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Abstract 
 
When timber is used as a building material a connection is required between the elements in 
order to transfer the load. A typical connection is the steel to timber joint with nail as 
connectors. These connections can fail in ductile manner, causing the nails to reach their 
plastic moment capacity, or in brittle manner so called plug shear failure, causing the timber 
to fail in combined tension and shear failure of the different faces of the plug.  
 
The Eurocode standard for calculating the ductile resistance for one shear plane steel- to 
timber connections with nail as fasteners is derived from Johansen’s theory. It divides five 
failure modes in two groups. Thick steel plate group and thin steel plate group. The criterion 
for the groups depends on the thickness of the steel plate used in relation to the fasteners 
diameter. If a plate is neither thin nor thick according to Eurocode linear interpolation of the 
resistance is allowed. The plug shear formulation in Eurocode separates the tension and shear 
resistance in such way that the higher of the two will decide the resistance of the joint. 
 
Seven different ductile nail patterns were designed in order to compare the test results with 
the Eurocode formulations and a simulation model which is based on the Johansen’s yield 
theory. The joints used both 2.5 and 5mm steel plates with 4mm in diameter nails making the 
patterns that use 2.5mm plates to count as joints that require interpolation of the resistance 
according to Eurocode. 
 
After testing all the ductile patterns it was shown that the 2.5mm plate joints had the same, 
and in some cases, higher failure load than their 5mm joint counterparts. The plastic hinges in 
the 2.5mm joints were formed at the same location as if a thick steel plate was used even 
though the 2.5mm plate was closer to the thin plate border of 2mm. Furthermore, nail spacing 
parallel to the grain did not seem to influence the resistance of the joint even though it should 
be reduced due to the risk of premature splitting along the line of the nails. 
 
In order to evaluate the current plug shear formulation in Eurocode and to develop an 
alternative formulation for plug shear failure, six plug shear patterns and three border patterns 
were designed. After testing all the patterns a nail density limit, where the patterns start to fail 
in plug shear, was discovered at around 600-700mm2/nail. The density of the timber seemed 
to influence the failure load in some patterns when plug shear failure occurred. With help of 
Matlab a formulation was designed with the data from this thesis test results combined with 
plug shear data from Johansson’s report. 
 
This new formulation includes the density of the timber and the different faces of the assumed 
timber plug with coefficients in front of them determined from the curve fitting solver 
function in Matlab.  
 
The stiffness theory which was proposed after observing the experimental test on plug shear 
joints seemed to capture important parameters in its formulation. It was considered to be a 
good candidate to predict the failure load when plug shear failure occurs.  
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Sammanfattning 
 
När trä används som byggnadsmaterial måste de olika elementen förbindas för att lasten ska 
kunna överföras. Ett typsikt förband är ett stålplåtsförband med spikar som förbindare. Dessa 
förband kan gå till duktilt brott, vilket resulterar i att spikarnas plastiska momentkapacitet 
uppnås, eller i sprött brott (träklossbrott), vilket innebär att träet går till brott i kombinerat 
drag- och skjuvbrott av de olika sidorna av klossen. 
 
Normen i Eurocode för beräkning av den duktila hållfastheten för stålplåtsförband i ett 
skjuvplan är härlett från Johansens teori. Normen innefattar fem brottmoder uppdelade i två 
grupper, tjockplåtsgruppen och tunnplåtsgruppen. Kriteriet för grupperna beror på plåtens 
tjocklek i relation till förbindarens diameter. Om en plåt är varken tjock eller tunn enligt 
Eurocodes norm är det tillåtet att interpolera linjärt för att få fram hållfastheten. Enligt normen 
för klossbrott separeras drag- och skjuvhållfastheten så att den högre av de två bestämmer 
hållfastheten för förbandet.   
 
Sju olika duktila spikmönster skapades för att kunna jämföra provningsresultaten med 
normerna i Eurocode och en simuleringsmodell baserad på Johansens teori. Förbanden 
byggdes med både 2.5mm och 5mm tjock stålplåt med 4mm spikdiameter, vilket innebar att 
förbanden med 2.5mm tjock stålplåt kom att räknas som förband som kräver interpolation 
enligt normen. 
 
När alla duktila provningar avslutats kunde man se att 2.5mm förbanden hade samma, och i 
vissa fall högre hållfasthet än deras tvillingförband med 5mm plåttjocklek. Flytlederna i 
2.5mm förbanden var utvecklade på samma position som om en tjock plåt hade använts, även 
fast 2.5mm plåt är närmare den tunna plåtgränsen på mindre eller lika med 2mm. Vidare 
kunde man se att spikavstånd parallellt fiberriktiningen inte påverkade hållfastheten hos 
förbanden även fast en reduktion av hållfastheten på grund av risken för spjälkning i träet 
längst sprikraden förespråkas av Eurocode. 
 
För att kunna utvärdera nuvarande norm i Eurocode med avseende på klossbrott och utveckla 
en alternativ formulering skapades sex klossbrottsförband och tre gränsförband. Efter att 
samtliga försök avslutats upptäcktes en gräns för spiktäthet på 600-700mm2/spik då klossbrott 
började ske. Träets densitet tycktes påverka brottlasten i vissa av de prövade serierna när 
klossbrott skedde. Med hjälp av Matlab utvecklades en alternativ formulering för klossbrott 
som var giltig för förband med spiktäthet 600-700mm2/spik. Den nya formuleringen är 
baserad på testresultat från detta examensarbete samt klossbrottsdata från Helena Johanssons 
rapport. 
 
Den nya formuleringen innehöll träets densitet och de olika delareorna hos den förväntade 
klossen med koefficienter före dem. Koefficienterna bestämdes med hjälp av en 
kurvanpassningsmetod i Matlab.  
 
Styvhetsteorin som föreslogs efter att ha observerat testerna på klossbrottsförbanden verkade 
fånga viktiga parametrar i sin formulering. Den ansågs vara en bra kandidat för att förutsäga 
brottlasten när klossbrott inträffar. 
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1.2 Purpose and goal 
 
The purpose of this thesis is to investigate ductile and brittle failure in one shear steel to 
timber joint. Ductile joints will be tested and the results will be compared with the Johansen’s 
Yield theory and Eurocode formulations. Especially interesting is the formulation in Eurocode 
when a connection uses a steel plate with thickness in between the thin and thick plate 
borders. 
 
For the plug shear tests an alternative formulation to the Eurocode theory will be presented 
based on the test results from this thesis. The results will also be compared with the Eurocode 
formulation.  
 
1.3 Limitations 
 

 Only one type and strength of timber was used, softwood spruce timber (Picea Abies) 
strength class C30.  

 The dimension of the timber was 195x70 mm2, making it unavailable to perform test 
on certain nail patterns. 

 The hole spacing of the steel plate used was standard, 40mm parallel to the grain and 
20mm perpendicular to the grain limiting the nail placement. 

 The joints were tested in tension parallel to the grain and only in short-term loading. 

1.4 Method  
 
To gain more information about ductile and brittle failure in timber joints a literature study 
was undertaken. After the aim of the thesis had been decided, softwood timber with strength 
class C30 was ordered. The timber was cut the same day it arrived. A standard template for all 
tests was made, see appendix E. Before each test the timber element of the joint was weighted 
in order to measure its density, and moisture readings were taken before nailing the steel plate 
in place. Two identical patterns were nailed on each side of the timber element. When the 
joint was complete a reference mark was made at the top of each steel plate so that 
deformation readings could be made when one of the two sides had failed. The joint was then 
inserted in a servo hydraulic testing machine and loaded in tension parallel to the grain until 
failure occurred in either the top or bottom connection. Deformation readings were taken and 
failure load was registered. The software used to monitor the tests created a log file with force 
displacement data. 
 
If the joint failed with ductile failure the nails were removed from the steel plate and 
examined. If plug shear failure occurred, the whole plug including the steel plate and nails 
where weighted. The weight of the steel plate and nails was removed from the total weight 
and left was only the weight of the timber plug. When the weight of the plug was known and 
with information of the timbers density, the volume was calculated. The length and width of 
the plug was measured, and together with the volume, a mean plug depth was estimated.  
 
Load displacement graphs were plotted with the information given from the tests. With all test 
data gathered an analysis was made which was mainly divided in two parts, the ductile part 
and the plug shear part. 
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2.2 Johansen’s yield theory 
 
In 1949 K.W. Johansen published a report were he described the possible failure modes for 
timber to timber and steel to timber joints using dowel type fasteners. The equations presented 
by him were used to predict the failure mode that would occur in the joint [1]. In Eurocode 5 
the equations used to calculate the design resistance for a steel to timber joint with dowel type 
fasteners are the Johansen’s equations with some modifications applied to some of them [2]. 
 
For single shear steel to timber joints using nails as fasteners five different failure modes can 
occur. The resistance of the joint depends on the diameter of the dowel, the thickness of the 
timber member, the embedment strength of the wood and the plastic moment of the nail. The 
failure modes are divided into two groups depending on the plate’s thickness, see fig. 3. 
 
A thick plate is by definition a plate with thickness equal or greater than the diameter of the 
nail. In this setup the plate acts as a fix support for the nail allowing the formation of a plastic 
hinge in the steel timber interface. Three failure modes can occur, see fig. 3. 
 
Failure mode a) Embedment failure in the timber. The timbers embedment strength, which is 
derived from the timbers density, will decide the failure load. The resistance is given by the 
following equation: 
 
ܴ௔ ൌ ௛݂ݐଵ݀	ሾܰሿ 
 
where: 
 t1 is the nails penetration length 
d is the diameter of the nail 
fh is the embedment strength of the wood 
 
Failure mode d) One plastic hinge formed in the nail at the steel timber interface. The 
resistance is given by the following equation: 
 
 

ܴௗ ൌ ௛݂ݐଵ݀ ∗ ቌඨ2 ൅
௬ܯ4

௛݂݀ݐଵ
ଶ െ 1ቍ	ሾܰሿ 

 
where: 
My is the yield moment of the nail 
 
Failure mode e) Two plastic hinges formed in the nail, one at the steel timber interface and 
one inside the timber. The resistance is given by the following equation: 
 

ܴ௘ ൌ 2ටܯ௬ ௛݂݀	ሾܰሿ 
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2.3 Eurocode 5 - Ductile failure modes 
 
Eurocode 5 uses formulations which are derived from Johansen’s yield theory. As in 
Johansen’s case there are five different failure modes in two groups depending on the 
thickness of the plate in relation to the nails diameter, see fig. 3. The strength of a nailed 
connection is related to the yield moment of the nail and the embedment strength of the wood. 
The characteristic embedment strength, fh,k of the wood is calculated from the following 
expressions [2]: 
 
Without predrilled holes: 
 

௛݂,௞ ൌ  ሾܰ/݉݉ଶሿ	௞݀ି଴,ଷߩ0,082
 
With predrilled holes: 
 

௛݂,௞ ൌ 0,082ሺ1 െ 0,01݀ሻߩ௞		ሾܰ/݉݉ଶሿ 
 
where: 
 
 ௞ is the characteristic density of the timber [kg/m3]ߩ
d is the diameter of the nail [mm] 
 
The characteristic yield moment, MyRk of a nail with a minimum tensile strength of 600 
N/mm2 is calculated from the following expression [2]: 
 
௬ோ௞ܯ ൌ 0,3 ௨݂݀ଶ,଺ 
 
where: 
 
fu is the tensile strength of the nail [N/mm2] 
d is the diameter of the nail [mm] 
 
The thickness of the steel plate used, compared to the diameter of the nail will determine what 
formulations are used. A thin plate has the thickness less or equal to half the diameter of the 
nail and will act as a pinned support, while a thick plate has the thickness more or equal to the 
diameter of the nail and will act as a fixed support [5].  
 
If a thin plate is used, that is if ݐ௣௟௔௧௘ ൑ 0,5݀௡௔௜௟ the formulations state that only two failure 
modes can occur, failure mode I and II. The minimum value of the following two expressions 
will be the designing value of the joint [2]. 
 
ܴ௧௛௜௡,ூ ൌ 0,4 ௛݂,௞ݐଵ݀	ሾܰሿ  

ܴ௧௛௜௡,ூூ ൌ 1,15ට2 ∗ ௬ோ௞ܯ ௛݂,௞݀ ൅
௔௫,ோ௞ܨ
4

	ሾܰሿ 

where: 
 
t1 is the penetration depth of the nail [mm] 
d is the diameter of the nail [mm] 
ிೌೣ,ೃೖ
ସ

 is the axial resistance of the fastener, rope effect [N] 
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For nails, the axial resistance depends on the surface roughness along the nails (fax,k) and the 
anchorage capacity of the nails (fhead,k). Only 15% of the rope effect is allowed to take into 
account when using nails as fasteners [2]. These can be calculated using the following 
expression [5]: 
 

௔݂௫,௞ ൌ 20 ∗ 10ି଺݌௞
ଶ	ሾܰ/݉݉ଶሿ 

௛݂௘௔ௗ,௞ ൌ 70 ∗ 10ି଺݌௞
ଶ	ሾܰ/݉݉ଶሿ 

 
For non smooth nails the axial resistance is obtained through the following expression [5]: 
 

௔௫,ோ௞ܨ ൌ ݉݅݊ ൜ ௔݂௫,௞ ∗ ݀ ∗ ሾܰሿ	ଵݐ

௛݂௘௔ௗ ∗ ݀௛௘௔ௗ
ଶ 	ሾܰሿ

 

 
where: 
݀௛௘௔ௗ
ଶ  is the diameter of the nail head [mm] 

d is the diameter of the nail [mm] 
t1 is the penetration depth of the nail [mm] 
 
The contribution of the rope effect is usually very small and can often be neglected. 
 
For a thick plate, ݐ௣௟௔௧௘ ൐ ݀௡௔௜௟ three failure modes can occur and the design value is the 
minimum of the following expressions [2]. 
 
ܴ௧௛௜௖௞,ூ ൌ ௛݂,௞ݐଵ݀	ሾܰሿ 
 

ܴ௧௛௜௖௞,ூூ ൌ ௛݂,௞ݐଵ݀ ∗ ቌඨ2 ൅
௬ோ௞ܯ4

௛݂,௞݀ݐଵ
ଶ െ 1ቍ ൅

௔௫,ோ௞ܨ
4

	ሾܰሿ 

 

ܴ௧௛௜௖௞,ூூூ ൌ 2,3ටܯ௬ோ௞ ௛݂,௞݀ ൅
௔௫,ோ௞ܨ
4

	ሾܰሿ 

 
If a plate is used that is by definition in between a thin and thick plate, linear interpolation of 
the resistances is allowed.  
 
The equations given by the norm in Eurocode correspond to the resistance of a one nail joint. 
In a connection when nails are placed in the same row with insufficient spacing a reduction of 
the capacity may be applied due to the risk of splitting [2].   
 
ܴ௥௘ௗ ൌ ݊௘௙௙ ∗ ܴ	ሾܰሿ 
 
where: 
R is the resistance for one nail 
݊௘௙௙ is a reduction factor for multiple nails in a row 

݊௘௙௙ ൌ ݊௞೐೑೑ 

n is the real number of nails in a row 
݇௘௙௙ is obtained through table 1 
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Figure 7: Typical plug shear load displacement curve. 

2.4.1	Foschi	and	Longworth		
 
Early research has been carried out on this type of failure by Foschi and Longworth (1975).  
They suggested the following expression when calculating the resistance for plug shear 
failure. 

 

ܴ௣௦ ൌ ݉݅݊

ە
ۖ
۔

ۖ
ۓ ௧݂݄൫ܾ െ 2݀௬൯

௛ߛ௧ܽ௧ߚ௧ܭ
2 ௩݂݄݈
௛ߛ௦ߚ௦ܭ

 

where: 
 
b - 2dy   is the width of the joint 
h    is the penetration depth of the nail 
l     is the distance between the furthest away nail and the end of the joint 
ft0   is the tensile strength parallel to grain of the timber 
fv    is the shear strength of the timber 
 
K, β, α and γ are empirically derived factors that take into account: number of nail rows and 
columns, nail spacing, timber thickness and penetration depth. 
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2.4.3	The	stiffness	theory	
 
This theory was proposed after observing the experimental tests performed in this thesis. The 
scenario is explained in chapter 4.3.  

 
The plug shear tests observation led to the assumption that the load was taken unevenly 
between the sides, bottom and tension areas due to different stiffness of these parts. With 
knowledge of the materials strength properties, E-modulus, shear modulus and area of the 
different faces of the plug, the expected failure load for plug shear failure can now be 
formulated. 
 
Assuming that the tension area fails first the load taken by that face is given by the following 
expression: 
 

ߙ ൌ
௧ܭ
௧௢௧ܭ

 

௧ܭ ൌ ܧ ∗  ௧ܣ
௧௢௧ܭ ൌ ሺܣ௦ ൅ ௕ሻܣ ∗ ܩ ൅ ܧ ∗  ௧ܣ
 
where: 
 
ܽ is the load taken in percent by the tension area 
G is the shear modulus of the timber 
E is the elasticity modulus of the timber 
  ௦ is the side shear areaܣ
 ௕ is the bottom shear areaܣ
 ௧ is the tension areaܣ
 
 ௧ is the tension stiffnessܭ
 ௧௢௧ is the total stiffness for all facesܭ
 
Since the load is taken unevenly by the different faces the resistance for the tension side 
should be more than just tension area multiplied by the tension strength. More exactly, tension 
area multiplied by tension strength multiplied by the inverse of its load taken. This leads to 
the following plug shear resistance formulation, referred to as the resistance for plug shear 
failure according to the stiffness theory. 
 

ܴௌ் ൌ
1
ߙ
∗ ௧݂ ∗  ௧ܣ
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resistances in addition to the interpolated value. These individual resistances can be valuable 
to have when comparing simulated and test results. After all simulations are done a graph will 
be created, see fig. 14. The simulation model does not take into account the rope effect since 
its contribution is often small. The simulation results for the different series are shown in  
appendix D. 

 

Figure 14: Plot of the resistance, each point represents a joint with a unique density and yield strength. 
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4.2.1	Analysis	–	Ductile	failure	
 
In this section analysis of the test results is carried out. The results will be compared with the 
data from the simulation model which used the Johansen’s yield theory and with standard 
design approach from Eurocode 5. Eurocode 5 will use characteristic values. Characteristic 
density for C30 is 380 kg/m3 and characteristic yield moment is 6616 Nmm2, using 
600N/mm2 as tensile strength. In the tables below the columns with resistance according to 
Johansen’s yield theory will use density and plastic moment capacity as explained in chapter 
4.1, see also appendix D. 
 
Analysis 2d-2.5-n40 
In the nails that presented one plastic hinge, the hinge was formed at the interface between the 
steel plate and the timber. This is expected when using a thick steel plate (failure mode 2, d) 
see fig 3.) because it acts as a fixed support. When using a thin steel plate (failure mode 2 b), 
see fig 3.) the plate acts as a pinned support allowing the nail to rotate in the hole and the 
plastic hinge is formed further inside the timber. The plate used in this series is considered to 
be in between thick and thin but closer to thin, still it behaves as a thick plate in regard to both 
hinge formation and failure load. 

The specimen that failed due to splitting had almost straight nails at a failure load of 7.1 kN.  
This specimen had a big crack in the line were the nails were going to be placed which most 
likely influenced the splitting failure. 

The results from the tests and simulations are shown in table 11.  
 

Table 11: Test and simulation results 2d-2.5-n40. 

Source 

2d-2.5-n40 

Test Result  
[kN] 

Johansen’s
Interpol 

[kN] 

Johansen’s
Thick plate

[kN] 

EC 5
[kN] 

Mean 2,68 1,42 1,75 - 

Charact. 2,49 1,18 1,48 1.15 

 
As seen in table 11 both mean and characteristic values are about twice the size of the 
interpolated values obtained from the simulation model. The plate used acted as a thick plate 
according to the definition in Eurocode and the values given from the thick plate formulation 
are better suited with the test results, see table 11 Johansen’s Thick plate column.   
This together with the placement of the plastic hinge could be an indicator that even the 
2.5mm plate can act as a fixed support contrary to what the code suggests. 

Eurocode 5 characteristic value is around 50% of the characteristic value from the tests, and 
this is before safety factors are introduced and reduction for multiple nails in a row is taken 
into account. 
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Analysis 2d-5-n40 
One plastic hinge was observed on almost all nails. The plastic hinge was formed at the 
interface between the steel plate and the timber. Since two plates were used with the 
combined thickness of 5mm, the location where the plastic hinge was formed was expected 
and according to the theory. 

The results from the test and simulations are shown in table 12.  
 

 Table 12: Test and simulation results 2d-5-n40. 

Source 
2d-5-n40 

Test Result 
[kN] 

Johansen’s
Thick plate

[kN] 

EC 5
[kN] 

Mean 2,28 1,67 - 

Charact. 1,96 1,41 1,4 

 
 
As seen in table 12 both mean and characteristic values from the tests are close to the 
simulated values. The Eurocode characteristic value is also close because the formulation for 
failure mode 2 is basically the same for both Johansen’s yield theory and Eurocode. 
 
2d-2.5-n40 versus 2d-5-n40 
 
Comparing the test results from 2d-5-n40 with the 2d-2.5-n40 series, the mean value per nail 
is lower for the thick plate setup by almost 0,5kN, see table 13. The fact that the 2d-5 series 
had lower mean density could be one reason. Another reason could be that the 2d-5 series had 
a lower penetration depth due to the use of a thicker plate. Lower penetration length will 
result in lower resistance values.   
 
Table 13: 2d-2.5-n40 versus 2d-5-n40. 

Source 

 

Test 
Result 
[kN] 

ρ  
[kg/m3] 

2d-2.5-n40 2,68 482 

2d-5-n40 2,28 435 
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Analysis 4d-2.5-n40  
 
One plastic hinge was observed at the steel timber interface, as in the case with the 2d-2.5-n40 
series. As in the case with the 2d pattern the mean resistance per nail was significantly higher 
than the interpolation resistance given from the simulation. The Johansen’s thick resistance 
value is closer to the test results, see table 14. The plate acts more like a thick plate than a thin 
even though it’s closer to the thin plate range. 
 
 
Table 14: Test and simulation results 4d-2.5-n40.  

Source 

(4d-2.5-n40) 

Test Result  
[kN] 

Johansen’s
Interpol 

[kN] 

Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 2,37 1,42 1,75 - 

Charact. 1,99 1,18 1,48 1,15 

 
Analysis 4d-5-n40 

One plastic hinge was formed at the steel timber interface. Table 15 shows the test and 
simulation results from 4d-5-n40. Like with the previous 5mm plate setups the Johansen’s 
thick simulation values are close to the real test values. 

 

Table 15: Test results and simulation results for 4d-5-n40. 

Source 
(4d-5-n40) 

Test Result  
[kN] 

Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 2,34 1,67 - 

Charact. 2,1 1,41 1,4 

 

4d-2.5-n40 versus 4d-5-n40 
 
Mean and characteristic values for the different patterns are almost the same, see table 16. A 
reason could be that the mean densities for both series are close to each other. 

Table 16: 4d-2.5-n40 versus 4d-5-n40. 

Source 

 

Test 
Result 
[kN] 

ρ  
[kg/m3] 

4d-2.5-n40 2,37 459 

4d-5-n40 2,34 462 
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Analysis 4d-2.5-n60  

Two plastic hinges were observed on the nails. Even with the 60mm nails the plate acts as a 
thick plate bending the nail at two points. The result from the simulation also suggests that 
Johansen’s thick plate formulation is more realistic than the values obtained from 
interpolating between the thin and thick plate formulations. 

Table 17: Test results and simulation results for 4d-2.5-n60. 

Source 

(4d-2.5-n60) 

Test Result  
[kN] 

Johansen’s
Interpol 

[kN] 

Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 3,15 1,46 1,88 - 

Charact. 2,89 1,3 1,67 1,15 

 
 
Analysis 4d-5-n60 

Two plastic hinges were formed on the nails in this series. Like with the previous 5mm plate 
setups the Johansen’s thick values from the simulations are close to the real test values. 

Table 18: Test results and simulation results for 4d-5-n60. 

Source 

(4d-5-n60) 

Test Result 
 [kN] 

Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 3,18 1,88 - 

Charact. 2,83 1,67 1,47 

 

4d-2.5-n60 versus 4d-5-n60 

The mean and characteristic values for the different patterns are almost the same, see table 19. 
A reason could be that the mean densities for both series are close to each other. 

Table 19: 4d-2.5-n60 versus 4d-5-n60. 

Source 

 

Test 
Result 
[kN] 

ρ  
[kg/m3] 

4d-2.5-n60 3,15 450 

4d-5-n60 3,18 484 
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Analysis 1d-2.5-n40 

One plastic hinge was formed at the steel timber interface, but some nails presented two. The 
forming of two plastic hinges should not occur according to the simulations that were run. An 
explanation for this could be that there are a lot of knots in some of the specimens. These 
knots can run perpendicular to a nail, preventing it from bending in a straight line acting as a 
support, thus bending it at another point besides the one at the interface between the plate and 
the timber. The test results are higher than the interpolation resistance given from the 
simulations, the plate acts once again like a thick plate. 

Table 20: Test results and simulation results for 1d-2.5-n40. 

Source 

(1d-2.5-n40) 

Test Result  
[kN] 

Johansen’s
Interpol 

[kN] 

Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 2,98 1,42 1,75 - 

Charact. 2,53 1,18 1,48 1,15 

 

Analysis 1d-5-n40 

One plastic hinge was formed at the steel timber interface, but some nails presented two.  

Table 21: Test results and simulation results for 1d-5-n40. 

Source 
(1d-5-n40) 

Test Result [kN] Johansen’s
Thick 
[kN] 

EC 5
[kN] 

Mean 3,01 1,67 - 

Charact. 2,62 1,41 1,4 

 

1d-2.5-n40 versus 1d-5-n40 

Mean and characteristic values for the different patterns are almost the same, see table 22. A 
reason could be that the mean densities for both series are close to each other. 

Table 22: 1d-2.5-n40 versus 1d-5-n40. 

 

 

 

Source 

 

Test 
Result 
[kN] 

ρ  
[kg/m3] 

1d-2.5-n40 2,98 452 

1d-5-n40 3,01 422 
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Conclusion ductile results 

After analyzing the ductile results the following conclusions were made: 
 

 Two plastic hinges could form in the series that used 40mm nails even though 
Eurocode suggests it cannot occur. An explanation for this could be knots in the 
timber that act as a support under the nail bending it at an additional point besides the 
point at the steel and timber interface. 
 

 One plate with thickness of 2.5mm seems to give same results, in some cases even 
better, than the same nail pattern with two plates with 5mm thickness. The resistance 
according to Eurocode when using a 2.5mm plate should be interpolated between the 
thick and thin formulations, and because the 2.5mm plate is closer to the thin plate 
border at 2mm it gives substantially lower resistance values than the test results. This 
was valid when both 40mm and 60mm nails were used. 
 

 In the series that used 2.5mm plates, a plastic hinge was formed at the interface 
between the timber and the steel plate. This means that the plate acted as a fixed 
support even though the 2.5mm plate was closer to the thin plate border at 2mm. This 
was valid when both 40mm and 60mm nails were used. 
 

 Nail spacing parallel to the grain does not seem to influence the resistance of the joint 
even though it should be reduced because of the risk for premature splitting. For 
example the 2d-2.5-n40 series had the highest mean value of the multiple nail 
connections with 40mm nails, see table 23. Series 2d had nail spacing parallel to the 
grain equal to 10d. Both series had one specimen that failed with splitting failure. If 
one designs a pattern like the 2d series according to Eurocode the resistance will be 
the following. 
 

ௗ݂ ൌ ݇௠௢ௗ ∗
௞݂

௠ߛ
 

௞݂ ൌ ݊௘௙௙ ∗ ܴ௘௖ହ 
݊௘௙௙ ൌ ݊௞೐೑೑ 
 
where: 
 ௠ is the partial factor for a material propertyߛ
݇௠௢ௗ is a modification factor taking moisture and load duration into account 
ௗ݂ is the design resistance of the joint according to Eurocode 
௞݂ is the characteristic resistance of the joint according to Eurocode 
݊௘௙௙ is the effective number of nails in a row 
ܴ௘௖ହ is the resistance according to Eurocode 
 
Nail spacing parallel to grain, a1=10d. Table 1 gives keff=0,85 
݇௠௢ௗ = 0,9 (Climate class 1, Short load duration) [7] 
݊௘௙௙ ൌ 5଴,଼ହ ൌ 3,9 
 
For 2d-2,5-n40: 
ܴ௘௖ହ ൌ 1,15	݇ܰ 
௞݂ ൌ 3,9 ∗ 1,15 ൌ 4,49݇ܰ 
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ௗ݂ ൌ 0,9 ∗
4,49
1,25

ൌ 3,23	݇ܰ 

 
Load per nail: 3,23/5= 0,64 kN 
 
For 2d-5-n40: 
 
ܴ௘௖ହ ൌ 1,4	݇ܰ 
௞݂ ൌ 3,9 ∗ 1,4 ൌ 5,46݇ܰ 

ௗ݂ ൌ 0,9 ∗
5,46
1,25

ൌ 3,93	݇ܰ 

 
Load per nail: 3,93/5= 0,79 kN 
 
For the brittle specimen in the 2d-2,5-n40 series the failure load per nail was 1,42kN, 
this is around 120% more than the design value given by Eurocode. 
For the brittle specimen in the 2d-5-n40 series the failure load per nail was 1,74kN, 
this is around 120% more than the design value given by Eurocode. 
 
As mentioned before only two specimens showed brittle behavior while the remaining 
ten failed in ductile manner. Though splitting occurred as predicted by Eurocodes nail 
spacing criteria the design value obtained was significantly lower than the failure load 
in the brittle specimens. 
 

 The 40mm 1d series showed the highest resistance per nail when compared to the 
other 40mm nails series. 

 

 

Table 23: All ductile test results. 

Source 

 

Test 
Result 
(Mean) 
 [kN] 

ρ  
[kg/m3] 

1d-2.5-n40 2,98 452 

1d-5-n40 3,01 422 

4d-2.5-n40 2,37 459 

4d-5-n40 2,34 462 

2d-2.5-n40 2,68 482 

2d-5-n40 2,28 435 

4d-2.5-n60 3,15 450 

4d-5-n60 3,18 484 
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4.3.2	Analysis	‐		Plug	shear	failure	
 
40mm nails versus 60mm nails 
The 10p series were tested with both 40mm and 60mm nails. Even though the penetration 
depth was 20mm longer for the series with 60mm nails the mean plug depth was only 10mm 
deeper. The mean failure load was slightly larger for the 10p-5-n60 series, 102.8 versus 98.6 
kN for 10p-5-n40.  
 
 
Influence of density 
The density values that were measured for the timber used in the plug shear series should be 
considered more reliable to use compared to the ductile series. The plug shear series had more 
area nailed so the actual density of the timber involved in the failure should have a density 
close to the entire timber elements density value.  
 
Series 1p-5-n40 and 10p-5-n40 were the series that had largest density scatter. These series 
showed a strong connection between the density and the failure load, see fig 30.  
 

 
 

Figure 30: Series 1p-5-n40 blue dot and 10p-5-n40 green dot, Failure load-Density plot. 

Both series 10p-5-n60 and 13p-5-n40 had small density scatters if compared to the series in 
fig.30. Series 13p-5-n40 still shows a trend that with increasing density the failure load will 
also increase, see fig. 31. This cannot be said for 10p-5-n60. A possible explanation could be 
that since 60mm nails were used the penetration depth was higher which means there was a 
higher chance for the plug to come across local variations in the timber, affecting the failure 
load. 
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Figure 31: Series 10p-5-n60 blue dot and 13p-5-n40 green dot, Failure load-Density plot. 

 
Of all the plug shear series 15p-5-n40 had the least density scatter, ranging from 456-482 
kg/m3, see fig. 32. The failure loads for the specimens in this series are also concentrated 
which is a good indicator that the density has influence over the failure load.  

 

 
 

Figure 32: Series 14p-5-n40 blue dot and 15p-5-n40 green dot, Failure load-Density plot. 
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The green dots represent ductile tests, yellow dots border pattern tests and red dots plug shear 
tests. Fig. 34 shows that as soon the area per nail reaches a certain value, around 600-700 
mm2/nail, a pattern will start to fail in both brittle and ductile manner. If the density of nails is 
increased even further only plug shear failure occurs.  
 

 

Table 33: Test results and joint information. 

Series Nails Area 
[mm2] 

A/n 
[mm2/nail]

Fu 

[kN] 
Fu/nail 

[kN/nail]
Failure type

1p-5-n40 85 30940 381 111,2 1,31 PS 

10p-5-n40 55 24585 454 98,6 1,79 PS 

10p-5-n60 55 24035 454 102,8 1,87 PS 

13p-5-n40 42 17220 414 81,2 1,93 PS 

14p-5-n40 46 18584 417 100,4 2,18 PS 

15p-5-n40 38 12502 326 71,5 1,88 PS 

1py-5-n40 25 12000 480 56,0 2,24 Border 

3py-5-n40 30 17600 586 67,8 2,26 Border 

7py-5-n40 35 24000 686 81,4 2,33 Border 

d2t14 18 12800 711 52,0 2,89 D 

d2t13 16 12000 750 48,8 3,05 D 

d2t12 14 11200 800 40,5 2,89 D 

d2t5 12 10400 867 37,5 3,13 D 

d2t6 10 9600 960 30,5 3,05 D 

d2t10 8 8800 1100 28,0 3,5 D 
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After running the program the factors α, β and γ were determined to the following values. 
 
ூߙ ൌ 1.93 ∗ 10ିହ 
ூߚ ൌ 9.16 ∗ 10ି଻ 
ூߛ ൌ 8.07 ∗ 10ି଺ 
  
The final formulation for plug shear failure, valid when the nail density is around 
600mm2/nail and lower, is given by the expression below: 
 
ܴ௣௟௨௚,ூ ൌ ߩ	 ∗ ሺ1,93 ∗ 10െ5 ∗ ܣܶ ൅ 9,16 ∗ 10െ7 ∗ ܣܵ ൅ 8,07 ∗ 10െ6 ∗  ሻ [N]ܣܤ
 
Table 34 shows this thesis test results compared with the Eurocode 5 plug shear formulation 
and the new formulation for plug shear failure. Mean values for C30 were used when 
calculating according to Eurocode. The mean differences for the new formulation were 
around 13% and for Eurocodes formulation around 26%. The low mean scatter at only 13% 
shows that the variables used in the formulations could be well suited to predict plug shear 
failure. 
 
Table 34: All the plug shear series with test results, Eurocode plug shear formulation and the new formulation 
(Rplug) results. 

Series Fu  

[kN] 
EC 5 
[kN] 

ABS Diff 
EC 5 [%] 

Rplug

[kN]
ABS Diff 
 Rplug [%]

1p-5-n40 111,2 153 27 125 11 

10p-5-n40 98,6 140 29,3 110 10,4 

10p-5-n60 102,8 144 28,6 120 14,5 

13p-5-n40 81,2 101 19,9 71 15,2 

14p-5-n40 100,4 143 29,6 93 7,6 

15p-5-n40 71,5 92 22,5 60 20,7 

 
 

Three graphs are presented below where the length of the nailed area is varied on the x-axis , 
including the edge distance set to 80mm. The different lines represent different width of the 
nailed area, varying from 100 to 350mm with 50mm steps. The resistance according to the 
new formulation for plug shear is displayed on the y-axis.  Characteristic value for C30 
density, 380kg/m3 is used. These figures could serve as design graphs when the nail density is 
around 600mm2/nail and lower to estimate the plug shear resistance of a proposed joint with 
known nailed length and width. 
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Analysis – the stiffness theory 
 
As explained in chapter 2.4.3, observations of the plug shear tests led to the assumption that 
the load was taken unevenly between the different faces of the plug. Table 35 shows tests 
results from three independent experimental testing programs compared with the resistance 
according to the stiffness theory. The mean difference for all series was around 15%. 
When characteristic values are used to calculate the resistance almost all series are below or 
close to the real value from the tests, see table 36. 
 
 

Table 35:  Test results from three independent data sets compared to the stiffness theory, mean values used for timber’s 
properties. H1-H14 are tests from Johansson [3] and Gir-L6, Gir-T5 are tests from Girhammar[8]. 

ID 
Test Results 

[kN]
Diff 
[%] 

RST 

[kN]

H1 88,4 11,6 99,9

H2 161,6 19,8 201,4

H3 250,4 5,4 264,8

H4 200,4 24,3 264,8

H5 256,8 3,0 264,8

H6 255,2 3,6 264,8

H7 181,2 18,9 223,4

H8 217,4 13,2 250,4

H9 229,0 24,8 304,4

H10 98,8 9,0 108,5

H11 177,7 7,9 193,0

H12 292,7 -2,7 285,0

H13 253,2 -13,5 223,0

H14 144,7 28,2 201,4
1p-5-n40 111,2 14,3 129,7
10p-5-n40 98,6 24,2 130,1
10p-5-n60 102,8 27,5 141,9
13p-5-n40 81,2 -12,7 72,1
14p-5-n40 100,4 2,8 103,3
15p-5-n40 71,5 -19,2 60,0
1py-5-n40 81,5 25,2 109,0
3py-5-n40 57,0 9,4 62,9
7py-5-n40 67,8 18,4 83,2

Gir-L6 185,2 17,5 224,5

Gir-T5 85,9 28,5 120,2
 

  



59 
 

Table 36: Test results from three independent data sets compared to the stiffness theory, characteristic values used for 
timber’s properties. H1-H14 are tests from Johansson [3] and Gir-L6, Gir-T5 are tests from Girhammar[8]. 

ID 

Test 
Results 

[kN] Diff [%] 
RST 

[kN]

H1 88,4 -14,7 77,0

H2 161,6 -4,2 155,2

H3 250,4 -22,6 204,2

H4 200,4 1,9 204,2

H5 256,8 -25,8 204,2

H6 255,2 -25,0 204,2

H7 181,2 -5,3 172,2

H8 217,4 -12,6 193,1

H9 229,0 2,5 234,8

H10 98,8 -18,1 83,6

H11 177,7 -19,5 148,6

H12 292,7 -33,2 219,8

H13 253,2 -47,3 171,9

H14 144,7 6,8 155,2
1p-5-n40 111,2 -14,3 97,3
10p-5-n40 98,6 -1,1 97,5
10p-5-n60 102,8 3,4 106,4
13p-5-n40 81,2 -50,2 54,1
14p-5-n40 100,4 -29,6 77,4
15p-5-n40 71,5 -58,9 45,0
1py-5-n40 81,5 -7,2 172,8
3py-5-n40 57,0 7,2 92,6
7py-5-n40 67,8 0,3 81,7

Gir-L6 185,2 -20,9 47,2

Gir-T5 85,9 -8,7 62,4
 

If the stiffness theory was applied to bottom shear area instead the resistance for all the tests 
performed was 2-3 times higher than the failure load. If the tension side is to fail first as 
assumed, the bottom face will take the entire load and will fail shortly thereafter.  Figure 39 
depicts the resistance according to the stiffness theory. Each line represents a certain nailed 
width of the joint ranging from 50 to 500mm in 50mm steps. In the x-axis the nailed length is 
varied. The graph is valid for plug depth of 22mm, which means a penetration depth of 
around 33mm. 
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Figure 40: Surface plot (Angle 1) of the stiffness theory with test results as dots, dark area is the stiffness theory using mean 
values as input, dots represent test results from see table 35. 

 

Figure 41: Surface plot (Angle 2) of the stiffness theory with test results as dots, dark area is the stiffness theory using mean 
values as input, dots represent test results from see table 35. 

  

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8

0

1000

2000

3000

4000

5000

6000
0

50

100

150

200

250

300

350

400

450

500

alpha [%]

Stiffness theory (Mean values)

Tension Area [mm2]

R
es

is
ta

nc
e 

[k
N

]

0.2

0.4

0.6

0.8

1

5001000150020002500300035004000450050005500
0

50

100

150

200

250

300

350

400

450

500

alpha [%]

Stiffness theory (Mean values)

Tension Area [mm2]

R
es

is
ta

nc
e 

[k
N

]



62 
 

 

Figure 42: Surface plot (Angle 1) of the stiffness theory with test results as dots, dark area is the stiffness theory using 
characteristic values as input, dots represent test results from see table 36. 

 

Figure 43: Surface plot (Angle 2) of the stiffness theory with test results as dots, dark area is the stiffness theory using 
characteristic values as input, dots represent test results from see table 36. 
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Figure 44: Surface plot (Angle 1) of the stiffness theory with test results as dots, dark area is the stiffness theory using 
characteristic values multiplied by 0,7 as input, dots represent test results from see table 36. 

 

 

Figure 45: Surface plot (Angle 2) of the stiffness theory with test results as dots, dark area is the stiffness theory using 
characteristic values multiplied by 0,7 as input, dots represent test results from see table 36. 
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Conclusion plug shear results 
 

 The density of the timber seems to influence the resistance of plug shear failure in 
some plug shear series. Other factors that could have affected the results are knots and 
local weaknesses in the timber.  
 

 Penetration depth increase from 33mm to 53mm only increased the plug depth by an 
average of 5mm. The two series 10p-5-n40 and 10p-5-n60 had the same nail 
configuration but different nail length and had almost the same mean failure load. 
 

 When the nail density reached around 600-700mm2/nail or lower plug shear failure 
starts to occur in the test series.  
 

 The formulation for plug shear in Eurocode overestimates the resistance for the tests 
performed in this thesis when using mean values for C30. The mean difference was 
+26%. The mean difference for the new formulation was around 13% both 
overestimating and underestimating.   
 

 The stiffness theory which was proposed after observing the plug shear tests proved to 
be accurate when compared to the plug shear results from this thesis, Johansson’s [3] 
report and Girhammar’s [8] report.  
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5 Discussion 
 
The analysis of the ductile results showed that a joint with a steel plate close to the thin border 
could have the same resistance if compared to a joint with the same nail pattern but with a 
thick plate instead. It’s interesting that even though the plate had a thickness of 2.5mm, which 
is 0.5mm away from the thin border, it still acted as a thick plate when it came to the locations 
of the plastic hinges that were formed in the nails. If anything, it would be more expected if 
the plate acted as a thin one which was not the case for all the joints that were tested.  
 
For the plug shear tests a difficult part of the work was to determine what really happened 
when the specimens failed. What parts of the timber were involved in the initial load drop and 
more importantly why? Should there be a combination of tension and shear strength when 
calculating the resistances or should they be separated and let the maximum of the two decide 
the design value? Is the load unevenly distributed between the different shear and tension 
areas? Are certain areas completely uninvolved when plug shear failure occurs? All these 
questions were difficult to answer in this master thesis because of the general approach in the 
testing program. More in depth tests must be carried out on extreme nail patterns in order to 
better understand the failure. One thing is certain though, placement and nail density plays an 
important part in this kind of failure.  
 
The border joint 7py had an unorthodox nail pattern. It was nailed as an hourglass form. Still 
when it failed with plug shear the side fracture lines followed the same pattern as with the 
other plug shear joints. This is interesting because in the other patterns the nails are nailed 
close to each other while in this pattern there is no “weak link” along the line of nails.  
 
The factors that were given by the Matlab curve fit function were tricky to interpret. I still 
believe it was a good approach and if more detailed tests were done on plug shear joints a 
pattern linking the plugs geometry and the timbers strength and stiffness properties could have 
been discovered. 
 
The stiffness theory proved to be accurate when compared with test data from three 
independent data sets regarding plug shear failure. Tests performed on more extreme nail 
patterns could confirm and/or help develop the stiffness theory. Test abortion and examination 
of the semi-failed specimen after each major load drop could also prove useful in determining 
the exact fail order of the different faces.  
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Source of error 

 Hand nailing: Because the nails were hammered manually the angle between a nail 
and the grain of the timber could have been non perpendicular. The upper and lower 
joint steel plates were not perfectly nailed in the middle of the timber element 
introducing an eccentricity. 
 

 Density measurement: The density was measured for the entire specimen. For the 
ductile joints only the volume of wood directly under the nail is involved in the failure 
and therefore it’s the density that should be measured. For plug shear joints a larger 
volume is involved making the source of error less significant in that case. 
 

 Local weaknesses: Almost every timber element that was used to construct a joint had 
knots and other local deficiencies.  

 Moisture: Moisture content in the timber affects its properties. The moisture readings 
done in this thesis were not considered very accurate. 
 

Future research 

 Perform tests on clearwood which has less local defects than softwood minimizing a 
source of error. Even though knot-free timber is not how the reality looks like it will 
serve well when trying to develop a model for plug shear failure. 
 

 Design geometrically extreme nail patterns that may not be realistic but will prove 
useful when trying to confirm new theories concerning plug shear failure. 
 

 Aborting plug shear tests as soon as a major crack, which leads to a load drop, 
develops in the timber in order to analyze the different stages of failure and truly 
confirm which faces of the plug fail at what order.  
 

 Usage of custom made steel plates so that both hole placements and plate thickness 
can be varied to a greater extent than what is available using today’s standard plates. 
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Appendix B 
MATLAB Joint simulation model 
 
 
%%  
clc 
close all 
clear all 
format short 
%% 
  
prompt = {'Enter density range(min) :','Enter density range(max):','Enter 
yield strength range(min) :','Enter yield strength range(max):','Enter nail 
penetration length: (mm)','Enter nail diameter: (mm)','Enter plate 
thickness: (mm)','Enter a1: (a1*d mm)','Enter a2: (a2*d mm)','Enter s1: 
(mm)','Enter s2: (mm)','Enter number of nails: ','Enter number of 
simulations:','Enter Serie ID :'}; 
dlg_title = 'JJS; 
num_lines = 1; 
def = 
{'349','536','792','939','33','4','5','14','10','60','40','20','10','XX'}; 
options.Resize='on'; 
options.WindowStyle='normal'; 
options.Interpreter='none'; 
userInput = inputdlg(prompt,dlg_title,num_lines,def,options); 
  
userDensityMin = str2num(userInput{1}); 
userDensityMax = str2num(userInput{2}); 
userFyMin = str2num(userInput{3}); 
userFyMax = str2num(userInput{4}); %#ok<*ST2NM> 
t1 = str2num(userInput{5}); 
d = str2num(userInput{6}); %#ok<*ST2NM> 
plate = str2double(userInput{7}); 
a1 = str2num(userInput{8}); 
a2 = str2num(userInput{9}); 
s1 = str2num(userInput{10}); 
s2 = str2num(userInput{11}); 
nrN = str2num(userInput{12}); 
n = str2num(userInput{13}); 
sname = userInput{14}; 
  
x=(userDensityMin:1:userDensityMax)'; 
stdx=std(x); 
meanx=mean(x); 
  
x2=(userFyMin:1:userFyMax)'; 
stdx2=std(x2); 
meanx2=mean(x2); 
  
fycdf= cdf('normal',x2,mean(x2),std(x2)); 
fypdf= pdf('normal',x2,mean(x2),std(x2)); 
  
p1= cdf('normal',x,mean(x),std(x)); 
p2= pdf('normal',x,mean(x),std(x)); 
  
fo_ = fitoptions('method','LinearLeastSquares','Normalize','on'); 
fycdffit = fittype('poly5'); 
f2 = fit(x2,fycdf,fycdffit,fo_); 
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pvec_fy=coeffvalues(f2); 
  
fo_ = fitoptions('method','LinearLeastSquares','Normalize','on'); 
dens_cdffit = fittype('poly5'); 
f3 = fit(x,p1,dens_cdffit,fo_); 
  
pvec_density=coeffvalues(f3); 
%% 
  
 
%  figure(5) 
%  grid on 
%  plot(f2,x2,fycdf); 
%   
%  figure(6) 
%  grid on 
%  plot(f3,x,p1); 
%   
%  figure(10) 
%  plot(x2,fypdf,'b.'); 
%  grid on 
%   
%  figure(11) 
%  plot(x,p2,'b.'); 
%  grid on 
  
%((z-meanx2)/stdx2) 
syms p1 p2 p3 p4 p5 p6 z1 z rnd1;  
fyDynamicCurveFit=solve('p1*z1^5 + p2*z1^4 + p3*z1^3 + p4*z1^2 + p5*z1 + 
p6=rnd1'); 
rnd1=1; 
%fyEqSolution=solve(pvec_fy(1)*((z-meanx2)/stdx2)^5 + pvec_fy(2)*((z-
meanx2)/stdx2)^4 + pvec_fy(3)*((z-meanx2)/stdx2)^3 + pvec_fy(4)*((z-
meanx2)/stdx2)^2 + pvec_fy(5)*((z-meanx2)/stdx2) - rnd1 + pvec_fy(6), z) 
  
%((w-meanx)/stdx) 
syms q1 q2 q3 q4 q5 q6 w1 w rnd2;  
DensityDynamicCurveFit=solve('q1*w1^5 + q2*w1^4 + q3*w1^3 + q4*w1^2 + q5*w1 
+ q6=rnd2'); 
rnd2=1; 
%DensityEqSolution=solve(pvec_density(1)*((w-meanx)/stdx)^5 + 
pvec_density(2)*((w-meanx)/stdx)^4 + pvec_density(3)*((w-meanx)/stdx)^3 + 
pvec_density(4)*((w-meanx)/stdx)^2 + pvec_density(5)*((w-meanx)/stdx) - 
rnd2 + pvec_density(6), w) 
  
%% 
  
 
shinAkuma=input('Press any key to start simulation...'); 
tic 
  
R=zeros(n,1); 
FM=zeros(n,1); 
F1=zeros(n,1); 
F2=zeros(n,1); 
F3=zeros(n,1); 
density=zeros(n,1); 
FH=zeros(n,1); 
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Move=zeros(n,1); 
FY=zeros(n,1); 
MPL=zeros(n,1); 
disp('Calculating...') 
rthick=zeros(3,1); 
rthin=zeros(2,1); 
FMThick=zeros(n,1); 
FMThin=zeros(n,1); 
FM1Thick=zeros(n,1); 
FM2Thick=zeros(n,1); 
FM3Thick=zeros(n,1); 
FM1Thin=zeros(n,1); 
FM2Thin=zeros(n,1); 
%% 
  
for i=1:1:n 
    rnd1=rand(1,1); 
    rnd2=rand(1,1); 
     
     
    fyEqSolution=solve(pvec_fy(1)*((z-meanx2)/stdx2)^5 + pvec_fy(2)*((z-
meanx2)/stdx2)^4 + pvec_fy(3)*((z-meanx2)/stdx2)^3 + pvec_fy(4)*((z-
meanx2)/stdx2)^2 + pvec_fy(5)*((z-meanx2)/stdx2) - rnd1 + pvec_fy(6), z); 
    DensityEqSolution=solve(pvec_density(1)*((w-meanx)/stdx)^5 + 
pvec_density(2)*((w-meanx)/stdx)^4 + pvec_density(3)*((w-meanx)/stdx)^3 + 
pvec_density(4)*((w-meanx)/stdx)^2 + pvec_density(5)*((w-meanx)/stdx) - 
rnd2 + pvec_density(6), w); 
  
      
    pickedDensity=double(DensityEqSolution(1)); 
    pickedFy=double(fyEqSolution(1)); 
            
    %Embedment str and plastic moment capactiy 
    fh=0.082* pickedDensity*d^-0.3; 
    Mpl=(pickedFy*d^3)/6; 
     
    %Calculating resistance with fh and Mpl, Johanssen theory, output in Kn 
    r=zeros(3,1); 
    fm=[0 0 0]'; 
    FMT=[0 0 0]'; 
    FMth=[0 0]'; 
    if plate>=d   
    %Thick plate 
    r(1)= fh*d*t1/1000; 
    r(2)= (fh*d*t1)*((2+(4*Mpl/(fh*d*t1^2)))^(1/2)-1)/1000; 
    r(3)=2*sqrt(Mpl*fh*d)/1000; 
    rtemp=r; 
    rsort=sort(rtemp); 
    R(i)=rsort(1); 
    %disp('thick') 
    end 
    if plate<=0.5*d 
    %thin plates 
    r(1)= 0.4*fh*d*t1/1000; 
    r(2)=sqrt(2*Mpl*fh*d)/1000;   
    r(3)=9999999999; 
    rtemp=r; 
    rsort=sort(rtemp); 
    R(i)=rsort(1); 
    %disp('thin') 
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    end 
     
     
    if plate>0.5*d && plate<d 
    %Interpolation tjock tunn plåt 
    rthick(1)= fh*d*t1/1000; 
    rthick(2)= (fh*d*t1)*((2+(4*Mpl/(fh*d*t1^2)))^(1/2)-1)/1000; 
    rthick(3)=2*sqrt(Mpl*fh*d)/1000; 
    rthickmin=sort(rthick); 
     
    rthin(1)= 0.4*fh*d*t1/1000; 
    rthin(2)=sqrt(2*Mpl*fh*d)/1000; 
    rthinmin=sort(rthin); 
    FM1Thick(i)=rthick(1); 
    FM2Thick(i)=rthick(2); 
    FM3Thick(i)=rthick(3); 
     
    FM1Thin(i)=rthin(1); 
    FM2Thin(i)=rthin(2); 
    R(i)=rthinmin(1)+((rthickmin(1)-rthinmin(1))/(1-0.5))*((plate/d)-0.5); 
    %disp('interpol') 
     
     for k=1:1:3 
        for j=1:1:3  
            if(rthickmin(k)==rthick(j)) 
                FMT(k)=j; 
            end 
        end 
     end 
     for k=1:1:2 
        for j=1:1:2  
            if(rthinmin(k)==rthin(j)) 
                FMth(k)=j; 
            end 
        end 
     end 
     
    end 
     
    rtemp=r; 
    rsort=sort(rtemp); 
     
        
    if(plate<=0.5*d || plate>=d) 
    for k=1:1:3 
        for j=1:1:3  
            if(rsort(k)==r(j)) 
                fm(k)=j; 
            end 
        end 
    end 
     
    FM(i)=fm(1); 
    F1(i)=r(1); 
    F2(i)=r(2); 
    F3(i)=r(3); 
    density(i)=pickedDensity; 
    FH(i)=fh; 
    FY(i)=pickedFy; 
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    MPL(i)=Mpl; 
    %disp('thinthick2') 
    end 
       
    if(plate>0.5*d && plate<d) 
    FMThick(i)=FMT(1); 
    FMThin(i)=FMth(1); 
    density(i)=pickedDensity; 
    FH(i)=fh; 
    FY(i)=pickedFy; 
    MPL(i)=Mpl; 
    %disp('interpol2') 
    end 
     
disp((i/n)*100) 
  
end 
%% 
  
 
 
  
%% 
%% 
 
% StringPath='I:\Alex\SER-('; 
StringPath = strcat('D:\XJOUT\SER-',sname,'-(');  
str0x=') Density('; 
str00=int2str(userDensityMin); 
str01=int2str(userDensityMax); 
str11= strcat(str00,'-' ,str01,')'); 
str2x=' YieldStr('; 
str22=int2str(userFyMin); 
str23=int2str(userFyMax); 
str33= strcat(str22,'-', str23, ')'); 
str1=' n'; 
str2= int2str(d); 
str3=' p'; 
str4= int2str(t1); 
str5=' t'; 
str6= int2str(plate); 
Fname=datestr(now,'mmmm dd, yyyy HH,MM,SS'); 
SF = strcat(StringPath, Fname,str0x,str11,str2x, str33, str1, str2, str3, 
str4, str5, str6); 
StringA={'Resistance','Failure Mode','Density','Fh','Fy','Mpl','','FM 
Thick','FM Thin','','FM 1','FM 2','FM 3','','FM 1 THICK','FM 2 THICK','FM 3 
THICK','FM 1 THIN','FM 2 THIN'}; 
xlswrite(SF, StringA,1,'A1') 
xlswrite(SF, R,1,'A2') 
xlswrite(SF, FM,1,'B2') 
xlswrite(SF, density,1,'C2') 
xlswrite(SF, FH,1,'D2') 
xlswrite(SF, FY,1,'E2') 
xlswrite(SF, MPL,1,'F2') 
xlswrite(SF, FMThick,1,'H2') 
xlswrite(SF, FMThin,1,'I2') 
xlswrite(SF, FM1Thick,1,'O2') 
xlswrite(SF, FM2Thick,1,'P2') 
xlswrite(SF, FM3Thick,1,'Q2') 
xlswrite(SF, FM1Thin,1,'R2') 
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xlswrite(SF, FM2Thin,1,'S2') 
  
xlswrite(SF, F1,1,'K2') 
xlswrite(SF, F2,1,'L2') 
xlswrite(SF, F3,1,'M2') 
%% 
  
disp('Done!') 
disp(' ') 
toc 
disp(' ') 
steptime=toc; 
  
res1= cdf('normal',R,mean(R),std(R)); 
res2= pdf('normal',R,mean(R),std(R)); 
  
  
  
  
%% 
% figure(2) 
% grid on 
% disp('Plotting...') 
% if(plate<=0.5*d || plate>=d) 
% %For thin or thick plate plot 
% for i=1:1:n 
%     if(FM(i)==1) 
%        figure(2) 
%        hold on 
%        plot(R(i),res2(i),'o','LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor','b',... 
%                 'MarkerSize',5); 
%     end     
%     if(FM(i)==2) 
%        figure(2) 
%        hold on 
%        plot(R(i),res2(i),'o','LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor','r',... 
%                 'MarkerSize',5); 
%     end   
%     if(FM(i)==3) 
%        figure(2) 
%        hold on 
%        plot(R(i),res2(i),'o','LineWidth',2,... 
%                 'MarkerEdgeColor','k',... 
%                 'MarkerFaceColor','g',... 
%                 'MarkerSize',5); 
%     end 
%      
%      
% end 
% end 
%  
% if(plate>0.5*d && plate<d) 
%     for i=1:1:n 
%      figure(2) 
%      hold on 
%      grid on 
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%      plot(R(i),res2(i),'r+') 
%     end 
% end 
  
%} 
%{ 
 
for(i=1:1:n) 
     if(FM(i)==1) 
        figure(2) 
        hold on 
        plot(R(i),res2(i),'bo') 
     end     
     if(FM(i)==2) 
        figure(2) 
        hold on 
        plot(R(i),res2(i),'ro') 
     end   
     if(FM(i)==3) 
        figure(2) 
        hold on 
        plot(R(i),res2(i),'go') 
      % disp((i/n)*100)   
     end 
  
 end 
%} 
  
% 
  
% figure(2) 
% plot(R,res1,'+') 
%  
  
% figure(3) 
% plot(R,res2,'+') 
  
  
disp('Done') 
disp(' ') 
stoptime=toc; 
toc 
disp(' ') 
disp('Runtime/Simulation (sec) Calculation :') 
disp(steptime/n) 
disp('Runtime/Simulation (sec) Calculation+Plot:') 
disp(stoptime/n) 
  
figure(4) 
grid on 
plot(f1,R,res1) 
grid on 
Rsortt=sort(R); 
xlabel('Resistance'); 
ylabel(''); 
title(sname); 
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Appendix C 
Nail bending test results 
 
 
 

Length Nail ID Fy [N] My [Nmm] fy [MPa] 

40 mm 
 

1 1479 9612 901 

2 1432 9307 872 

3 1423 9252 867 

4 1400 9099 853 

5 1454 9448 886 

6 1430 9296 871 

7 1541 10016 939 

8 1475 9590 899 

9 1425 9263 868 

10 1464 9514 892 

60 mm 
 

1 793 8925 837 

2 864 9718 911 

3 791 8903 835 

4 854 9603 900 

5 813 9146 857 

6 851 9573 897 

7 852 9586 899 

8 818 9198 862 

9 829 9324 874 

10 750 8443 792 

 
Mean 

 

9341 876 

Characteristic 
 

8752 832 
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Appendix D 
Simulation results 
 
 
Simulation results 2d-25-n40: 
 
Input: 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 35mm 
Plate thickness: 2.5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output: 

 
 
Failure mode: 2 both thick and thin 
 
Interpolation formulation: 
Mean value: 1,42 kN 
Characteristic value: 1,18 kN 
Thick plate formulation: 
Mean value: 1,75 kN 
Characteristic value: 1,48 kN 
Thin plate formulation: 
Mean Value: 1,33 kN 
Characteristic value: 1,2 kN 
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Simulation results 2d-5-n40: 
 
Input: 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 32.5mm 
Plate thickness: 5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output: 

 

Failure mode: 2  
 
Thick plate formulation: 
Mean value: 1,67 kN 
Characteristic value: 1,41 kN 
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Simulation results 4d-2.5-n40: 
 
Because the simulation model simulates a one nail connection the results will be the same as 
the 2d-2.5-n40 series because they have the same steel plate and the same nail length. 
Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 35mm 
Plate thickness: 2.5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output: 

 
Failure mode: 2 both thick and thin 
 
Interpolation formulation: 
Mean value: 1,42 kN 
Characteristic value: 1,18 kN 
Thick plate formulation: 
Mean value: 1,75 kN 
Characteristic value: 1,48 kN 
Thin plate formulation: 
Mean Value: 1,33 kN 
Characteristic value: 1,2 kN 
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Simulation results 4d-5-n40: 
 
Because the simulation model simulates a one nail connection the results will be the same as 
the 2d-5-n40 series because they have the same steel plate and the same nail length. 
Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 32.5mm 
Plate thickness: 5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output:

 

Failure mode: 2  
 
Thick plate formulation: 
Mean value: 1,67 kN 
Characteristic value: 1,41 kN 
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Simulation results 4d-2.5-n60: 

Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 55mm 
Plate thickness: 2.5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output: 

 

Failure mode: 3 for thick and 2 for thin formulation 
 
Interpolation formulation Eurocode: 
Mean value: 1,46 kN 
Characteristic value: 1,3 kN 
Thick plate formulation: 
Mean value: 1,85 kN 
Characteristic value: 1,66 kN 
Thin plate formulation: 
Mean Value: 1,35 kN 
Characteristic value: 1,17 kN 
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Simulation results 4d-5-n60: 

Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 52.5mm 
Plate thickness: 5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output:

 

Failure mode: 3  
 
Thick plate formulation: 
Mean value: 1,88 kN 
Characteristic value: 1,67 kN 
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Simulation results 1d-2.5-n40: 
 
Because the simulation model simulates a one nail connection the results will be the same as 
the 2d-2.5-n40 series because they have the same steel plate and the same nail length. 
 
Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 35mm 
Plate thickness: 2.5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output: 

 
 
Failure mode: 2 both thick and thin 
 
Interpolation formulation: 
Mean value: 1,42 kN 
Characteristic value: 1,18 kN 
Thick plate formulation: 
Mean value: 1,75 kN 
Characteristic value: 1,48 kN 
Thin plate formulation: 
Mean Value: 1,33 kN 
Characteristic value: 1,2 kN 
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Simulation results 1d-5-n40: 
 
Because the simulation model simulates a one nail connection the results will be the same as 
the 2d-5-n40 series because they have the same steel plate and the same nail length. 
 
Input: 
 
Density range: 349-536 kg/m3 
Yield strength range: 792-939 Mpa 
Nail penetration length: 32.5mm 
Plate thickness: 5mm 
Nail diameter: 4mm 
Nr of sims: 2000 
 
Output:

 

Failure mode: 2  
 
Thick plate formulation: 
Mean value: 1,67 kN 
Characteristic value: 1,41 kN 
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PLUG SHEAR? [YES / NO] 
Total Plug weight [kg]:  
Steel plate(s) weight + nails weight [kg]:  
Plug weight [kg]:  
Measured length [m]:  
Measured width [m]:  
 
 

Plug W [kg]

Density [kg/m3]

Volume [m3]

Measured length [m]

Measured width [m]

Calculated plug depth [m]

Bottom shear area [m^2]

Side shear area [m^2]

Tension area [m^2]

Total area

 
 
 
 


