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Abstract 
Determining the structural type of a bridge is often a difficult task. The purpose of this thesis is to 
preliminary design three bridge alternatives. The bridge shall cross the fjord Þorskafjörður in Iceland. 
The goal is to determine the most favorable option. That decision will be based on economy, 
construction and aesthetics. Following that a more detailed design of the superstructure is performed 
for the chosen alternative. All calculations are performed according to Eurocode. 
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1 Introduction 

1.1 Background 
The motivation for writing this thesis is an interest in bridges that the author has acquired during his 
studies in structural engineering. Many people consider bridges to be state of the art of all civil 
structures. That can be for many reasons; f. ex. bridges sometimes cross a difficult passing or because 
of their aesthetic aspects. 

During the time the subject for this thesis was under consideration the author decided to contact the 
bridge division of the Icelandic Road Administration (ICERA). Einar Hafliðason, the head of the 
bridge division of ICERA, was contacted and he was more than willing to help. He came up with a 
few options to look into which were all considered. Following that, a decision was made and a bridge 
that is to be constructed to cross the fjord Þorskafjörður in Iceland was chosen as a subject for this 
thesis.  

1.2 Objectives 
The main purpose for a bridge over the fjord Þorskafjörður is to shorten the distance of the route on 
the way to the northwestern part of Iceland. With this bridge the route will shorten of about 10 km. 
Another purpose is to increase traffic security by eliminating all one-lane bridges on this 10 km sector. 

The main objective of this thesis is divided into two parts. First, a preliminary design of three bridge 
alternatives is made. A rough cost estimation and an estimation of quantity of materials is made based 
on the preliminary design for these three alternatives. Secondly, a more detailed design is made of the 
most appropriate bridge type. The choice of a bridge type is based on the conclusions from the first 
part. These conclusions will primarily be based on economy, aesthetics and construction method. 

1.3 Outline of the thesis 
Chapter 2 consists of a general discussion about aesthetics, advantages and disadvantages and other 
aspects for the three bridge types that are chosen to be analyzed. 

Chapter 3 displays the bridge location and describes the boundary conditions and geometry at the 
construction site. It also includes information about why this bridge is to be built. 

Chapter 4 includes preliminary design and cost estimations of the three chosen bridge alternatives 
with respect to the quantity of materials needed for each type. That chapter also includes conclusions 
of the preliminary design, that is, which type of bridge is chosen for a more detailed design with 
respect to the limits that are set. 

Chapter 5 includes more detailed structural analysis for the superstructure of the chosen bridge 
alternative.   
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4 Preliminary design 

4.1 Introduction 
This chapter contains preliminary design of the three bridge types, a concrete girder bridge, an arch 
bridge and a cable-stayed bridge. The aim of the preliminary design is to determine the most suitable 
bridge type for the purpose of crossing the fjord Þorskafjörður. The chapter is divided in to two 
different sections. The first sections (sections 4.2 and 4.3) treat factors that are common for all three 
bridge types, i.e. loads, load combinations and materials. Sections 4.4 to 4.6 treat the three different 
bridge types respectively. In these sections are sizes of important bridge elements for each bridge type 
estimated. These sections also contain rough cost estimations and construction methods for each 
bridge type. Finally, in the last section of this chapter, the most suitable bridge type is determined 
based on the preliminary design. 

4.2 Loads 
For the preliminary design of this project only three loads are considered. Two permanent loads, self-
weight and pavement, and one variable load, traffic load. The loads are determined according to 
Eurocode 1 (EC1). 

4.2.1 Permanent loads 
Self-weight for reinforced concrete is set to 25 kN/m3. The self-weight of pavement and structural 
steel are set to 2.1 kN/m2and 78.5 kN/m3 respectively. 

4.2.2 Variable loads 
The variable actions, which are taken into account in this thesis, are traffic loads in vertical direction. 
After some discussion with the head of the bridge division of ICERA it seemed reasonable to do this 
simplification in the preliminary analysis. 

Traffic Loads 
In EC1-2, chapter 4, there are defined four different load models for traffic loads. In this case Load 
Model 1 (LM1) is used with two partial systems, one including axle loads (Tandem system TS) and 
the other including uniformly distributed loads (UDL system), see figure 4-1. LM1 is considered to 
cover most of the effects from traffic of lorries and cars and should be used for general and local 
verifications while the other load models are considered for dynamic effects, special vehicles and 
other situations. LM1 should be applied on each notional lane and on the remaining areas. On notional 
lane number i, the load magnitudes are referred to as αQiQik and αqiqik, axle load and distributed load 
respectively. On the remaining areas, the load magnitude is referred to as αqrqrk. According to chapter 
4.3.2(3) in EC1-2 the recommended minimum values for the adjustment factors are: ߙொଵ ≥ ௤௜ߙ 0,8 ≥ 1,0 

The national annex for Sweden recommends the following minimum values for the adjustment factors: ߙொଵ = ொଶߙ 0,9 = ொଷߙ 0,9 = 0 
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4.4.4 Construction 
The construction method of a concrete girder bridge is relatively easy to perform. Concrete girder 
bridges are one of the most common bridges in Iceland. This bridge alternative is often chosen for 
similar conditions as are in this case because of economic and constructional reasons, that is, when a 
shallow fjord is to be crossed. 

Supports and columns below the superstructure will be constructed first. They will be founded on 
piles. Since the level of sea depth at is shallow at the construction site the superstructure of the bridge 
will be casted in forms that are supported on a temporary filling under the bridge. The filling will 
finally be removed when the concrete has hardened and can then be used as road material. 

4.4.5 Cost estimation/conclusions 
To estimate the cost of this bridge type a method from Menn (1986) is used. The following is an 
explanation of this method. 

The superstructure’s costs can be reliably estimated with the help of the geometrical average span 
length, lm, defined as: 

݈௠ = ∑ ݈௜ଶ∑ ݈௜  

where li is the length of span i. 

The empirical equations given below give the quantities of concrete, reinforcing steel, and 
prestressing steel as functions of lm and have been derived from samples of recently constructed 
bridges. 

By this method the volume of concrete in the whole superstructure is obtained by multiplying the total 
deck surface by the effective girder depth, hm, defined by the following expression: ℎ௠ = 0.35 + 0.0045 ∙ ݈௠ 

where hm and lm are in meters. This equation is valid provided the actual girder depth, h, satisfies the 
following inequality: 120 ≤ ℎ݈௠ ≤ 116 

which fulfills the criteria used earlier, l/h=20. The quantity of reinforcing steel is obtained by 
multiplying the total volume of concrete by the mass of steel per unit volume of concrete, ms. The 
parameter ms is estimated using the equation: ݉௦ = 90 + 0.35 ∙ ݈௠ 

where lm is in meters and ms is in kilograms per cubic meter of concrete (kg/m3). This expression is 
valid provided the deck slab is not transversely prestressed. Between 65 and 70 kg/m3 of 
reinforcement is required for stability during construction and crack control; this quantity is 
independent of span length, see Menn (1986). The transverse reinforcement required to resist loads is 
primarily a function of cross-section dimensions. An additional 20 to 25 kg/m3 is required for 
commonly used cross-sections, regardless of span length. Most of the steel required above the 
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Figure 4-10: Influence lines for various section forces at most critical placements. 

To calculate the important section forces for design of the cross section of the arch the traffic loads 
are placed on the most unfavorable position corresponding to these influence diagrams in a program 
called PCFrame. PCFrame is a commercial program for structural analysis of frames. 

Cross Section 
To design the arch in the ultimate limit state the section forces are required. The highest moment in 
the arch is reached when the traffic load is located in the middle of the span. The position of the point 
load at the first quarter of the span gave the highest normal force.  So these corresponding section 
forces are used to design the cross section and are shown in table 4-6. 
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Figure 4-22: Influence lines for moments in the deck and at pylon supports. 
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Figure 4-23: Influence lines for normal forces in pylon support and moment at 55% of the height of the pylons. 
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Figure 4-24: Influence lines for various parts of the structural system of the cable-stayed bridge. 

After the influence lines have been created the bridge is modeled as a 3D model in SAP2000 with the 
forces positioned at the corresponding positions. The slab is modeled as area section elements with a 
meshing of 0.5 m so that the axle traffic loads can be positioned right. Main girders and cross beams 
in the bridge deck are modeled as frame elements as well as the pylons. The cables are modeled as 
cable elements with high tensional stiffness. The only supports of the model are the fixed supports 
under the pylons because the pylons and cables should be able to carry its self-weight under 
construction. 
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4.7 Summary and choice of bridge type 
From the total cost estimations for the bridge types it is clear that the cable-stayed bridge is the most 
expensive one. Also the arch bridge is quite expensive compared to the prestressed concrete bridge 
that is the least expensive one. From a construction point of view the prestressed bridge is also the 
most favorable. From these perspectives a concrete girder bridge is the obvious choice. 

But, there are also other aspects that need to be taken into consideration when choosing a bridge type; 
aesthetics, method of construction and construction time are obvious factors that can affect which 
choice is made. The author will leave those decisions for others to make at later stages but chooses to 
design the concrete beam bridge in a more detailed manner. In the following chapter more detailed 
calculations will be performed for the superstructure of bridge type 1. Calculations of the post-
tensioned cables are performed where the prestress force and eccentricity of the cable profile are 
determined. Following that all cable losses are determined and then the secondary effects of prestress. 
Finally the ultimate moment capacity is determined for relevant members of the superstructure. 
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5 Final design 

5.1 Introduction 
Prestressed concrete structures, using high-strength materials to improve serviceability and durability, 
are an attractive alternative for long-span bridges, and have been used worldwide since the 1950s. The 
presence of cracks that can develop in tensile members can lead to corrosion of the reinforcement due 
to its exposure to water and chemical contaminants. Corrosion is generally only a problem for 
structures in aggressive exterior environments (bridges, marine structures, etc.) and is not critical in 
the majority of buildings. The effect of cracking of members can lead to substantial loss in stiffness 
which occurs after cracking and the second moment of area of the cracked section is far less than the 
second moment of area before cracking. Thus, allowing cracks to develop can cause a large increase 
in the deformation of the member. For prestressed concrete, compressive stresses are introduced into a 
member to reduce or nullify the tensile stresses which result from bending due to the applied loads. 
The compressive stresses are generated in a member by tensioned steel anchored at the ends of the 
members and/or bonded to the concrete. 

There are two types of prestressing systems: pre-tensioning and post-tensioning systems. Pre-
tensioning systems are methods in which the strands are tensioned before the concrete is placed. This 
method is generally used for mass production of prefabricated members. Post-tensioning systems are 
methods in which the tendons are tensioned after concrete has reached a specified strength. This 
technique is often used in projects with very large elements. The main advantage of post-tensioning is 
its ability to post-tension cast-in-place members. Mechanical prestressing jacking is the most common 
method used in bridge structures. 

The post-tensioning process involves three fundamental stages. In the first stage of the process, the 
concrete is cast around a hollow duct. After the concrete has set or hardened, a tendon, consisting of a 
number of strands, is pushed through the duct (alternatively, the tendon can be placed in the duct 
before casting). Thus, the tendon can be fixed in any desired linear or curved profile along the 
member. By varying the eccentricity of the tendon from the centroid, the maximum effectiveness of a 
constant prestressing force can be utilized by applying the prestress only where it is required. Once 
the concrete has achieved sufficient strength in compression, the tendon is jacked from one or both 
ends using hydraulic jacks, thus putting the concrete into compression. When the required level of 
prestress is achieved, the tendon is anchored at the ends of the member. After anchorage, the ducts are 
usually filled with grout under pressure. The grout is provided mainly to prevent corrosion of the 
tendon but it also forms a bond between the tendon and the concrete which reduces the dependence of 
the beam on the integrity of the anchor and hence improves its robustness. 

When prestressed concrete elements are designed the following factors need to be considered: 

• The prestressing reinforcement is determined by concrete stress limits under service load. 
• Bending and shear capacities are determined for the ultimate limit state 
• Deformations are determined in the serviceability limit state. 
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The cross sectional area of the concrete is: ܣ௖ = 6460000 ݉݉ଶ 

The notional size is calculated to be: 2ݑܣ = 466 

which gives after interpolation the creep coefficient as φ =1.56, see table 5-1, and the effective 
modulus of elasticity is determined to Ec,eff=14066 MPa. 

5.2.3.2 Reinforcement 
The quality of the reinforcement is chosen to be B500B with characteristic yield strength fyk=500 MPa. 

5.2.3.3 Prestress system 
As mentioned in chapter 4 for bridge type 1, the prestressing system is VSL 6-31. All technical 
information concerning VSL systems are acquired from technical brochures published by VSL 
International Ltd. (2010). Each tendon consists of 28 strands each consisting of 7 wires with a 
diameter of 15.7 mm with a total nominal cross-section Ap=4200 mm2, where each strand has a 
nominal cross section of 150 mm2. The steel quality of the wires is fp0,1k/fpk=1640/1860 MPa. The 
breaking load of each tendon is 7812 kN. The cables will be placed before casting in a group around a 
centerline that counteracts the moment from the self-weight of the bridge. The cables will be anchored 
individually with conical devices at each end of the bridge. When the concrete has achieved sufficient 
strength large multi-cable hydraulic jacks are used at both ends of the bridge to prestress the structure. 
When the required level of prestress is achieved the tendons are anchored at each end of the member. 
After anchorage, the ducts around the tendons are filled with cement grout under pressure, called 
bonded tendons. The cement grout is provided mainly to prevent corrosion of the tendons, but also it 
forms bond in the integrity of the anchor and hence improves its robustness. The prestressing process 
will be done in that manner that first the two internal spans will be constructed and prestressed and 
then finally the two external spans will be constructed and prestressed. To simplify the calculations it 
is assumed that the cables are calculated as one element, stressed from both ends of the bridge. 

5.2.4 Exposure classes and service life 
According to Eurocode 2 (EN 1992-1-1) a structure should be classified after environmental 
conditions, chemical and physical. This structure will be classified in the following classes: 

• Corrosion induced by carbonation: XC4 
• Corrosion induced by chlorides: XD3 
• Corrosion induced by chlorides from sea water: XS3 
• Freeze/Thaw Attack: XF4 

These classifications give a structural class of S4 according to table 4.3N in EC2. For that class the 
minimum concrete cover for reinforcement steel is cmin,dur=45 mm and for prestressing steel cmin,dur=55 
mm. Also, for post-tensioned members, the concrete cover should not be less than the diameter of the 
duct. In this case the external diameter of the duct is 117 mm. According to EC0, table 2.1, the service 
life (indicative design working life) for bridges is 100 years. 

5.2.5 Tendon alignment and prestress force 
The position of the centroid of the tendons should be chosen to give the highest effective depth. The 
alignment is based on concrete cover, the number and size of the tendons, the size of the cable ducts 
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fcm(t) is estimated from the following expressions: 

௖݂௠(ݐ) = (ݐ)௖௖ߚ ௖݂௠ 

With βcc(t) as: 

(ݐ)௖௖ߚ = exp ቐݏ ቎1 − ൬28ݐ ൰ଵଶ቏ቑ = exp ቐ0.25 ቎1 − ൬2810൰ଵଶ቏ቑ = 0.85 

where s is chosen to 0.25 which is valid for cement of strength classes CEM Class N at 10 days and 
fcm is 53 MPa. From this fcm(t) is determined to 44.79 MPa and fck(t) to 36.79 MPa. Hence, the 
compressive strength at transfer becomes: ߪ௖ ≤ 0.6 ௖݂௞(ݐ) = 0.6 ∙ 36.79 =  ܽܲܯ 22.07

And the concrete strength at service time is: ߪ௖ ≤ 0.6 ௖݂௞ = 0.6 ∙ 45 =  ܽܲܯ 27

EC2 does not lay down any compulsory permissible tension stresses so the choice of concrete tension 
stress limits is left to the discretion of the designer. Hence the design is restricted by not allowing high 
tensile stresses to develop at service and only the concrete tensile strength at transfer: ߪ௖௧௞.଴,଴ହ ≤  ܽܲܯ 2.7

And at service the maximum tensile stress is chosen to: ߪ௧ ≤  ܽܲܯ 2.0

The stresses in the cross-section are calculated according to Navier’s formula: 

ߪ = − ܣܲ + ௚ܯ − ܲ݁௦ܫ  ݕ

where P is the normal force, A is the area of the cross-section and I is the moment of inertia. Mg is the 
moment generated by self-weight, es is the eccentricity of the normal force and y is the location in the 
section where the stresses are calculated. In this equation P and es are unknown and have to be 
determined. The prestress force and eccentricity will be determined by developing a Magnel diagram, 
a method to determine a Magnel diagram is descriped in O’Brien (1999). Magnel diagrams are 
determined for the critical sections where the maximum transfer- and service moments occur. An 
estimation of the ratio between the prestress force at service and the prestress force at transfer, ρ, is 
made (generally from 0.75-0.90) and is chosen here to be 0.75. The critical sections that will be 
checked are external and internal spans and supports B and C. Figure 5-2 displays the load 
arrangements to establish the largest moments at each section at service stage. These load 
arrangements are determined based on influence lines that are created by the same method as in 
section 4 and can be seen in appendix B. 
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ܣ1 + ܹ݁௧ ≤ 1ܲ 1ܲ 2 ݕݐ݈݅ܽݑݍ݁݊ܫ          ௧௠௔௫ߪ ௕௠௜௡ߪ ≤ ܣ1 + ܹ݁௕ ܣ1 3 ݕݐ݈݅ܽݑݍ݁݊ܫ           + ܹ݁௕ ≤ 1ܲ  4 ݕݐ݈݅ܽݑݍ݁݊ܫ          ௕௠௔௫ߪ

These inequalities represent half-planes bounded by the line on which the stress limits are just 
satisfied. To determine which half-plane represents the inequality, the origin of the Magnel diagram is 
substituted into inequality 1, 1/P=0 and e=0, and gives the following: 

0 ≤ ܣ1  1 ݕݐ݈݅ܽݑݍ݁݊ܫ          

If this is true (A is positive), the correct half-plane is the one containing the origin and the same 
procedure is done for the three remaining inequalities. 1ܣ ≤  2 ݕݐ݈݅ܽݑݍ݁݊ܫ          0

0 ≤ ܣ1 ܣ1 3 ݕݐ݈݅ܽݑݍ݁݊ܫ            ≤  4 ݕݐ݈݅ܽݑݍ݁݊ܫ         0

Thus, for inequality 1 the half-plane contains the origin, for inequality 2 it doesn’t, for inequality 3 the 
half-plane contains the origin and for inequality 4 it doesn’t. For further information see appendix B 
and O’Brien (1999). 

After some calculation the Magnel diagrams are established (Appendix B) and the appropriate 
prestress force and eccentricity are chosen. The chosen prestress force is 46.512 kN (1/P=2.15 x 10-8 
N-1) which is based on the maximum allowable eccentricity that is at supports B and C. That requires 
approximately 8 tendons each with a breaking load of 7812 kN. The eccentricity limits at each section 
are given below, based on these Magnel diagrams. 

Section at support A: -180 mm ≤ e ≤ 283.6 mm 

Section at span 1: -210 mm ≤ e ≤ -410 mm 

Section at support B: 200 mm ≤ e ≤ 283.6 mm 

Section at span 2: -300 mm ≤ e ≤ -420 mm 

Section at support C: 250 mm ≤ e ≤ 283.6 mm 

On figure 5-3 is the longitudinal feasible zone and the cable layout displayed. That zone is based on 
the calculations above. 
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because of friction, this loss decreases along the length of the member to zero at a distance Ld from the 
jack. The extent of draw-in losses is determined with the following equation: 

ௗܮ = ඨ ∆௦ܧ௣ܣ௣( ௝ܲ௔௖௞ − ௅ܲ)/ܮ 

where (Pjack-PL)/L is the slope of the distribution of prestress force if the friction loss is assumed to 
vary linearly. Δs is the total shortening of the tendon. The magnitude of the draw-in loss at the 
anchorage is then given by the following equation: 

∆ܲ = 2 ( ௝ܲ௔௖௞ − ௅ܲ)ܮ  ஽ܮ

where ΔP is the draw-in loss. The distribution of the prestress force after the draw-in loss is displayed 
in figure 5-6 where the decrease of this loss along the length of the member becomes zero at distance 
Ld approximately 15 m from the jack. 

 

Figure 5-6: Distribution of the prestress force after the draw-in loss for half of the total span. 

5.2.6.4 Time-dependent losses 
Losses in prestress which occur gradually over time are caused by shortening of the concrete due to 
creep and shrinkage and due to relaxation of the prestressing steel. Shrinkage is a time-dependent 
strain which occurs as the concrete sets and for a period after setting. The shrinkage strain approaches 
final value at infinite time. When maintained at a constant tensile strain, steel gradually loses its stress 
with time due to relaxation. The extent of the loss of stress in prestressing strands due to relaxation is 
determined by the stress to which the steel is tensioned, the ambient temperature and the class of steel. 
Maximum allowable value for relaxation losses of the prestressing steel are specified by the 
manufacturer as 2.5% for 15 mm strands. To determine the loss EC2 suggests that it should be based 
on the 1000 hour values given in figure 5-7. These values should be trebled to determine the final 
relaxation losses. 
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5.3 Ultimate moment capacity 
When the member has been designed to satisfy the transfer and service stress limits it is necessary to 
check for moment capacity in the ultimate limit state. As for ordinary reinforced concrete, the ultimate 
moment capacity of a prestressed section is calculated by equilibrium of forces at the corresponding 
section. The compressive strain in the concrete due to prestress, εce, at the level of the prestressing 
tendon is given with the following formula: 

௖௘ߝ = ௖ܧ1 ቆܲܣ௚ + ௚ܫ௣݁ܯ ቇ 

where Mp is the moment due to prestress and P is the prestress force, both after all losses, at the 
section that is calculated. The tendon strain is defined as (contraction positive): 

௣௨ߝ = − ௣ܧ௣ܣܲ + ௖௧ߝ −  ௖௘ߝ

where Ap is the area of the prestress reinforcement and Ep is its modulus of elasticity. εct is the total 
ultimate strain in the concrete and is found with the following equation: 

௖௧ ߝ = − ݀)௨௟௧ ߝ − ݔ(ݔ  

EC2 recommends that εult should be taken as 0.0035. Here d is the effective depth, distance from 
extreme fibre in compression to the center of tension reinforcement, and x is the distance from 
extreme fibre in compression to neutral axis. To calculate the equilibrium of forces the force in the 
steel, Fp, and the compressive force acting on the concrete in compression, Fc, are required: ܨ௣ =  (௣௨ ߝ௣ܧ)௣ܣ

௖ܨ = ܾݔ0.8 ߙ ௖݂௞ߛ௖  

Here b is the width of the section which Fc is acting on. α is a coefficient which takes into account the 
long-term effects on the compressive strength and is 1.0. γc is the partial safety factor for concrete 
strength and is equal to 1.5 according to EC2. Now the following equation for equilibrium of forces is 
established and solved to find x: ܨ௣ + ௖ܨ = 0 

When x is found a check is made to see if the steel has yielded by substituting x into the equation for 
the tendon strain defined above. The initial yield strain for prestressing steel is ௣݂௞ ⁄௣ܧ௣ߛ  where γp is 
the partial safety factor for reinforcement strength and is equal to 1.15 according to EC2. εpu cannot 
exceed the initial strain, otherwise the steel has yielded. Finally the ultimate moment capacity can be 
determined with the following formula: ܯ௨௟௧ = ݖ௣ܨ =  ݖ௖ܨ

with z as: ݖ = (݀ −  (ݔ0.4
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Q1k= 300 αQ1= 0,9 αQ1∙Q1k= 270 kN

Q2k= 200 αQ2= 0,9 αQ2∙Q2k= 180 kN

q1k= 9 αq1= 1 αq1∙q1k= 9 kN/m2

q2k= 2,5 αq2= 1 αq2∙q2k= 2,5 kN/m2

q3k= 2,5 αq3= 1 αq3∙q3k= 2,5 kN/m2

F z M q l z M
For Q For q

CALCULATIONS OF GDF FOR BRIDGE TYPE 1

F z M q l z M
RA 5,6 RA∙x 5,6 RA∙x

135 6,8 918 9 3 5,8 156,6
135 4,8 648 2,5 3 2,8 21
90 3,8 342 2,5 3 ‐0,2 ‐1,5
90 1,8 162 ∑M= 176,1

∑M= 2070 RA= 31,45
RA= 369,64 GDFq= 1,16

GDFQ= 1,37 RB= 10,55

RB= 80,36

Total actions on half of the cross section for traffic loads in the length direction
1012 kN

37 kN/mq=GDFq*RA=

RA

Q=2*GDFQ*RA=
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Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Ix

nr. mm mm mm2 mm mm3 mm mm4 mm4 mm4

1 1080 2400 2592000 1200 3,11E+09 431,1 1,24E+12 4,82E+11 1,73E+12
2 1080 2400 2592000 1200 3,11E+09 431,1 1,24E+12 4,82E+11 1,73E+12
3 10000 250 2500000 2525 6,31E+09 ‐893,9 1,30E+10 2,00E+12 2,01E+12

∑ 7684000 1,25E+10 5,46E+12

y= 1631,1 mm WTop= mm3

h= 2650 mm WBottom= mm3

u= 30100 mm
2A/u= 511 mm
φ= 1,54
Ec,eff= 14175 N/mm2

Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Ix

nr. mm mm mm2 mm mm3 mm mm4 mm4 mm4

1 5000 250 1250000 2525 3,16E+09 ‐893,9 6,51E+09 9,99E+11 1,01E+12
2 1080 2400 2592000 1200 3,11E+09 431,1 1,24E+12 4,82E+11 1,73E+12

∑ 3842000 6,27E+09 2,73E+12

y= 1631,1 mm WTop= 2,68E+09 mm3

h= 2650 mm WBottom= 1,67E+09 mm3

In the middle of the span ‐ Half cross section

In the middle of the span

5,36E+09

3,35E+09

Perimeter:
Notional size:
Creep coefficient:

Effective elastic modulus:

Creep ‐ Effective elastic modulus

Note: All cross‐section calculations are done from the bottom fibre
Calculations for Area, Moment of Inertia and Section Modulus for Bridge Type 1

Appendix A

61



Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Ix

nr. mm mm mm2 mm mm3 mm mm4 mm4 mm4

1 1380 2400 3312000 1200 3,97E+09 363,1 1,59E+12 4,36548E+11 2,03E+12
2 1380 2400 3312000 1200 3,97E+09 363,1 1,59E+12 4,36548E+11 2,03E+12
3 10000 250 2500000 2525 6,31E+09 ‐961,9 1,30E+10 2,31335E+12 2,33E+12

∑ 9124000 1,43E+10 6,38E+12

y= 1563,1 mm WTop= 5,87E+09 mm3

h= 2650 mm WBottom= 4,08E+09 mm3

Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Ix

nr. mm mm mm2 mm mm3 mm mm4 mm4 mm4

1 5000 250 1250000 2525 3,16E+09 ‐961,9 6,51E+09 1,16E+12 1,16E+12
2 1380 2400 3312000 1200 3,97E+09 363,1 1,59E+12 4,37E+11 2,03E+12

∑ 4562000 7,13E+09 3,19E+12

y= 1563,1 mm WTop= 2,51E+09 mm3

h= 2650 mm WBottom= 2,04E+09 mm3

u= 30100 mm
2A/u= 606 mm
φ= 1,50
Ec,eff= 14416 N/mm2

A W,Top W,Bottom I Weight

mm2 mm3 mm3 mm4 kN/m
7684000 5,36E+09 3,35E+09 5,46E+12 192,1
3842000 2,68E+09 1,67E+09 2,73E+12 96,05
9124000 5,87E+09 4,08E+09 6,38E+12 228,1
4562000 2,51E+09 2,04E+09 3,19E+12 114,05

25 kN/m3

2,1 kN/m2

Self weight of concrete for half of the bridge section
96,1 kN/m

10,5 kN/m

106,6 kN/m

36000 N/mm2

In the Middle of the Span

Over a support

Over a support

Summary

Ec=

Perimeter:
Notional size:
Creep coefficient:

Effective elastic modulus:

Creep ‐ Effective elastic modulus

Over a support ‐ Half cross section

Over a support ‐ half

In the middle of the Span ‐ half

γconcrete=

γpavement=

gconcrete=

gpavement=

gtot=
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Q1k= 300 αQ1= 0,9 αQ1∙Q1k= 270 kN

Q2k= 200 αQ2= 0,9 αQ2∙Q2k= 180 kN

q1k= 9 αq1= 1 αq1∙q1k= 9 kN/m2

q2k= 2,5 αq2= 1 αq2∙q2k= 2,5 kN/m2

q3k= 2,5 αq3= 1 αq3∙q3k= 2,5 kN/m2

F z M q l z M
For Q For q

CALCULATIONS OF GDF FOR BRIDGE TYPE 2

F z M q l z M
RA 10 RA∙x 10 RA∙x

135 9 1215 9 3 8 216
135 7 945 2,5 3 5 37,5
90 6 540 2,5 3 2 15
90 4 360 ∑M 268,5

∑M= 3060 RA 26,85
RA= 306,00 GDFq= 0,99

GDFQ= 1,13 RB= 15,15

RB= 144,00

Total actions on half of the cross section for traffic loads in the length direction
694 kN

27 kN/mq=GDFq*RA=

RA

Q=2*GDFQ*RA=
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Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Iy

[mm2] [mm2] [mm2] [mm] [mm2] [mm] [mm4] [mm4] [mm4]
Top Flange 300 40 12000 1160 1,39E+07 ‐570 1,60E+06 3,90E+09 3,90E+09

Web 40 1100 44000 590 2,60E+07 0 4,44E+09 0,00E+00 4,44E+09
Bottom Flange 300 40 12000 20 2,40E+05 570 1,60E+06 3,90E+09 3,90E+09

∑ 68000 4,01E+07 1,22E+10

y= 590 [mm]
h= 1180 [mm]
Wel= 2,07E+07 [mm3]

Part y A Wpl

2 3

5.4 Restistance of cross‐sections in EC3

Main girders ‐ Bridge type 2

[mm] [mm2] [mm3]
Top Flange 570 12000 6,84E+06 γM0= 1,1 fy= 355 MPa

Web 1 275 22000 6,05E+06
Web 2 275 22000 6,05E+06

Bottom Flange 570 12000 6,84E+06

∑ 2,58E+07 Where

44000 mm2

MSd,max= ‐7241 kNm

ε 0,81 VSd,max= 2087 kN

d 1100
tw 40

α 0,5 8320 kNm OK!
d/tw 27,5 8198 kN OK!
Class Class 1 →d/tw ≤ 33ε No reduction needed!
c 150
tf 40

c/tf 3,75
Class Class 1 →c/tf ≤ 9ε

Design values:

W
eb

Fl
an

ge

Cross Section Class, table 5.3.1 in EC3

Wpl=

Combined

Provided that the design value of the shear force 
V sd  does not exceed 50% of the design plastic 
shear resistance V pl.Rd  no reduction need be 

made

Shear
Moment

Resistance:

Shear area: Av=Σ(dtw)=

.Sd c RdM M≤

.Sd pl RdV V≤

. 0( / 3) /Sd pl Rd v y MV V A f γ≤ =
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Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Iy

[mm2] [mm2] [mm2] [mm] [mm2] [mm] [mm4] [mm4] [mm4]
Top Flange 200 30 6000 845 5,07E+06 ‐415 4,50E+05 1,03E+09 1,03E+09

Web 30 800 24000 430 1,03E+07 0 1,28E+09 0,00E+00 1,28E+09
Bottom Flange 200 30 6000 15 9,00E+04 415 4,50E+05 1,03E+09 1,03E+09

∑ 36000 1,55E+07 3,35E+09

y= 430 [mm]
h= 860 [mm]
Wel= 7,79E+06 [mm3]

Part y A Wpl 5.4 Restistance of cross‐sections in EC3

Cross‐beams ‐ Bridge type 2

[mm] [mm2] [mm3]

Top Flange 415 6000 2,49E+06 γM0= 1,1 fy= 355 MPa

Web 1 200 12000 2,40E+06
Web 2 200 12000 2,40E+06

Bottom Flange 415 6000 2,49E+06

∑ 9,78E+06 Where

24000 mm2

MSd,max= 3025 kNm

ε 0,81 VSd,max= 1359 kN

d 800
tw 30

α 0,5 3156 kNm OK!
d/tw 26,67 4472 kN OK!
Class Class 1 No reduction needed!
c 100
tf 30

c/tf 3,333
Class Class 1

Design values:

Wpl=

Moment
Shear

Combined

Resistance:

Provided that the design value of the shear force 
V sd  does not exceed 50% of the design plastic 
shear resistance V pl.Rd  no reduction need be 

made

Fl
an

ge
W
eb

Cross Section Class, table 5.3.1 in EC3

Shear area: Av=Σ(dtw)=

.Sd c RdM M≤

.Sd pl RdV V≤

. 0( / 3) /Sd pl Rd v y MV V A f γ≤ =
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Q1k= 300 αQ1= 0,9 αQ1∙Q1k= 270 kN

Q2k= 200 αQ2= 0,9 αQ2∙Q2k= 180 kN

q1k= 9 αq1= 1 αq1∙q1k= 9 kN/m2

q2k= 2,5 αq2= 1 αq2∙q2k= 2,5 kN/m2

q3k= 2,5 αq3= 1 αq3∙q3k= 2,5 kN/m2

F z M q l z M

CALCULATIONS OF GDF FOR BRIDGE TYPE 3

For Q For q
F z M q l z M
RA 10 RA∙x 10 RA∙x

135 9 1215 9 3 8 216
135 7 945 2,5 3 5 37,5
90 6 540 2,5 3 2 15
90 4 360 ∑M 268,5

∑M= 3060 RA 26,85
RA= 306,00 GDFq= 0,99

GDFQ= 1,13 RB= 15,15

RB= 144,00

Total actions on half of the cross section for traffic loads in the length direction
694 kN

27 kN/m

Q=2*GDFQ*RA=

q=GDFq*RA=

RA
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Mmax

Vmax

Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Iy

[mm2] [mm2] [mm2] [mm] [mm2] [mm] [mm4] [mm4] [mm4]
Top Flange 300 30 9000 845 7,61E+06 ‐415 6,75E+05 1,55E+09 1,55E+09

Web 30 800 24000 430 1,03E+07 0 1,28E+09 0,00E+00 1,28E+09
Bottom Flange 300 30 9000 15 1,35E+05 415 6,75E+05 1,55E+09 1,55E+09

∑ 42000 1,81E+07 4,38E+09

y= 430 [mm]
h= 860 [mm]
Wel= 1,02E+07 [mm3]

Part y A Wpl 5.4 Restistance of cross‐sections in EC3

Cross‐beams ‐ Bridge type 3

Part y A Wpl

[mm] [mm2] [mm3]

Top Flange 415 9000 3,74E+06 γM0= 1,1 fy= 355 MPa

Web 1 200 12000 2,40E+06
Web 2 200 12000 2,40E+06

Bottom Flange 415 9000 3,74E+06
∑ 1,23E+07 Where

24000 mm2

Cross Section Class MSd,max= 3237 kNm
ε 0,81 VSd,max= 672 kN

d 800
tw 30

α 0,5 3960 kNm OK!
d/tw 26,67 4472 kN OK!
Class Class 1 →d/tw ≤ 33ε No reduction needed!
c 150
tf 30

c/tf 5
Class Class 1 →c/tf ≤ 9ε

5.4 Restistance of cross sections in EC3

Provided that the design value of the shear force V sd 

does not exceed 50% of the design plastic shear 
resistance V pl.Rd  no reduction need be made

Moment
Shear

Combined

Resistance:

Design values:

W
eb

Shear area: Av=Σ(dtw)=

Fl
an

ge

Wpl=

.Sd c RdM M≤

.Sd pl RdV V≤

. 0( / 3) /Sd pl Rd v y MV V A f γ≤ =
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Part b h A y0 S=Ay0 y‐y0 I0 A(y‐y0)
2 Iy

[mm2] [mm2] [mm2] [mm] [mm2] [mm] [mm4] [mm4] [mm4]
Top Flange 400 30 12000 1185 1,42E+07 ‐585 9,00E+05 4,11E+09 4,11E+09

Web 30 1140 34200 600 2,05E+07 0 3,70E+09 0,00E+00 3,70E+09
Bottom Flange 400 30 12000 15 1,80E+05 585 9,00E+05 4,11E+09 4,11E+09

∑ 58200 3,49E+07 1,19E+10

y= 600 [mm]
h= 1200 [mm]
Wel= 1,99E+07 [mm3]

Part y A Wpl 5.4 Restistance of cross‐sections in EC3

Main girder ‐ Bridge type 3

[mm] [mm2] [mm3]

Top Flange 585 12000 7,02E+06 γM0= 1,1 fy= 355 MPa

Web 1 285 17100 4,87E+06
Web 2 285 17100 4,87E+06

Bottom Flange 585 12000 7,02E+06

∑ 2,38E+07 Where

34200 mm2

MSd,max= 7311 kNm

ε 0,81 VSd,max= 1247 kN

d 1140
tw 30

α 0,5 7677 kNm OK!
d/tw 38 6372 kN OK!
Class Class 1 →d/tw ≤ 33ε Combined No reduction needed!
c 200
tf 30

c/tf 6,67
Class Class 1 →c/tf ≤ 9ε

Provided that the design value of the shear force 
V sd  does not exceed 50% of the design plastic 

shear resistance V pl.Rd  no reduction need be made

Wpl=

Design values:

Shear area: Av=Σ(dtw)=

Resistance

Moment
Shear

W
eb

Fl
an

ge

Cross Section Class

.Sd c RdM M≤

.Sd pl RdV V≤

. 0( / 3) /Sd pl Rd v y MV V A f γ≤ =
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Column

tx L l ty B b
mm 300 1500 900 300 2300 1700

A 1920000 mm2

Reinforcement

Cover x (Pcs.) Sox y (Pcs.) Soy x (Pcs.) Sox y (Pcs.) Soy
mm 50 18 80,9 26 80,6 13 85,4 21 83,0

Outside Bars Inside Bars

3000

Cross‐Section
Reshape Chart for Right Scaling

1500
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3000
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Reshape Chart for Right Scaling
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Materials

Safety Class 3 ⇒ γn 1,2
Concrete C40/50

Outside Bars 1 ∅ 25 ⇒ Aslo 490,9 mm2/Bar
2

Inside Bars 1 ∅ 25 ⇒ Aslo 490,9 mm2/Bar

Stirrups 2 ∅ 10 ⇒ Asv 78,5 mm2/Bar

Creep, RH % 95 φ 1

Reinforcement #
Ks40 1 55
Ks60 2 Normalt utomhus samt inomhus i icke

Creep, RH %
Innomhus i uppvärmde lokaler

Ks60 2
Ss260S 3
B500B 4 ⩾ 95
Ks600S 5
Ns500 6
Nps500 7

Mycket fuktig miljö

75Normalt utomhus samt inomhus i icke 
uppvärmde lokaler

fcck fcc fctk fct Eck Ec Ec,eff εcu

MPa MPa MPa MPa MPa MPa MPa -
38 19,8 2,4 1,33 35.000 24.306 12.153 0,0035

fyk fst Esk Es εsy

MPa MPa MPa MPa -
O id B 500 435 200 000 200 000 0 00217

Rebars

Concrete

Outside Bars 500 435 200.000 200.000 0,00217
Inside Bars 500 435 200.000 200.000 0,00217
Stirrups 500 435 200.000 200.000 0,00217

Load

k 60.000

70.000

X‐Axis

NSd= 5121 kN
MSd= 27292 kNm
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Calculations of secondary moment with the three-moment
equation

w1 99.023−
kN
m

:= w2 79.685−
kN
m

:=

Span lengths:

L1 37m:= L2 48m:=

L4 L1:= L3 L2:=

MA 0kN m⋅:= ME 0kN m⋅:=

MB 1kN m⋅:=

MC 1kN m⋅:=

MD 1kN m⋅:=

EIθ1
w1 L1

3
⋅

24
:= EIθ2

w2 L2
3

⋅

24
:=

EIθ4 EIθ1:= EIθ3 EIθ2:=

Given

MA L1⋅ 2 MB⋅ L1 L2+( )⋅+ MC L2⋅+ 6− EIθ1 EIθ2+( )⋅=

MB L2⋅ 2 MC⋅ L2 L3+( )⋅+ MD L3⋅+ 6− EIθ2 EIθ3+( )⋅=

MC L3⋅ 2 MD⋅ L3 L4+( )⋅+ ME L4⋅+ 6− EIθ3 EIθ4+( )⋅=

Thus, solving these equations, the total moment, with primary and secondary effects, are:

MB

MC

MD

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Find MB MC, MD, ( )
16134

14882

16134

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN m⋅⋅=:=
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Secondary moment from prestress

Prestress forces at service and eccentrities at corresponding positions after losses:

PsupportA 35890kN:= eA 0mm:= MprimaryA PsupportA eA⋅ 0 kN m⋅⋅=:=

Pspan1 36875kN:= e1 410− mm:= Mprimaryspan1 Pspan1 e1⋅ 15119− kN m⋅⋅=:=

PsupportB 37441kN:= eB 283.6mm:= MprimaryB PsupportB eB⋅ 10618 kN m⋅⋅=:=

Pspan2 35482kN:= e2 420− mm:= Mprimaryspan2 Pspan2 e2⋅ 14902− kN m⋅⋅=:=

PsupportC 34795kN:= eC 283.6mm:= MprimaryC PsupportC eC⋅ 9868 kN m⋅⋅=:=

Hence the secondary moments become:

MsecondaryA 0kN m⋅:=

MsecondaryB MB MprimaryB− 5515 kN m⋅⋅=:=

Msecondaryspan1
13875
37000

MsecondaryB⋅ 2068 kN m⋅⋅=:=

MsecondaryC MC MprimaryC− 5015 kN m⋅⋅=:=

Msecondaryspan2 MsecondaryB
MsecondaryC MsecondaryB−

2
+ 5265 kN m⋅⋅=:=

Total bending from prestress:

MpA MsecondaryA MprimaryA+ 0 kN m⋅⋅=:=

Mp1 Msecondaryspan1 Mprimaryspan1+ 13050− kN m⋅⋅=:=

MpB MsecondaryB MprimaryB+ 16134 kN m⋅⋅=:=

Mp2 Msecondaryspan2 Mprimaryspan2+ 9637− kN m⋅⋅=:=

MpC MsecondaryC MprimaryC+ 14882 kN m⋅⋅=:=
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Calculations of ultimate moment capacity

Ap1 4200mm2
:= Ep 195000MPa:=

Ap 8 Ap1⋅:= Ec 36000MPa:=

Igsupport 1.5648 1012
⋅ mm4

:= Agsupport 3770000mm2
:=

Igspan 1.3462 1012
⋅ mm4

:= Agspan 3230000mm2
:=

Bending from self-weight and traffic loads in ULS:

MsupportA1 0kN m⋅:=

Mspan11 30314kN m⋅:=

MsupportB1 40838− kN m⋅:=

Mspan21 31954kN m⋅:=

MsupportC1 43737− kN m⋅:=

Bending in ULS with prestress:

MA.ULS MsupportA1 MA+ 0 kN m⋅⋅=:=

M1.ULS Mspan11 Msecondaryspan1+ Mprimaryspan1+ 17264 kN m⋅⋅=:=

MB.ULS MsupportB1 MsecondaryB+ MprimaryB+ 24704− kN m⋅⋅=:=

M2.ULS Mspan21 Msecondaryspan2+ Mprimaryspan2+ 22317 kN m⋅⋅=:=

MC.ULS MsupportC1 MsecondaryC+ MprimaryC+ 28855− kN m⋅⋅=:=
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Effective depth, d: Width of the girder:

d1 1163.3mm:= bspan 1100mm:=

dB 1523.5mm:= bsupport 1400mm:=

Allowable yield strength of the steel (figure 3.10 in EC2):
d2 1173.3mm:=

fpk 1860MPa:= fp0.1k 1640MPa:=

dC 1523.5mm:=
γp 1.15:=

fck 45MPa:= fpd
fp0.1k

γp
1426 MPa⋅=:=

fpd
Ep

0.007313=

γc 1.5:=
εud 0.02:= Strain limit recommended by EC2.

α 1:=
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Ultimate moment capacity at span 1:
Ultimate compressive strain in concrete:

εult 0.0035:=

Concrete strain due to prestress at the level of the tendon:

εce.1
1
Ec

Pspan1
Agspan

Mp1 e1⋅

Igspan
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 0.000428=:=

Total ultimate strain in concrete at the level of the tendons:

εct.1
εult− d1 x1−( )⋅

x1
=

Tendon strain:

εpu.1
Pspan1−

Ap Ep⋅
εct.1+ εce.1−=

Concrete compressive force:

Fc.1 0.8 x1⋅ bspan⋅
α fck⋅

γc
⋅=

Total force in tendon:

Fp.1 Ap Ep εpu.1⋅( )⋅=

Equilibrium of forces:

Fp.1 Fc.1+ 0=

Which leads to:

x1 1mm:=

Given

Ap Ep
Pspan1−

Ap Ep⋅

εult− d1 x1−( )⋅

x1
+ εce.1−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 0.8 bspan⋅ x1⋅
α fck⋅

γc
⋅+ 0=

x1 Find x1( ) 1.371 m=:=

Check if steel stress is ok:

εct.1
εult− d1 x1−( )⋅

x1
0.000531=:=

εpu.1
Pspan1−

Ap Ep⋅
εct.1+ εce.1− 0.005525−=:= Less than fpd/Ep=0.007313
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Ultimate moment capacity:

z1 d1 0.4 x1⋅−( ) 0.615 m⋅=:=

Fc1 0.8 bspan⋅ x1⋅
α fck⋅

γc
⋅ 36199 kN⋅=:=

Mult1 Fc1 z1⋅ 22256 kN m⋅⋅=:=
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Ultimate moment capacity at support B:
Ultimate compressive strain in concrete:

εult 0.0035=

Concrete strain due to prestress at the level of the tendon:

εce.B
1
Ec

PsupportB
Agsupport

MpB eB⋅

Igsupport
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 0.000357=:=

Total ultimate strain in concrete at the level of the tendons:

εct.B
εult− dB xB−( )⋅

xB
=

Tendon strain:

εpu.B
PsupportB−

Ap Ep⋅
εct.B+ εce.B−=

Concrete compressive force:

Fc.B 0.8 xB⋅ bsupport⋅
α fck⋅

γc
⋅=

Total force in tendon:

Fp.B Ap Ep εpu.B⋅( )⋅=

Equilibrium of forces:

Fp.B Fc.B+ 0=

Which leads to:

xB 1mm:=

Given

Ap Ep
PsupportB−

Ap Ep⋅

εult− dB xB−( )⋅

xB
+ εce.B−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 0.8 bsupport⋅ xB⋅
α fck⋅

γc
⋅+ 0=

xB Find xB( ) 1.301 m=:=

Check if steel stress is ok:

εct.B
εult− dB xB−( )⋅

xB
0.000599−=:=

εpu.B
PsupportB−

Ap Ep⋅
εct.B+ εce.B− 0.006671−=:= Less than fpd/Ep=0.007313
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Ultimate moment capacity:

zB dB 0.4 xB⋅−( ) 1.003 m⋅=:=

FcB 0.8 bsupport⋅ xB⋅
α fck⋅

γc
⋅ 43707 kN⋅=:=

MultB FcB zB⋅ 43846 kN m⋅⋅=:=
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Ultimate moment capacity at span 2:
Ultimate compressive strain in concrete:

εult 0.0035=

Concrete strain due to prestress at the level of the tendon:

εce.2
1
Ec

Pspan2
Agspan

Mp2 e2⋅

Igspan
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 0.000389=:=

Total ultimate strain in concrete at the level of the tendons:

εct.2
εult− d2 x2−( )⋅

x2
=

Tendon strain:

εpu.2
Pspan2−

Ap Ep⋅
εct.2+ εce.2−=

Concrete compressive force:

Fc.2 0.8 x2⋅ bspan⋅
α fck⋅

γc
⋅=

Total force in tendon:

Fp.2 Ap Ep εpu.2⋅( )⋅=

Equilibrium of forces:

Fp.2 Fc.2+ 0=

Which leads to:

x2 1mm:=

Given

Ap Ep
Pspan2−

Ap Ep⋅

εult− d2 x2−( )⋅

x2
+ εce.2−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 0.8 bspan⋅ x2⋅
α fck⋅

γc
⋅+ 0=

x2 Find x2( ) 1.335 m=:=

Check if steel stress is ok:

εct.2
εult− d2 x2−( )⋅

x2
0.000424=:=

εpu.2
Pspan2−

Ap Ep⋅
εct.2+ εce.2− 0.00538−=:= Less than fpd/Ep=0.007313
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Ultimate moment capacity:

z2 d2 0.4 x2⋅−( ) 0.639 m⋅=:=

Fc2 0.8 bspan⋅ x2⋅
α fck⋅

γc
⋅ 35248 kN⋅=:=

Mult2 Fc2 z2⋅ 22532 kN m⋅⋅=:=
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Ultimate moment capacity at support C:
Ultimate compressive strain in concrete:

εult 0.0035=

Concrete strain due to prestress at the level of the tendon:

εce.C
1
Ec

PsupportC
Agsupport

MpC eC⋅

Igsupport
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ =:=

Total ultimate strain in concrete at the level of the tendons:

εct.C
εult− dC xC−( )⋅

xC
=

Tendon strain:

εpu.C
PsupportC−

Ap Ep⋅
εct.C+ εce.C−=

Concrete compressive force:

Fc.C 0.8 xC⋅ bsupport⋅
α fck⋅

γc
⋅=

Total force in tendon:

Fp.C Ap Ep εpu.C⋅( )⋅=

Equilibrium of forces:

Fp.C Fc.C+ 0=

Which leads to:

xC 1mm:=

Given

Ap Ep
PsupportC−

Ap Ep⋅

εult− dC xC−( )⋅

xC
+ εce.C−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 0.8 bsupport⋅ xC⋅
α fck⋅

γc
⋅+ 0=

xC Find xC( ) 1.25 m=:=

Check if steel stress is ok:

εct.C
εult− dC xC−( )⋅

xC
0.000767−=:=

εpu.C
PsupportC−

Ap Ep⋅
εct.C+ εce.C− 0.006409−=:= Less than fpd/Ep=0.007313
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Ultimate moment capacity:

zC dC 0.4 xC⋅−( ) 1.024 m⋅=:=

FcC 0.8 bsupport⋅ xC⋅
α fck⋅

γc
⋅ 41990 kN⋅=:=

MultC FcC zC⋅ 42982 kN m⋅⋅=:=

Appendix B

93


	Thesis-120510.pdf
	Appendix A - final
	Appendix A - front page
	Appendix A.pdf

	Appendix B - final
	Appendix B - front page
	Appendix B1 - influence lines
	bilagab.pdf
	section.pdf
	calculations
	magnel1
	magnel2
	magnel3
	Mathcad





