

Managed Operations Software

(MOS)

LTH School of Engineering at Campus Helsingborg

Department of Electrical and Information Technology

Bachelor thesis:
Rukhaya Alkuraiti
Kristina Kadar

 Copyright Rukhaya Alkuraiti, Kristina Kadar

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2012

Abstract

This thesis is a report from a project where the web based, platform

independent application ‘MOS’ - Managed Operating Software was

developed. The question asked was: ‘How can we help DISA's customers to

get a simple overview over the maintenance of their machines and to plan said

maintenance?’

MOS was created specifically for DISA, which is an international company

providing innovative casting technology.

The application was written using Java and JSP whereas the database was

created using SQLite. Two of the functions included are scheduling

maintenance and a calendar. The user accesses MOS via a simple web page.

This report documents the creation of MOS and its strong sides and

weaknesses. It is the hope of the authors that this thesis will bring insight to

those wishing to learn more about MOS, JSP or any other components

involved.

Keywords: MOS, DISA, JSP, Java, SQLite

Sammanfattning

Denna avhandling är en rapport från ett projekt där det webbaserade,

plattformsoberoende programmet ”MOS” - Managed Operations Software

utvecklades. Den fråga som ställdes var: ”Hur kan vi hjälpa DISAs kunder att

få en enkel överblick över underhållet av sina maskiner och planera detta

underhåll?”

MOS skapades speciellt för DISA som är ett internationellt företag som

tillhandahåller innovativ gjutningsteknik.

Plattformen utvecklades i Java och JSP medan databasen skapades med

SQLite. Några av de implementerade funktionerna är schemaläggning för

underhåll, tillgång till kalender och så vidare. Användaren kommer enkelt åt

MOS via en webbsida.

Denna rapport dokumenterar skapandet av MOS och dess starka sidor och

svagheter. Författarna hoppas på att denna uppsats kommer att kunna ge insikt

till dem som vill lära sig mer om MOS, JSP eller andra berörda ämnen.

Nyckelord: MOS, DISA, JSP, Java, SQLite

Foreword

As students in such a wide field as computer engineering it is almost

impossible to predict what you will end up doing at the end of your studies.

When the opportunity presented itself to carry out a Bachelors project at DISA

we were immediately interested as we had come to know DISA to be a large

company with a leading position in its field. As the project proposal was very

interesting we decided to apply.

Throughout this project we have done our best to produce a satisfactory

solution to what has turned out to be a demanding but intriguing problem.

We would like to thank DISA for this opportunity, as well as our supervisor

Nils Assarsson.

Helsingborg, June 2012

Ruhkaya Alkuraiti & Kristina Kadar

List of contents

1 Introduction ... 1

1.1 Background ... 1

1.1.1 DISA ... 1

1.1.2 DISA’s products .. 1

1.2 Purpose ... 2

1.3 Starting point .. 3

1.4 Requirements specification ... 3

1.5 Limitations ... 5

1.6 System description ... 5

2 Tools .. 7

2.1 Programming language .. 7

2.1.1 JSP .. 7

2.1.1.1 Syntax .. 8

2.1.1.2 Pros ... 9

2.1.1.3 Cons .. 9

2.1.1.4 Usage .. 9

2.1.2 PHP .. 9

2.1.2.1 Syntax .. 10

2.1.2.2 Pros ... 11

2.1.2.3 Cons .. 11

2.1.2.4 Usage .. 11

2.2 Database .. 11

2.2.1 SQLite .. 12

2.3 Server .. 13

2.4 Dropbox ... 14

2.5 Eclipse EE ... 14

2.6 SQLite Manager... 14

3 The working process... 15

3.1 Information gathering ... 15

3.2 Implementation ... 15

3.3 Testing ... 16

3.4 Documentation .. 16

4 MOS .. 17

4.1 The Java part ... 19

4.1.1 Db.java ... 19

4.1.2 SqliteDb.java .. 20

4.1.3 CheckItem.java ... 22

4.1.4 OrderItem.java.. 22

4.1.5 User.java .. 22

4.2 The JSP part.. 23

4.2.1 Login .. 24

4.2.2 Home ... 25

4.2.3 Order .. 25

4.2.4 Employees ... 26

4.2.5 Maintenance .. 27

4.2.6 Help ... 27

4.3 The database ... 29

4.4 Other elements ... 31

4.4.1 Style.css .. 31

4.4.2 Internationalization ... 31

4.4.3 Calendar .. 32

5 Results ... 34

5.1 Screenshots .. 37

5.1.1 The login screen .. 37

5.1.2 The home screen ... 38

5.1.3 The employee screen ... 39

5.1.4 The order screen .. 40

5.1.5 The maintenance screen .. 41

5.1.6 The help screen ... 42

6 Conclusions and comments .. 43

6.1 Future development ... 44

7 Dictionary .. 45

8 References ... 46

8.1 Image source .. 47

1

1 Introduction

1.1 Background

1.1.1 DISA

DISA is one of the leading manufacturers and suppliers of innovative metal

casting technology [1]. They currently produce moulding and shot blast

systems which are sold to customers worldwide. These machines are used to

manufacture everything from small car parts to large furnaces.

The company itself dates back to the early twentieth century. It was first

founded in the year 1900 and for the first 37 years DISA manufactured light

machine guns. Throughout the years the company has produced a variety of

products including sewing machines, tractors and petrol pumps. Since the

early 1960's however, DISA is entirely committed to the manufacturing of

metal casting technology.

DISA is based in the town of Herlev outside Copenhagen, Denmark. There are

also over 30 sites worldwide including manufacturing and sales agents. DISA

currently holds 97 active patents and has to this day installed a total of 2200

moulding machines.

1.1.2 DISA’s products

The moulding equipment available to DISA's customers is either vertical,

called DISAMATIC©, or horizontal, called DISA FLEX©. The DISAMATIC

was first introduced in 1964. Apart from the moulding equipment DISA also

provides several accessories such as various transport systems which can be

connected to the equipment in question. Service and support of different kinds

are also available.

The different solutions offer specialized adaptation to the customer's needs.

For example, DISAMATIC offers a fast vertical production of up to 510

moulds per hour while DISA MATCH offers an efficient production of

smaller product series where the moulding pattern needs to be altered

2

frequently. These are only two of the many moulding solutions offered by

DISA.

Figure 1. DISAMATIC

1.2 Purpose

From many years of experience DISA has noticed that their customers often

have issues with keeping track of the different maintenance tasks to be

performed on their equipment. Following the maintenance routines is

important because not only does it extend the lifespan of the equipment but it

also prevents them from having to be taken offline for unscheduled repairs

when they break. These emergency repairs usually cost more for the company

than a scheduled repair because loss of production and the risk that the broken

part has caused damage to additional parts. In light of this, DISA would like to

be able to provide a platform on which these issues are addressed and solved.

The question we asked was: How can we help DISA's customers to get a

simple overview over the maintenance of their machines and to plan said

maintenance?

3

The purpose of this project was to implement a web based, platform

independent tool for this purpose. This thesis describes this platform and the

work behind it.

1.3 Starting point

This project started originally in the autumn of 2011 as a part of a project

course. The group that worked on it then did as much as they could in the

short duration of the course. What they accomplished then was the basis of

MOS. Since then a lot of things have been reworked or added by us.

What is left of the earlier version is the user interface, the files concerning

employees, the help tab, Db.java, Users.java, SqliteDb.java and mms.sqlite.

The latter is the database file. The latter two have been modified extensively.

A more detailed description of the changes made follow in this report.

In addition to the program from the previous project, we also had a list of

requirements that we put together following our first meeting with DISA. Our

goal was to meet all the demands, but because of the projects time restrictions,

we had to ignore certain points. However, we saw that the requirements

removed would not affect the program's functionality.

Below is the list of the requirements compiled. The chapter ‘Results’ contains

a description of the requirements that were not met and the reason for not

meeting them.

1.4 Requirements specification

R1 Check-list

1. Ability to add entries

2. Ability to remove entries

3. Ability to edit entries

4. Ability to change time scope.

5. Ability to scroll through the check-list's pages using next/previous

buttons.

4

6. Contents of the checklist are inserted / updated in the calendar.

R2 Planning calendar

1. The calendar should show one month at a time.

2. Clicking on a day should reveal a more detailed picture of the tasks to

be performed on that date.

3. The calendar should show the data in different colours depending on the

task's priority.

4. Adding other tasks apart from those present in the check-list should be

possible

5. Ability to reschedule a task.

6. Ability to remove a task.

7. Ability to add a time at which the task is to be performed.

R3 Resources

1. Ability to see available employees.

2. Ability to see available spare parts.

R4 Priority levels

1. There are three different levels: urgent, semi-urgent, not urgent.

2. The calendar represents every level with a colour; urgent - red, semi-

urgent - orange, not urgent – yellow.

R5 Language support

1. The program should have support for multiple languages.

2. Upon delivery the program should support the following languages:

English and Swedish.

3. The language support should be easy to extend with additional

languages without having to re-engineer the entire platform.

R6 Security

1. The program should be protected against SQL injections.

R7 Reporting

1. It should be possible to bring up a particular service report.

5

2. It should not be possible to edit a service report.

1.5 Limitations

Because of the time constraints not all desired functions could be

implemented. One of these was unfortunately security. In the version of MOS

delivered to DISA there is no security implemented except for a user name

and password that are not encrypted. Functionality of the platform was

prioritized instead.

1.6 System description

Upon delivery, MOS will include the features that we concluded, together

with DISA, that their clients are in need of in order to keep track of the

maintenance of their equipment.

MOS was developed for DISA's behalf. However, DISA will not have any

direct use of any of the parts included in MOS. It is their customers around the

world who will hopefully find good use of it. DISA will be the owner of the

software and the retail rights.

Viewed from DISA's customers' perspective MOS is a program with which

they can keep track of when maintenance of equipment should be carried out

in order to be able to maximize use of this equipment.

With the aid of MOS, DISA's customers will be able to keep track of the

maintenance work to be done during the day as this is the first thing you see

after logging into the program. You can by clicking on a maintenance job get a

more detailed description of the work to be performed, who will carry it out

and more. Moreover, one can see what maintenance work needs to be

performed during the coming period or a little later in time as MOS allows

customers to search through all the registered orders. As previously

mentioned, one can again obtain a detailed description of each maintenance

work.

6

In addition to keeping track of maintenance work, DISA's customers using

MOS will be able to keep track of all employees as there will be a tab in the

program designed for this. With the aid of this tab you may obtain a detailed

picture of the company's employees and their information such as name, skills

and more.

7

2 Tools

2.1 Programming language

Since the software developed in this project had to be platform independent

the choice stood primarily between PHP and JSP.

Even though PHP has benefits like being beginner friendly and being

supported by almost all webhosting platforms JSP was chosen for this project.

The weak types and lax syntax check of PHP makes it less secure than JSP.

Since the software was going to initially be run locally the webhosting factor

did not really matter at this time. Also, PHP is very well suited for less

complex projects while JSP is better suited for more complex projects due to

the standard classes and its scalability.

2.1.1 JSP

JSP is an abbreviation for JavaServer Pages. It is used to create dynamic web

pages where, for example, HTML or XML makes up the static content. The

dynamic content is made up of JSP elements which are marked with special

tags in the code. JSP uses the Java programming language and is owned by

Sun Microsystems.

JSP makes it easier to develop web based software as it separates the logistics

part from the design and visualisation as well as supports reusable, component

based design. The designer and programmer can work individually without

having to rely on each other. In other words; JSP separates the Java code that

creates content from the HTML code that presents it to the users [2]. It is also

much more accessible compared to normal servlets which for example invites

page designers to participate in the development [3].

A JSP page becomes a standard Java servlet when compiled. A servlet is a

platform independent server-side module which can be used to enhance the

functionality of a web server without demands of extensive maintenance or

support. This servlet is cached and re-used until the original JSP page is

modified.

8

2.1.1.1 Syntax

The JSP syntax can be divided into directives, declarations, expressions and

scriptlets.

Directives tell the JSP engine how to handle the page, but generally does not

generate output. They are always embedded in the <%@ ... %> tag. Several

directives exist and the most frequently used are page and include. Any

number of page directives can exist in a single JSP page. For example, the

code <%@ page import="java.util.*" buffer="16k"%> loads all the types

declared in java.util and sets the page buffer to 16k.

The include directive makes it possible to separate content into smaller

elements, making them easier to handle. The code <%@ include

file="test.html" %> includes the content of test.html into the JSP page.

Declarations are used to declare or save methods or information within the

JSP page. For example, the code <%! int i=0; %> would be a valid

declaration. Note that a ‘!’ has replaced the ‘@’ found in a directive.

Expressions are typically used to evaluate a Java expression, convert it to a

string and include it to the output JSP page. For example, the variable integer

‘I’ declared in the previous item could be displayed with <%= i %>.

Scriptlets, or JSP code fragments are embedded within <% ... %> tags. Here it

is possible to put virtually any Java code, for example this snippet:

<% for (int i=1; i<=4; i++) {%>

<% Hello world! %>

<% } %>

This will give the following output:

Hello world!

Hello world!

Hello world!

Hello world!

As a side note, comments in JSP pages are put within <%-- --%> tags. As

opposed to regular HTML comments they are invisible to users even if they

view the page source.

9

2.1.1.2 Pros

 JSP has very strict syntax check and it is therefore harder to make

undetected mistakes [4].

 It is platform and server independent.

 Easily scalable.

 Good portability. JSP goes by the rule: Write once, run anywhere.

2.1.1.3 Cons

 The learning curve is considered to be quite steep, especially if the

programmer is inexperienced. Knowing Java may help somewhat.

 Since JSP is not as widely used as for example PHP both the

community and the documentation is scarcer.

 Not all webhosts can host JSP based web pages. Therefore the hosting

costs for JSP is considered higher than for PHP.

2.1.1.4 Usage

JSP is primarily used in projects that require higher security. Because of the

fact that JSP uses several layers of authentication it creates an environment

with a higher security. It is also used in complex projects that contain multiple

layers. One of the companies using JSP for their services is Altavista.

2.1.2 PHP

PHP is an abbreviation for Hypertext Preprocessor. It is a widely used general-

purpose server side scripting language released under the PHP License as free

software used to create dynamic web content. The PHP code is interpreted by

a PHP processor module on a web server, creating the web page [5]. PHP can

be deployed on most web servers or as a standalone shell on most operating

systems.

10

The inventor of PHP in 1995 was Rasmus Lerdorf, a Danish/Canadian

programmer. The PHP group [5] is now in charge of the language, as well as

serve as the formal reference. PHP is generally a safe language to use if the

best practice programming rules are applied. Most security issues arise when

users deviate from this practice [6].

There are security add-ons for PHP, for example PHPIDS, which protects

against intrusions such as SQL Injections, DoS and cross-site scripting [7].

2.1.2.1 Syntax

PHP code can be embedded directly into HTML code. As PHP is a high-level

language its syntax is similar to languages such as C & C++. The processing

of the code is made easy by simply encapsulating it in tags within the HTML

code itself. There are several tags available, the most common being <?php

... ?>. Within these tags, any PHP code may be entered [5].

For example, the following code: <?php echo 'Hello World'; ?> will output

the classical ‘Hello World’ statement.

It is also possible to write functions, such as:

<?php function fooFunction() { return 'awesome';}

echo 'PHP is ' . fooFunction() . '!'; ?>

will output ‘PHP is awesome!’.

PHP 5 supports complete object-orientations as well as private member

variables and methods, abstract classes and methods as well as final methods.

An example is a PHP class could be:

class Person {

public $firstName;

public $lastName;

public function __construct($firstName, $lastName = '') {

$this->firstName = $firstName;

$this->lastName = $lastName;

}

11

2.1.2.2 Pros

 PHP is considered easy to learn even for non-developers due to its

dynamic typing [8].

 A large community and extensive documentation is available.

 Almost all webhosts can host PHP applications.

 PHP is Open Source.

2.1.2.3 Cons

 Since it is a dynamically typed language it is easy to make mistakes and

the code may be hard to debug.

 Best practices have to be followed to ensure security and easier

maintenance.

 PHP works best for simpler projects as the code easily gets bloated as

the complexity increases.

2.1.2.4 Usage

PHP is widely used for web development since it is easy to learn and use. As

is it server based, installation procedures require only a minimum of technical

knowledge. Alas, as the typing is so forgiving it is easy to get carried away

and ending up shooting oneself in the foot. If best practices and code standards

are not followed the result can easily end up being ‘hacks on hacks and a

whole lot of crappy spaghetti code’[8].

PHP is used for web projects of all sizes and by literately everyone, from

novices to experienced professionals. Even people who do not know any other

programming language take up PHP. Some notable projects that make use of

PHP are Joomla, Drupal, Wikipedia, Facebook and WordPress.

2.2 Database

In addition to selecting which programming language we would use we also

needed to determine which database manager we would use throughout the

12

project. The choice was between SQLite and MySQL, mainly because they are

the most widely used and well documented relational databases.

After studying each manager we compared them with each other and studied

which one would be appropriate. We came to the conclusion that SQLite was

the appropriate handler for this project.

The arguments for the choice of SQLite instead of MySQL is that SQLite is

much easier to install than MySQL [9]. This is good as in many cases the user

of MOS may have no experience in this field. In addition, MySQL goes under

the GNU General Public License and therefore a paid license is needed to use

MySQL which is not the case with SQLite as it is in the public domain.

As we found out that users probably will not use databases that exceed 1 GB

SQLite will suffice as that is the limit of its storage capacity. Additionally,

DISA's customers will initially have their database installed locally. As

SQLite is stored as a single file and, as mentioned earlier, does not need

complicated installation procedures it is preferable to MySQL in this case. The

single file also makes it easy for the user if the database was to be moved to

another computer.

2.2.1 SQLite

SQLite is a small and lightweight relational database management system

[10]. It is one of the most widespread database solutions for client storage in

web browsers and operating systems, as well as cellphones and MP3 players.

A few notable examples of companies utilizing SQLite in their products are

Apple, Google, Airbus and McAfee.

SQLite was designed by D. Ropert Hipp in the year 2000 when working to

design software to be used on U.S. warships where there was a need to allow

software to access a database without having a database management system

installed. Its source code is now public domain and it is continuously upgraded

and tested. Some of the many useful features resulting from the extensive

testing are that data transactions are fully ACID-compliant and adheres to

most standard SQL syntax. ACID implies that all database transactions are

Atomic, Consistent, Isolated, and Durable [11]. This means that all changes to

the database are ‘all or nothing’. Either the whole change is applied or the

13

database remains unaffected. This acts as a safe guard towards unexpected

errors such as power failures and program crashes.

SQLite is the library-of-choice in many applications due to its size. A full-

featured SQLite database is usually less than 350 KiB and a more sparsely

furnished database may even be smaller than 100 KiB. This database is stored

as a single, platform independent file on the host computer. The database

handles several read operations simultaneously whereas only one write

operation is allowed at any given time.

2.3 Server

Apache Tomcat was chosen as the web server [12]. It is an open source and

platform independent web server, not to be confused with the ‘Apache Web

Server’. Apache is a C implementation of a HTTP web server whereas Apache

Tomcat runs on Java and supports Java Server Pages, JSP. It is light-weight

and easy to set up.

Apache Tomcat, or Tomcat for short, comes with three components; Catalina,

Coyote and Jasper. Catalina is the so called servlet container which

implements the Sun Microsystem specification for servlets and JSP [13].

Coyote is the HTTP connector built into Tomcat. It manages incoming

connections via TCP ports and sends requests to the Tomcat engine. Jasper is

the JSP engine which compiles JSP files to Java code. These files can then be

processed by Catalina.

The choice to use Tomcat as a server was mainly because we had previous

experience in working with it and it would serve our purpose well. This meant

that we could save a lot of time when it came to problem solving and trouble

shooting.

As the choice of Tomcat was in a sense obvious we did not investigate other

available options.

14

2.4 Dropbox

To easily share files while working Dropbox 1.4.7 was used [14]. Dropbox is

a service provided by Dropbox, Inc. and offers cloud storage and file

synchronisation. A program can be installed on the computer and then it

automatically synchronises the files in a selected folder with the Dropbox

server.

2.5 Eclipse EE

Since the project was a dynamic web project it was developed in Eclipse EE

3.7 (Indigo) [15]. In the rest of the thesis it will only be referred to as

‘Eclipse’.

2.6 SQLite Manager

SQLite Manager 0.7.7 was used to create and manage the SQLite database

used by the platform [16]. SQLite Manager is an extension for Mozilla

Firefox. It does not install its own SQLite library but uses the one installed in

Firefox. In this case it was version 3.7.10.

15

3 The working process

In order to obtain a clear picture of what to deliver to DISA at the end of the

project a meeting was scheduled at DISA's main office in Denmark. This

meeting resulted in a list, clearly showing DISA's requirements, i.e. what the

MOS needed to be able to do.

As we were two people working on this project we divided the work into two

parts. Each of us then had the responsibility of satisfying the demands in one

of the parts. Despite of this we used one and the same work method where we

collected information, implemented and tested in parallel throughout the

project. This lies close to the ‘Do Whatever’ model, as we felt it necessary to

use a very agile model in a project such as this. Moreover, it is similar to the

working method that was used during the project course in the fall of 2011.

To make it possible to work on the project simultaneously from different

locations we created a Dropbox account. This is mentioned in section 2.4.

3.1 Information gathering

Neither one of us had any prior experience working with JSP which meant that

the main part of the starting phase was devoted to learning this language.

However, we were constantly forced to gather additional information during

the course of the project when we encountered various problems.

Information was sought on various forums for developers who have

experience in working with JSP and websites for the various programs that

were used during the project. These are mentioned in Chapter 2.

3.2 Implementation

After gathering enough information about the usage of JSP the

implementation of MOS commenced. MOS consists of several small parts that

are described in Chapter 4, ‘MOS’. These parts are mainly divided in the

different functions of MOS. Therefore the implementation took the form of

16

small iterative phases which included collection of information,

implementation, and finally testing.

3.3 Testing

After each completed stage everything implemented during that phase was

tested. In cases where the part implemented had a connection to the parts

previously implemented and thus could affect these parts, testing of all the

parts connected was carried out.

A final test was carried out at the end of the project. All elements included in

MOS were tested to ensure that the product delivered to DISA was working.

3.4 Documentation

The plan was that the documentation would be done in parallel with the

project. Unfortunately this was not met as the project for the greater part is a

development-type project which makes it difficult to document anything at all

until the program is near completion. However, there were some parts such as

when we decided if we were to develop in PHP or JSP which were recorded at

the beginning. Thus there was documentation done in the beginning and end

of the project.

17

4 MOS

MOS is composed of three parts: a part that covers the Java files, the second

consisting of the JSP files, and a third and final part that is the database.

All parts are assembled in one package in Eclipse, named disa. This package is

what will ultimately be delivered to DISA with its report.

Figure 2. The structure of the platform showing the three parts: the database, the Java part

and the JSP part. The flow of information is indicated by the arrows. As can be seen the

JSP part does not communicate with the database directly.

The reason for designing MOS in this manner comes from DISA's need for

web-based software as well as our own desire to create a platform independent

program. Since DISA's customers are based across the world and have various

technical skills these seemed like sound choices.

Having a web-based program helps the customers as they do not need to

install any software on their own computers. They will also have continuous

access to the very latest version simply by using their browser to access

DISA's web server.

Making the software platform independent makes updates and further

development simpler as it does not matter which operating system the

developers are using.

During the development of this software the web server Apache Tomcat

Server was used for testing from the development environment, Eclipse.

To fulfil DISA's demand for a web-based program, we used HTML and CSS

to develop the layout of the web page (the static content). For the dynamic

18

content, JSP was used. JSP uses regular Java commands to send or retrieve

information from a web page. This lead us to create Java files for the different

classes used in the program.

A more detailed description on each Java file can be found in section 4.1.

As the program sends and retrieves data a database is needed to store it. We

used the simple and lightweight database SQLite which is stored on the user's

computer in the form of a single file with file ending .sqlite.

In the same way as the Java files and JSP files exchange data with each other

when you access the website the Java files and the database file exchange

information to retrieve or send the data needed by the JSP files.

19

4.1 The Java part

This section covers a certain number of classes needed for a functioning

program.

Figure 3. An overview of the classes in the Java part and the flow of information between

them. All communication with the database is routed via Db.java while Sqlite.java handles

the communication with the JSP part.

The files CheckItem.java, OrderItem.java and User.java are classes that define

different kinds of objects. These are used by the methods of SqliteDb.java.

Db.java has an exclusive connection with the database while Sqlitedb.java

handles the operations required by the JSP part. The Java part thus acts as an

intermediary, transferring data between the JSP files and the database.

These classes are described more in detail below.

4.1.1 Db.java

This is the class that contains all the methods needed for a connection with the

database. It is exclusively SqliteDb.java that uses the methods of Db.java. This

is also one of the classes that remain from the original project and has not been

changed significantly.

20

4.1.2 SqliteDb.java

SqliteDb.java consists of several methods used for reading, writing, and

updating of data concerning orders, employees and the check-list to the

database.

This class is also the one that is used to establish a connection between the

database and the program itself. It is one of the original files that remain but

has been heavily modified during this project.

Below are the methods included in this class along with a description of their

functionality.

getUsers()

Returns an array list of all employees.

getUsersByProf(String prof, String date)

Returns an array list with competence prof available on the date date.

insertUser(String telnr, String firstname, String lastname, String profession)

Adds an employee.

updateUser(String empl,String telnr, String firstname, String lastname, String

profession)

Called when any of the variables within the above parenthesis needs to be

changed for an employee.

deleteUser(int empl)

Removes an employee.

getUserInfo(int id)

Obtains information about an employee.

getProffesions()

Returns an array list of available competences within DISA.

getWorkOrders()

Returns an array list of all orders.

21

getWorkOrdersByDate(String date)

Gets orders for a certain date. Returns an array list.

addWorkOrder(String title, String desc, String date, String reqcomp, int prio,

boolean done)

Creates a new order.

deleteWorkOrder(int id)

Removes an order.

updateWorkOrder(int id, String title, String desc, String date, String reqcomp,

int prio, boolean done)

Is called when any of the variables within the above parenthesis needs to be

changed for an order.

getWorkOrderInfo(int id)

Obtains information about an order.

insertLocking(int orderId,int employeeNbr, String date)

Is called when an employee is assigned to an order. Makes sure that he/she is

added to the table of busy employees on the date in question.

getLocking(int id)

Returns an array list containing the employees bound to the given order as

well as the date this order is due to be carried out.

deleteLocking(int id)

Deletes all the information stored for a given row. This makes the employees

bound to this order available on the date when the order should have been

carried out.

updateLocking(int id, int employeeId,String date)

Updates existing information.

22

4.1.3 CheckItem.java

CheckItem is a class for the objects in the check-list. It contains only a

constructor and get and set methods for the different attributes of the

CheckItem object.

4.1.4 OrderItem.java

A class used to create a new order object. Contains get and set methods to

allow for the collection of information about said objects. An example of such

information is the order number.

4.1.5 User.java

A class used to create employee objects. Contains get and set methods to

allow for the collection of information on existing employees. An example of

such information is the employee's identification number. This is also one of

the original files and have not been modified significantly.

23

4.2 The JSP part

This part consists of several JSP files. These files can be divided into different

groups. They make up the dynamic functions needed for MOS's functionality.

Figure 4. An overview of the JSP part. As can be seen, the different JSP files are clustered

into logical groups by the purpose they serve. The arrows indicate the flow of information

both between the individual JSP files and also between the files and the Java part.

24

The JSP part is used to send and retrieve data from the website. The JSP files

can send data between themselves and to the Java part but not to the database

directly. All communication with the database, whether it is to retrieve

information or insert ditto into the database, is done via the methods of

Sqlitedb.java. Sqlitedb.java then relays it to the database through the

connection established by Db.java.

In our case the JSP files also consist of certain HTML code needed for the

layout of the web page.

The groups, their files and a description of the functions in this project are

listed below.

4.2.1 Login

To access the program you have to log in, which is what these JSP files

handle. Logging in is done by entering a user name and a password. If these

are found in the database and are correct the user will be redirected to the

home page, else an error message will appear.

Index.jsp

This is the welcome screen and is automatically displayed when the program

is opened. When clicking the ‘Login’ button the entered information is relayed

to Login.jsp.

Login.jsp

Checks if the entered username exists in the database and if the password

matches the one in the database. If everything is found and matches the user is

relayed to Home.jsp, else an error message is displayed.

At the time of delivery there are two users added. Additional users can be

added by entering them manually into the database.

Because of time constraints no regard for safety has been taken.

25

4.2.2 Home

If the correct username and password were entered the user is granted access

to all pages and functions. By default the user is first redirected to the home

page. Here the orders for today's date are displayed together with the option to

make changes to the orders. Also the number of mouldings read on the

machine can be entered.

4.2.3 Order

This group includes several files. What they are and what role they cover is

described below.

Order.jsp

Allows the user to choose between creating a new order or search for an order.

SearchOrder.jsp

The user enters a date in a field so as to obtain all the orders to be executed at

that date. Here, the user can also choose to edit any of the found orders.

NewOrder.jsp

Enables a user to add an order. Contains fields for entering the title,

description of the order, the date when the order is to be executed, priority

level, the necessary competence and selection of workers in selected skills. It

also ensures that the information is stored in the database.

ViewOrder.jsp

The user is redirected here after pressing the ‘Edit’ button. This page shows all

the relevant information regarding an order: title, description, date of

execution, priority, selected skills, selected workers, if it has been carried out

or not and order id number.

EditOrder.jsp

The user can modify the information contained in the selected order. The

information here is the same as the information mentioned for ViewOrder.jsp.

26

UpdateOrder.jsp

This file makes sure that all of the data changed in EditOrder.jsp except

selected users is updated in the database.

UpdateOrderCon.jsp

Ensures that selected users are updated in the database if they are changed in

EditOrder.jsp

DeleteOrder.jsp

Deletes an order.

4.2.4 Employees

Below are the files that are covered in this group and their function in this

program.

Users.jsp

Showing all employees with their full name and expertise. In front of each row

is a small image with which one can access UserView.jsp by clicking it.

Moreover, there is a button to add new employees.

UserNew.jsp

Allows the user to enter information about the employees who will be added.

This information is the employee's first and last name, telephone number and

competence.

This file ensure that this information is also entered into the database.

UserView.jsp

Displays the stored information about the selected employee. The information

is the employee's ID number, full name, telephone number and competence.

UserEdit.jsp

Gives users the ability to change the stored information of a selected employee

with the exception of the identification number. This information is the same

as in the previous paragraph.

27

UserUpdate.jsp

Ensures that updated information in UserEdit.jsp is updated in the database.

UserDelete.jsp

Deletes the selected employee from the program.

4.2.5 Maintenance

This page contains the check-list where the service manager can view what

operations have to be done at which intervals. This page also uses several files

for its functions.

Checklist.jsp

This file retrieves the information of the check-list from the database and

displays it when the ‘Maintenance’ tab is selected.

ChecklistAdd.jsp

The user can add new entries to the check-list. Shows a form in which the

desired parameters can be entered and added to the database.

ChecklistDelete.jsp

Deletes the chosen entry from the database.

ChecklistEdit.jsp

Displays a form with the parameters of the chosen entry which can be edited

and updated in the database.

ChecklistUpdate.jsp

Updates the chosen entry with the selected values in the database.

4.2.6 Help

This part of the program was mostly retained from the program created during

the project in autumn 2011.

28

The idea is using this tab to get the necessary support when needed. This

support is obtained by sending a questionnaire to DISA with a description of

the problem, name and address of the person who submits the form.

Alternatively you can call to DISA directly when there is contact information

available on this page.

In addition to the questionnaire as well as contact information there is a user

manual, service manual, and questions and answers which you can browse

through before using the questionnaire or contact DISA in order to verify

whether there is a solution to any problem in any of these three elements.

Unfortunately, these functions of this tab could not be implemented due to

temporal restraints.

29

4.3 The database

The database is a SQLite database. It contains all of the information that is

used by MOS. It is designed as follows:

Competences

Contains all of the professions possessed by the employees. The table users

references it for its own column profession.

Checklist

Holds the information on the check-lists. Each post in the check-list is

identified by its checkId. This table is currently stand alone and has no

relations to the others in the database.

Login

Contains the unencrypted usernames and passwords. The username has to be

unique and is used as the primary key of this table.

LastLogin

This table keeps track of which users have logged in previously and also when

that occurred.

Users

Holds the information on the employees, such as their names and phone

number. This table references the table competences for the column

profession.

WorkOrder

This table contains the information on the work orders that are to be carried

out and also the ones that are already done. It uses orderId as primary key as

all orders have to be uniquely identifiable.

Locking

Locking is used to determine if a certain employee is available or not during a

chosen day. It references both the tables Users and WorkOrder.

30

Mouldings

Keeps track of the number of mouldings done by the machine. Currently this

information is not used and the table lacks connections to the rest of the tables.

Id is not really needed but is in this case used to overwrite the same row as not

to fill the database with useless information that will never be used or cleaned

out.

Figure 5. Diagram of the SQLite database used by MOS

31

4.4 Other elements

In addition to the three main parts there are some other smaller parts that are

of importance to the project. Below is a description of these parts.

4.4.1 Style.css

The CSS file that holds the information concerning the programs graphical

layout. There are declarations regarding what colour the background should

have, which font to use, what colour the text should be, text placement and

more.

4.4.2 Internationalization

At the time of delivery MOS will have support for both English and Swedish

language.

For the language support the fmt tag library of the JavaServer Pages Standard

Tag Library (JSTL) was used [17]. It provides among others functions for

setting the locale of the user and for handling which language file to use.

The different languages are saved as external .properties files. These files have

language codes in the file name so the program can choose the correct one.

For example, in MOS the Swedish text file is called

MessagesBundle_sv.properties. The ‘sv’ in the file name denotes that it is a

Swedish file. For other languages the language code must be substituted for

the appropriate one.

The language files use the same keys for the corresponding phrases and

different translations. Two snippets of the language files are shown to

illustrate this:

From the Swedish file:

index.welcome = Välkommen!

index.greeting = Var god mata in dina inloggningsuppgifter i fälten

till höger.

32

From the English file:

index.welcome = Welcome!

index.greeting = Please enter your username and password in the

boxes to the right.

To use these phrases first JSTL has to be installed. In the case of MOS this

was done by simply putting the file jstl-1.2.jar in the folder /WEB-INF/lib.

At the top of each file that is meant to be internationalized search paths and

other parameters for fmt have to be set.

In the case of MOS it looks like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<c:set var="language" value="${not empty param.language ?

param.language : not empty language ? language :

pageContext.request.locale}" scope="session" />

<fmt:setLocale value="${language}" />

<fmt:setBundle basename="i18n.MessagesBundle" />

To change the language file fmt is using the value of the ‘language’ variable

has to be changed.

To use the different translations all output text is replaced by fmt tags with the

corresponding key. For example, to write ‘Welcome!’ on the screen the

following code is used:

<fmt:message key="index.welcome"/>

By using the fmt tag library for internationalization translation of the software

becomes easy and requires minimal engineering since the .properties files are

external and can be edited with most text editors.

4.4.3 Calendar

In order to give the user an overview of the orders over time there was a

calendar implemented in MOS. The calendar can be seen in the areas where it

was considered that time overview was important.

33

The code for this calendar was found on the Internet [18]. However, this code

was modified so the current date is highlighted.

34

5 Results

This project resulted in a working program dubbed MOS. MOS is a program

created to help DISA's customers keep track of when various machines and

their parts need to be maintained.

Using MOS, DISA's customers can see what maintenance, referred to as work

orders in the program, are to be carried out during the day. There is also the

opportunity to see what should be done in the future. This is done by a search

feature to seek orders for a given date. In addition, a user may add, remove

and edit orders.

MOS also provides customers the ability to add, edit and delete the

information of a particular employee.

In MOS, DISA's customers may read the check-list used to determine what

maintenance work is needed. Users may also add, delete or edit rows of the

default check-list to customise it for their special needs.

Should the user have any questions or concerns then it is possible to find

contact information to the DISA offices and to DISA's employees in the

‘Help’ tab. This part is not quite fully implemented because of the limited time

frame of the project.

The time frame of the project lead to that some of the requirements that were

set up in the beginning of the project were not completed. Below is a

description of the completed requirements as well as those which are yet to be

implemented.

R1 Check-list

1. Ability to add entries

Completed.

2. Ability to remove entries

Completed.

3. Ability to edit entries

Completed.

4. Ability to change time scope.

Completed.

35

5. Ability to scroll through the check-list's pages using next/previous

buttons.

Not needed since the design is a scrollable, vertical list.

6. Contents of the checklist are inserted / updated in the calendar.

This is part of the planned automatization which was deemed too time

consuming for this project and is thus not yet implemented.

R2 Planning calendar

1. The calendar should show one month at a time.

Completed.

2. Clicking on a day should reveal a more detailed picture of the tasks to

be performed.

Due to the lack of knowledge within this area as well as time

constraints, this part was not implemented. However, a number of

unfruitful attempts were made.

3. The calendar should show the data in different colours depending on the

task priority.

This requirement was not implemented due to prioritization (and time

constraints) of the requirements with the largest impact on functionality

4. Adding other tasks apart from those present in the check-list should be

possible.

Completed.

5. Ability to reschedule a task.

Completed.

6. Ability to remove a task.

Completed.

7. Ability to add a time at which the task is to be performed.

Completed.

R3 Resources

1. Ability to see available employees.

Completed.

2. Ability to see available spare parts.

Not yet implemented.

R4 Priority levels

1. There are three different levels: urgent, semi-urgent, not urgent.

Completed.

36

2. The calendar represents every level with a colour; urgent - red, semi-

urgent - orange, not urgent - yellow.

This was not implemented but replaced by a simple numbering from one

to three, where 1 = urgent, 2 = semi-urgent, 3 = not urgent. The

numbers become visible when accessing the detailed view by clicking an

order.

R5 Language support

1. The program should have support for multiple languages.

Completed.

2. Upon delivery, the program should support the following languages:

English and Swedish.

Completed.

3. The language support should be easy to extend with additional

languages without having to re-engineer the entire platform.

Completed. This was accomplished with external language files that can

be edited with any text editor. No engineering skills are needed for

translating.

R6 Security

1. The program should be protected against SQL injections.

Not implemented due to time constraints.

R7 Reporting

1. It should be possible to bring up a particular service report.

2. It should not be possible to edit a service report.

None of the requirements related to reporting were implemented due to time

constraints. They were also considered not to enhance the functionality of

MOS greatly at this point.

37

5.1 Screenshots

5.1.1 The login screen

Figure 6. The login screen. This is the first screen displayed when the program is opened.

When the program is opened the first screen that greets the user is the login

screen, shown in figure 6. Here the user can enter his or her username and

password to log in and also see who was last logged in and when. In the top

right corner is the menu for choosing what language the page should be shown

in. This is identical on all the pages.

When the user logs in he or she is sent to the home screen, shown in figure 7.

38

5.1.2 The home screen

Figure 7. The home screen.

The home screen offers the possibility for the user to enter the number of the

mouldings done and also contains a calendar and a list of tasks that need to be

taken care of that same day.

At the top of the screen is the menu for choosing which page to view next.

39

5.1.3 The employee screen

Figure 8. The employee screen.

The employee screen can be seen in figure 8. It contains a list of the currently

registered employees and offers various options in handling the employee

information.

40

5.1.4 The order screen

Figure 9. The order screen.

Figure 9 shows the order screen. At this screen the user can either add a new

order or choose to search among the currently added orders.

41

5.1.5 The maintenance screen

Figure 10. The maintenance screen.

The maintenance screen shown in figure 10 displays the annual check-list.

This list is vertically scrollable and entries can be added, edited or deleted to

customize the check-list for the customer's special needs.

42

5.1.6 The help screen

Figure 11. The help screen

The help screen (displayed in figure 11) offers assistance if the need should

arise. Both a User Manual and a Service Manual is available and for further

support there is a contact form and contact information to the user's local

DISA office. No actual functionality, except for internationalization, is

implemented on this page at the time of delivery. Currently this page serves

the purpose of showing the possibilities.

43

6 Conclusions and comments

In the current situation DISA's customers themselves need to keep track of

when service is needed for their equipment. The result of this is that the

equipment does not last as long as expected when one forgets to perform

service on time. DISA therefore decided to develop a platform that will help

their customers keep track of service for their machines so as to ensure that the

equipment lasts just as long as they should or even longer.

This lead to the development of the platform MOS. Expectations and hopes

are that MOS will be able to act as an assistant to the customers as it helps to

keep track of the maintenance.

As mentioned in the beginning of this report a meeting was held with DISA to

clarify their requirements and preferences regarding MOS. Based on these

requirements and requests MOS was implemented. When comparing the

results and what DISA wanted one may say that this project was a successful

one.

MOS currently provides DISA's customers with the ability to add, delete and

edit orders and employee information. In addition, the user of this program

can see the Annual Checklist and edit it. By edit, we mean to add, delete or

update posts. With MOS, the user may also view his/her work orders, see

when they are due to be executed and also see an overview of his/her

employees.

After meeting with DISA we had several ideas on how we could develop

MOS and what we felt that MOS should offer. Unfortunately, because of the

time frame of the project we had to exclude some of these ideas.

Just like everything in software development, MOS can be further developed

to become even more efficient and useful than it is when delivered.

Below are examples of components that can be developed or added to improve

MOS. These parts are also the additional ideas that we had to exclude.

44

6.1 Future development

As mentioned in this report, MOS includes a calendar application. At the start

of the project the idea was that this calendar would be clickable. You would

click on a particular day and thus get all the orders for that day. Since this is

not implemented in this version of the program it may be something to include

in future versions.

The security issue has been mentioned several times in this thesis but should

be included in this topic too. There is quite a lot to improve on the security

since at the time of delivery it is seriously lacking. Both password protection

and protection against SQL injections should be taken into consideration.

The current version of the MOS takes into account the priority of orders. What

may be appropriate to implement in future versions is that orders may be

tinted different colour depending on their priorities. In this way the user can

directly get an overview of how the orders are prioritized. In the present

situation the order is prioritized with a number that is visible when you edit an

order.

Another idea was that the functions of MOS would be handled automatically.

MOS would manage everything related to when service should be done, what

task should be carried out, removing an order when its time has passed and

when its absolute deadline is. However, this idea was excluded rather quickly

as it was considered to be far too time consuming.

45

7 Dictionary

ACID - Atomicity, Consistency, Isolation, Durability, a property set for

database transactions the ensure reliability

Apache Tomcat – An open source web server developed by the Apache

Software Foundation

DISA – International company producing metal casting technology

Internationalization - The process of designing a program so that it can be

translated and adapted for various regions without engineering changes

JSP - JavaServer Pages

JSTL - JavaServer Pages Standard Tag Library, a Java EE Web application

development platform component that adds tag libraries to JSP

MOS – Managed Operations Software

SQLite - A relational database management system

46

8 References

Most of the information for this thesis has been obtained from the official web

sites of projects and their developers since they are considered to be the most

reliable. Reference 19 was used as HTML reference during the project and is

thus not mentioned in the text.

1. http://www.disagroup.com/en/sites/disa/content/disa_home.aspx

(March 2012)

Official web site of DISA

2. http://courses.coreservlets.com/Course-Materials/pdf/csajsp2/09-JSP-

Intro.pdf (August 2012)

An introduction to JSP

3. http://java.sun.com/developer/onlineTraining/JSPIntro/contents.html

(August 2012)

Online JSP course by Sun

4. http://webmaster.gsfc.nasa.gov/presentations/jsp.pdf (August 2012)

A presentation on JSP by the GSFC Webmasters

5. http://www.php.net/ (August 2012)

The official web site of PHP

6. http://seancoates.com/blogs/security-and-driving-and-hiring

(August 2012)

Blog entry on the security of PHP

7. http://phpids.org (August 2012)

Official web site for PHPIDS

8. http://mashable.com/2010/11/19/pros-cons-php/ (August 2012)

‘8 Experts Break Down the Pros and Cons of Coding With PHP’

9. http://www.ehow.com/info_8696951_compare-mysql-vs-sqlite.html

(April 2012)

The web page used for comparison of MySQL and SQLite

10. http://www.sqlite.org/ (March 2012)

Official SQLite web site

11. http://www.sqlite.org/transactional.html (March 2012)

Explanation on ACID

12. http://tomcat.apache.org/ (March 2012)

Official web site of Apache Tomcat

http://www.disagroup.com/en/sites/disa/content/disa_home.aspx
http://courses.coreservlets.com/Course-Materials/pdf/csajsp2/09-JSP-Intro.pdf
http://courses.coreservlets.com/Course-Materials/pdf/csajsp2/09-JSP-Intro.pdf
http://java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://webmaster.gsfc.nasa.gov/presentations/jsp.pdf
http://www.php.net/
http://seancoates.com/blogs/security-and-driving-and-hiring
http://phpids.org/
http://mashable.com/2010/11/19/pros-cons-php/
http://www.ehow.com/info_8696951_compare-mysql-vs-sqlite.html
http://www.sqlite.org/
http://www.sqlite.org/transactional.html
http://tomcat.apache.org/

47

13. Jason Brittain; Ian F. Darwin (2003)

Tomcat: The Definitive Guide

O'Reilly Books. ISBN 0-596-00318-8

14. http://www.dropbox.com/ (March 2012)

Official web site of Dropbox

15. http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-

developers/junor (March 2012)

Official download site for Eclipse EE

16. http://code.google.com/p/sqlite-manager/ (April 2012)

Official web site for SQLite Manager extension for Firefox

17. http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/ (June 2012)

Documentation on the JSTL fmt tag library

18. http://www.easywayserver.com/blog/jsp-calendar/ (April 2012)

Web page where the calendar was obtained

19. http://www.w3schools.com/html/default.asp

Used as reference for HTML

8.1 Image source

Figure 1: http://www.disagroup.com/en/sites/disa/content/disa_home.aspx

 Official web site of DISA

http://www.dropbox.com/
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/junor
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/junor
http://code.google.com/p/sqlite-manager/
http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/
http://www.easywayserver.com/blog/jsp-calendar/
http://www.w3schools.com/html/default.asp
http://www.disagroup.com/en/sites/disa/content/disa_home.aspx

