
Efficient Graph Cuts for Multi-region
Segmentation

Martin Rykfors

ii

Contents

1 Introduction 1

2 Flow Algorithms in Vision 3
2.1 Graphs and flow networks . 3

2.1.1 Definitions . 3
2.1.2 Flow Networks . 5
2.1.3 Maximum flows and minimum cuts 6

2.2 Max-Flow algorithms . 9
2.2.1 Maximum flows through augmenting paths 9
2.2.2 Boykov-Kolmorogov’s algorithm 15
2.2.3 Incremental Breadth First Search 18

2.3 Image segmentation . 20
2.3.1 Introduction . 20
2.3.2 The general setting . 22
2.3.3 Multi-region energy . 23

3 Implementation Aspects 25
3.1 A generic implementation . 25
3.2 Using the grid structure . 26

3.2.1 Compact residual representation 26
3.2.2 Cache friendly indexing of the nodes 28
3.2.3 Structure splitting . 29
3.2.4 Handling the grid boundary 30

4 The Multi-region Implementation 31
4.1 The multi-region grid . 31
4.2 Node enumeration in 3D . 32
4.3 Handling the layer connectivity 32
4.4 IBFS variant: the rank-relabel step 33

5 Results and Evaluation 35
5.1 A multi-region example . 35
5.2 Speed comparison with other solvers 36
5.3 Memory comparison with other solvers 40

6 Conclusion 41

iii

Abstract

Many problems in computer vision can be formulated as optimization prob-
lems that can be solved using minimum cuts in flow networks. However, these
applications can be demanding, with the memory bandwidth being the main
bottleneck on the performance. This thesis introduces an efficient solver that
reduces the memory requirements while improving the speed. The code is freely
available on-line.

Acknowledgements
I would like to thank my supervisors Petter Strandmark and Johannes Ulén
for their help and guidance through the underlying theory and through all the
intricacies of programming at this level. I also want to thank my family and
friends for their support and for keeping me motivated. Finally, I want to thank
std::cout for always letting me know what’s up.

ii

Chapter 1

Introduction

This thesis project was done in the autumn semester 2012 at the Mathematical
Imaging group at Lund Institute of Technology. The main theme is that of
minimization of functions of the form

E(x) =
∑
i

Ei(xi) +
∑
j<i

Eij(xi, xj), (1.1)

where x ∈ {0, 1}N , a vector of N binary variables. Minimizing such a func-
tion is in general a difficult problem, requiring heavy calculations or the use
of approximate solvers. Interest in these kinds of functions grew when it was
discovered that in certain cases an optimal solution can be found using graph
cut techniques. The article [9] showed exactly under what conditions we are
able to use graph cuts for minimization of these kinds of functions.

The main idea of these techniques is that we construct a graph, a kind of
network of nodes and connections, on which we use fast algorithms to determine
the so-called minimum cut. This minimum cut will then correspond to a global
minimizer of Equation (1.1). The algorithms for finding these cuts usually do
this by solving the dual problem – finding a maximum flow in the graph.

A big problem is the representation of such graphs. In many cases they
are represented as pointer-heavy data structures. These pointers will in turn
take up a lot of memory. For example, in medical image segmentation, one
may deal with high-resolution 3D data, and the graphs constructed may need
tens of gigabytes of memory, a big majority of which is made up of pointers for
representing the connectivity of the graph. Can we find a better representation
of the graphs used in these applications? As it turns out, the graphs used in
vision instances follow a highly regular structure that we can take advantage of,
greatly reducing memory consumption by removing the need to maintain such
a large number of pointers in memory. This will also open up the possibility for
many memory-related optimizations for speed.

A common use for minimum cuts in vision is for image segmentation. This is
often used to split an image into two parts, for instance one segment representing
the foreground and the other segment representing the background. For each
segment we have a model, and we can evaluate how well each pixel conforms
to the two models. The idea is to assign each pixel to one of the two segments
according to how well they fit the models, but also in such a way that the

1

boundary between the segments is kept smooth. The behaviour of the boundary
is governed by a regularization parameter that can be seen as a penalty for
every discontinuity in the segmentation. By increasing this parameter, the
segmentation is made smoother and starts rejecting small details that could be
the result of errors caused by noise.

The goal of this thesis has been to write a memory efficient minimum cut
solver for multi-region segmentation instances. This allows us to split the image
into several regions that interact geometrically, for instance forcing two regions
to be mutually exclusive, or forcing one region to be within another. The benefit
of using multi-region segmentation is that it allows us to split an image into more
than two parts through a single minimum cut.

The language of choice has been C++, as the implementation requires man-
ual memory management. The popularity of the language in the vision commu-
nity has also been a factor.

This thesis is structured as follows: The next section introduces all the
theory needed; graphs, flow networks, the max flow/min cut theorem. It will
also introduce some of the algorithms for computing the max flow. After that
we will look at energy minimization and how we can use graph cuts for solving
such problems. Finally, we will look at a specific class of energy functions – the
multi-region energy functions.

The third section covers how we can implement graph cut solvers in an
efficient way, reducing memory consumption and improving performance, all by
drawing advantage from the regular structure of the graph.

The fourth section describes the implementation, called MRGraph, that was
written in this thesis project. The graphs for multi-region segmentation have a
similar, regular structure as the ones discussed in Section 3, but there are some
differences that need to be taken care of if we want to put the memory saving
techniques to use.

The fifth section shows some experimental results, evaluating the speed and
memory requirements of the implementation contra other graph cut solvers.

2

Chapter 2

Flow Algorithms in Vision

The path to understanding multi-region segmentation is a long one, with a
lot of theory needed to be taken care of. Those already familiar with graphs
could simply skim the first part of this section, but I recommend familiarizing
oneself with the notation that will be used. If you are already familiar with flow
networks and their related algorithms, I recommend skipping to the section
about the Boykov-Kolmorogov and IBFS algorithms, as they are quite recent
developments and may be novel for some readers.

2.1 Graphs and flow networks
2.1.1 Definitions
We begin by providing a definition for a graph.

Definition 1 (Graph). A graph G is a pair G = (V,E), where V is called the
set of nodes and E is called the edge set consisting of pairs (u, v), u, v ∈ V .

We can represent small graphs using graph drawings where every node is
represented by a dot and an edge e = (u, v) is represented by an arrow between
the dots corresponding to the nodes u and v. Figure 2.1a shows an example

1

2

3

4
5

(a) Example of a graph. Directed edges are drawn
as arrows.

u v
(u, v)

(v, u)

(b) We differentiate be-
tween the edge (u, v) and
the edge (v, u).

Figure 2.1: Examples of graphs.

3

of this. In this thesis we will exclusively focus on directed graphs, meaning the
edge e1 = (u, v) is not the same as the edge e2 = (v, u). An edge (u, v) is seen
as a connection starting at its tail node v and ending at the head node u (Figure
2.1b).

Before we move on to defining flow networks, we expand a bit on the theory
of graphs by providing some definitions that are needed to develop the theory
of flow networks and the Max-flow/Min-cut problem. We start by looking at
graph cuts:

Definition 2 (Graph cut). Let G = (V,E) be a graph. A graph cut is a splitting
of V into two disjoint subsets S, T where S ∪ T = V and S ∩ T = ∅.

In the context of flow networks, graph cuts where each part is forced to
contain one specific node are of specific interest to us. We make an extension
of the definition of graph cuts:

Definition 3 (s-t separating graph cut). A graph cut S, T is said to be s-t
separating if s, t ∈ V , s ∈ S, t ∈ T .

As we will see later, if we have some graph cut S, T it will be important to
access the edges leaving S and entering T . In general, if V ′ is some subset of the
set of nodes, what edges begin in V and end in V \ V ′? The following notation
will help us.

Definition 4 (Outgoing and incoming edges). We define the maps δ+, δ− :
P(V)→ P(E) as

• δ+(V
′) = {(u, v) ∈ E |u ∈ V, v ∈ V \ V ′}

• δ−(V
′) = {(u, v) ∈ E | v ∈ V, u ∈ V \ V ′}

for any V ′ ⊂ V . P(X) is defined as the set of all subsets of the set X.

For some subset of nodes V ′, the set δ+(V ′) are all edges that start in V ′ but
do not end there and vice versa for δ−(V

′). We extend the notation to include
single nodes, that is, if v ∈ V , δ+(v) = δ+({v}). The same applies for δ−.

Definition 5 (Value of a graph cut). Let G = (V,E) be a graph, and S, T be a
graph cut. If f is a map from the edge set to R, we define the value of the cut
to be ∑

e∈δ+(S)

f(e). (2.1)

With all of these definitions established we are now ready to move on to
flow networks and eventually, the central theorem of flow networks – the Max-
flow/Min-cut theorem.

4

2.1.2 Flow Networks
Definition 6 (Flow network). A flow network is a tuple (G, s, t, c) where

• G = (V,E) is a graph,

• s, t ∈ V, s 6= t

• c is a map c : E → R.

The nodes s and t are called the source and the sink respectively and the
function c is called the capacity function.

Imagine the graph as a collection of pipes going between pairs of nodes.
Through each pipe e there can flow a maximum of c(e) units of water in one
direction. If water is poured into the source node s, what is the maximum flow
of water that can be transported to the sink node t? This is an intuitive way of
thinking of what is known as the Max-flow problem. To approach this formally,
we need to define what a flow is:

Definition 7 (Flow). Let (G, s, t, c) be a flow network. A flow is a function
f : E → R that satisfies

• 0 ≤ f(e) ≤ c(e) for all edges e ∈ E (feasibility condition),

•
∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e),

for all nodes v ∈ V \ {s, t} (law of conservation).

The first condition claims that a flow never exceeds the capacity of an edge.
The second condition claims that nothing is added or removed to the flow at the
nodes. The amount of flow entering each node is exactly the amount that leaves
the node. Of course this does not hold at the source and the sink, where the
flow enters and leaves the network respectively. Figure 2.2 shows an example
of a flow network with a flow. In illustrations of flow networks, capacities are
written in black and flow values are written in blue.

s t

6 3

2 2

7 2

1 1

5 3

3 1
3 1

1 0
1 1

8 4

Figure 2.2: An example of a flow network with a flow. The capacities and flow
values for every edge is printed using black and blue respectively. As an exercise
it can be verified that the flow fulfils the feasibility condition and conservation
law.

5

We define the value of a flow f as the sum of the flows leaving the source s
minus the flows entering it.

val(f) =
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e) (2.2)

A maximum flow is a flow for which there exists no flow with a higher value.

2.1.3 Maximum flows and minimum cuts
Lemma 1. Let f be a flow in the flow network (G, s, t, c). If S, T is a s-t
separating graph cut, then the following holds:

val(f) =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e). (2.3)

We will prove this by induction. If we extend S by one node z we will see
that the conservation law causes the above expression to hold also for the set
S ∪ {z}. Figure 2.3 illustrates how things are set up in the lemma.

Proof. Let z ∈ T \{t} and denote the set Q = T \{z}. Then the following holds∑
e∈δ+(S∪{z})

f(e) =
∑

e∈δ+(S)

f(e) +
∑

e∈{z→Q}

f(e)−
∑

e∈{S→z}

f(e) (2.4)

and ∑
e∈δ−(S∪{z})

f(e) =
∑

e∈δ−(S)

f(e) +
∑

e∈{Q→z}

f(e)−
∑

e∈{z→S}

f(e), (2.5)

where the set {A → B} is defined as all edges starting in A and ending in B.
Putting this together we get that∑

e∈δ+(S∪{z})

f(e)−
∑

e∈δ−(S∪{z})

f(e) =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e)

+

 ∑
e∈{z→Q}

f(e) +
∑

e∈{z→S}

f(e)


−

 ∑
e∈{S→z}

f(e) +
∑

e∈{Q→z}

f(e)

 .

(2.6)

By noting that ∑
e∈{z→Q}

f(e) +
∑

e∈{z→S}

f(e) =
∑

e∈δ+(z)

f(e) (2.7)

and ∑
e∈{S→z}

f(e) +
∑

e∈{Q→z}

f(e) =
∑

e∈δ−(z)

f(e) (2.8)

6

equation (2.6) becomes

∑
e∈δ+(S∪{z})

f(e)−
∑

e∈δ−(S∪{z})

f(e) =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e)

+
∑

e∈δ+(z)

f(e)−
∑

e∈δ−(z)

f(e)

=
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e),

(2.9)

since ∑
e∈δ+(z)

f(e)−
∑

e∈δ−(z)

f(e) = 0 (2.10)

by the law of conservation.
Now, by starting out with S = {s}, the expression holds according to the

definition of val(f). Therefore we can design any graph cut S, T by starting out
this way and adding new nodes one by one to S without the expression (2.3)
being violated.

S

s

Q

t

z

Figure 2.3: The setting in the lemma. By extending the set S with one node z,
the set of outgoing edges is altered. All the connections from S to z are lost as
outgoing edges, but the edges from z to Q are gained. The incoming edges are
affected similarly.

A graph cut being s-t separating is a fundamental property when studying
flow networks. Therefore we will from now on always mean that a graph cut
S,T has this property.

Corollary 1. The value of a maximum flow is upper bounded by

max
f

val(f) ≤ min
S,T

∑
e∈δ+(S)

c(e) (2.11)

7

s t
8

12

11

7

1 20

Figure 2.4: It is quite clear that the edge with capacity 1 is the bottleneck in
this flow network.

Proof. For any graph cut S, T and any flow f the following holds:

val(f) =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e)

≤
∑

e∈δ+(S)

f(e)

≤
∑

e∈δ+(S)

c(e),

(2.12)

since 0 ≤ f(e) ≤ c(e). Thus it must also hold for any maximum flow f and any
minimum cut S, T .

All of this might seem abstract, but there is a lot of intuition behind it. Since
we cannot have a flow that exceeds the capacity of all outgoing edges of any S,
the outgoing edges of a minimum cut S, T represent the tightest bottleneck in
the flow network. Consider Figure 2.4. It is obvious that no flow can exceed the
value 1 because of the single edge with capacity 1, despite all the other edges
having a comparatively high capacity. Thus the graph cut S, T where S consists
of all the nodes left of this edge is the minimum cut of this flow network.

One question remains: If we have a maximum flow f , does there exist a
cut with exactly that capacity? Also, given a minimum cut S, T , is there a
maximum flow with equal value? We let the following theorem summarize this
discussion.

Theorem 1 (The Max-flow/Min-cut Theorem). In a flow network (G, s, t, c)
the following holds:

max
f

val(f) = min
S,T

∑
e∈δ+(S)

c(e) (2.13)

We will save the proof for now and instead discuss algorithms for finding a
maximum flow.

8

2.2 Max-Flow algorithms
2.2.1 Maximum flows through augmenting paths
Central to this work is the finding of a maximum flow given some flow network.
The algorithms we will consider are all based on finding flows through augment-
ing paths. The basic idea is to find paths in the flow network along which we
can increase the flow without violating the feasibility condition.

Definition 8 (Path). A path in a graph G = (V,E) is a sequence of edges
e1, e2 . . . en where the edge et ends where et+1 begins.

Definition 9 (Saturated edge). We say that an edge e in a flow network is
saturated if f(e) = c(e).

In drawings of flow networks, we will draw saturated edges extra thick from
now on.

A naive approach to designing a max-flow algorithm based on this idea would
be to look exclusively for s-t paths along unsaturated edges in the network and
then increasing the flow along this path as much as possible:

Algorithm 1: The naive algorithm
input : Flow network (G, s, t, c)
output: Maximum flow f

f(e)← 0 for all edges e in G

while there exists an unsaturated s-t path P in G do
r ←∞
foreach edge e in P do

r ← min(r, c(e)− f(e))

foreach edge e in P do
f(e)← f(e) + r

return f

Unfortunately, this does not suffice. This is demonstrated in Figures 2.5a to
2.5c. The first augmentation to the flow ends up blocking all further possible
s-t paths even though the flow is suboptimal (Figure 2.5b). The flow we wish
to achieve is instead shown in Figure 2.5c.

9

s t
1

2
2

2
2

1

1

(a) Example of a flow network on which we test the naive algorithm.

s t
1 1

2 0
2 0

2 0
2 0

1 1

1 1

(b) The naive algorithm finds a path along the diagonal edge in the
center. After augmenting along this path there no longer exists any
path along unsaturated edges from s to t, yet the found flow is still
not maximum.

s t
1 1

2 1
2 1

2 1
2 1

1 1

1 0

(c) A maximum flow has value 2 in this flow network.

Figure 2.5: A demonstration of why the naive algorithm fails.

10

We need to augment the notion of an augmenting path. Currently we are
only pushing extra flows along unsaturated edges, which may lead to having the
“wrong” edges being saturated. The solution to this is to also allow pushing
back against the flow on certain edges. By reducing the flow along an edge, we
create an excess inflow to its tail node which we can redirect along some other
path to t. We define the so-called residual graph that encodes all possible ways
of pushing flows forward along unsaturated edges or pushing backward against
an existing flow.

Definition 10 (Residual graph). Given a flow network (G, s, t, c) and a flow f
the residual graph Gf is a graph Gf = (Vf , Ef) together with a map r : Ef → R
called the residual capacity function. Gf has the following properties:

• Vf = V .

• Ef = Eforward ∪ Ereverse.

• If e = (u, v) ∈ E and f(e) < c(e) then there exists an edge eforward =
(u, v) ∈ Eforward and r(eforward) = c(e)− f(e).

• If e = (u, v) ∈ E and f(e) > 0 then there exists an edge ereverse = (v, u) ∈
Ereverse and r(ereverse) = f(e).

Figure 2.6a shows a flow network with a flow and Figure 2.6b shows its
corresponding residual graph. Even though there is no unsaturated s-t path in
the flow network, there is still an s-t path (drawn red) in the residual graph
along which we can augment the flow. This involves actually reducing the flow
along the middle edge of the path.

s t

1 1

3 3

5 1

5 3

8 0

2 2

2 2

3 1

(a) A flow network without an un-
saturated s-t path.

s t

4

2

8

2

1

3

1

3

2

2

1

(b) The residual graph Gf of the
flow network in Figure 2.6a. We
can see that it contains one s-t
path (marked red).

Figure 2.6: Illustration of how the residual graph helps us find augmenting
paths.

11

We can now put this to use in the so called Ford-Fulkerson algorithm:
Algorithm 2: Ford-Fulkerson’s algorithm

input : Flow network (G, s, t, c)
output: Maximum flow f

f(e)← 0 for all edges e in G
construct residual graph Gf

while there exists an s-t path P in Gf do
rmin ←∞
foreach edge ef in P do

rmin ← min(rmin, r(ef))

foreach edge ef in P do
if ef is forward edge then

f(tail(ef), head(ef))← f(tail(ef), head(ef)) + rmin

else
f(head(ef), tail(ef))← f(head(ef), tail(ef))− rmin

Update residual graph Gf

return f

Theorem 2 (Correctness of the augmenting path algorithm). If the capacities
of the flow network (G, s, t, c) are integer values, then the augmenting path
algorithm will find a maximum flow in finite time.

Proof. If c(e) is integral, the flow’s value will always increase by at least 1 after
each augmentation step. Since val(f) is upper bounded by any cut, we can be
certain that it the algorithm will reach a maximum value in finite time and we
only need to show that the flow is maximum at that point.

The algorithm terminates its loop once no s-t path exists. At this point, let
Q be the set of all nodes reachable from s in the residual graph Gf . In the flow
network, the set Q has the following properties:

1. t /∈ Q.

2. The edges δ+(Q) are all saturated.

3. The edges δ−(Q) carry no flow.

(1) follows directly from the definition of Q.
Assume (2) does not hold. Then there must exist an unsaturated edge

leaving Q. This means that there exists a forward edge that leaves Q in Gf and
thus that edge’s head node is reachable from s in Gf . Therefore, that node is
in Q which contradicts that the edge in question belongs to δ+(Q).

(3) can be proven in the same way.
This means that

val(f) =
∑

e∈δ+(Q)

f(e)−
∑

e∈δ−(Q)

f(e) =
∑

e∈δ+(Q)

c(e), (2.14)

since the edges in δ+(Q) are all saturated and the ones in δ−(Q) carry no flow.
According to lemma 1 there can not exist any flow with a higher value, thus the
flow that is returned by the algorithm is maximum.

12

The observant reader will notice that we ended up proving the Max-flow/min
cut theorem as a side effect. The set Q from the proof has the exact outgoing
capacity as the flow delivered by the algorithm, and by lemma 1, there can not
exist any cut with a smaller capacity.

The need for c(e) being integral is quite important, as there has been con-
structed flow networks with irrational capacities on which the algorithm neither
terminates nor converges to the maximum value. See [10] for an example.

Theorem 3 (Complexity of Ford-Fulkerson). Ford-Fulkerson’s augmenting path
algorithm runs in O(|E| · U), where U = max c(e).

This is bad news, as we would really like the complexity of our algorithms
be polynomial in |V | and |E|. Luckily, the algorithm is quite generic and leaves
a lot of room for specialization. The key is in how we go about finding the
augmenting paths.

The Edmonds-Karp algorithm is one such specialized version of the aug-
menting path algorithm. Their algorithm is designed to always pick the shortest
possible path to augment. This is achieved by doing a breadth-first search from
s to t in the residual graph between each augmentation. We need a couple of
further definitions in order to understand some of the subsequent algorithms
that we will consider:

Definition 11 (Subgraph). Let G = (V,E) be a graph. H = (V ′, E′) is a
subgraph of G if

• V ′ ⊂ V and E′ ⊂ E,

• If (u′, v′) ∈ E′, then u′, v′ ∈ V ′.

Central to the next algorithms is a specific type of subgraph known as a tree.
We are specifically interested in trees with certain properties coming from the
direction of their edges:

Definition 12 (Forward tree). A graph T = (V,E) is a forward tree if it has a
root node r ∈ V and for every other node v ∈ V \ {r} there exists a unique path
from r to v.

We define backward tree in the same way, only that the paths are in the
opposite direction.

Algorithm 3: Breadth-first search
input : Graph G, node s, node t
output: Shortest s-t path P , ∅ if none exists

We leave out the exact implementation here. The only thing important to us
regarding breadth-first search is that it constructs a forward search tree, rooted
in s, that has the property that for any node in the tree other than s, the path
from s to that node is the shortest. We say that the tree is a breadth-first search
tree and we will make use of this concept later on. Using breadth-first search in

13

the augmenting path algorithm, we get the algorithm by Edmonds-Karp:
Algorithm 4: Edmonds-Karp’s algorithm

input : Flow network (G, s, t, c)
output: Maximum flow f

f(e)← 0 for all edges e in G
construct residual graph Gf

P ← Breadth-first search(Gf , s, t)

while P 6= ∅ do
rmin ←∞
foreach edge ef in P do

rmin ← min(rmin, r(ef))

foreach edge ef in P do
if ef is forward edge then

f(tail(ef), head(ef))← f(tail(ef), head(ef)) + rmin

else
f(head(ef), tail(ef))← f(head(ef), tail(ef))− rmin

Update residual graph Gf

P ← Breadth-first search(Gf , s, t)
return f

Theorem 4 (Complexity of Edmonds-Karp). Edmonds-Karp’s algorithm runs
in O(|V | · |E|2) time.

A proof can be found in [3]. One thing to note is that there is no longer
any requirement of the capacities being integral, the fact that the paths are
always the shortest possible ensures that the algorithm is always able to deliver
a maximum flow in finite time.

14

2.2.2 Boykov-Kolmorogov’s algorithm
The advantage of Edmonds-Karp is that the augmenting paths are always as
short as possible, which means that we get a theoretical worst-case performance.
It also means that the augmentation step goes as fast as possible, using just the
minimum of comparisons needed to find the minimum residual capacity and the
minimum of edges whose flow is updated.

The main drawback lies in the finding of the paths themselves. Since we
increase the flow as much as possible at each augmentation, there is always
at least one edge that either gets saturated or loses its flow completely. This
means that the residual graph always loses one forward or backward edge. The
structure of the residual graph gets altered and the search tree that is built
by the breadth-first search is rendered invalid. After each augmentation step,
we need to completely rebuild the search tree in order to guarantee that the
paths we find are of minimal length. This is what the Boykov-Kolmorogov
(BK) algorithm sets out to rectify. Instead of completely discarding the search
tree after each augmentation, we spend some effort to repair any part of the
tree that is severed by lost edges. The exact description of the algorithm can
be found in [1], but we will also reproduce and illustrate it in the rest of this
section.

The algorithm maintains some auxiliary data structures throughout:

• The current flow f and the corresponding residual graph Gf .

• One forward tree S rooted in s.

• One backward tree T rooted in t. These trees are disjoint and live as
subgraphs in the residual graph Gf .

• A set N called the free nodes. These are nodes that do not belong to any
tree.

• A set of nodes A called the active nodes. These are nodes in the trees that
might have neighbouring nodes that are free or belong to the opposite
tree.

• A map p : V → V ∪ {∅} called the parent map. This is used to maintain
information on how the trees are connected.

• A set of nodes O called orphans.

The algorithm begins with a growth step in which one of the trees is
expanded. An active node is picked to see if there are neighbouring free nodes
that can be added to its tree. All such nodes are added to the tree and marked
as active. If there is a neighbouring node that belongs to the opposite tree, we
have found a s-t path and move on to the augmentation step. If all neighbouring
nodes belong to the same tree, we mark the current node as inactive and pick
a new active node for the growth step.

The augmentation step works just like in the previous algorithms. The
path is scanned to find the minimum residual capacity and the flow is increased
by that amount along the path. This leads to at least one edge on the path
being removed from the residual graph. If the edge is between the two trees S
and T nothing needs to be done, but if such an edge is inside one of the trees

15

(as often is the case), a part of the tree gets severed from the root node. If the
edge is in S, its head node loses its connection to its parent and gets labelled as
an orphan. If the edge is in T , the tail node is orphaned instead. The orphaned
nodes maintain their S or T label.

The adoption step tries to repair the trees by finding a new suitable parent
node for every orphan. It is required that

• the parent belongs to the same tree as the orphan,

• there exists a residual edge between the orphan and the potential parent
that is oriented the proper way depending on to which tree the two nodes
belong and

• there exists an unbroken directed path between the root and the potential
parent. The direction of the path is the same as the direction of the tree
in question.

If there is no neighbouring node that satisfy these conditions the orphan is
marked as a free node and all its children are made orphans. All neighbouring
tree nodes are marked active to allow that the newly freed node can be found
again by one of the trees once the growth step is resumed.

The algorithm terminates once there are no more active nodes. The sets S
and T are at that point the minimum cut of the flow network. One complete
iteration of the main loop of the BK algorithm is illustrated in Figure 2.7.

The main drawback of BK is the fact that we can not make any assump-
tion of the structure of the trees and thus no assumption on the length of
the augmenting paths. Because of this, we can only analyse BK as a generic
augmenting path algorithm. There exists no known bound of the worst case
performance of the BK algorithm. Empirical studies has shown it to work bet-
ter than Edmonds-Karp in vision instances (which we will discuss later). Since
there is no restriction on the structure of the search trees, it is possible that
they grow quite lopsided, resulting in very long augmenting paths.

16

Legend: S-nodes, T -nodes, active nodes, orphan nodes,
free nodes.

s t

(a) The growth step begins
by picking one active node
(marked yellow) for expan-
sion.

s t

(b) By scanning the active
node’s neighbours, a free
node is found and added to
the tree.

s t

(c) A further scan finds a
T -node, which means we
have found an augmenting
path.

s t

(d) After augmenting along
the path, two edges are lost
from the residual graph, re-
sulting in two orphans.

s t
(e) A new parent is found
for the S-orphan.

s t

(f) No parent can be found
for the T -orphan, thus it is
made free and its children
are made orphans.

s t

(g) No parent can be found
for the newly orphaned
node, so it is also freed.
The algorithm can now re-
sume the growth step.

Figure 2.7: A step by step illustration of one iteration of the BK algorithm’s
main loop.

17

2.2.3 Incremental Breadth First Search
Incremental Breadth First Search (IBFS) is an extension of the BK algorithm.
As BK set out to always maintain the search trees (however arbitrarily), IBFS
also maintains the trees and make sure that they are breadth first trees. This
means that we always have an upper bound of the lengths of the augmenting
paths that we find, without having to perform a new breadth first search after
each augmentation. This also leads to a theoretical worst case performance.

The setup is similar to BK. IBFS maintains the following:

• The current flow f and the corresponding residual graph Gf .

• Two directed trees S and T and a set of free nodes N as before.

• The same parent map p : V → V ∪ {∅} as before.

• A set of nodes Os and Ot called S- and T -orphans respectively.

• A distance label ds or dt for every node in a tree. It marks the number of
edges between the root and the node in question.

• Two maximum distances Ds and Dt.

The S-tree is grown by scanning all nodes whose distance ds is equal to
the current max distance Ds. Any free node u ∈ N found is added to the
tree and gets the distance ds(u) = Ds + 1. If a T -node is found, the growth
step is interrupted by the augmentation step. After the growth step, if there
are no nodes with distance Ds + 1 the algorithm terminates, otherwise Ds is
incremented and the growth step begins anew. Growing the T -tree is done
symmetrically.

Augmenting the path creates S and T orphans, just like in the BK-algorithm.
Assume we are trying to adopt an S-orphan. We start by looking at potential

parents u that fulfil the following:

• There exists a residual edge (u, v).

• ds(v) = ds(u) + 1.

If such a node is found, we set p(v) = u and remove v from Os (see Figure 2.8).
Otherwise we perform a relabel step on v by looking for the potential parent u
that minimizes ds(u). If none such exists or ds(u) = Ds +1 we free v and make
all its children S-orphans. Otherwise we set p(v) = u and ds(v) = ds(u)+1. All
children of v are made S-orphans. If ds(v) = Ds + 1 then we make v inactive,
in case it was active previously. An illustration of the relabel operation can be
seen in Figure 2.9.

Processing the T -orphans is done in the same way, only we free v if dt(u) ≥
Dt, since we do not wish to grow T at the growth stage of S.

The basic idea of the adoption stage is to find a parent that does not require
us to alter the distance label of the orphan. This way there is no need to alter
the labels of the orphan’s children in order to keep the distance labelling valid.
Otherwise, we try to re-attach the orphan as close to the root of the tree as
possible. This means that the distance label of all the adopted node’s children
is made invalid, so we need to make them orphans and process them in the same

18

way. It is likely that they will be re-adopted by their previous parent as long as
it does not mean that their new distance exceeds the maximum distance of the
tree.

Empirical testing of IBFS versus BK has shown that in the vast majority
of cases, IBFS outperforms BK with a speed increase of about 20 to 50% on a
variety of vision instances [6].

We finish our discussion of max-flow algorithms by looking at the complexity
of IBFS:

Theorem 5 (Complexity of IBFS). Incremental Breadth First Search runs in
O(|V |2 · |E|) time.

ds = 0

ds = 1

ds = 2

ds = 3

(a) One of the trees before
an augmentation step.

ds = 0

ds = 1

ds = 2

ds = 3

(b) The augmentation
creates one orphan.

ds = 0

ds = 1

ds = 2

ds = 3

(c) There exists a new
parent with the same dis-
tance as that of the or-
phan’s previous parent, so
the adoption is successful.

Figure 2.8: An illustration of the IBFS adoption stage.

ds = 0

ds = 1

ds = 2

ds = Ds = 3

(a) There are no parents
that can adopt the or-
phaned node, so a relabel
step is attempted.

ds = 0

ds = 1

ds = 2

ds = Ds = 3

(b) Reattaching the or-
phan to the tree requires
that its distance label is
changed. All of its chil-
dren are then made or-
phans.

ds = 0

ds = 1

ds = 2

ds = Ds = 3

(c) The child of the pre-
vious orphan could be re-
labeled and reatteched to
its former parent, but this
would put it beyond the
max distance of the tree.
Instead, it is freed.

Figure 2.9: How the relabel step works. It is assumed that we are in the growth
stage of T meaning that we do not relabel S-nodes to the distance Ds + 1.

19

2.3 Image segmentation
2.3.1 Introduction
A common problem in computer vision is that of segmenting an image into
several parts that all have some desired characteristic. This is often used as
an initial step in automatically analysing or processing images as it allows for
isolating certain regions of interest and excluding parts of the image that are
irrelevant for the application.

There are a multitude of methods for segmenting images. The method of
active contours [2], for instance, can be described as a deformable spline that
is iteratively changed in order to minimize an energy function. The energy
function is small when the spline follows edges in the image and when the spline
conforms to a model of the sought segment, such as having a smooth curvature.
A disadvantage to active contours is a chance of stopping in a local minimum.
For certain applications there is a need for segmentations that are globally
optimal, hence there are certain methods that guarantee such segmentations,
possibly at the cost of having high computational complexity.

In general, image segmentation can be described as assigning a label to each
pixel in such a way that an energy function is minimized. The energy function
is a map from the set of all possible labellings to R and is minimized when the
segmentation best conforms to a segmentation model that describes the desired
properties of the segments.

An example of this is binary segmentation, where the image is split into two
segments. Let P be the set of pixels in the image and let the binary vector
x = (x1, x2, . . .) ∈ {0, 1}P indicate the segmentation, that is, xp = 0 if the pixel
p belongs to the first segment and xp = 1 if it belongs to the other one. In this
setting it is common to use energy functions of the form

E(x) =
∑
p∈P

Dp(xp) +
∑
p∈P
q∈Np

Vpq(xp, xq). (2.15)

The set Np denotes all pixels in a neighbourhood around the pixel p, for instance
the four pixels above, below, left and right of p. The terms Dp(xp) are called
data terms and can be thought of as a penalty for assigning the pixel p to the
segment xp. The terms Vpq(xp, xq) are called regularization terms. These terms
are used to encode requirements on the structure and cohesion of the segments.
As an example, consider the following regularization function:

Vpq(xp, xq) =

{
0, xp = xq

µ, xp 6= xq.
(2.16)

If µ > 0, this function can be seen as a penalty for discontinuities of the
labelling, that is, it penalizes having a large boundary between the segments.
The global optimum of the energy function becomes the best trade-off between
assigning every pixel to its own data term minimizer and having a short, smooth
boundary between the segments. Figure 2.10 shows how the parameter µ affects
the segmentation of the famous MIT cameraman image.

Certain energy functions of this form have the remarkable property that an
optimal solution can be found by constructing a special flow network where the

20

µ = 1000 µ = 10000 µ = 100000

Figure 2.10: Segmentation using different values of µ.

minimum cut corresponds to the minimizer of the energy function. To illustrate
this, consider an image with two pixels p1 and p2. Assume we are trying to
minimize the energy function (2.15), with the regularization term as described
in equation (2.16). This allows us to build the flow network in Figure 2.11a.

If S, T is a cut in this graph, we let

xpn =

{
0, pn ∈ S

1, pn ∈ T
(2.17)

for n ∈ {1, 2}. We see that the following holds:∑
e∈δ+(S)

c(e) = E(x). (2.18)

This is demonstrated in Figure 2.11b. For bigger images, we get a grid-like
graph with a double µ-link between every pair of neighbouring nodes and one
s- and t-link with capacities corresponding to the data terms as in Figure 2.11a.
As we know by now, the minimizer of the left hand side can be quickly found
using algorithms like BK and IBFS.

s

t

p1 p2

D1(1)

D1(0)

D2(1)

D2(0)

µ

µ

(a) We can construct a flow net-
work that allows us to find the
minimizer of the energy function.

s

t

p1 p2

D1(1)

D2(0)
µ

(b) The value of the cut is exactly
that of the energy function if we
let the nodes in S \ {s} represent
the binary values xp that are zero.

Figure 2.11: Demonstration of how flow networks can be used to minimize
energy functions for image segmentation.

21

2.3.2 The general setting
Let x ∈ {0, 1}N be a binary vector of N variables. We will now consider energy
functions of the form

E(x) =
∑
i

Ei(xi) +
∑
j<i

Eij(xi, xj). (2.19)

Definition 13 (Graph-representability). An energy function of the form (2.19)
is said to be graph-representable if there exists a flow network (G, s, t, c) where
the node set of G is of the form VG = {s, t, v1, . . . vN} and the following holds:∑

e∈δ+(S)

c(e) = E(x) + d, (2.20)

where d is some constant, S, T is an s-t separating graph cut and

vi ∈ S ⇔ xi = 0. (2.21)

It is quite clear that minimizers of energy functions with this property can be
found using max-flow/min-cut algorithms. In general, though, there is no guar-
antee of there being polynomial-time algorithms for finding the global minimum
of these kinds of energy functions:

Theorem 6. Finding the minimizer of (2.19) is an NP-Hard optimization
problem.

So the question remains: What energy functions can be minimized via graph
cuts? In the article [9], that very question is posed and answered:

Theorem 7. An energy function E is graph representable if and only if the
following holds:

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0), (2.22)

for all j < i.

This property is called submodularity and is an important concept also for
higher order energy functions, though we will not deal with such functions in
this work.

Of course, if we have a submodular energy function, we also need to know
how to construct the flow network that allows us to do the minimization. The
basic idea is to construct a graph G = (V,E) where V = {s, t, v1, . . . vN} and for
every j < i where Eij is not identically zero, we have a pair of oppositely oriented
edges between vi and vj . For every node vi there are also two edges (s, vi) and
(vi, t). Finally the capacity for each edge is calculated by a reparametrization
step that ensures that every capacity is non-negative while still ensuring that
the flow network represents the energy function. This is described in detail
in [8].

22

2.3.3 Multi-region energy
As we saw in Section 2.3.1, we can use graph cuts to split an image into two
segments. This works in quite an intuitive fashion, as the structure of the graph
closely mimics the structure of the image and the energy function. However,
since a graph cut only splits the graph into two parts, it becomes harder to see
how one can use graph cuts to divide an image into three or more segments
optimally.

We reproduce the so called Multi-region framework from [4]: We have a set
of pixels P and a set of labels L. A pixel p can be assigned any combination
of labels. If p is assigned label i we say that p belongs to region i. We can
represent all possible labellings with the binary vector x ∈ {0, 1}P×L. We index
this vector as x = (xi

p) where xi
p = 1 is interpreted as the pixel p being assigned

label i. We also introduce the notation for subvectors of x: The vector xp is the
vector of length |L| that describes the combination of labels that are given the
pixel p and xi is the vector that describes what pixels belong to region i. It is
important to note that a pixel can be labelled as belonging to multiple regions
at the same time, though as we will see, we will be able to forbid or enforce
certain combinations of labels.

Using this, we will design energy functions that can describe certain geomet-
ric interactions between regions, for instance forcing one region to be contained
within another or forcing two regions to be disjoint. This way, we will be able to
use models more expressive and robust than what simple binary segmentation
would allow.

Multi-region energy functions take on the following form:

E(x) =
∑
p∈P

Dp(xp) +
∑
i∈L

V i(xi) +
∑
i,j∈L
i 6=j

W ij(xi,xj). (2.23)

The functions V i are the same regularization terms that we saw in section
2.3.1, only now we have different regularization functions for each layer:

V i(xi) =
∑
p∈P
q∈N i

p

Vpq(x
i
p, x

j
q), (2.24)

where N i
p describes the connectivity of the pixel p in the region i.

A new concept is that of the interaction terms W ij(xi,xj), which are defined
as

W ij(xi,xj) =
∑

(p,q)∈N ij

W ij
pq(x

i
p, x

j
q). (2.25)

These allow us to create interactions between regions. As an example, con-
sider the interaction W ij

pp(0, 1) = ∞, that is, an infinite penalty for assigning a
pixel to label j but not label i. This way, the interaction forces the region j to
be contained in region i. If we let W ij

pq(0, 1) = ∞ for all pixels q within some
radius of p, we force j to be inside i with some minimum distance between their
boundaries.

23

In [4], three main interactions are introduced:

i contains j
xi
p xj

q W ij
pq

0 0 0
1 1 0
0 1 ∞
1 0 0

i excludes j
xi
p xj

q W ij
pq

0 0 0
1 1 ∞
0 1 0
1 0 0

i attracts j
xi
p xj

q W ij
pp

0 0 0
1 1 0
0 1 0
1 0 α

The attraction interaction reminds a bit of the inclusion interaction in the
sense that it penalizes having one region without the other, only not as strictly.
This creates a spring like attraction of j towards i.

We note one problem however; the exclusion interaction, while very useful,
is supermodular meaning that we can not minimize the energy function with
a graph cut. We can solve this by doing a label flip of i. The meaning of the
variable xi

p is changed as xi
p = 1 signifying the pixel p not belonging to region i

and vice versa. We can interpret this as modelling the complement of region i
and replacing the exclusion interaction with an inclusion interaction between j
and the complement of i, making the energy function submodular once again.

There may still be cases in which there is no possible way of achieving
submodularity through label flipping. Every exclusion interaction needs to be
between two regions, out of which one is flipped. Any submodular interaction
has to be between two regions that are both either flipped or unflipped. This
may lead to situations where a label needs to be both flipped and unflipped –
we have a so-called “frustrated cycle.” In this case we are unable to use graph
cuts for minimization.

24

Chapter 3

Implementation Aspects

Now that we have established all that we need to understand about flow net-
works and image segmentation, the next question is how we go about actually
putting these techniques to use. We need to implement a way of representing
these kinds of flow networks algorithmically, flow networks that may contain
millions of nodes and even more edges. It is clear that this causes very high
demands on the amount of memory needed for the algorithm. As we will see,
we can use some clever techniques to reduce the memory requirements without
sacrificing speed.

3.1 A generic implementation
A common way of representing graphs is by adjacency lists. For every node
we store a list of neighbouring nodes and incident edges. These lists are often
implemented as arrays of pointers:
struct node {

node** neighbours;
edge** incident;

//node data
...

}

struct edge {
node* head;
node* tail;

//edge data
...

}

To save memory, we could leave out the edge structs and just store all the
edge data in the edges’ tail nodes. This would leave us with every edge being
represented by a single pointer between two nodes.

Imagine that we are using this graph implementation to solve a max-flow
problem for segmenting an image with one million pixels. Every node has four

25

outgoing edges, which on a 64 bit computer results in using 32 bytes of memory
for each node. In total we get about 30 megabytes’ worth of pointers only to
represent the connectivity of the graph. That is quite a lot of data, but do we
actually need it?

3.2 Using the grid structure
We remind ourselves what the graphs for energy minimization look like: For
every variable xi we have a node vi in the graph. For every two variables xi, xj

that interact (Eij is not identically zero), there are a pair of oppositely oriented
edges between vi and vj . The thing to note is that in image segmentation, xi

and xj interact only if their corresponding pixels are neighbours in the image.
This means that for an M ×N image, we can arrange the nodes into an M ×N
grid with double edges between every two neighbours in the grid. See Figure
3.1. In this case it is redundant to store any pointers to adjacent nodes as we are
always able to compute the index of the neighbours by adding a known offset to
the index of the node in question. If the nodes are indexed in a left → right, up
→ down order, we can access the left neighbour of a node just by subtracting
1 from its index and the neighbour below can be accessed by adding M to the
index.

s

t

Figure 3.1: Graphs for image segmentation end up having a grid-like structure.
The double headed arrows represent two oppositely oriented edges between the
same two nodes.

In [7] implementation details for a max-flow solver for binary segmentation
are given. Their implementation, called GridCut, draws advantage from the
grid structure and also makes some optimizations for increased cache efficiency.
These techniques are reproduced in the following sections.

3.2.1 Compact residual representation
In flow networks, the residual graph is constructed by replacing each edge with
a pair of oppositely oriented edges that represent either the possibility of push-
ing additional flow along the edge in the flow network, or diminishing the flow
against the direction of the edge. Since the flow networks for segmentation
already contain such pairs of opposite edges (Figure 3.2a), the residual graph
will contain two pairs of parallel edges for every two neighbouring nodes. This

26

v u

c1 f1

c2 f2

(a) The flow network has
a pair of sibling edges,
each with is own capacity
and current flow.

v u

c1 − f1

f1

c2 − f2

f2

(b) The resulting resid-
ual graph will in this case
contain two pairs of par-
allel edges.

v u

r1 = c1 − f1 + f2

r2 = c2 − f2 + f1

(c) We can merge these
parallel edges back into
a pair of residual sibling
edges.

Figure 3.2: How we can achieve a compact residual representation by merging
edges.

means that we always have two possibilities of augmenting the flow between
neighbouring nodes: Either pushing additional flow along one of the edges or
pushing back against the other edge. In the residual graph, these two possibil-
ities are represented as two parallel edges with two residual capacities c1 − f1
and f2 respectively (see Figure 3.2b). We can merge these two edges into one
with the residual capacity r1 = c1 − f1 + f2. When we augment along this
edge, the amount of flow we are augmenting with is subtracted from this resid-
ual capacity and added to the oppositely oriented residual edge. This compact
representation of the residual graph is shown in Figure 3.2c.

However, by doing this we lose information on the exact flow along each
edge as well as the original capacities. The max flow algorithm will still be able
to deliver a minimum cut and the value of the maximum flow, but the exact
distribution of the flow on each edge is lost. This is a perfectly fine trade-off,
as we are only interested in the minimum cut and possibly the value of the
maximum flow.

We can combine this representation with the simplifications that the grid
structure allows us. We start by enumerating the edges that leave a node. Since
all nodes have the same local neighbourhood, this enumeration can be applied
to every node consistently (Figure 3.3a). In every node, the residual capacity
of every outgoing edge is stored. When we augment along an edge, some of
its residual capacity is transferred to its sibling edge. We can quickly access
this edge by using a lookup table that maps each edge index to the index of its
corresponding reverse direction (see Table 3.3b).

This yields a concise representation of the residual graph between nodes in
the grid, but we also need to address how to represent links to the terminal
nodes. The following result is of use for us:

Theorem 8. In augmenting path algorithms, the flow maintained by the algo-
rithm is never diminished on the terminal links.

Proof. Assume the flow on an edge e leaving s is diminished at some stage in
the algorithm. This implies that the augmenting path at some point returned to
s via the reverse edge of e before continuing toward t. This is impossible since

27

2 244

1 1

3 3

(a) Enumeration of the outgoing
edges of a node.

edge_id REVERSE(edge_id)
1 3
2 4
3 1
4 2

(b) Lookup table for finding the re-
verse edge.

Figure 3.3: Illustration of how we can treat all nodes consistently by using an
enumeration of all outgoing edges.

graph search algorithms always deliver direct paths if such exist. The statement
for t is proven in the same way.

Since every node v in the grid has a s-link and a t-link, the algorithm can
start by looking at every possible path of the form s → v → t and augment
along it. At least one of these terminal links will get saturated, and by the
theorem they will remain saturated. If we perform this augmentation before
the algorithm has even started, we only need to store the residual capacity
|c(s, v) − c(v, t)| and to which of the two terminal links (s, v) and (v, t) this
residual capacity belongs. This means that there is no need to explicitly store
the s- and t-nodes, all the information necessary for the computation is now
stored in the grid nodes.

3.2.2 Cache friendly indexing of the nodes
Reading from and writing to memory is a time consuming procedure. To speed
things up, all modern CPUs use a caching strategy. In addition to the large
and slow RAM-memory, there is also a hierarchy of smaller and faster cache
memories close to the CPU. When a program needs to read a value from memory,
the lowest level cache is first checked to see if it contains the data in question.
If not, the same thing is done on the next cache that is larger but a bit slower
than the lower level cache. This is repeated until the value is found. When this
happens, the value is transferred to the CPU. In addition to this, the value and
some of its neighbouring values are transferred to the lower level caches. The
reason for this is that a read of a value from memory is often followed by a read
of its neighbouring values, for instance when looping over an array or when the
values represent different variables of the same stack-frame. By doing this, the
chance of being able to find the data in a fast, low-level cache is increased. This
is called getting cache hits. For a thorough explanation of modern day memory
and cache strategies, we refer to [5].

In augmenting path algorithms, it is often the case that accessing a node is
often followed by accesses to its neighbouring nodes, for instance when growing
an active node in BK or IBFS. If we try to ensure that nodes that are close to
each other in the graph are stored close to each other in the memory, we will be
able to increase the performance of the algorithm by taking advantage of the
cache functionality. One way of doing this is by using a blocked layout of the
nodes. The grid is divided into blocks of size 8 × 8 and the nodes are indexed

28

Figure 3.4: The grid is divided into 8×8 blocks and the nodes are then indexed
accordingly.

increasingly in a left → right, up → down fashion within the block. See Figure
3.4.

In order to calculate the index-offsets to the neighbours of one node we now
need to determine whether or not the node lies on the boundary of a block. For
arbitrary block sizes, this would require performing several modulo and division
operations on the node’s index in order to determine its coordinates in the grid.
However, since the block size is a power of two, we can perform a couple of
quick bitwise operations on the node’s index to determine if it is on a boundary
or not. In the 8 × 8 case for instance, if the three least significant bits of the
index are all zero, the node lies on the right boundary of a block, and if the
next three bits are all equal to one, the node is also on the bottom boundary.

3.2.3 Structure splitting
When we run an algorithm like IBFS, the algorithm will enter several different
stages in which some information is needed but other information is unneces-
sary. For instance, consider the augmentation step of IBFS. The first goal is to
determine the minimum residual capacity on the augmenting path. We do this
by traversing the trees back to their roots, which is done by repeatedly applying
the parent map maintained by the algorithm. While this is done we also look at
the residual capacity between each node and compare it to the smallest residual
capacity currently found. After this, we repeat the traversal and update the
residual capacities as we go.

As we can see, this stage of the algorithm only requires access to the residual
capacities and the parent map whereas the entire algorithm maintains further
data structures like the distance labelling and the {S, T, FREE}-labelling.

If we were to store this data as an array of node-structs, all these different
data fields are stored in an interlaced fashion in the memory. For the augmen-
tation step, this means decreased cache performance as the unnecessary data
will also be transferred to the cache.

We can solve this by storing a separate array, indexed by the node indices, for
each data field. This way the problem of the data being interlaced is resolved.

29

3.2.4 Handling the grid boundary
As we have seen, by assuming that the neighbourhood structure is the same
for every node, we can gain a lot in terms of memory requirements and cache
performance. We have comfortably neglected the fact that this assumption
does not hold for nodes on the grid boundary. By treating them as interior
nodes with valid outgoing edges in each direction we run the risk of trying to
access non-existent nodes outside of the grid, resulting in segfaults or undefined
behaviour.

We can prevent this by padding the grid with a layer of dummy nodes,
all with zero outgoing and incoming residual capacity. During the growth step,
these nodes may be accessed but they will never be added to the trees because of
their residual capacities. This allows us to treat the boundary nodes as regular
nodes without worrying about things going wrong.

Another issue is that the blocked layout requires the side lengths of the grid
to be divisible by 8. We can pad the right and left boundary of the grid with
a further layer of dummy nodes until this is satisfied. While this requires us to
store some redundant data in the memory, it is negligible even for small grids.

30

Chapter 4

The Multi-region
Implementation

The article [7] introduces several optimizations for solving max-flow problems
on grid graphs, which we saw in the previous section. The solver they have
written, called GridCut, is available online. The goal of this project has been to
write a similar solver, only for multi-region segmentation. As we will see, this
becomes different from solving binary segmentations, but many of the optimiza-
tions previously discussed can be adapted also for this problem setting. This
section will discuss how this multi-region solver developed in this project works
and how we can adapt the optimizations to work in this expanded setting. A
further difference between the multi-region solver is that it uses IBFS where as
GridCut uses the BK algorithm.

4.1 The multi-region grid
In 2D multi-region segmentations with |L| labels, we get a 3D grid of nodes that
is |L| layers thick. Furthermore, since the interaction terms are between any
two layers, there is most likely no way of ordering the layers so that each node
has just one upward edge and one downward edge to the neighbouring layers.
Even worse, the region interactions are not restricted to be just interior to one
pixel but within a neighbourhood of every pixel. This results in “slanted” edges
between layers.

We divide the interaction terms into interior and exterior interactions:

W ij(xi,xj) = W ij
pp(x

i
p, x

j
p) +

∑
(p,q)∈N ij\(p,p)

W ij
pq(x

i
p, x

j
q). (4.1)

For this implementation I have chosen to just support interior interactions
as it makes the graph still resemble a 3D grid, albeit one that is completely
connected along each column of nodes corresponding to each pixel. With exte-
rior interactions things become more difficult as the implementation would need
to support the ability to dynamically define the interaction neighbourhoods at
run-time. Figure 4.1 shows what the grids supported by the implementation
look like.

31

Figure 4.1: What a multi-region flow network looks like. This is for a 2×3 pixel
image that is to be segmented using three regions. The double headed arrows
represent two oppositely oriented edges between two nodes. Every node has a
s- and t-link, but for the sake of clarity these links and the terminal nodes have
been left out from this illustration. Note how we get a completely connected
graph for each column in the grid.

4.2 Node enumeration in 3D
In [7], where the various memory optimization previously discussed are intro-
duced, the one optimization with the most impact on performance is that of
the blocked layout for improved cache-friendliness. It is thus in our interests
to adapt this also for multi-region grids. While [7] includes such optimizations
for 3D-grids by using 8 × 8 × 8 blocks for dividing the grid, this is done under
the assumption that the grid extends reasonably far along each direction. For
multi-region grids however, it is not unreasonable to assume that there are just
5 layers or fewer, making the 8 × 8 × 8 block division introduce far too many
dummy nodes. Instead, if there are |L| layers, we divide the grid into blocks of
size 8× 8× |L|.

4.3 Handling the layer connectivity
The transition to multi-region grids also introduces some new things to consider
when calculating the indices of a node’s neighbours. In order to calculate the
indices within a layer, the strategy of using bitwise operations to determine the
offsets can be carried over directly. There is though still the task of calculating
the offsets to the inter-layer neighbours. We also need to find a way of enumer-
ating the outgoing edges in a way that allows us to apply the same REVERSE
lookup table without needing to consider to which layer the node belongs. This
is achieved by using a cyclic arrangement of the layers. The neighbour u that
lies n layers below a node v is accessed by moving down n layers. In order to re-
turn to v from u we move |L|−n layers further downwards, looping back around
to v. This way, the same REVERSE-table can be used with all nodes. While this
allows us to take a position agnostic approach when scanning a node, we still

32

need to calculate to which layer it belongs in order to find the correct offsets.
This requires some divisions and modulo operations, but it is outweighed by the
benefits of the resulting simplicity of the implementation, especially since the
divisions can easily be replaced by bit shifts in this case.

4.4 IBFS variant: the rank-relabel step
For the multi-region implementation, a slight variation of the IBFS-algorithm
is used. The standard way of handling orphans is a two pass process: First, the
neighbours are scanned to see if an adoption is possible. If not, the neighbours
are re-scanned to find a possible relabelling that minimizes the distance increase
of the orphan. If a relabelling is done, all the children of the relabelled node are
orphaned. If the implementation has no tracking of child nodes then a further
neighbour scan is needed to determine the children of the node.

In order for the algorithm to be correct, it is important that the smallest
possible relabelling is chosen, otherwise the invariant that the search trees are
BFS-trees is violated. There may however be cases where there are multiple
choices of a new parent with the same minimum distance increase. In this
case it may be better to choose one over the other. For instance, if one of the
potential parents has an unbroken path back to its root when the other has not,
the rooted parent is the better choice as this guarantees that the relabelled node
is not re-orphaned again, should its new parent end up being relabelled before
the current orphan processing step is over.

In general, in the case of a tie between two or more potential parents we
can use some heuristic to rank these potential parents in order to find one that
reduces the chances of the node being re-orphaned.

Definition 14. If Po is the set of all potential parents of an orphan o, a parent
ranking function k : Po → Z is a function that satisfies the following:

d(p1) < d(p2)⇒ k(p1) < k(p2), (4.2)

where p1, p2 ∈ Po and d is the IBFS distance labelling.

We can then use such a ranking function in order to find a new parent in a
single pass: We scan all neighbours of an orphan o. If a neighbour is a potential
parent its rank is calculated and compared with the currently smallest found
rank. If the rank is smaller than that, the parent is marked as the currently
best and the scan continues. Once all nodes are scanned, the smallest ranking
parent is chosen or the orphan is freed if no parent was found.

This way we can use heuristics like the one discussed previously to choose
the better of several parents in case of a tie. We can achieve the same heuristic
by using the ranking function

k(p) = 2 · d(p) + I(p is not rooted), (4.3)

where I is the indicator function that is equal to 1 if its statement is true and
0 if not. Other heuristics could take into consideration whether the potential
parent is a descendant of the orphan or how long the line of ancestors of the
parent is.

33

While this method seems promising, a couple of brief experiments with differ-
ent heuristics has shown that there is not much to gain over using the greedy
heuristic k(p) = d(p), though it might warrant a more thorough study of how
it affects the adoption dynamics of the algorithm. The biggest benefit of the
rank-relabel step is the need of just a single scan of an orphan’s neighbours.

As the multi-region implementation has no storage of the children of a node,
we can also use this scanning step to build a list of all children of o in case
the relabelling requires us to make these nodes orphans. We may also choose to
terminate the scan prematurely should an adoptive parent be found (as opposed
to a parent requiring a relabel).

34

Chapter 5

Results and Evaluation

5.1 A multi-region example
While the main focus of this thesis is the implementation of a max-flow solver
for multi-region instances, we will just briefly take a look at an example showing
the robustness of the multi-region formulation. Figure 5.1 shows a multi-region
segmentation of a colour picture. It uses three regions, with two inclusion
interactions. We also try using the same model on a version of the picture
with added Gaussian noise and see that it is still able to deliver a good quality
segmentation. It is worth noting that this kind of segmentation can not be
achieved by a graph cut solver for binary segmentation, as it requires support
for a multi-region grid.

The model used is based on the squared distance in the RGB-colour space.
We have four target colours csky, cred, cblack and cwindow, where each are vectors
with three integral elements in the range [0, 255] representing the red, green
and blue components of the target colour. This allows us to create four squared
distances of the form dsky(p) = (cp−csky)

T (cp−csky), where cp is the colour of
the pixel p (repeated for each target colour). Using these distances, we create
the data terms for three regions.

Region 1:

{
S(p) = min(dsky(p), dblack(p), dwindow(p))

T (p) = dred(p)

Region 2:

{
S(p) = min(dblack(p), dwindow(p))

T (p) = min(dsky(p), dred(p))

Region 3:

{
S(p) = dwindow(p)

T (p) = min(dsky(p), dred(p), dblack(p))

We then force the two inclusion interactions region 3 ⊂ region 2 and region 2 ⊂
region 1. Regions 1 and 2 are regularized with µ = 50. Region 3, which rep-
resents the windows of the building, is regularized with µ = 40 since it is a
bit more detailed and requires a lower regularization in order to not disappear
completely.

35

Figure 5.1: A three region segmentation of a colour photograph. We see that
the regularization allows us to reject disturbances even in very noisy conditions
and still deliver a satisfactory segmentation. The segmentations were calculated
in about 4 seconds, including setting up the starting capacities for every edge in
the flow network. The grid for this segmentation contains about 3400000 nodes.

5.2 Speed comparison with other solvers

To evaluate the speed of the multi-region implementation, called MRGraph, we
use it to do a binary segmentation of an image and compare it with two other
available solvers – GridCut as provided by [7] and the generic IBFS implemen-
tation provided by [6]. We evaluate them by segmenting four different grayscale
images using data terms based on the squared distance between intensities. We
create additional problem instances by varying the regularization factor µ. By
repeatedly running each problem instance ten times, we get a median value of
the time needed for the implementations. All implementations were timed from
the function call for computing the max-flow to the point of finishing the com-
putation. The time for constructing the graphs is not included. The median
times with respect to µ for the four images can be seen in Figures 5.2 to 5.5.

It is clear that increasing µ makes the computation take longer. The reason
for this is that the increased capacity requires far more augmentations to sat-
urate the edges in the grid. Once the regularization is large enough, the only
reasonable choices for a minimum cut are the two when either all s- or t-links are
chosen. In this case, all augmentations result in the node attached to a terminal
node being orphaned; no edge in the grid can be severed. This means that we
get a large branch of the tree whose nodes all run the risk of being orphaned
by the relabel step if we are using IBFS. In the case when we are using BK,
this instead results in the entire branch getting an increased distance from its

36

terminal node, eventually resulting in very long paths.
It is quite obvious that MRGraph and Gridcut suffer a great deal when the

regularization is made very large. It should be noted that for regularizations
this large, the resulting segmentation becomes one single segment spanning the
entire image. Such a large regularization has no practical value, so we can
conclude that MRGraph and GridCut work very well in practice. GridCut
consistently outperforms MRGraph which can be explained by MRGraph being
a more generalized solver, with support for segmentations as discussed in Section
5.1.

37

101 102 103 104 105 10610-3

10-2

10-1

100

101 cameraman

µ

ti
m

e
(s

)

MR
GC
IBFS

Figure 5.2: Median execution time of the solvers on the cameraman image.
262144 pixels.

101 102 103 104 105 10610-2

10-1

100

101 bird

µ

ti
m

e
(s

)

MR
GC
IBFS

Figure 5.3: Median execution time of the solvers on the bird image. 1329120
pixels.

38

101 102 103 104 105 10610-3

10-2

10-1

100 plane

µ

ti
m

e
(s

)

MR
GC
IBFS

Figure 5.4: Median execution time of the solvers on the plane image. 154401
pixels.

101 102 103 104 105 10610-3

10-2

10-1

100 police

µ

ti
m

e
(s

)

MR
GC
IBFS

Figure 5.5: Median execution time of the solvers on the cameraman image.
154401 pixels.

39

5.3 Memory comparison with other solvers
We also estimate the memory required for each solver. GridCut and IBFS
allocate memory using malloc and calloc in their constructors respectively,
making it easy to extract the size needed for their allocation. MRGraph allocates
several different arrays on the heap when constructed. Once this is done, the
sum of the sizes of these arrays are used for the memory estimate. The results
of these experiments are shown in Figure 5.6. We note that both MRGraph and
GridCut manage to keep a small memory profile. What causes IBFS to use so
much more memory is its reliance on pointers for representing the connectivity.
Had we used larger connectivities then there would be far more edges in the
graph, resulting in many more pointers for IBFS to maintain. The result would
be an even smaller memory footprint of MRGraph and GridCut in comparison
with IBFS. The experiment was done on a 32-bit computer.

MR GC IBFS
0

10

20

30

40

M
b

y
te

s

cameraman

(a) Cameraman
image.

MR GC IBFS
0

50

100

150

200

M
b

y
te

s

bird

(b) Bird image.

MR GC IBFS
0

5

10

15

20

M
b

y
te

s

plane

(c) Plane image.

MR GC IBFS
0

5

10

15

20

M
b

y
te

s

police

(d) Police image.

Figure 5.6: Memory usage of the solvers for the different images. The specialized
implementations, MRGraph and GridCut, manage to keep a low memory profile
in comparison to the generic IBFS implementation. Had larger connectivities
been used, like 8-connected neighbourhoods, this difference would have been
even more pronounced.

40

Chapter 6

Conclusion

This thesis has shown how to solve multi-region segmentations using graph cut
techniques. It has introduced a solver for such instances that draws advantage
from the regular structure of the resulting graphs. Finally, in the previous
section we compared the new solver against two other available solvers on binary
segmentation instances. The important thing to note is how the computational
burden increases as the regularization is increased. This causes a sort of worst
case scenario; only the terminal links are severed by the augmentations, causing
many potential relabellings of IBFS, or causing large branches of the search
trees to get an increased distance from the terminal nodes when using BK.

I consider this to be worthy of further study. What exactly happens when
the regularization is increased? Do we get large propagations of nodes being
relabelled along every severed branch, or is it eventually stopped by an adop-
tion? How does the order in which we process the orphans affect this? Can we
improve things with a cheap but effective ranking heuristic for the rank-relabel
step? And for the BK algorithm, how long do the augmenting paths get? Do
the trees grow lopsided, with a vast mixture of short and long branches, all still
active? By augmenting the solvers with a stats-gathering friend class, we could
gain further insights of the dynamics of these algorithms.

A further area of development is the MRGraph solver itself, that was written
as part of this project. MRGraph never manages to beat GridCut. One possible
reason is the fact that it is a more general solver with support for neighbourhoods
that are not known at compile time. When an MRGraph object is created,
the number of layers (regions) are passed as a parameter to its constructor.
If MRGraph is to be used for binary segmentation, all its functionality for
handling the layer connectivity becomes redundant and may cause suboptimal
performance. We could solve this by using templates to ensure the connectivity
being known at compile time.

Another thing in need of development is support for different intra-layer
connectivities. Currently MRGraph only supports 4-connected neighbourhoods
(above, below, left and right), but it should also support 8-connected ones (di-
agonal connections). There should also be support for 3D multi-region segmen-
tations and their related connectivities (6-connected grids and 26-connected
grids). GridCut supports these possibilities, but it does so by providing one
class definition for each connectivity. This causes vast code duplication and
maintenance difficulties. I would suggest either to use specialized templates for

41

the connectivity or to have a superclass with the implementation and virtual
functions for determining the connectivity. Then we could have different sub-
classes, each with their own implementation for determining the neighbours of
a node. For MRGraph to use a strategy like this would require some refactor-
ization, however.

The source code for MRGraph can be found at github.com/MartinRykfors/
MultiRegion. For those interested, there are a couple of examples included
showing how the class is used. The class interface closely mimics that of Grid-
Cut (available at gridcut.com).

42

github.com/MartinRykfors/MultiRegion
github.com/MartinRykfors/MultiRegion
gridcut.com

Bibliography

[1] Yuri Boykov and Vladimir Kolmogorov. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimization in vi-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(9):1124–1137, September 2004.

[2] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active con-
tours. International Journal of Computer Vision, 22(1):61–79, February
1997.

[3] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

[4] Andrew Delong and Yuri Boykov. Globally optimal segmentation of multi-
region objects. In ICCV, pages 285–292. IEEE, 2009.

[5] Ulrich Drepper. What every programmer should know about memory.
http://www.akkadia.org/drepper/cpumemory.pdf, 2007.

[6] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Robert E. Tarjan, and Re-
nato F. Werneck. Maximum flows by incremental breadth-first search. In
Proceedings of the 19th European conference on Algorithms, ESA’11, pages
457–468, Berlin, Heidelberg, 2011. Springer-Verlag.

[7] Ondřej Jamriška, Daniel Sýkora, and Alexander Hornung. Cache-efficient
graph cuts on structured grids. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 3673–3680, 2012.

[8] Vladimir Kolmogorov and Carsten Rother. Minimizing nonsubmodular
functions with graph cuts-a review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(7):1274–1279, July 2007.

[9] Vladimir Kolmorogov and Ramin Zabih. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2004.

[10] Uri Zwick. The smallest networks on which the ford-fulkerson maximum
flow procedure may fail to terminate. Theoretical Computer Science, 148,
1995.

43

http://www.akkadia.org/drepper/cpumemory.pdf

	Introduction
	Flow Algorithms in Vision
	Graphs and flow networks
	Definitions
	Flow Networks
	Maximum flows and minimum cuts

	Max-Flow algorithms
	Maximum flows through augmenting paths
	Boykov-Kolmorogov's algorithm
	Incremental Breadth First Search

	Image segmentation
	Introduction
	The general setting
	Multi-region energy

	Implementation Aspects
	A generic implementation
	Using the grid structure
	Compact residual representation
	Cache friendly indexing of the nodes
	Structure splitting
	Handling the grid boundary

	The Multi-region Implementation
	The multi-region grid
	Node enumeration in 3D
	Handling the layer connectivity
	IBFS variant: the rank-relabel step

	Results and Evaluation
	A multi-region example
	Speed comparison with other solvers
	Memory comparison with other solvers

	Conclusion

