vertex.

To estimate the point-to-plane metric one projects the vector between the surface point
and the vertex point onto the normal at the surface. This is illustrated in Figure 3.6. If
the surface is a wall, the measured distance will be exact. As for the point-to-point metric,
we want to estimate the point-to-plane distance for each vertex in the voxel grid in order
to represent the signed distance function.

To calculate the projected point-to-plane distance for Vi,j,k we need again find the corre-
sponding point on the surface YL and then find the normal for YL. To find the corresponding
point on the surface for vertex Vi,j,k we do exactly as we do for the point-to-point metric.

The difference now is that we want to estimate the normal at YL which we can use to
compute the point-to-plane metric, as illustrated in Figure 3.7. Since we are assuming
that the surface around YL is locally planar, we want to find the neighbouring points to YL
so that we can estimate the vectors v1 and v2 which lie in the (assumed) plane and take
the cross product between v1 and v2 to get the normal.

By using the pixels (x, y) which YL is projected to, we assume that the neighbouring pixels
(x + 1, y) and (x, y + 1) corresponds to neighbouring points to YL. By using the function

3.2. PROJECTIVE POINT-TO-PLANE METRIC 33

Figure 3.6: The projection of the vector u onto the normal gives a better approximation of the distance
between the vertex and the plane.

Figure 3.7: For the surface point YL, we want to find neighbouring points in order to define the vector
v1 and v2 which can be used to estimate the normal.

34 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

ρ, we calculate two neighbouring points Y1 and Y2 from the pixels (x+ 1, y) and (x, y + 1)

Y1 = ρ(x+ 1, y, Id(x+ 1, y)) (3.9)
Y2 = ρ(x, y + 1, Id(x, y + 1)). (3.10)

Now we use YL, Y1 and Y2 to find the vectors v1 and v2

v1 = Y1 − YL (3.11)
v2 = Y2 − YL. (3.12)

To estimate the normal n for the plane which v1 and v2 lie in, the cross product between
v1 and v2 is computed

n = v1 × v2

||v1 × v2||
. (3.13)

What we need to find now is the vector u between XL and YL

u = XL − YL. (3.14)

In Figure 3.6 it is the blue vector we are seeking. Now we have everything to estimate the
projected point-to-plane metric. By projecting the vector u onto the normal n, we get a
new vector s

s = uTn
nTn

n = (uTn)n. (3.15)

To get the point-to-plane distance we calculate the length of the resulting vector s

||s|| = ||(uTn)n|| = |(uTn)|||n|| = |(uTn)|. (3.16)

Hence, the length of the vector s is simply the absolute value of the scalar product between
the normalized normal n and the vector u.

To get the sign right we just compute

uTn (3.17)

with appropriate sign of n.

We can summarize the method to calculate the point-to-plane distance for a vertex Vi,j,k
by Algorithm 2.

By applying this to each vertex in the field of view, we can estimate the signed distance
function with the point-to-plane metric instead of the point-to-point metric.

3.2. PROJECTIVE POINT-TO-PLANE METRIC 35

Algorithm 2: Estimating the point-to-plane distance for a vertex
Input: (i, j, k)
// The global coordinates for vertex (i, j, k)

1 XG ← (i, j, k)
// Transform the global point XG to the local camera system

2 X̄L ← P−1X̄G

// Calculate the pixel coordinates
3 (x, y)← π(XL)

// Compute corresponding point on the surface
4 YL ← ρ(x, y, Id(x, y))

// Compute the neighbouring points on the surface
5 Y 1 ← ρ(x+ 1, y, Id(x+ 1, y))
6 Y 2 ← ρ(x, y + 1, Id(x, y + 1))

// Calculate the vectors v1 and v2
7 v1 ← Y 1 − YL
8 v2 ← Y 2 − YL

// Compute the normal
9 n← v1×v2

||v1×v2||
// Compute u

10 u← XL − YL
// Compute the signed distance d

11 d = uTn

36 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.8: The thresholded average is taken for the pixels within the mask.

In the depth images there will be noise, the random error of the depth measurement
increases the further away the object is. In [13] they show that the error in the depth
measurement for the Kinect sensor varies between a few millimetres up to about 4 cm
at the maximum range of the sensor. To get a better approximation of the normals we
therefore filter the image before the normals are estimated. A commonly used filter applied
to depth images is the edge preserving bilateral filter presented by Tomasi and Manduchi
in [21]. There exists an open-source implementation in the OpenCV library for bilateral
filtering. The drawback with this implementation is that it also smooths pixels without
any depth information. Therefore, instead of implementing our own bilateral filter, we do
a simpler filtering where we take the average of the neighbouring pixels which z-value does
not lie to far away from the center value. In Figure 3.8 one can see how the mask is defined
and the algorithm is described in Algorithm 3.

We have now seen three different metrics we can use to estimate the distance between the
vertices and the surface, we have two versions of point-to-point metric and one version of
point-to-plane.

Even though projected point-to-plane gives better approximation than projective point-to-
point, we can still see in Figure 3.9 that projective metrics can give large errors for some
vertices when the surface is just next to the vertex but not along the projected ray.

3.2. PROJECTIVE POINT-TO-PLANE METRIC 37

Algorithm 3: Filtering around pixels (x, y) with threshold δ

// Find the value in the pixel we want to filter around
1 ZC ← Id(x, y)
2 sum← 0
3 count← 0
4 for i = xstart to i ≤ xstop do
5 for j = ystart to j ≤ ystop do
6 z ← Id(x+ i, y + j)

// If the difference between the center point ZC and z is below
the threshold, we use z to compute the average

7 if (|z − ZC | < δ) then
8 sum+ = z
9 count+ +

// Since we only take the average of the pixels which are close
enough, we do not smooth over too sharp edges.

10 return sum
count

Figure 3.9: The projected distance clearly fails to give a good approximation of the closest distance to
the surface.

38 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.10: From the cameras field of view, we cannot see what is behind the surface.

3.3 Estimating the Signed Distance Function

In this section, we will propose a method to decrease the impact of the potentially large
errors one gets while using a projective distance. This will be done by truncation of the
distance function and also by the introduction of weights. The last part of this section will
be about how to find a signed distance function which takes all depth images into account
so that we can represent the complete geometry.

As we already have seen in Figure 3.9, there are some obvious drawbacks with projective
metrics. Even though we use point-to-plane instead of point-to-point, there will still be
some measures which are very bad compared to the true closest surface.

The first problem is when measuring the projected distance for the vertices behind the
seen surface, we cannot be really sure about what is behind that surface since we do not
know anything about the thickness of the object as illustrated in Figure 3.10.

In the work by Levoy and Curless, [10], it is suggested that for each measured distance di,j,k,
corresponding to the the vertex Vi,j,k, we introduce the weight wi,j,k. We can then compute
a weighted distance wi,j,kdi,j,k. The weight makes it possible to handle uncertainties in the
measurements, where for instance a vertex can be behind the object and nothing is known
about the thickness of the object.

It is not enough to just introduce a weight function. We can still get measures which are
highly erroneous in front of the surface as can be seen in Figure 3.9.

However, the closer the vertex is to the surface, the more accurate will the projected dis-
tance be. Therefore, to decrease the impact of highly erroneous measurements, Levoy and
Curles [10] suggests that one shall truncate the projected distance by a certain threshold.

3.3. ESTIMATING THE SIGNED DISTANCE FUNCTION 39

Figure 3.11: An illustration of how the truncated distance function looks like, when |di,j,k| > δ, the
distance is truncated.

This means that when |di,j,k| > δ, d is set to either δ or −δ.

The truncated signed distance function looks as follows

φ(di,j,k) =


−δ if di,j,k < −δ
di,j,k if |di,j,k| ≤ δ.
δ if di,j,k > δ

(3.18)

We also have a corresponding weight to each measurement

w(di,j,k) =


1 if di,j,k < ε

e−σ(di,j,k−ε)2 if di,j,k ≥ ε and di,j,k ≤ δ.
0 if di,j,k > δ

(3.19)

The weight is one as long as we are sure about the distance and thereafter the weight
decreases exponentially until we reach δ when the weight is put to 0. The parameter ε
decides how far behind the surface we want to go before we consider the uncertainty to be
lower than one.

Note that for a true signed distance function

|∇ψ| = 1 (3.20)

must hold.

This constraint will in general be violated by our approach when we truncate the distance
and assign a weight to it.

A sketch for how the distance function and the weight function might look like can be seen
in Figure 3.11 and Figure 3.12.

40 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.12: An illustration of how the weight function looks like, as long as di,j,k is less than ε the
weight is 1. Thereafter the weight is decreasing until δ, thereafter it is put to 0.

To estimate the truncated and weighted signed distance function ψn for a frame Ind when
we also know the corresponding camera matrix Pn, we start with choosing a metric d.
We take either point-to-point or point-to-plane. Then for all vertices in the voxel grid,
which are in the field of view, we calculate the truncated and weighted signed distance
ψ(i, j, k) = φ(di,j,k)w(di,j,k) and assign that distance to the vertex.

Thus, we have an estimation of the truncated and weighted signed distance function ψn
and now ψn is a representation for the surface seen from camera Cn.

In the sequel, when we refer to a signed distance function, we will mean a truncated and
weighted signed distance function.

However, this far, we have only described how to estimate the signed distance function ψn
for one image Ind . The goal with the fusion is obviously to integrate all depth images into
one single global 3D model. This way a complete room can be reconstructed if each part
of the room is seen in one of the images.

For each frame Ind we have estimated a signed distance function ψn. To get a representation
of the whole geometry, we need to find an optimal signed distance function ψ∗ which
contains information from all SDFs we have estimated. This single SDF ψ∗ shall then
represent the geometry seen from all images.

Levoy propose in [10] a way to do this by formulating it as an optimization problem

E(ψ) =
N∑
i=0

wi||ψ − ψi||2 (3.21)

where N is the number of estimated SDFs.

We want to find the optimal SDF ψ∗ which gives the lowest error. In this case, the solution
is simple. The SDF which gives the lowest error is the weighted average of all the SDFs

3.4. COLOURISING 41

ψn we have estimated. This is seen by taking the derivative of E(ψ)

∂E

∂ψ
= 2

N∑
i=0

wi(ψ − ψi) = 0 (3.22)

⇐⇒

ψ =
∑N
i=0 wiψi∑N
i=0 wi

. (3.23)

This makes it fast to compute the optimal SDF, since it can be calculated as a running
weighted average. This is done iteratively, after the first estimated SDF we calculate the
second one. Then we take the weighted average of these two and obtains ψ∗1. Then we
estimate the third SDF and then we take this SDF ψ3 and uses ψ∗1 and takes the weighted
average between these two, resulting in ψ∗2. This way, the optimal SDF ψ∗ is computed as
we receive images.

Levoy and Curless suggests the following updating procedure for each vertex to calculate
the weighted average of the SDFs

Dn+1 = DnW n + φ(dn+1)w(dn+1)
W n + w(dn+1) (3.24)

W n+1 = W n + w(dn+1). (3.25)

Dn is the weighted, truncated and averaged distance obtained from the first n images
and W n is the total weight obtained. w(dn+1) is the weight function defined in (3.19)
and φ(dn+1) is the function defined in (3.18) and dn+1 is the estimated distance between
the vertex and the surface seen from frame In+1

d obtained from either point-to-point or
point-to-plane.

By calculating this running average, we calculate directly the optimal signed distance
function instead of first estimating N different SDFs and then finding the optimal SDF.
Since this updating procedure is done for each vertex and the vertices does not depend on
each other, it is possible to do the calculations in parallel.

By using the depth images and the corresponding camera matrices for the Teddy bear data
set received from [20] we can estimate the signed distance function as we have described
above by using the point-to-point metric. When this is done for all 1376 images, we do
Marching Cubes and draw the triangles. The result can be seen in Figure 3.13.

3.4 Colourising

By using the colour images received from the depth sensor, it is also possible to approximate
the colours of the surface. We propose a very simple and straight forward way of estimating

42 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.13: This is the result of fusing 1376 images from the data set Teddy bear by using point-to-point
metric and doing Marching Cubes.

the colours. Each colour image contains a three dimensional vector

c = (r, g, b) (3.26)

where r is the intensity of red, g the intensity of green and b the intensity of blue. By
estimating the colour intensities for each vertex which is close enough to the surface we
can get a colourised 3D model.

The approach is simply to estimate the correct RGB-vector for each vertex. If the vertex
is close enough to the surface, then we can use the pixels coordinates (x, y) used in the
depth image to find the corresponding RGB-vector in the colour image Ic.

Algorithm 4: Approximating The Colour For A Vertex
Input: (i, j, k)

1 (x, y)← π(XL)
// Find the RGB-vector in the new colour image

2 c = Ic(x, y) ∈ R3

3 if Vijk is close to surface then
// Updating the colour intensities for vertex (i, j, k)

4 Rn+1
i,j,k = Ri,j,kn+c(0)

n+1

5 Gn+1
i,j,k = Gi,j,kn+c(1)

n+1

6 Bn+1
i,j,k = Bi,j,kn+c(2)

n+1
7 n+ +

Every time the vertex is close to the surface, we will obtain a RGB-vector from the colour
image. By computing a running average, we use the colour information from all the colour
images. The algorithm for estimating the colours is shown in Algorithm 4.

3.4. COLOURISING 43

Figure 3.14: The pixel coordinates in the depth image is used to find the colour information in the
colour image.

Another approach to update the RGB-vector for the vertices is by computing

Rn+1
i,j,k =

Rn
i,j,k + c(0)

2 (3.27)

Gn+1
i,j,k =

Gn
i,j,k + c(1)

2 (3.28)

Bn+1
i,j,k =

Bn
i,j,k + c(2)

2 . (3.29)

That way, the latest colour intensities gets a higher weight than the old intensities.

When extracting the surface, each corner is assigned a RGB-vector which gives the triangle
its colour. An example is shown in Figure 3.15.

After that this had been implemented, we got to know about a work by Whelan et al. [22]
where they also use voxel grid of the same size as the grid for the SDF to represent the
colours, however, they do it in a more refined way by not updating vertices close to surface
edges and also a more advanced weighting where they use the angle between the vertex and
the camera to weight the colours so that vertices looked more "straight on" are weighted
more than those seen from a bigger angle. This seems to give better results but to the cost
of more complexity and computational time.

44 CHAPTER 3. RECONSTRUCTION OF 3D SURFACES

Figure 3.15: An example of how the colourising works. Each corner in the triangle is assigned a rgb-
vector which will give the correct colour fro the triangle.

Summary

We have now seen different approaches to estimate the distance between a vertex Vi,j,k and
the surface, both the point-to-point metric and the point-to-plane metric. Furthermore,
we have seen how we can reduce the error in the approximation by using a weight function
and truncation of the distance.

We have also seen how to estimate a signed distance function ψn from a depth image
Ind , with a known camera matrix Pn. By applying the updating procedure described
in equation (3.24) and (3.25), we can fuse all the SDFs into one single SDF which is a
representation of the whole geometry seen so far.

We have also presented a simple approach to colourise the 3D model.

Chapter 4

Tracking

In the previous chapter we introduced a method for fusing the surfaces from the depth
images into one single 3D reconstruction. As we see in Figure 3.13, the result looks good
and the method works. However, it is based on a key assumption, that is, we must know
how the camera is rotated and translated with respect to the global coordinate system.
The reason is that we cannot estimate the distances between the surface and the vertices
without the correct camera configuration.

4.1 Introduction To the Approach

When the depth images in Figure 3.13 are fused the camera pose is already known. To
create the data set in [20] an external motion capture system was used. This gives a very
accurate estimation of the camera pose, but it is expensive and ineffective. In this work,
we aim to build a system which can do dense 3D reconstruction in real-time. Therefore,
we need a completely different approach.

In 2 we saw that there exists well studied methods such as ICP and RGB-D SLAM.
In particular, we saw that Microsoft has already presented a work called KinectFusion,
[16], which can do dense 3D reconstruction in real-time. Just as KinectFusion we will
use the signed distance function to define an error function which minimum gives us the
correct camera configuration. However, in contrast to KinectFusion, we will use the signed
distance function directly instead of using it to estimate a point cloud with ray tracing. Our
approach minimizes the error between a point cloud and the surface instead of minimizing
the error between two point clouds as in [16]. Moreover, we use the information from all
the previous images instead of just the previous image to track the camera.

The main idea is, assuming we have found the cameras C0...Cn, we make an initial guess

P0 = [R t] (4.1)

45

46 CHAPTER 4. TRACKING

Figure 4.1: The basic idea behind our approach. The surface from frame In+1
d is reconstructed in the

voxel grid, by finding the value in the SDF where a point is reconstructed, we get the distance between
the point and the surface.

for camera Cn+1 and reconstructs the point cloud from frame In+1
d by using our camera

matrix P0.

Each point will then be reconstructed somewhere in the voxel grid as seen in Figure 4.1.
From our signed distance function we can then estimate the distance between the points
and the surface. We want to find the rotation and translation of the camera Cn+1 so that
as many points as possible are reconstructed on the surface. To find the correct rotation
and translation, we define an error function where we use our SDF to find the distance
between each point reconstructed in the voxel grid and the surface

E(R, t) =
M∑
i=0

N∑
j=0
||ψ(RX + t)||2 (4.2)

R ∈ SO(3)
t ∈ R3

(i, j) ∈ In+1
d

X = ρ(i, j, In+1
d (i, j)) ∈ R3

M is the number of rows in the image
N is the number of columns in the image.

If the rotation R and the translation t are correctly estimated, then the points will be
reconstructed on the surface and

ψ(RX + t) = 0.

Thus, by minimizing (4.2), we will find the correct rotation and translation of the camera.

4.2. OPTIMISATION 47

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

200

400

600

800

1000

1200

1400

1600
Error funtion in L2

Offset from true parameter for the translation in x−direction

E
rr

or

Figure 4.2: The error is plotted with different offsets from the true value of the parameter for the
translation along the x-axis.

By using the ground truth data from [20] we can plot how the error function looks like
with different offsets from the true value, as seen in Figure 4.2.

4.2 Optimisation

To find the correct rotation R and translation t for the camera we need to minimize (4.2).

We will look at some different norms, namely L2, L1 and truncated L2. We start with the
L2-norm.

4.2.1 L2-norm

In this part we will present a method for optimizing the error function in the L2 norm.
What we want to find is the rotation and translation

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 t =

t1t2
t2

 . (4.3)

To get a more compact representation of the rotation and translation we use that a rotation
can be expressed as the exponential matrix of a skew symmetric matrix ω̂ as defined in

48 CHAPTER 4. TRACKING

chapter 2. We can shortly describe the rotation and translation by the 6-dimensional vector

ξ =



ω1
ω2
ω3
t1
t2
t3


where (ω1, ω2,ω3) defines the rotation and (t1, t2, t3) defines the translation. The translation
t as defined in chapter 2 depends on ω̂ and the vector v = (v1, v2, v3) but we write t directly.

The goal with the optimization is to find the correct parameters for the rotation ω and for
the translation t.

With help from the notation above we can rewrite the error-equation (4.2) as

E(ξ) =
M∑
i=0

N∑
j=0
||ψ(exp(ω̂)X + t)||2 (4.4)

(i, j) ∈ Id
X = ρ(i, j, Id(i, j)) ∈ R3

M is the number of rows
N is the number of columns in the image.

To get easier notation we will write

ψ(ξ) (4.5)

instead of

ψ(exp(ω̂)X + t) or ψ(RX + t). (4.6)

To minimize this function we need to find the rotation parameters ω and the translation
parameters t so that

∇E(ξ) = 0. (4.7)

This is not trivial to do by using our current error equation (4.4). Therefore we linearise
the SDF ψ around our current guess for the rotation and translation ξk. The linearisation
of ψ around ξk looks like

ψ(ξ) ≈ ψ(ξk) +∇ψ(ξk)T (ξ − ξk). (4.8)

4.2. OPTIMISATION 49

By plugging this into the equation (4.4) we get the following approximation

E(ξ) ≈
M∑
i=0

N∑
j=0
||ψ(ξk) +∇ψ(ξk)T (ξ − ξk)||22. (4.9)

Note that ψ(ξ) is also dependent on the pixel coordinates (i, j) in (4.9) since each pixel
generates a 3D point

X = ρ(i, j, Id(i, j)). (4.10)

We now aim to minimize the linearised equation (4.9) instead of the original equation
(4.2). By taking the gradient of the linearised equation (4.9) and putting it to 0 we obtain

∇E(ξ) ≈ ∇
M∑
i=0

N∑
j=0
||ψ(ξk) +∇ψ(ξk)T (ξ − ξk)||2 = (4.11)

∇
M∑
i=0

N∑
j=0

(ψ(ξk)2 + 2ψ(ξk)∇ψT (ξ − ξk) + (∇ψT (ξ − ξk))T (∇ψT (ξ − ξk))) = (4.12)

M∑
i=0

N∑
j=0

ψ(ξk)∇ψ +∇ψ∇ψTξ −∇ψ∇ψTξk = 0. (4.13)

We can now define a 6× 6 matrix A and 6× 1 vector b

A =
M∑
i=0

N∑
j=0
∇ψ(ξk)∇ψ(ξk)T (4.14)

b =
M∑
i=0

N∑
j=0

ψ(ξk)∇ψ(ξk). (4.15)

With these definitions we can reformulate (4.13) as

b + Aξ −Aξk = 0 (4.16)
⇐⇒

ξ = A−1(Aξk − b) (4.17)
⇐⇒

ξ = ξk −A−1b. (4.18)

So the vector ξ which solves

∇E(ξ) = 0 (4.19)

is

ξ = ξk −A−1b. (4.20)

50 CHAPTER 4. TRACKING

If A is a positive definite matrix, then this newly found ξ is a global minimum to our
linearised error function (4.9). Therefore we put

ξk+1 = ξk −A−1b (4.21)
as our updated guess of the rotation and translation for the camera.

However, we are seeking for the minimum of the original error function (4.2). Therefore,
when we have found ξk+1, we repeat the process and linearise ψ around ξk+1 and solve the
the same equation which gives us a new vector ξk+2.

Hence, the approach to find the camera configuration ξ for a new image frame In+1
d is to

start with an initial camera guess ξ0 and then iteratively solve the equation (4.21).

We must start reasonably close to the true minimum to find it. Therefore we need to have
a reasonable method of choosing an initial camera guess ξ0. Since depth sensors like the
Microsoft Kinect has a frame rate of 30 Hz, we can assume that the distance between two
frames will be small. Therefore, the initial camera guess is the found camera from the
previous frame Ind . By denoting the rotation and translation for the last known camera by
ξn and the rotation and translation for the camera we want to find by ξn+1 the optimisation
procedure thus looks as in Algorithm 12.

Algorithm 5: Optimising In L2

1 k = 0
// We start by initialising with the rotation and translation from the

previous camera.
2 Initialize: ξkn+1 ← ξn
3 while stop = false do
4 ξprev ← ξkn+1

// Compute the matrices A and b
5 A = ∑M

i=0
∑N
j=0∇ψ(ξkn+1)∇Tψ(ξkn+1)

6 b = ∑M
i=0

∑N
j=0 ψ(ξkn+1)∇ψ(ξkn+1)

// Update ξ

7 ξk+1
n+1 = ξkn+1 −A−1b

8 count+ +
// Check if the stop criteria is fulfilled

9 if (|ξk+1
n+1 − ξprev| < ε or count == MAX) then

10 stop = true
11 ξopt = ξk+1

n+1

12 return ξopt

The algorithm terminates either when the updated ξ change less than the threshold ε or
the number of iterations reaches its maximum. Therefore, we know that the algorithm will
always terminate. The procedure is also illustrated in Figure 4.3.

4.2. OPTIMISATION 51

Figure 4.3: By optimising the approximated error-function we iteratively find a better solution to the
original error-function.

It also important to notice that each matrix Aij we get from the pixels (i, j) will have
determinant

det(Aij) = 0. (4.22)

However,

det(
M∑
i=0

N∑
j=0

Aij) 6=
M∑
i=0

N∑
j=0

det(Aij) (4.23)

if not all matrices Aij are linearly dependent. The image is of size 640 × 480 which is
potentially 307 200 3D-points. The probability of getting a matrix A with determinant 0
is very low.

It will happen if the surface is a plane, then it is not possible to determine a unique rigid-
body motion with this tracking approach. That one can see by realizing that if the whole
surface lies in a plane, a wall for instance, then one can move the plane in a way so that
it still lies in the wall. Then the error would still be zero (ideally), the minimum will not
be unique and then the whole approach fails.

4.2.2 L1-norm

We have now seen how to optimize the error function (4.2) in the L2-norm using Taylor
expansion and the Gaussian-Newton method. The advantage with this approach is that it
is converging very fast, thus a good choice for real-time optimization. However, their are
certain drawbacks, one is that if data is very erroneous, then the noise is squared and can

52 CHAPTER 4. TRACKING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

x

M
ea

su
re

d
V

al
ue

s

Optimised In L1

(a) The fitted line using the L1-norm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

x

M
ea

su
re

d
V

al
ue

s

Optimised In L2

(b) The fitted line using the L2-norm.

have a potentially high impact. This is seen in a artificial experiment where a line is fitted
to noisy data. In the L2-norm one clearly sees how the error is affected by noise. On the
other hand, when optimising in the L1-norm, the line is much better fitted to the data.

In L2, the sum of squared errors ||y − ax + b||22 is minimised using polyfit in Matlab. In
the L1-norm the sum of absolute errors |y− ax+ b|, is minimised by using the L1−Magic
library [1].

In this part we introduce an error function using the L1 norm instead. The reason is to
investigate whether the tracking works better or not with this norm instead of the one
introduced in the previous section.

We start with defining the error function 4.2

E(ξ) =
M∑
i=0

N∑
j=0
|ψ(ξ)| (4.24)

ψ(ξ) = ψ(RX + t)
Xij = ρ(i, j, Id(i, j))

M is the number of rows in the image
N is the number of columns in the image.

The idea is the same, the rotation and translation ξ of the camera shall ideally reconstruct
all the points for the frame Id on the surface, giving an error of 0.

How the error function might look like is illustrated in Figure 4.4.

4.2. OPTIMISATION 53

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
rr
or

Offset from true parameter for the translation in x−direction

Error funtion in L1

Figure 4.4: The error function in the L1-norm where the error corresponds to the offset from the true
parameter.

We can with help from (4.24) formulate the optimization problem as

min
ξ

M∑
i=0

N∑
j=0
|ψ(ξ)|. (4.25)

The problem now is to find a way of optimizing (4.24). One of the problems is that
|ψ(ξ)| will not be differentiable everywhere. A common approach is described by Pock and
Chambolle in [8] where they solve error functions in the L1 norm by using the so called
primal-dual algorithm. In [8] they are solving variational problems, which means the goal
is to find a functional which minimizes the error function. In this work we are searching
for parameters which minimizes a function.

To get an optimization problem we can solve, we start by realising that

|ψ(ξ)| = max
|p|≤1

(pψ(ξ)). (4.26)

Substituting this into the equation (4.24) yields

E(ξ) =
M∑
i=0

N∑
j=0

max
|pij |≤1

(pijψ(ξ)). (4.27)

Then we see that

max
|pij |≤1

M∑
i=0

N∑
j=0

(pijψ(ξ)) ≤
M∑
i=0

N∑
j=0

max
|pij |≤1

(pijψ(ξ)). (4.28)

54 CHAPTER 4. TRACKING

By observing that the solution to

max
|p|≤1

(pψ(ξ)) (4.29)

is

p = ψ(ξ)
|ψ(ξ)| if ψ(ξ) 6= 0 (4.30)

we get

max
|pij |≤1

M∑
i=0

N∑
j=0

pijψ(ξ) = (4.31)

M∑
i=0

N∑
j=0

ψ(ξ)
|ψ(ξ)|ψ(ξ) = (4.32)

M∑
i=0

N∑
j=0

max
|pij |≤1

(pijψ(ξ)), (4.33)

if ψ(ξ) 6= 0.

Since we have equality in equation (4.28), we can formulate our original problem (4.25) as
a primal-dual problem

min
ξ

max
|pij |≤1

M∑
i=0

N∑
j=0

pijψ(ξ). (4.34)

A more general and similar optimisation problem is presented in [8] and [17]

min
x∈C

max
y∈K
〈Ax, y〉+ 〈g, x〉 − 〈h, y〉 (4.35)

where X and Y are finite dimensional vector spaces, C ⊂ X and K ⊂ Y . A is a linear
continuous operator and 〈g, x〉 and 〈h, y〉 are point wise linear terms.

This formulation is widely used in the computer vision community when it comes to vari-
ational problems such as denoising and image segmentation etc.

The difference between a variational optimization problem and our is that in a variational
problem the elements in X and Y are functionals, in our optimization problem X = R6

and Y = R. A method for solving these kinds of problems is presented in [17] and the
algorithm looks like in Algorithm 6.

Where ΠK and ΠC projects the variables y and x back to K and C which are convex and
closed subsets which the parameters x and y shall lie in. In our case ξ ∈ R6 and pij ∈
{x ∈ R : |x| ≤ 1}. Another comment about the algorithm above is that one is alternating
between gradient ascent and steepest descent to find the saddle-point. In the first row, one

4.2. OPTIMISATION 55

Algorithm 6: Optimisation Algorithm For Primal-Dual
1 Initialization: Choose τ, σ > 0, θ ∈ [0, 1]
2 Choose (x0, y0) ∈ C ×K
3 Iterations (n ≥ 0): Update xn, yn, x̃n as follows:

yn+1 = ΠK(yn + σ(Ax̃n − h))
xn+1 = ΠC(xn − τ(A∗yn+1 + g))
x̃n+1 = 2xn+1 − xn

takes a step in the direction of steepest ascent and in the second one takes a step in the
direction of steepest descent. That is

∇y(〈Ax̃, y〉+ 〈g, x̃〉 − 〈h, y〉) = Ax̃− h (4.36)
−∇x(〈Ax, y〉+ 〈g, x〉 − 〈h, y〉) = −(A∗y + g). (4.37)

The third line in Algorithm 6 is an extrapolation step which guarantees convergence.

Our optimization looks as follows

min
ξ

max
pij

|pij |≤1

M∑
i=0

N∑
j=0

ψ(ξ)pij. (4.38)

We see thatA is the identity operator I and h and g are 0. However, it is not straightforward
to implement the optimization procedure because our term ψ(ξ)pij is not linear in ξ.
Therefore, we again linearise around our current guess ξk

ψ(ξ)pij ≈ (ψ(ξk) +∇ξkψT (ξ − ξk))pij. (4.39)

Now it is linear in ξ and pij and the gradients are

∇pij
((ψ(ξ̃k) +∇

ξ̃
kψT (ξ̃ − ξ̃k))pij) = ψ(ξ̃k) +∇

ξ̃
kψT (ξ̃ − ξ̃k) (4.40)

∇ξ((ψ(ξk) +∇ξkψT (ξ − ξk))pij) = ∇ξkψpij. (4.41)

By using this linearisation and these gradients we can adjust the proposed method for our
optimization problem and our alorithm is illustrated in Algorithm 7.

Since we do not have any constraints on the set which ξ shall belong to, no reprojection
is needed. For the dual variables pij, we project them back to K = {x ∈ R : |x| ≤ 1} as
shown in Algorithm 8.

As initialization for ξ, we again start from the previous known camera position. For the
dual p, it is initialized as a zero-matrix of dimension M ×N , which is the same size as the
image.

56 CHAPTER 4. TRACKING

Algorithm 7: Our Algorithm for Primal-Dual
1 Initialization: Choose τ, σ > 0

// p is a matrix of the same size as the image
2 Choose (ξ0

n+1,p0) ∈ R6 × RM×N

3 Iterations (k > 0):
4 Update ξkn+1, p

k
ij, ξ̃

k

n+1 as follows:

pk+1
ij = ΠK(pkij + σ((ψ(ξ̃k) +∇

ξ̃
kψT (ξ̃k − ξ̃k))) =

ΠK(pkij + σ(ψ(ξ̃k)))
ξk+1
n+1 = ξkn+1 − τ(∑M

i=0
∑N
j=0 p

k+1
ij ∇ψ(ξkn+1))

ξ̃
k+1 = 2ξk+1

n+1 − ξkn+1

Algorithm 8: Projection Function
1 ΠK :
2 if pij < −1 then
3 pij = −1
4 if pij > 1 then
5 pij = 1

4.2. OPTIMISATION 57

This is then updated iteratively until we reach the stopping criterion. For the stopping
criteria we define the gap δ as the difference between the error for the original error function
and the one we are minimising

δ = |
M∑
i=0

N∑
j=0
|ψ(ξ)| −

M∑
i=0

N∑
j=0

pi,jψ(ξ)|. (4.42)

We save the old δold and compare it with updated gap δ. If the difference

|δ − δold| < ε (4.43)

then the algorithm terminates, or when the number of iterations reaches its maximum we
also stop.

The reason we choose this stopping criteria is that the difference

|
M∑
i=0

N∑
j=0
|ψ(ξ)| −

M∑
i=0

N∑
j=0

pi,jψ(ξ)| (4.44)

will converge to 0 since we are maximising with respect to p. How the final optimisation
algorithm for L1 looks like is shown in Algorithm 9.

Algorithm 9: Optimise In L1

1 count← 0
// Initialise with the last known camera configuration

2 ξ0 ← ξn

3 ξ̃
0 ← ξ0

// p is initialised as a zero matrix of the same size as the image
4 p0 ← 0
5 while stop is true do
6 δprev = δ

7 pk+1
ij = ΠK(pkij + σ(ψ(ξ̃k))) // ψ(ξ̃k) is also dependent on (i, j)

8 ξk+1 = ξk − τ(∑M
i=0

∑N
j=0 p

k+1
ij ∇ψ(ξk))

9 ξ̃
k+1 = 2ξk+1 − ξk

// Compute the gap
10 δ = |∑M

i=0
∑N
j=0 |ψ(ξk+1)| −∑M

i=0
∑N
j=0 pi,jψ(ξk+1)|

11 if (|δ − δprev| ≤ ε || count == MAX) then
12 stop = false
13 return ξk+1

58 CHAPTER 4. TRACKING

4.2.3 Truncated L2-norm

Since we will get noise from the images it might be interesting to see whether we can
improve the tracking by truncation of the L2 norm. The idea is quite simple, assume we
have an error function

E(x) =
N∑
i=0
||r(x)||22 (4.45)

we want to minimize in the L2-norm where

r : RN → R. (4.46)

By looking at Figure 4.4b, we can see that for some measures the error is big and will have
a big impact on the solution. In the truncated L2, we simply reject those errors which are
above a certain threshold δ. Thus, (4.45) would look like

E(x) =
N∑
i=0
||r(x)||22 (4.47)

subject to: ||r(x)||2 < δ.

The idea is that errors shall not affect the solution. In our case, we consider only points
which are reconstructed within a threshold δ from the surface and the others will be
rejected. Except from that, the optimisation procedure is the same as for L2.

4.3 Summary

We have in this chapter presented 3 different methods to track the camera movement
directly using the 3D model, namely optimising in the L2-norm, L1-norm and the truncated
L2-norm. All these methods works iteratively, we linearise the SDF ψ around the current
camera guess ξk and optimise the linearised error function and then finds a better guess
ξk+1 which we use in the next iteration.

Chapter 5

Experimental Results

In this part we will evaluate the tracking against different benchmarks from [20]. All
different norms will be evaluated together with different error metrics. The purpose is
to see which of the norms and metrics gives the best results and to find out where the
tracking has problems. A comparison between KinFu, [2], and RGB-D SLAM, [11], will
also be done. To calculate the absolute trajectory error between the ground truth and our
estimated trajectory we use a script provided by [20]. It will also be demonstrated how our
method works using live data. For the point-to-point metric we use the simplified version
where only the difference along the principal axis is calculated.

5.1 Qualitative Results

Here we start with showing some examples from live data to demonstrate that the procedure
really works. We will show results both with and without colours, also we will demonstrate
that both the point-to-point metric and the point-to-plane metric works. We will here only
consider L2, since the primal − dual algorithm is implemented on the CPU and not fast
enough for real-time reconstruction. The L2 optimisation is on the other hand implemented
on a GPU and works therefore much faster. The evaluation will be made on a computer
with the graphic card GeForce GTX 560 Ti, which has 340 cores and 1 GB of memory.

It has also been found empirically that the tracking works slightly better when one calcu-
lates the matrices Aij and bij only for those points ρ(i, j, Id(i, j)) which are reconstructed
in voxels which have a weight larger than zero. For all results here, the matrices Aij and
bij are only calculated for those points which are reconstructed in voxels with weight larger
than zero.

With the point-to-point metric and without any colourising and a resolution of 2563 vertices
in the voxel grid, the algorithm performs on average a frame-rate of 60 Hz. As a comparison,
the open-source Kinfu-implementation performs on about 15 Hz on the same computer.

59

60 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: A 3D reconstruction made by point-to-point metric and 2563 vertices.

An example of a how a 3D reconstruction might look like from our system is shown in
Figure 5.1. By including colours the result looks much better. The speed is slowed down
a bit but performs still above 40 Hz. The result of the same scene is demonstrated in
Figure 5.2. To colourise the surface in Figure 5.2 we used the alternative method presented
in 3.4, where the last image has a higher weight.

An example which shows the accuracy of the tracking is shown in Figure 5.3, where a
reconstruction of the screen is made. On the screen the colour image which shows what
the camera sees is shown. In that colour image one can actually see the screen again and
even on that screen one can see the structures of what is on the screen. Also here we used
the alternative approach where the last colour image has a higher weight than the others
to estimate the colours, otherwise the image on the screen would be smeared out.

Especially, if we look at the trajectory in Figure 5.4, we can see that the camera is moving
quite a lot and it is not always facing the screen. Nonetheless, the colourising gives very
good results, which shows the accuracy of the tracking. Especially the borders on the
terminals are sharp, even the terminals on the screen in the colour image.

Also by using point-to-plane and colourise using a running average one does also obtain
nice 3D reconstructions. This is well illustrated in Figure 5.6. If one does not filter the
image to calculate the normals, also the point-to-plane metric works well above 40 Hz.

For larger volumes it does also works good, in Figure 5.5 the point-to-point metric is used.

5.1. QUALITATIVE RESULTS 61

Figure 5.2: A colourised 3D-model.

Figure 5.3: A coloured reconstruction of the screen, where one can see the screen again in the colour
image in the right corner. Notice that the borders of the terminals on the screen are sharp. Even for the
terminals on the image of the screen in the lower right corner.

62 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.4: The estimated trajectory of the camera, in the left part, the camera does not see the screen.

Figure 5.5: A large scale reconstruction of a lab.

5.2. L2-NORM 63

Figure 5.6: Using point-to-plane and a running average of the colours, this 3D reconstruction is obtained.
If one looks at the screen one can see another 3D reconstruction of the author.

5.2 L2-Norm

We have in the previous part seen that our approach works fine. Both with point-to-plane
metric and point-to-point metric, also the colourising works good.

In this part we evaluate how the tracking works for the L2-norm. The tracking will be
tested both by using the point-to-point metric and the point-to-plane metric. Furthermore,
we will test the tracking with different resolutions on the voxel grid. To get consistency
in the tests, the variables for the truncation δ and the distance ε we go behind the surface
before the uncertainty decreases are kept constant. The image will also be filtered using
our implementation with a mask size of 5× 5 and a threshold of 5 cm

δ = 0.3 m
ε = 0.025 m.

To compare our method with KinectFusion, we use the PCL-implementation called KinFu
available from [2] and the evaluation tool which comes with it. We will use the benchmarks
provided by Sturm et al [20] together with the evaluation tool for calculating the absolute
trajectory error between the estimated trajectory and the ground truth.

To get a fair comparison the size of the volume is the same for both our method and for
KinFu for each dataset. We do change the size between the datasets since the datasets
covers surfaces of different sizes. But for each dataset, the size of the volume is the same.
The same holds for the starting position which is adjusted between the datasets, but kept
constant for each dataset so that both KinFu and our method starts from the same position.

64 CHAPTER 5. EXPERIMENTAL RESULTS

(a) The depth image from the Teddy bear
set.

(b) The resulting 3D-reconstruction from
KinFu, the bear is gone.

(c) The teddy bear reconstructed using
our method.

Figure 5.7: Here one can see the difference between our method and Kinfu. In 2.3a one can see what
the camera sees and in 5.7b the resulting reconstruction. In 5.7c one can see the reconstruction using our
method. Our reconstruction is after 1376 images and the KinFu after about 1200 images.

We will use quite challenging datasets to really test the algorithms so we can find out where
the problems are and to see what strengths and weaknesses the different approaches have.

By looking at how the scene looks like for the KinFu algorithm in Figure 5.7b and how it
looks for our in Figure 5.7c, one can clearly see the difference.

Here we show the results in Table 5.1 and Table 5.2 for the evaluation of our method and
KinFu for different datasets. Only the Root Mean Square Error for the estimated trajectory
is presented, the interested reader can find more detailed results in the appendix where we
also compare our method to RGB-D SLAM.

From the evaluation, it is clear that our method outperforms KinFu in practically every
aspect.

On the harder datasets Teddy, Room and Desk2, our method manage to estimate the
trajectory with a much lower error than KinFu. Interesting is that we outperform KinFu
without using standard methods like coarse-to-fine manner and we do not have a real
bilateral filter.

One can also observe that the results are typically better for a resolution of 2563 vertices

5.3. L1-NORM 65

Method Res. Teddy F1 Desk F1 Desk2 Room
KinFu 256 0.155356 m 0.058550 m 0.425655 m Failed
KinFu 512 0.314937 m 0.067729 m 1.069398 m Failed
Point-To-Plane 256 0.076112 m 0.094144 m 0.226816 m 0.266557 m
Point-To-Plane 512 0.142598 m 0.143094 m 0.257331 m 0.105750 m
Point-To-Point 256 0.089038 m 0.036481 m 0.058547 m 0.186188 m
Point-To-Point 512 0.124477 m 0.037537 m 0.065838 m 0.071330 m

Table 5.1: The root-mean square absolute trajectory error for KinFu and our method for different
resolutions, metrics and datasets.

Method Res. F2 Desk With Person F2 Long Office Household
KinFu 256 0.060193 m 0.061833 m
KinFu 512 0.056934 m 0.060245 m
Point-To-Plane 256 0.079959 m 0.054150 m
Point-To-Plane 512 0.088280 m 0.055974 m
Point-To-Point 256 0.069734 m 0.036943 m
Point-To-Point 512 0.073863 m 0.039027 m

Table 5.2: The root-mean square absolute trajectory error for KinFu and our method for different
resolutions, metrics and datasets.

than for 5123 vertices. Since a higher resolution yields a more accurate signed distance
function, one could expect that the tracking would work better. A possible explanation to
why a lower resolution works better is that it is less sensitive to local minima. When the
resolution increases one can also expect that there are more finer details which can result
in local minima for the error function.

The results also shows that the point-to-point metric is more stable and in general better
than the point-to-plane metric.

5.3 L1-Norm

When the L1-norm was evaluated it turned out to be much harder to find the trajectory
than for L2. It is necessary to assign τ a value in the size of 10−6, otherwise the primal-
dual algorithm will not converge. Since τ is that small, ξk will not change much in each
iteration, meaning that many iterations are needed to find the next camera.

Therefore it takes much more time to optimise in the L1-norm. Another problem is that
the tracking seems to work fine in the beginning but eventually, it diverges as can be seen
in Figure 5.8 where the primal-dual algorithm was tested against the F1 Desk dataset.

The same problem occurs when it is tested against the dataset Long Office Household as

66 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.8: The tracking using the L1 drifts away.

Figure 5.9: The estimated trajectory is shown in the red, blue and green marks and the ground truth is
the white, yellow and pink, it is clear that the tracking diverges but works ok in the beginning.

seen in Figure 5.9. Testing the L1-norm against the benchmark F1 XYZ, the trajectory
was successfully estimated as can be seen in Figure 5.10a and Figure 5.10b.

The results for the L1-norm was not as good as expected. The fact that one had to take
very small steps in the direction of the gradient made the runtime very long. L1 also seems
to drift away easier than L2.

5.4 Truncated L2

To investigate if the results could be improved by truncation of the L2-norm, we tested the
truncated L2 against some different datasets, both for point-to-point metric and point-to-
plane metric and the results are in Table 5.3 and Table 5.4.

5.4. TRUNCATED L2 67

(a) The dataset successfully reconstructed
by the primal-dual algorithm.

(b) The estimated trajectory in blue fol-
lows the trajectory in white.

Dataset Res. Trunc. RMSE Std Dev Max Error Min Error
Teddy 512 0.1 m 1.01298 m 0.41117 m 1.80178 m 0.28277 m
Teddy 512 0.2 m 0.14382 m 0.07860 m 0.44254 m 0.01318 m
Teddy 512 None 0.12448 m 0.05913 m 0.34131 m 0.00678 m
F1 Desk 2 512 0.1 m 0.18981 m 0.14859 m 0.84877 m 0.00784 m
F1 Desk 2 512 0.2 m 0.10414 m 0.04533 m 0.23536 m 0.01334 m
F1 Desk 2 512 None 0.06584 m 0.03430 m 0.20156 m 0.00241 m
Room 512 0.1 m 0.26996 m 0.12080 m 0.50018 m 0.05997 m
Room 512 0.2 m 0.17158 m 0.07662 m 0.31386 m 0.00643 m
Room 512 None 0.07133 m 0.02769 m 0.18187 m 0.00873 m

Table 5.3: This table shows the result for truncated L2 using point-to-point metric.

Dataset Res. Trunc. RMSE Std Dev Max Error Min Error
Teddy 512 0.1 m 0.44314 m 0.22955 m 1.45429 m 0.07075 m
Teddy 512 0.2 m 0.12755 m 0.08003 m 0.42613 m 0.01120 m
Teddy 512 None 0.14260 m 0.08811 m 0.52492 m 0.01221 m
F1 Desk 2 512 0.1 m 0.37171 m 0.15267 m 0.86153 m 0.04778 m
F1 Desk 2 512 0.2 m 0.47499 m 0.23962 m 0.97972 m 0.05007 m
F1 Desk 2 512 None 0.25733 m 0.11550 m 0.52659 m 0.03097 m
Room 512 0.1 m 0.28102 m 0.13475 m 0.49279 m 0.04168 m
Room 512 0.2 m 0.10246 m 0.03965 m 0.21474 m 0.00843 m
Room 512 None 0.10575 m 0.03850 m 0.20966 m 0.00708 m

Table 5.4: This table shows the result for truncated L2 using point-to-plane metric.

The results for the truncated L2 indicates that the truncations do not give better results.
The trend is clearly that the closer the truncation gets to the original threshold of 0.3 m,
the better the result gets. For the point-to-plane metric one can see a small improvement

68 CHAPTER 5. EXPERIMENTAL RESULTS

for a truncation of 0.2 m for some of the datasets, but in general the results shows that
a truncated norm does not improve the results. An explanation might be that when the
tracking drifts away a bit, the 3D points for the next frame will be reconstructed further
away from the surface. If we then truncate, there might be to few 3D points inside the
truncated zone to find the correct configuration, leading to that also that camera gets a
bad configuration, eventually leading to a failure of the tracking.

Chapter 6

Conclusion And Future Work

We have in this work showed that our method gives clearly better results than the Kinect-
Fusion approach and it is also more robust, especially for reconstruction of larger scenes.
We perform on about the same level as RGB-D SLAM when it comes to tracking. Fur-
thermore we have shown a simple method to involve colours on the surface which gives
good results. This is without doing coarse-to-fine manner or using real bilateral filters.
Therefore future work would be to implement both coarse-to-fine manner and to use a real
bilateral filter.

Since we have introduced colours, another interesting direction would be to include colours
in the tracking to make it more stable against planar structures and more accurate since
that would include more information.

It would also be interesting to represent the SDF using octrees instead of a voxel grid,
theoretically it would be possible to represent free space with a lower resolution and the
space close to the surface with a higher resolution. This will be more memory efficient
than using a voxel grid. That would make it possible to do a more accurate reconstruction
of larger environments.

69

70 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] l1-magic library. http://users.ece.gatech.edu/~justin/l1magic/. Accessed:
07/11/2012.

[2] Open source kinfu implementation. http://svn.pointclouds.org/pcl/trunk/. Ac-
cessed: 07/11/2012.

[3] J. A. Bærentzen. On the implementation of fast marching methods for 3D lattices,
2001.

[4] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14(2):239–256, February 1992.

[5] Gérard Blais and Martin D. Levine. Registering multiview range data to create 3d
computer objects. IEEE Transactions on Pattern Analysis And Machine Intelligence,
17:820–824, 1993.

[6] José-Luis Blanco. A tutorial on se(3) transformation parameterizations and on-
manifold optimization. Technical report, University of Malaga, September 2010.

[7] Paul Bourke. Polygonising a scalar field. http://paulbourke.net/geometry/
polygonise/, 1994. Accessed: 07/11/2012.

[8] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging, 2010.

[9] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range
images. Image Vision Comput., 10(3):145–155, April 1992.

[10] Brian Curless and Marc Levoy. A volumetric method for building complex models from
range images. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 303–312, New York, NY, USA, 1996.
ACM.

[11] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evalu-
ation of the RGB-D SLAM system. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), St. Paul, MA, USA, May 2012.

71

72 BIBLIOGRAPHY

[12] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction
using a moving depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, UIST ’11, pages 559–568, New York, NY,
USA, 2011. ACM.

[13] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors, 12(2):1437–1454, 2012.

[14] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. Computer Graphics, 21(4):163–169, 1987.

[15] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3D Vision: From Images
to Geometric Models. Springer Verlag, 2003.

[16] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In ISMAR,
pages 127–136, 2011.

[17] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing
the piecewise smooth mumford-shah functional. In IEEE International Conference on
Computer Vision (ICCV), Kyoto, Japan, 2009.

[18] Daniel Ricao Canelhas. Scene representation, registration and objectdetection in a
truncated signed distance functionrepresentation of 3d space. Master’s thesis, Örebro
University, School of Science and Technology, Örebro University, Sweden, 2012.

[19] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In
Third International Conference on 3D Digital Imaging and Modeling (3DIM), June
2001.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Pro-
ceedings of the Sixth International Conference on Computer Vision, ICCV ’98, pages
839–846. IEEE Computer Society, 1998.

[22] T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J.B. McDonald. Robust
tracking for real-time dense RGB-D mapping with Kintinuous. Technical Report
MIT-CSAIL-TR-2012-031, Computer Science and Artificial Intelligence Laboratory,
MIT, Sep 2012.

BIBLIOGRAPHY 73

[23] Kai M. Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: A probabilistic, flexible, and compact 3d map representation for
robotic systems. In In Proc. of the ICRA 2010 workshop, 2010.

74 BIBLIOGRAPHY

Chapter 7

Appendix

In this appendix we present a more detailed evaluation of our method. We compare our
method with both KinFu and RGB-D SLAM. The results show that we outperform KinFu
and we perform almost on the same level as RGB-D SLAM.

Teddy Res. RMSE Std Dev Max Error Min Error
Kinfu 256 0.155356 m 0.064906 m 0.666333 m 0.014715 m
Kinfu 512 0.314937 m 0.157922 m 0.814632 m 0.006704 m
Point-To-Plane 256 0.076112 m 0.026049 m 0.188383 m 0.004002 m
Point-To-Plane 512 0.142598 m 0.088109 m 0.524915 m 0.012211 m
Point-To-Point 256 0.089038 m 0.031064 m 0.215403 m 0.012309 m
Point-To-Point 512 0.124477 m 0.059128 m 0.341314 m 0.006778 m

Table 7.1: The results for the tracking on the dataset Teddy. Clearly, our approach here outperforms
KinFu.

F1 Desk Res. RMSE Std Dev Max Error Min Error
KinFu 256 0.058550 m 0.033446 m 0.213222 m 0.008404 m
KinFu 512 0.067729 m 0.041765 m 0.239925 m 0.013357 m
Point-To-Plane 256 0.094144 m 0.063969 m 0.376336 m 0.004752 m
Point-To-Plane 512 0.143094 m 0.100204 m 0.467883 m 0.004953 m
Point-To-Point 256 0.036481 m 0.016181 m 0.111886 m 0.005357 m
Point-To-Point 512 0.037537 m 0.018140 m 0.176459 m 0.002704 m

Table 7.2: The results for the tracking on the dataset Desk. Also here our method works better than
the KinFu when using point-to-point metric.

75

76 CHAPTER 7. APPENDIX

F1 Desk2 Res. RMSE Std Dev Max Error Min Error
KinFu 256 0.425655 m 0.344616 m 1.598357 m 0.063352 m
KinFu 512 1.069398 m 0.563465 m 2.381280 m 0.137786 m
Point-To-Plane 256 0.226816 m 0.081262 m 0.391790 m 0.013364 m
Point-To-Plane 512 0.257331 m 0.115499 m 0.526585 m 0.030968 m
Point-To-Point 256 0.058547 m 0.034641 m 0.189066 m 0.002457 m
Point-To-Point 512 0.065838 m 0.034304 m 0.201560 m 0.002405 m

Table 7.3: The results for the tracking on the dataset Desk2 is clearly better for our method. In particular
for the point-to-point metric.

Room Res. RMSE Std Dev Max Error Min Error
Kinfu 256 Failed Failed Failed Failed
Kinfu 512 Failed Failed Failed Failed
Point-To-Plane 256 0.266557 m 0.128407 m 0.488320 m 0.032583 m
Point-To-Plane 512 0.105750 m 0.038497 m 0.209663 m 0.007082 m
Point-To-Point 256 0.186188 m 0.084997 m 0.357137 m 0.022757 m
Point-To-Point 512 0.071330 m 0.027691 m 0.181868 m 0.008730 m

Table 7.4: The results for the tracking on the dataset Room, KinFu loses track completely. Interesting
here is that point-to-point and point-to-plane works better for a higher resolution. In other tests, a
resolution of 256 has given better results.

F2 Desk
With Person Res. RMSE Std Dev Max Error Min Error
KinFu 256 0.060193 m 0.032140 m 0.346967 m 0.008885 m
KinFu 512 0.056934 m 0.026122 m 0.351091 m 0.006457 m
Point-To-Plane 256 0.079959 m 0.039748 m 0.257505 m 0.007386 m
Point-To-Plane 512 0.088280 m 0.043563 m 0.270965 m 0.002652 m
Point-To-Point 256 0.069734 m 0.032211 m 0.201468 m 0.006958 m
Point-To-Point 512 0.073863 m 0.028920 m 0.265489 m 0.009842 m

Table 7.5: Tracking against the scene Desk With Person with a moving person in it. All methods gives
good results, even though the assumption is a static environment.

77

F3 Long Office Res. RMSE Std Dev Max Error Min Error
Household
KinFu 256 0.061833 m 0.036903 m 0.176655 m 0.006411 m
KinFu 512 0.060245 m 0.034988 m 0.156623 m 0.005090 m
Point-To-Plane 256 0.054150 m 0.030793 m 0.143606 m 0.003244 m
Point-To-Plane 512 0.055974 m 0.031606 m 0.150762 m 0.003207 m
Point-To-Point 256 0.036943 m 0.019271 m 0.114775 m 0.003208 m
Point-To-Point 512 0.039027 m 0.020543 m 0.124296 m 0.003849 m

Table 7.6: Tracking against the dataset Long Office Household gives good results for all methods. Again,
our method with point-to-point gives clearly better result than KinFu.

Teddy Res. RMSE Std Dev Max Error Min Error
RGB-D SLAM 0.110657 0.049863 m 0.336505 m 0.010821 m
Kinfu 256 0.155356 m 0.064906 m 0.666333 m 0.014715 m
Kinfu 512 0.314937 m 0.157922 m 0.814632 m 0.006704 m
Point-To-Plane 256 0.076112 m 0.026049 m 0.188383 m 0.004002 m
Point-To-Plane 512 0.142598 m 0.088109 m 0.524915 m 0.012211 m
Point-To-Point 256 0.089038 m 0.031064 m 0.215403 m 0.012309 m
Point-To-Point 512 0.124477 m 0.059128 m 0.341314 m 0.006778 m

Table 7.7: Against the dataset Teddy, our method performs better than the other two.

F1 Desk Res. RMSE Std Dev Max Error Min Error
RGB-D SLAM 0.025831 m 0.011497 m 0.079256 m 0.004203 m
KinFu 256 0.058550 m 0.033446 m 0.213222 m 0.008404 m
KinFu 512 0.067729 m 0.041765 m 0.239925 m 0.013357 m
Point-To-Plane 256 0.094144 m 0.063969 m 0.376336 m 0.004752 m
Point-To-Plane 512 0.143094 m 0.100204 m 0.467883 m 0.004953 m
Point-To-Point 256 0.036481 m 0.016181 m 0.111886 m 0.005357 m
Point-To-Point 512 0.037537 m 0.018140 m 0.176459 m 0.002704 m

Table 7.8: Against the dataset Desk, RGB-D SLAM performs better than the other methods, followed
by our method with point-to-point metric.

78 CHAPTER 7. APPENDIX

F1 Desk2 Res. RMSE Std Dev Max Error Min Error
RGB-D SLAM 0.042558 m 0.023261 m 0.183123 m 0.000991 m
KinFu 256 0.425655 m 0.344616 m 1.598357 m 0.063352 m
KinFu 512 1.069398 m 0.563465 m 2.381280 m 0.137786 m
Point-To-Plane 256 0.226816 m 0.081262 m 0.391790 m 0.013364 m
Point-To-Plane 512 0.257331 m 0.115499 m 0.526585 m 0.030968 m
Point-To-Point 256 0.058547 m 0.034641 m 0.189066 m 0.002457 m
Point-To-Point 512 0.065838 m 0.034304 m 0.201560 m 0.002405 m

Table 7.9: Against the dataset Desk2, RGB-D SLAM performs better than the other methods, followed
by our method with point-to-point metric.

F2 Desk
With Person Res. RMSE Std Dev Max Error Min Error
RGB-D SLAM 0.069705 m 0.016015 m 0.109066 m 0.021789 m
KinFu 256 0.060193 m 0.032140 m 0.346967 m 0.008885 m
KinFu 512 0.056934 m 0.026122 m 0.351091 m 0.006457 m
Point-To-Plane 256 0.079959 m 0.039748 m 0.257505 m 0.007386 m
Point-To-Plane 512 0.088280 m 0.043563 m 0.270965 m 0.002652 m
Point-To-Point 256 0.069734 m 0.032211 m 0.201468 m 0.006958 m
Point-To-Point 512 0.073863 m 0.028920 m 0.265489 m 0.009842 m

Table 7.11: Against the dataset Desk With Person, with a moving person in the scene, all methods
performs well. RGB-D SLAM outperforms the other methods with respect to maximal error.

Room Res. RMSE Std Dev Max Error Min Error
RGB-D SLAM 0.101165 m 0.070696 m 0.436558 m 0.005000 m
Kinfu 256 Failed Failed Failed Failed
Kinfu 512 Failed Failed Failed Failed
Point-To-Plane 256 0.266557 m 0.128407 m 0.488320 m 0.032583 m
Point-To-Plane 512 0.105750 m 0.038497 m 0.209663 m 0.007082 m
Point-To-Point 256 0.186188 m 0.084997 m 0.357137 m 0.022757 m
Point-To-Point 512 0.071330 m 0.027691 m 0.181868 m 0.008730 m

Table 7.10: Against the dataset Room, our method with point-to-point metric performs the best.

Master’s Theses in Mathematical Sciences 2012:E41

ISSN 1404-6342

LUTFMA-3235-2012

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	exjobb
	erik_bylow_exjobb.pdf
	exjobb

