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Abstract  
At Tetra Pak the liquid packages are constantly developed and refined to fill the customer’s 
needs. A powerful tool is simulation, to evaluate the design of a new package early in the 
development process.  

To determine the performance of beverage packages at Tetra Pak different tests are made in 
different ways to make secure that they meet the requirements. The pouring performance of a 
package is a critical parameter, which needs to be considered when developing a new 
package. In this master’s thesis the pouring case will be considered. The goal is to evaluate 
the possibilities to perform FSI-, Fluid Structure Interaction, simulations of the dynamic 
pouring case and develop a simulation strategy for these kinds of simulations. In future Tetra 
Pak wants to be able to simulate “real” packages to better understand the pouring behaviour. 
This model can then be used to better understand dynamics, of pouring and make predicting 
about future packages for various products in a virtual pouring rig.  

The FSI-simulations has been performed in the computer software ANSYS Inc. 14.0.0 
WorkBench, since this version of ANSYS has the capability of performing strongly coupled 
FSI- simulation, due to the boundary source coefficient that has been developed. The 
development of the pouring methodology has been performed on a small conceptual package 
with a small opening. This work is a continuation of the proof of concept developed by 
Tobias Berg from ANSYS in Gothenburg. The thesis includes test of the time step, the 
gulping dynamics, the boundary source coefficient, VOF scheme, Young’s modulus, density, 
effect of the surface tension and a scale up of volume.  

Table 1 shows a summary of all the tests that have been made for frequency and the 
amplitude that were given for the tests, from the deformation in Z-direction. The Young’s 
modulus is a factor of x*108 Pa. 

Table 1. Summary of the tests made for frequency and amplitude 
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Chapter 1 
Introduction 

Introduction  

Background 
AB Tetra Pak is a Swedish company, founded in 1951 by Dr. Ruben Rausing in Lund, 
Sweden. The name Tetra derives from the tetrahedron, which was one of the first milk 
containers, now known as Tetra Classic. Tetra Pak is one of the leading companies on the 
liquid carton based packaging industry and Tetra Pak manufacture both filling machines and 
package materials. To maintain the position as a market leader, constant work is put in 
development of new packages - and further develop already existing packages. This is done 
in many stages and one of them is physical testing. These tests requires a lot of time and 
personnel, at great expense for the company. Because of this, Tetra Pak wants to simulate as 
many processes as possible virtually, to lower the needs of costly physical testing. In all 
filling machines in Tetra Pak there is an interaction between package material, filling 
machine and product. Due to this, simulations in FSI has become much more of interest. 
These kinds of simulations have from a numerical point of view so far been difficult, since 
available software has not been ready for the task. As software has matured with newer 
technology, a strongly coupled simulation of FSI is a possibility. In the future, Tetra Pak 
wants to be able to simulate “real” packages to better understand the pouring behaviour. This 
model can then be used to better understand the dynamics of pouring and make predicting 
about future packages for various products in a virtual pouring rig.  

Figure 1 shows some of the packages that Tetra Pak has developed. Figure 2 shows the model 
Tetra Brik Aseptic 1000. 
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Figure 1. Different Tetra Pak packages [13] 

 

 

Figure 2. Tetra Brik 1000 ml [13] 

Previous attempts to simulate pouring have assumed fixed package material. This is a 
simplification. However, when compared to experimental data, which was made in Modena, 
it turned out that the real case had much higher amplitude and lower frequency of the 
deformation of the package. This was due to that the package could deform inwards, although 
the package was fixed. This led to the decision of running FSI for the pouring case. Two 
projects have been carried out in this subject, FSI. One in Abaqus coupled with STAR-
CCM+ and one with ANSYS 14.0.0 WorkBench. The explicit coupling in ANSYS was not 
robust enough with regards on numerical stability, which made the model impossible to run. 
This master thesis is motivated by taking one large step towards a virtual model system and 
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get a better understanding in the different physical phenomenon that can cause problems in 
numerical instabilities. The goal is to come up with a simulation strategy for these kinds of 
simulations. 

Figures 3 and 4 below are illustrations of how the upcoming results of this thesis will look 
like. 

 

Figure 3. Illustration over the simulation after 2 seconds of a plane 

 

 

Figure 4. Simulation after 2 seconds of a surface 
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In this master thesis we have chosen to focus on some parameters, which are more or less 
critical. The choice of parameters has been done to investigate their impact on numerical 
stability, since this was unknown. The parameters in this thesis and expected result (before 
initiating the simulation work) are listed below.  

• Boundary source coefficient, investigate the influence on numerical stability of it and 
if it’s necessary to use at all. Unclear of the impact on the system. 

• Young’s modulus, change in the module ought to change the behaviour of the fluid, in 
case of amplitude and frequency of the deformation. Higher Young’s modulus should 
give higher frequency and lower amplitude, due to stiffer material. 

• Schemes for the VOF fluid interface, implicit/explicit-VOF-
 reasonable computation time with FSI has to be achieved otherwise Tetra Pak 
cannot use the model in further development.  

• Density of the package material - Unclear of the impact on the system. But due to 
higher density, which gives higher mass, this ought to lower the amplitude and higher 
the frequency. 

• Surface tension- investigate the impact of it on the system. This is assumed not should 
not give a big difference in§ pouring performance. 

For the pouring case, the gulping phenomenon is of interest for the development and 
improvement of the package. The gulping is something that appears because of the pressure 
inside and outside the package and of the fact that more than one phase is involved. The 
gravitation creates under-pressure, which gives a deformation on the walls. This will make 
the package walls to deform. When the under-pressure gets too big, air is taken in and a gulp 
is given. When studying, the package deformation we can get a better understanding of the 
gulping by looking at the amplitude and the frequency. The amplitude is a measure of how 
much it bulges in and out of the package. Frequency is a measure of how much the system 
gulps. 

Objective  
The objective in this master’s thesis is to suggest an improved simulation strategy for FSI for 
pouring from packages. This is done by gaining knowledge in FSI for the pouring case and 
by study numerical instabilities of the FSI simulations. This will enable Tetra Pak to better 
predict pouring performance even before the first prototype. In the future Tetra Pak wants to 
be able to simulate “real” packages to better understand the models behaviour shown in 
experiments. This model can then be used to better understand the dynamics of pouring and 
make predicting about future packages for various products in a virtual pouring rig. If the 
simulation results and experimental result doesn’t match one needs to reinvestigate the 
simulation model and ask if the model is correct or possibly lack some important physics in 
the model.  

To be able to carry out this thesis and achieve the objective, a made model by Tobias Berg 
from ANSYS has been used, which is a basic model of a TBA-like package and is scaled to 
0.13 litres and of the material steel but with a Young’s modulus of 400 MPa. Steel as the 
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material was selected because of that it’s an isotropic material, which is suitable for a basic 
model.  

Method 
To achieve the objective, the software ANSYS Inc 14.0.0 is used for the simulation. The 
methodology of the work is divided into eight different test cases. Test 1 evaluates the 
boundary source coefficient. Test 2 is done to compare explicit vs. implicit VOF-schemes. 
Furthermore, Test 3 was made to validate the time step. Test 4 is done to evaluate Young’s 
modulus. A density comparison was made in test 5. In Test 6 a scale up was made to get a 
package of one litre. In Test 7, the surface tension is in count and set to 0.072 between water 
and air and in Test 8 a module analysis was made.  

 

Thesis structure 
In chapter two a discussion of the theory is provided where the reader can get more 
knowledge on Fluid mechanics, CFD, turbulence, structure mechanics, computational 
structural mechanics, FSI, package properties, surface tension, boundary source coefficient, 
FFT and Modal analysis. Chapter 3 describes the discretization methods and numerical 
analysis of what has been used for this thesis. Chapter 4 contains the FSI implementation and 
results from this with discussion parts. Finally, chapter 5 involves concluding remarks such 
as a summary and future work. 
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Chapter 2 
Theory  

Fluid mechanics 
Fluid mechanics is the study of fluids (liquids and gases) and the forces acting on them. Fluid 
mechanics are often divided into fluid statics (fluids at rest), fluid kinematics (fluids in 
motion) and fluid dynamics (effects or forces on fluid motion). Fluid mechanics is a division 
of continuum mechanics, which means that the model which is studied is treated as a 
continuous mass, rather than as discrete particles. Fluid mechanics can be very complex 
especially when going into mathematical analysis. In those cases the best way to solve the 
system is by numerical methods with the use of computers. Computation fluid dynamics, 
CFD, is a discipline which solves fluid mechanics problem numerically. [1] 

To study fluids mechanics, the most common approach is to use the continuum mechanics. 
The governing equations of fluid dynamics represent the fundaments in CFD. They are 
mathematical statements of the conservation laws of physics which involve mass, momentum 
and energy. The equations that will be expressed below are not fully derived and it’s up to the 
reader’s interest to look that up (which are found in most fluids dynamics and CFD books) 
[2] 

The scalar transport equation below expresses a general transport equation: 

𝜕𝜌𝜙
𝜕𝑡

+ ∇𝜌𝑢𝑖𝜙 = ∇(Γ∇𝜌𝜙) +  𝑆      (2.1) 

where 𝜙 is the specific quantity, 𝑢𝑖 the velocity vector, Γ the diffusion coefficient, 𝜌 the 
density and 𝑆 the source term. The commonalities between equations are shown from this 
equation. The different terms are referred to as storage, convection, diffusion and generation. 
The conservative equation of mass and momentum of a fluid flow can on differential form be 
expresses as:  

𝜕𝜌
𝜕𝑡

+ 𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0          (2.2) 

𝜕𝜌𝑢𝑖
𝜕𝑡

+ 𝜕𝜌𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= 𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝜙𝑖        (2.3) 

The mass conservation can for incompressible flows (no change in density over time): 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0            (2.4) 

where 𝑢𝑖 is the velocity, 𝜌 the density,  𝜙𝑖 the body force per unit volume and 𝜏𝑖𝑗 is the stress 
tensor. 

By assuming a Newtonian fluid, stress versus strain rate curve is linear and passes through 
the origin with constant proportionality known as viscosity, the stress tensor is then given by: 
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𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 �𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖
� +  𝜆 𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗    (2.5) 

where 𝑝 is the pressure, 𝜇 the dynamic viscosity and  𝛿𝑖𝑗 the Kronecker delta function.  

Now assuming incompressibility to a Newtonian fluid then the momentum equation leads to 
the Navier-Stokes equations shown below: 

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= − 1
𝑝
𝜕𝜌
𝜕𝑥𝑖

+ 𝑣 𝜕
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜙𝑖     (2.6) 

where 𝑣 is the kinematic viscosity. 

The energy equation is derived in the same manner where the net time rate change of energy 
equals the net rate of heat added and net work done resulting in following equation. 

𝜕𝜌𝐸
𝜕𝑡

+ 𝜕𝜌𝑢𝑖𝐸
𝜕𝑥𝑗

= 𝜌𝜕𝑞
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

�𝑘𝜕𝑇𝑖
𝜕𝑥𝑖

�+ 𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑖

− 𝜕𝑝𝑢𝑖
𝜕𝑥𝑖

+ 𝜌𝑢𝑖    (2.7)  

In fluid dynamics the Reynolds number, Re, is a dimensionless number that provides a 
measure of the ratio of inertial forces to viscous forces and thus quantifying the relative 
importance of these two types of forces for given flow. 

Reynolds number 𝑅𝑒 = 𝑈𝐿
𝑣

= 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠

 

where 𝑣 is the kinematic viscosity.   ´ 

CFD 
Computational fluid dynamics, CFD, which is derived from various disciplines in fluid 
mechanics and heat transfer, has become an important area, especially in process industry, 
chemical, and medical technology. The application of computational simulations for new 
product development and evaluation of existing equipment, resulting in system optimization 
and increased efficiency which in turn leads to lower costs and decrease for the 
redevelopment, has made CFD an important tool for industry and therefore a branch of fluid 
mechanics and computer world. The fluid mechanics is essentially the study of fluids either 
in motion or at rest. CFD is specifically designed for fluids in motion and how the fluid flow 
behaviour affects processes, there of the "fluid dynamics" in the terminology. The physical 
properties of fluid motion are usually described by basic mathematical equations, often in 
partial differential equations, and are commonly called "governing equations" in CFD. To 
solve these mathematical equations they are converted to computer programs or software 
packages. The C in CFD is the study of the fluid flow through numerical simulations, which 
involve the use of computer programs used in digital computers to obtain numerical 
solutions. 

Tetra Pak has an interest in CFD because of the fact that in the future, they want to be able to 
simulate “real” packages to better understand the models behaviour according to experiments. 
This model can then be used to better understand the dynamics of pouring and make 
predictions about future packages for various products in a virtual pouring rig. If the 
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simulation results and experimental result doesn’t match one needs to reinvestigate the 
simulation model and ask if the model is correct or possibly lack some important physics in 
the model.  

The derived equations that were represented in the part of Fluid Mechanics for momentum all 
includes pressure and velocity field, although there is no explicit equation for pressure, 
looking at continuity and momentum one finds four equations and four variables. For 
incompressible flows, the pressure-velocity coupling algorithms are used to derive equations 
for the pressure from momentum and continuity equation. One of the most common 
algorithms is the so called SIMPLE algorithm, although there are other more improved once 
such as SIMPLEC and PISO. Depending on the flows behaviour one algorithm is faster for 
that case.  

A CDF analysis can be summarized with some steps which include; problem identification, 
pre-processing and solver execution and post-procession. [2] 

Turbulence   
For high velocities, and there by high Reynolds number, the flow undergoes transition to 
turbulence. This makes the flow more complex and unstable. In the study of turbulent flow 
the ultimate goal is to have a convenient and quantitative model that can be used to calculate 
the amounts of interest and practical relevance. To reflect on the characteristics of the 
turbulent flow from the very beginning pays off when choosing right turbulence model, this 
is due to the difficulties that arise with the turbulence. There is always a difficulty to simulate 
turbulence at high Reynolds number, this is because it requires large computer capacity but 
also the assumptions one make when creating the turbulence model, which allows the errors 
in the result becoming large in some circumstances.  

Needless to say, accuracy is something to strive for of each model. In the simulation, the 
accuracy of the model is determined by comparing the modelled results with the experimental 
measurements. The numerical solution of the model contains inevitably numerical errors than 
can be from several sources, but it is usually from spatial truncation errors. There is 
no "best" model, but rather a series of models that can be applied to different cases 
of turbulent flow.  

For the simulation where turbulence arises, a choice of turbulence model is made. By 
averaging the governing equations will lead to an unclosed system. Therefor turbulence 
models have to be used to be able to solve the system and close it. The most widely used 
types of turbulence model are the so-called two-equation models, such as k-ε model and k- ω 
model. These models are based on averaging of the governing equations and Boussinesqs 
hypothesis. [3] 

The governing equations for the problem are described below: 

Conservation of mass: 

𝜕𝑢𝑖�
𝜕𝑥𝑖

= 0 
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Conservation of momentum:  

𝜕𝑢𝑖�
𝜕𝑡 + 𝑢𝑗�

𝜕𝑢𝑖�
𝜕𝑥𝑗

= −
1
𝜌�

𝜕𝑝
𝜕𝑥𝑖

�+ 𝑣�
𝜕2𝑢𝑖
𝜕𝑥𝑗2

�−
𝜕𝑢𝑖́  𝑢𝑗́�������

𝜕𝑥𝑗
 

In this master thesis a Large Eddy Simulation, LES, was chosen for the turbulence model.  

Large-eddy simulation 
In Large-eddy simulation, LES, one focus on the large eddies that appear in the model, 
whereas the effects of the smaller scales are modelled. Due to the fact that in LES the 
unsteady motions of the large-scales are represented explicitly once expected that the LES is 
more accurate and reliable then Reynolds-stress models for flows in which large-scale 
turbulence is significant.  

The dynamics of the larger-scale motions, which are not universal and affected by the flow 
geometry, are computed explicit in LES. Simple model represents the smaller scales, which 
have up to some level a universal character.  

There are four conceptual steps according to Stephen B. Pope [3] in LES, which are 
presented below: 

“ 

- A filtering operation is defined to decompose the velocity U(x,t) into the sum of a 
filtered (or resolved) component 𝑈�(𝒙, 𝑡) and a residual (or subgrid-scale, SGS) 
component u’(x, t). The filtered velocity field 𝑈�(𝒙, 𝑡) -which is three-dimensional and 
time-dependent- represents the motion of the large eddies. 

- The equations for the evolution of the filtered velocity field are derived from the 
Navier-Stokes equations. These equations are of the standard form, with the 
momentum equation containing the residual-stress tensor (or SGS stress tensor) that 
arises from the residual motions.  

- Closure is obtained by modelling the residual-stress tensor, most simply by an eddy-
viscosity model. 

- The model filtered equations are solved numerically for 𝑈�(𝒙, 𝑡), which provides an 
approximation to the large-scale motions in one realization of the turbulent flow.  
“[3]  

 

Structural mechanics 
Structural mechanics refers to the physics of solids that are composed of slender elements 
such as beams, plates and shells. To study the behaviour of structural mechanics, continuum 
mechanics are used. One of the most fundamental relations within solid mechanics is the 
principle of virtual work. From this expression most of the engineering relations can be 
derived. It states that external forces or work is equal to internal, due to internal stresses. [4] 
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Figure 5 shows an illustration of how a particle is moved in the domain, which is explained 
further on.  

 

Figure 5. From Krenk page 118 [4] 

The flow 𝜑(𝑃) of the particle is the description of how the particle P move from the mining 
field all the way to the final accident. Evidently this could be described by a displacement u 
of the particle of the location in the mining field. To fulfil this a choice of reference 
configuration has to be set. The requirements are that for this configuration one knows the 
shape, and all, initial, stresses and strains as one usually likes to know how these evolve with 
time and deformation. Usually the time is set to zero at the reference configuration t=0 and 
each point is identified by its material coordinates 𝐱𝟎 = (𝑥0,𝑦0, 𝑧0) and for the currant 
configuration 𝐱 = (𝑥,𝑦 , 𝑧) of the current position, at a fixed time t, are functions of the 
material coordinates 𝐱𝟎, e.g. 

𝐱(𝐱𝟎, 𝑡) = 𝜑(𝐱𝟎, 𝑡) = 𝐱𝟎 +  𝐮(𝐱𝟎, 𝑡)       (2.8) 

where 𝐮(𝐱𝟎, 𝑡) is the displacement vector and is given by 𝐮 = 𝐱 − 𝐱𝟎 

By considering the distance between two particles for a fixed configuration, i.e. fixed time t; 
the particle P and a particle in the neighbourhood of P. The distance to a point close to P is 
denoted𝑑𝐱𝟎, whereas the distance to the same point in the deformation configuration is 
denoted 𝑑𝐱. Since, 𝐱 = 𝐱(𝐱𝟎, 𝑡) it follows that 

𝑑𝐱 = 𝐅 𝑑𝐱𝟎          (2.9) 

Where F is known as the deformation tensor and defined by 

𝐅 = 𝛁𝟎𝐱          (2.10) 

In order to preserve continuum properties the determinant of the tensor, so called Jacobi, has 
to fulfill: 

𝐽 = 𝑑𝑒𝑡𝑭 ≠ 0          (2.11) 

Moreover, from (2.8) and (2.9) one finds 

𝑑𝐱 = (𝐈 + 𝛁𝟎𝐮)𝑑𝐱𝟎and 𝐅 = 𝐈 + 𝛁𝟎𝐮       (2.12) 
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For most analysis the stress tensor S is used and is defined by 

𝐒 = 1
2

(𝐂 − 𝐈)          (2.13) 

where the Cauchy-Green’s deformation tensor is defined as  

𝐂 = 𝐅𝐓𝐅          (2.14) 

Giving the expression for the stress tensor as: 

𝐒 = 1
2

(𝛁𝟎𝐮 + (𝛁𝟎𝐮)𝐓 + (𝛁𝟎𝐮)𝐓𝛁𝟎𝐮)       (2.15) 

One parameter that is of interest in this master thesis is Young’s modulus which is defined as: 

𝐸 = 𝜎
𝜖

=
𝑁
𝐴

𝑙−𝑙0
𝑙0

              (2.16) 

where N is the force on the surface area A, l  is the length after deformation and l0 is the 
length from time zero.  

Computational Structural Mechanics CSM 
The FEM-method is by far the most used discretization method for solving CSM methods. 
The steps can be summarized as; introduce the FEM approximation of the quantity of 
interest, e.g. displacement and weight function. Use a shape function as integrate over the 
entire domain. 

The governing system of equation used in FEM, as described in the FEM chapter later on, is: 

𝑀𝑢̈(𝑡) + 𝐷𝑢̇(𝑡) + 𝐹𝑖𝑛𝑡𝑢(𝑡) = 𝐹𝑒𝑥𝑡𝑢(𝑡)        (2.17) 

where M is the mass matrix, D the damping matrix,  𝐹𝑖𝑛𝑡 the internal force and 𝐹𝑒𝑥𝑡 the 
external load on the structure.  

For most systems the linear relationship is not valid, e.g. Hooke’s law; F=-ku, where k is the 
stiffness and u the displacement. Solution methods for non-linear transient problem are case 
dependent due to the fact that there exists a variation of linearization and time integration 
methods. One of the most used methods for solving non-linear system is the Newton-
Rahpson method, and is used in Ansys Mechanical for this master thesis. [4] 

Newton-Raphson method 
The Newton-Raphson method is used to solve problems, which are load controlled -  
where the external forces are increased stepwise, with the step length ∆𝑓𝑛, see figure 6. When 
a new loading step has been introduced, the task is - by iterative methods - to find the 
displacement that corresponds to the new load of the equilibrium curve. The 
deviation between the external load and the force corresponding to the position of the 
equilibrium curve is the so called residual, r. From the current position of the equilibrium 
curve one take, in the one-dimensional case of figure 6, a step in a direction given by the 
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curve tangent at that point and have the same height as the residual of the point. Since the 
curve is not linear, we obtains a new residual and, therefore, a new iteration step is 
made. These iterations are continued until the residual reaches a selected tolerance, usually in 
the size of  10−6. When the residual is sufficiently small, a new load step is taken and 
subsequently performed iterations to reach equilibrium. The load step is taken until 
the total external load is applied. [4] 

 
Figure 6. Illustration of Newton-Raphson method.  
(Picture from  Krenk, page 11) [4] 

 

FSI, Fluid Structure Interaction 
Fluid Structure Interaction, FSI, is the study between fluids and structures and is an aspect 
common in most natural phenomena and is a branch of multi-physics. It is the interaction of 
some movable or deformable structure with an internal or surrounding fluid flow.  Fluid–
structure interactions can be stable or oscillatory. In oscillatory interactions, the strain 
induced in the solid structure causes it to move such that the source of strain is reduced, and 
the structure returns to its former state only for the process to repeat.  

O.C. Zienkiewicz and R. Taylor [5] state the full definition of FSI as: 

“Coupled system and formulations are those applicable to multiple domain and depend 
variables which usually describe different physical phenomena and in which neither domain 
can be eliminated at the different equation level” 

There are two different approaches of FSI, one is the  monolithic or simultaneous approach, 
which refers to that the equations governing the flow and the displacements of the structure 
are solved simultaneously, with a single solver. The other one is the partitioned or segregated 
approach, which can be divided into implicit coupling or explicit coupling. In this approach 
the equations governing the flow and the displacement of the structure are solved separately, 
with two distinct solvers. 

Implicit time-marching schemes 
For some FSI systems, the explicit algorithm might not work. This makes it obvious to switch 
to implicit coupling algorithms. By combining the Euler scheme for the fluid with the first 
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order backward difference scheme for the structure, IE-BDF scheme, we obtain the time-
discrete problem as: [6] 

 

𝜌𝑓
𝑢𝑛+1−𝑢𝑛

𝛿𝑡
+ ∇𝑝𝑛+1 = 0  

𝑑𝑖𝑣 𝑢𝑛+1 = 0  

𝑝𝑛+1 = 𝑝̅(𝑡𝑛+1)  

𝑢𝑛+1 ∗ 𝑛 = 0  

 

𝑢𝑛+1 ∗ 𝑛 = 𝜂𝑛+1−𝜂𝑛

𝛿𝑡
          (2.19) 

𝜌𝑠ℎ𝑠
𝜂𝑛+1−2𝜂𝑛+𝜂𝑛−1

𝛿𝑡2
+ 𝑎𝜂𝑛+1 = 𝑝𝑛+1       (2.20) 

This problem corresponds to the following discrete added-mass problem for the structure 

 (𝜌𝑠ℎ𝑠 + 𝜌𝑓𝑀𝐴) 𝜂
𝑛+1−2𝜂𝑛+𝜂𝑛−1

𝛿𝑡2
+ 𝑎𝜂𝑛+1 = 𝑝𝑒𝑥𝑡𝑛+1       (2.21) 

where 𝜂 is the wall displacement, 𝛿𝑡  the time step, 𝑡  time, 𝑢 fluid displacement, 𝑢 fluid 
pressure, 𝜌𝑓 density for the fluid, 𝜌𝑠 density for the structure  and the operator 𝑀𝐴:𝐻−1/2 →
𝐻1/2 is defined as: 

𝑀𝐴𝑤 = 𝑅𝑤             (2.22) 

and is a continuous operator, where 𝑤 are given functions , and 𝑤 ∈  𝐻−1/2 denotes 𝑅𝑤. 

For complex, and often realistic, situations the problem might be non linear in the fluid 
and/or in the structure equations and cause possibly large displacements of the structure. In 
order to solve these kinds of systems in each time step it is convenient to use an iterative 
methods, which allow to decuple the fluid from the structure step and, ultimately, to use 
already available computer codes.  

One common used scheme to solve these kind of complex systems is the Dirichlet/Neumann 
subiterations, D-N. By D-N one referrers to that on each iteration one solve the fluid 
equations with respect to primitive variables (u, p) subject to Dirichlet boundary conditions, 
see equation 2.23 below, at the interface (imposed displacements or velocities) and the 
structure equations subjected to Neuman boundary conditions (imposed loads), see equation 
2.24 below. [6] 

Dirichlet boundary condition prescribes the value of a variable at the boundary [2] 

𝜙(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (2.23) 

(2.18) 
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Neumann boundary condition prescribes the gradient normal to the boundary of a variable [2] 

𝜕𝜙(𝑥)
𝜕𝑛

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡           (2.24) 

Dirichlet/Neumann subiterations 
At each time step, using the following algothm to solve (2.18) to (2.21) : 
Given an initial guess 𝜼𝟎𝒏+𝟏 and solv for 𝒌 = 𝟏,𝟐, … 

Fluid step: find (𝒖𝒌,𝒑𝒌) s.t.  
 

  𝜌𝑓
𝑢𝑘−𝑢𝑛

𝛿𝑡
+ ∇𝑝𝑘 = 0  

𝑑𝑖𝑣 𝑢𝑘 = 0  

𝑝𝑘 = 𝑝̅(𝑡𝑛+1)  

𝑢𝑘 ∗ 𝑛 = 0  

𝑢𝑘 ∗ 𝑛 = 𝜂𝑘−1−𝜂𝑛

𝛿𝑡
  

1. Structure step: find 𝜂𝑘�  s.t. 

𝜌𝑠ℎ𝑠
𝜂𝑘�   −2𝜂𝑛+𝜂𝑛−1

𝛿𝑡2
+ 𝑎𝜂𝑘�   = 𝑝𝑘    

 
2. Relaxation step: 

𝜂𝑘 = 𝜔𝜂𝑘� + (1 − 𝜔)𝜂𝑘−1  
 

3. Convergence test: 
• if ‖𝜂𝑘 − 𝜂𝑘−1‖ < 𝑡𝑜𝑙 then set 𝜂𝑛+1 = 𝜂𝑘, 𝑢𝑛+1 = 𝑢𝑘 and 𝑝𝑛+1 = 𝑝𝑘 
• else set 𝑘 = 𝑘 + 1 and go to step 1. 

where 𝜂𝑘� =  𝜂𝑘
𝜔
− 1−𝜔

𝜔
𝜂𝑘−1  
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Package background 
Tetra Pak packaging material is made of different layers, including carton, polymer and 
aluminium. This makes the modelling and simulation from a structural mechanical point of 
view hard, due to the fact that both plastic and paper are nonlinear material and paper is 
anisotropic material.  

By assuming that the package is not stretched above the yielding limit, it is working in the 
range of elastic plastic, a simple equilibrium balance can be done to get the correct Young’s 
modulus for the system in different directions, which is seen below.  

 

 

 

 

Equilibrium for the force balance gives: 

𝜎𝐴 = 𝜎1𝐴1 + 𝜎2𝐴2                         𝐸𝜀𝐴 = 𝐸1𝜀1𝐴1 + 𝐸2𝜀2𝐴2                 

𝐸ℎ = 𝐸1ℎ1 + 𝐸2ℎ2                       

𝐸 = 𝐸1ℎ1+𝐸2ℎ2  
ℎ

  or as 𝐸 = ∑𝐸𝑖ℎ𝑖
∑ℎ𝑖

 depending on who many layers the system involves in. 

where hi is the thickness of each layer,  𝜎 is the shear stress, 𝐴𝑖 is the area for each layer, 𝐸𝑖 
is Young’s modulus for each layer and 𝜀 is the strain.  

The papers behaviour is anisotropic, the property of being directionally dependent.  In the 
anisotropic continuum model the elastic behaviour is assumed to be different in the machine 
direction, MD, cross direction, CD and in z-axial direction, ZD. Therefore, the linear elastic 
behaviour is represented by 9 different elastic constants: 
𝐸1,𝐸2,𝐸3,𝐺12,𝐺13,𝐺23 and 𝑣12, 𝑣13, 𝑣23. Where E is Young’s modulus, G is the shear 
module and v is poisons ratio. The used yield criteria accounts for different yields stresses in 
different directions through Hill’s criteria. Hill’s yield criterion is defined as: [7] 

𝑓 = �𝐹(𝝈22 − 𝝈33)2 + 𝐺(𝝈33 − 𝝈11)2 + 𝐻(𝝈11 − 𝝈22)2 + 2𝐿𝝈232 + 2𝑀𝝈312 + 2𝑁𝝈122          
(2.25) 

where 

𝐹 = 𝝈𝑀𝐷
2

2
� 1

(𝝈22
𝑠 )2 + 1

�𝝈33
𝑠 �2

− 1
(𝝈11

𝑠 )2� = 1
2
� 1
𝑅222

+ 1
𝑅332

− 1
𝑅112
�       (2.26) 

𝜎1𝐴1 

 𝜎2𝐴2 

 

𝜎𝐴 
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𝐺 = 𝝈𝑀𝐷
2

2
� 1

�𝝈33
𝑠 �2

+ 1
(𝝈11

𝑠 )2 −
1

(𝝈22
𝑠 )2� = 1

2
� 1
𝑅332

+ 1
𝑅112

− 1
𝑅222
�        (2.28) 

𝐻 = 𝝈𝑀𝐷
2

2
� 1

(𝝈11
𝑠 )2 + 1

(𝝈22
𝑠 )2 −

1

�𝝈33
𝑠 �2

� = 1
2
� 1
𝑅112

+ 1
𝑅222

− 1
𝑅332
�       (2.29) 

 

𝐿 = 3
2
�𝝈𝑀𝐷
𝝈23
𝑠 �

2
= 3

2𝑅232
      (2.30) 

𝑀 = 3
2
�𝝈𝑀𝐷
𝝈13
𝑠 �

2
= 3

2𝑅132
      (2.31) 

𝑁 = 3
2
�𝝈𝑀𝐷
𝝈12
𝑠 �

2
= 3

2𝑅122
      (2.32) 

 

Surface tension  

When discussing surface tension and surface energy we consider only liquids that resist an 
external force, and do not support residual stresses, e.g, Newtonian fluids. The dimension of 
surface tension is force per unit length, and for surface energy it is energy per unit area. The 
last one is mostly applied for solids and not just liquids. For solids the surface to be stretched 
mostly needs high stresses from the surface tension, which can result in residual stresses as 
well as in elastic and plastic deformations.  [8] 

To take into account the energy required to form the interface between the phases, we need to 
extend the definition of work. The thermodynamics of interfaces was discussed by Gibbs 
(1931) in terms of conceptual dividing surface between the phases. This leads to that the 
principle of work can be written as: 

−𝑑𝑊 = −𝑃𝑑𝑉 + ∑ 𝜇𝑖𝑑𝑛𝑖 + 𝜎𝑑𝐴𝑘
𝑖=1         (2.33) 

where 𝜎 is the surface tension (or surface energy per unit area) and A is the surface area of 
the interface. 

Thus,  

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜎𝑑𝐴 + ∑ 𝜇𝑖𝑑𝑛𝑖𝑘
𝑖=1         (2.34) 

and  

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜎𝑑𝐴 + ∑ 𝜇𝑖𝑑𝑛𝑖𝑘
𝑖=1        (2.35) 

Therefore, the surface energy is the change in the Gibbs free energy per unit area, i.e., 

𝜎 = 𝜕𝐺
𝜕𝐴

|𝑇,𝑃,𝑛𝑖             (2.36) 
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By stating that for equilibrium under conditions of constant temperature, and pressure one 
gets: 

𝑑𝐺|𝑇,𝑃 = 𝜎𝑑𝐴+∑ 𝜇𝑖𝑑𝑛𝑖𝑘
𝑖=1 ≤ 0        (2.37) 

And if chemical equilibrium is guaranteed, 𝜇𝑖1 = 𝜇𝑖2. 

∴  𝜎𝑑𝐴 ≤ 0 ⇒  𝑑𝐴 ≤ 0          (2.38) 

Thus a system in equilibrium tends to minimize the interface area. 

𝐹𝑜𝑟𝑐𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:   

 

 

 

 

 

 

(𝜌𝑔ℎ + 𝑃𝑢) 𝜋𝐷
2

4
− 𝑃𝑎

𝜋𝐷2

4
− 𝛾𝜋𝐷 = 0       (2.39) 

where 𝛾 is the surface tension, 𝑃𝑢 is the pressure inside the package, 𝑃𝑎 is the atmosphere 
pressure, h is the high and D is the diameter.  

In this work a value of  𝛾 = 0.072 N/m is used, which corresponds to a air- water surface 
tension at 20oC.  

Boundary source coefficient 
The boundary source coefficient, C, is a constant value which is added in the diagonal of the 
pressure equation, or more generally, continuity, to get dominance of the system. The on-
diagonal block of matrix is demonstrated below 

�
𝑎𝑝𝑝 + 𝐶 𝑎𝑝𝑣
𝑎𝑣𝑝 𝑎𝑣𝑣

� �∆𝑝∆𝑉� = �
𝑅𝑝
𝑅𝑣
�         (2.40)  

where p is the coefficient for continuity and v for momentum.  𝑎𝑝𝑣 is one of the velocity 
coefficient in the pressure equation, ∆𝑝 is the pressure update for the current non-linear 
iteration and 𝑅𝑝 is the continuity residual for the current non-linear iteration. The objective is 
that at convergence, ∆𝑝 goes to zero, the effective contribution due to the C coefficient tends 
to zero. This will give the result of that convergence will be stabilized, but the converged 
solution is not changed. [9] 

By adding the coefficient to the diagonal will make the system less stiff.  

𝜌𝑔ℎ 
D 

𝑃𝑢 𝑃𝑎 
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Fast Fourier Transform -FFT  
The Fast Fourier Transform, FFT, is a useful mathematical tool for digital signal processing. 
With a FFT algorithm one can compute the Discrete Fourier Transform (DFT) and its 
inverse. In DFT one decomposes a sequence of values into components of different 
frequencies, which is useful in many fields but can be very slow when computing it directly 
from the definition. By doing an FFT, which simply is a highly optimized implementation of 
the DFT, gives the same results but quicker. This has made the FFT very important in many 
applications, from digital signal processing and solving partial differential equations to 
algorithms for quick multiplication of large integers. Besides the economic advantages of 
FFT, there are certain applications where high-speed processing is essential. Real-time radar-
echo processing is one such example. [17] [18] 

The Fourier transform is defines as: 

𝐺(𝑓) = ∫ 𝑔(𝑥)𝑒−𝑗2𝜋𝑓𝑥𝑑𝑥 ∞
−∞          (2.41) 

𝑔(𝑥) = ∫ 𝐺(𝑓)𝑒𝑗2𝜋𝑓𝑥𝑑𝑓∞
−∞           (2.42) 

 

The Discrete Fourier Transform is defined as: 

𝐺𝑙 = ∑ 𝑔𝑘𝑒−𝑗2𝜋𝑘𝑙/𝑁𝑁−1
𝑘=0           (2.43) 

𝑔𝐾 = 1
𝑁
∑ 𝐺𝑙𝑒−𝑗2𝜋𝑘𝑙/𝑁𝑛−1
𝑙=0           (2.44)  

 

Due to the fact that equation (2.43) and (2.44) are basically equivalent, equation (2.43) can be 
rewritten in a simpler form as: 

𝐺𝑙 = ∑ 𝑔𝑘𝑊𝑘𝑙𝑁−1
𝑘=0  𝑤ℎ𝑒𝑟𝑒 𝑙 = 0, 2, 3, … ,𝑁 − 1        (2.45) 

𝑊 = 𝑒−
𝑗2𝜋
𝑁             (2.46)  

In most programs, such as MatLab or Python, there are functions such as fft( ), which solves 
the problem. In this thesis, Python has been used.  

Modal Analysis  
Modal analysis is a branch in mechanics and is the study of the dynamic properties of 
structures under excitation. By analysing the dynamic response of the structure and the fluid 
when it has been excited by an input, one can get measurements for the modal analysis. [19] 

The analysis of the signals typically relies on Fourier analysis. The resulting transfer function 
will show one or more resonances, whose characteristic mass, frequency and damping can be 
estimated from the measurements. Modal analysis is very useful in NVH -  noise - vibration, 

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Multiplication_algorithm
http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Resonances
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Noise,_vibration,_and_harshness
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and harshness - systems. The results can also be used to correlate with Finite element analysis 
normal mode solutions. 

A systems vibration that is represented of combined bodies that possess both mass and 
elasticity, or has the ability to deform without permanently changing shape, can be divided 
into three main categories: free, forced and self excited vibrations. These types of vibrations 
are of the type Single Degree of Freedom Free Vibration. This means that when studying the 
system one looks at one degree. One example of such a system is shown in figure 7 and the 
equation of motion for such a system is given by the equation below. (for the following 
equations no fully derivation is made, it is up to the reader to look that up self and is available 
in almost every mechanical vibration book). [20] 

𝑚𝑥̈ + 𝑘𝑥 = 0           (2.47) 

 

Figure 7. Single degree of freedom, undamped lumped parameter model (left); free body 
diagram (right).  

For doing a modal analysis the system is converted to a Two Degree of Freedom Forced 
Vibration. One example of such a system is shown in figure 8 and the equation of motion for 
such a system is given by the equation below.  

For the top mass: 

𝑚1𝑥1̈ + (𝑐1 + 𝑐2)𝑥1̇ + (𝑘1 + 𝑘2)𝑥1 − 𝑐2𝑥2̇ − 𝑘2𝑥2      (2.48) 

For the bottom mass: 

𝑚2𝑥2̈ − 𝑐2𝑥1̇ − 𝑘2𝑥1 + 𝑐2𝑥2̇ + 𝑘2𝑥2       (2.49) 

where m is the mass for each body, c is the damping coefficient and k is the spring 
coefficient.  

 

http://en.wikipedia.org/wiki/Noise,_vibration,_and_harshness
http://en.wikipedia.org/wiki/Finite_element_analysis
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Figure 8. Two degree of freedom, damped lumped parameter model (left); free body diagram 
(right) 

By impose external harmonic forces at coordinates 𝑥1 and 𝑥2 , for the system above, and only 
consider the the force 𝑓2𝑒𝑖𝑤𝑡 on 𝑥2 once get the equation of motion in matrix form for the 
linear system as: 
 

�𝑚1 0
0 𝑚2

� �𝑥1̈𝑥2̈
� + �

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

� �𝑥1̇𝑥2̇
� + �𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
� �
𝑥1
𝑥2� = �0

𝑓2
�    (2.50) 

 
By represent the mass and stiffness matrices as [M] and [K], neglect damping for now, and 
assume a harmonic solution of the form 𝑥 = 𝑋𝑒𝑖𝑤𝑡 the expression is given: 

 
([𝑀]𝑠2 + [𝐾]){𝑋}𝑒𝑠𝑡 = {𝐹}         (2.51) 

By assuming solutions of the form 𝑥1,2 = 𝑋1,2𝑒𝑖𝑤𝑡 and substituting in equation (4) we obtain 

(−𝜔2[𝑀] + 𝑖𝜔[𝐶] + [𝐾]){𝑋}𝑒𝑖𝑤𝑡 = {𝐹}𝑒𝑖𝑤𝑡       (2.52) 

To determine the steady state forced vibration response for this system there are two 
methods. The first one is modal analysis and the second one is complex matrix inversion. In 
these thesis the modal analysis will be presented, which requires proportional damping.  

First step of a modal analysis for the system above is to assume existents of proportional 
damping, [𝐶] = 𝛼[𝑀] + 𝛽[𝐾] is true, which means that damping is ignored to find the 
eigensolution. To find the eigenvalues (natural frequencies) and eigenvecotrs (mode shapes) 
once uses equation (2.52). The eigenvalues are determined from the roots of equation (2.53) 
 
|[𝑀]𝑠2 + [𝐾]| = 0         (2.53) 
 
The natural frequencies for the system are computed from equation (2.54) , where j= 1 and 2 , 
the number of degrees of freedom so to speak. The n represents that it’s the natural frequency 
one is working with.   
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 𝑠𝑗2 = −𝜔𝑛𝑗

2           (2.54) 
 
By using the equation of motion one find the 2x1 mode shapes for the two degree of freedom 
system as: 

   𝜓1 = �
𝑋1
𝑋2

(𝑠12)

1
�  𝑎𝑛𝑑 𝜓2 = �

𝑋1
𝑋2

(𝑠22)

1
�         (2.55)   

 
where a normalization of the loaction of the force application, coordinate 𝑥2, has been made.  

Using the mode shapes one assemble the 2x2 modal matrix [P]= [𝜓1  𝜓2]. By using the 
modal matrix to transform into modal coordinates and uncouple the equations of motion  one 
get the diagonal modal mass, damping and stiffnes matrix respectively as: 

�𝑀𝑞� = [𝑃]𝑇[𝑀][𝑃] = �
𝑚𝑞1 0

0 𝑚𝑞2
�  

�𝐶𝑞� = [𝑃]𝑇[𝐶][𝑃] = �
𝑐𝑞1 0
0 𝑐𝑞2

�       (2.56) 

�𝐾𝑞� = [𝑃]𝑇[𝐾][𝑃] = �
𝑘𝑞1 0
0 𝑘𝑞2

�  

Transfromation of the local force vector into modal coordinates must be made and is given 
below 

{𝑅} = �𝑅1𝑅2
� = [𝑃]𝑇{𝐹} = �

𝑋1
𝑋2

(𝑠12) 1
𝑋1
𝑋2

(𝑠22) 1
� �0
𝑓2
� = �𝑝1 1

𝑝2 1� �
0
𝑓2
� = �𝑓2𝑓2

�   (2.57) 

The modal equations for the system are: 

𝑚𝑞1𝑞1̈ + 𝑐𝑞1𝑞1̇ + 𝑘𝑞1𝑞1 = 𝑅1       (2.58) 

𝑚𝑞2𝑞2̈ + 𝑐𝑞2𝑞2̇ + 𝑘𝑞2𝑞2 = 𝑅2       

The corresponding complex frequency response function, FRFs (steady state responses in the 
frequencydomain) are: 

𝑄1
𝑅1

= 1
𝑘𝑞1

� �1−𝑟12�−𝑖�2𝜁𝑞1𝑟1�

�1−𝑟12�
2
+�2𝜁𝑞1𝑟1�

2�  𝑎𝑛𝑑 𝑄2
𝑅2

= 1
𝑘𝑞2

� �1−𝑟22�−𝑖�2𝜁𝑞2𝑟2�

�1−𝑟22�
2
+�2𝜁𝑞2𝑟2�

2�     (2.59) 

where  𝑟1,2 = 𝜔
𝜔𝑛1,2

 and 𝜁𝑞1,2 = 𝑐𝑞1,2

2�𝑘𝑞1,2𝑚𝑞1,2 
 .  

By transforming into local coordinates using {𝑋} = �𝑋1𝑋2
� = [𝑃]{𝑄} = �𝑝1 𝑝2

1 1 � �
𝑄1
𝑄2
� one get : 
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𝑋1 = 𝑝𝑞𝑄1 + 𝑝2𝑄2          (2.60) 
𝑋2 = 𝑄1 + 𝑄2  

Dividing these equations by 𝐹2 gives the cross and direct FRFs for the 𝑓2 force application 
respectively. The cross FRF indicates that the force and measurment coorsinates are nor 
coincident and is given by: 

𝑋1
𝐹2

= 𝑝1𝑄1+𝑝2𝑄2
𝐹2

= 𝑝1
𝑄1
𝐹2

+ 𝑝2
𝑄2
𝐹2

= 𝑝1
𝑄1
𝑅1

+ 𝑝2
𝑄2
𝑅2

        (2.61) 

Remember from equation (10) that 𝑅1 = 𝑅2 = 𝐹2 

From equation(14) one sees that the cross FRF is the sum of the modal FRFs scaled by the 
mode shapes. The direct FRF denotes that the measurment is perfromed at the force 
inputlocation is given below: 

𝑋2
𝐹2

= 𝑄1+𝑄2
𝐹2

= 𝑄1
𝐹2

+ 𝑄2
𝐹2

= 𝑄1
𝑅1

+ 𝑄2
𝑅2

         (2.62)  

One important observation of the direct FRF is gthe result that it’s simply the sum of the 
modal contributions and is improtant for the subsequent analyses. By measuring the 
frequency response function on a physical system one allow extraction of the model 
parameters and visualization of the matural freqiencies and mode shapes.  

 

Beam in bending 
The force for a beam in bending can be seen by equation (2.63) below, where I is the moment 
of inertia is given by equation (2.64) and the area A is given by equation (2.65). 

𝜌𝐴 𝜕2𝑤
𝜕𝑡2

+ 𝐼𝐸 𝜕4𝑤
𝜕𝑥4

= 𝐹          (2.63) 

𝐼 = 𝑏∗ℎ3

12
           (2.64) 

𝐴 = 𝑏 ∗ ℎ           (2.65) 

where E is Young’s modulus, v is passions ratio, h the thickness, A the cross section area, w 
the displacement and 𝜌 is the density.   

 

ANSYS  
ANSYS is a technical simulation program developed in the United States. The 
flow and structural dynamics simulations can be done in ANSYS, and FSI, the fluid-
structure-iteration, where the simulation is set up in ANSYS Workbench using 
the system coupling. [10] [11] 

In this thesis ANSYS 14.0.0 was in used.  
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Chapter 3 
Discretization Methods and Numerical Analysis 

 

Discretization Methods 
The discretization methods are done in CFD to solve the system. There are two stages of 
obtaining the computational solution. The first stage is commonly known as the discretization 
stage, and involves the conversion of partial differential equations, boundary - and initial 
conditions into a system of discrete algebraic equations.  

The process of discretization can be identified through some common methods that are still in 
use today. The two main headings of the methods constitute the most popular discretization 
approaches in CFD. These are the finite difference method, FDM, and finite volume method, 
FVM. In this thesis the FVM has been in use and will be further elaborated in this chapter.  

Nevertheless, it has generally been found that the finite element method requires greater 
computational resources and computer processing power than the equivalent finite volume 
method for fluid dynamics, and therefore its popularity has been rather limited. For structural 
problems the finite element method is by far the best method. [2] 

Finite Element method FEM 
The finite element is a numerical method for solving arbitrary differential equations in a 
approximate manner. The differential equation to solve, is the equation of motion that is 
formulated as the principle of virtual work. It has been used since the 50s for structural 
mechanics (for fluid mechanics during the 60s, but is not a method to prefer for this kind of 
physics). The method consists in to define certain region, which might be one-, two- or three 
dimensional, for the physical problem, which is described by differential equations. The 
region is divided into smaller parts known as finite elements, hence the name finite element 
in the terminology. The solution of the equations is therefore carried out for each element. 
The systems to solve are often very complex and non-linear, but by using small elements 
make the variation of the variable linear or quadratic which is a good approximation.  The 
finite element mesh refers to the collection of all elements in the region. To obtain an 
approximate solution of the behaviour for the entire body we assemble the variations of the 
variables in the elements. Common applications of the FEM are elasticity, diffusion, electric 
currents and heat flow. [12]  

 
The FE-formulation is built on the weak formulation of the equation of motion which is given 
below. It is up to the reader’s interest to look up the derivation for this equation and can be 
found in most structural literature [5] 

∫ 𝜌𝑤𝑖𝑢𝚤̈ 𝑑𝑉 + ∫ 𝐷𝑖𝑗𝑣 𝜎𝑖𝑗𝑑𝑉 = ∫ 𝑤𝑖𝑡𝑖𝑑𝑆 + ∫ 𝑤𝑖𝜌𝑏𝑖𝑑𝑉𝑉𝑆𝑉𝑉     (3.1) 
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where 𝜌 is the mass density, 𝑤𝑖 the weight vector, 𝑢𝚤̈  the acceleration, 𝜎𝑖𝑗 the divergence of 
the Cauchy stress, 𝐷𝑖𝑗𝑣  the deformation gradient, 𝑡𝑖 the traction vector and 𝑏𝑖 is the body force 
per mass. The deformation gradient 𝐷𝑖𝑗𝑣=𝐿𝑖𝑗𝑣  , which is the rate of deformation. This 
equivalency is due to the fact that  𝜎𝑖𝑗 is symmetric. Since no constitutive assumptions have 
been made, this formulation holds for every material.  

 
The displacement for the system is defined bellow as [12] 
 
𝐮 = 𝐍𝐚         (3.2) 
 
where u is the interpolated displacement and described by the shape function N. From this 
equation the acceleration vector is given by two times derivation and is presented as 

 
𝐮̈ = 𝐍𝐚̈          (3.3) 
 
The deformation rate is then computed from the approximations above as 
 
𝐃v = Ba          (3.4) 
 
where the b contains the derivative of the shape function. From the Galerkin method [5] the 
weight function is determined as 
 
w = Nc            (3.5) 
 
Using (3.2)-(3.5) in (3.1) the equation is obtained: 
 
𝑐𝑇(∫ 𝜌NTN𝑉 𝑎̈𝑑𝑉 + ∫ 𝐵𝑇𝜎𝑑𝑉 − ∫ NTt𝑑𝑆 − ∫ 𝜌NT𝐛𝑑𝑉) = 0 𝑉𝑠𝑉     (3.6) 
 
Due to that 𝑐𝑇 is arbitrary the FE-formulation appears as 
 
 
∫ 𝜌NTN𝑉 𝑑𝑉𝑎̈ + ∫ 𝐵𝑇𝜎𝑑𝑉 − ∫ NTt𝑑𝑆 − ∫ 𝜌NT𝐛𝑑𝑉 = 0 𝑉𝑠𝑉     (3.7) 
 
or given by the general FE-formulation 
 
M𝑎̈ = 𝐟ext + 𝐟int          (3.8) 
 
where  
M = ∫ 𝜌NTN𝑉 𝑑𝑉         (3.9) 
 
𝐟ext =  ∫ NTt𝑑𝑆 − ∫ 𝜌NT𝐛𝑑𝑉 𝑉𝑠       (3.10) 
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𝐟int =  ∫ 𝐵𝑇𝜎𝑑𝑉𝑉           (3.11) 
 
  

Finite Volume method FVM 
In most fluid dynamic problems, the CFD uses FVM to solve the system. FVM is a useful 
method for representing and evaluating partial differential equations in the form of algebraic 
equations. As with finite difference method and finite element method, values are counted on 
the discrete point in the geometry. "Finite volume" refers to the small volume surrounding 
each nodal point on the mesh. In FVM the volume integral contains a partial differential 
equation with a source term. This is converted to surface integrals using Gauss theorem. 
These terms are then evaluated in terms of flux on the surface of each finite volume. Since 
the flow that enters into a given volume is identical to that leaving the adjacent volume, these 
methods are conservative, this assumption, however, only at constant density. 
In the FVM, the domain is divided into a number of so-called control volumes, see figure 9. 
FVM can be used on any mesh, that is, structured mesh or unstructured mesh, due to that 
FVM works with control volumes and not with the mesh intersections. For each control 
volume the integral of the equations are applied and in the centre of each control volume a 
node point is applied, where the variables are located. To find the value of the control 
surfaces one uses an interpolation and thus obtained algebraic equations for each control 
volume. Volume Control Integration is different from all other technologies in CFD such that 
the result expresses the exact conservation of relevant properties for each finite cell size. The 
clear correlation between the numerical algorithm and the physical principle of conservation 
makes FVM very attractive and useful. [2], [14] 
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Figure 9. Illustation taken from Tu, Yeoh, Liu [2], page 135 

 

Volume of Fluid VOF 
Volume of Fluid, VOF, is a useful method for simulating a fluid that contains 
various phases. According to Gopala [15] VOF is based on averaging where the use of a 
scalar variable, α, indicates fractional shares of the different phases. α is defined as: 

𝛼 = 1 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑙𝑦 𝑓𝑖𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑃ℎ𝑎𝑠𝑒 1     

𝛼 = 0 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑙𝑦 𝑓𝑖𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑃ℎ𝑎𝑠𝑒  2    

0 < 𝛼 < 1 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒   
 
The scalar α is obtained from equation (3.12) and the flow properties vary in space according 
to the phases volume fraction in Equation (3.13). 

𝜕𝛼
𝜕𝑡

+ 𝛼 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0          (3.12) 

𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼)         (3.13) 

𝜇 = 𝜇1𝛼 + 𝜇2(1 − 𝛼) 



33 
 

The first step to solving any multiphase problem is to determine which of the areas described 
in multiphase flow regimes that best represent the flow. [16]   

The VOF model can model two or more immiscible fluids by solving a single set of 
momentum equations and tracking the volume fraction of each fluid in the entire domain. 
 
The equations for resolving the volume fractions: 
 
The detection of the interface between the phases is achieved by the solution of a transport 
equation to the volume fraction of one phase. For the q:th phase, the equation has the 
following form: 

1
𝜌𝑞
�
𝜕
𝜕𝑡
�𝑎𝑞𝜌𝑞� + ∇�𝑎𝑞𝜌𝑞𝑣̅𝑞� = 𝑆𝑎𝑞 + �(𝑚̇𝑝𝑞

𝑛

𝑝=1

− 𝑚̇𝑞𝑝)� 

 
Where 𝑚̇𝑞𝑝 is the mass transfer from phase q to phase p and 𝑚̇𝑝𝑞 is the mass transfer from 
phase p to phase q. The standard generally source term on the right side is set to zero, but a 
constant can be used for each phase. The equation of the volume fraction is not solved by the 
primary phase. Its phase volume fraction will be calculated based on the following 
conditions: 

�𝑎𝑞 = 1
𝑛

𝑞=1

 

The equation for volume fraction can be resolved either through implicit or explicit time 
discretization. 

 
A single impulse equation is solved in the domain where the resulting velocity field is shared 
between the phases. Impulse equation, as seen below, is dependent on the volume fraction of 
all phases by ρ and μ. 

𝜕
𝜕𝑡

(𝜌𝑣̅) + ∇(𝜌𝑣̅𝑣̅) = −∇𝑝 + ∇[𝜇(∇𝑣̅ + ∇𝑣̅𝑇)] + 𝜌𝑔̅ + 𝐹� 

A limitation of the Share-field approximation is that in cases where large velocity differences 
exist between the phases, the accuracy between the velocities, calculated near the interface, 
are adversely affected. 

 
Note that if the viscosity ratio is greater than 1*103, this can lead to difficulties in converging 
for the system. [17] 
 
The energy equation, which is also common for phases, is seen below: 

𝜕
𝜕𝑡

(𝜌𝐸) + ∇�𝑣̅(𝜌𝐸 + 𝑝)� = ∇�𝑘𝑒𝑓𝑓∇𝑇� + 𝑆ℎ 
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The VOF model treats the energy, E, and the temperature, T, as mass-average characteristics: 

𝐸 =
∑ 𝑎𝑞𝜌𝑞𝐸𝑞𝑛
𝑞=1

∑ 𝑎𝑞𝜌𝑞𝑛
𝑞=1

 

where 𝐸𝑞 for each phase is based on the specific heat of the phase and the 
divided temperature. The properties ρ and 𝑘𝑒𝑓𝑓 (effective thermal conductivity) are shared 
between the phases. The source term, 𝑆ℎ, contains contributions from the radiation, as well as 
other volumetric heat sources. 

As with the velocity field, the accuracy of the temperature near the interface is limited 
in cases where there would be wide temperature differences between phases. Such problem 
also occurs in the case where properties vary by orders of magnitude. [16] 

From figure 10 one can get a better understanding of the VOF for the system and how it’s 
solved. 

 

 

 

 

 

Figure 10. How the VOF is solved in the interface 

 

Numerical Solution 
Throughout the process of discetization methods we obtain a system of linear or nonlinear 
algebraic equations. This equations needs to be solved numerical, by numerical methods. 
There are essentially two families of numerical methods: direct methods and iterative 
methods. [2] 

In general, the linear system of equations can be expressed as follows: 

𝐴𝑥 = 𝑏         (3.14) 

Navier Stokes eq is solved for air  

 

Navier Stokes eq is solved for 
water  

 

The VOF is working in the 
interface between water and air. It 
is in this area that the surface 
tension has its impact on the 
system 
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Direct/Explicit Solution Methods 
By definition, in an explicit approach, each difference equation contains only one unknown 
variable and therefore can be solved explicitly in a simple manner. [2] By explicit time 
marching schemes, we mean that time discretization algorithms of the coupled FSI problem is 
solved only once between the fluid and the structure equations within each time step. They 
can be typically obtained by combining an explicit algorithm for one of the subsystems 
(either fluid or structure) with an implicit one for the other subsystem. [6] 

The Gaussian method and the triangular decomposition are two well-known methods for 
solving these methods.  

Iterative Solution Method 
By definition, an implicit approach is when the unknown variable must be obtained by means 
of a simultaneous solution of the difference equations applied at all grid nodal points at a 
given time level. Implicit methods usually involve the manipulation of large matrices because 
of the need to solve large systems of algebraic equations. 

The Jacobi method, the Gauss-Seidel method and successive over-relaxation method (SOR) 
are well known methods for solving stationary iterative solution methods. [2] 

Consistency, Stability, Convergence and Accuracy 
These four words are defined as: 

Consistency- A discrete approximation is said to be consistent if it approaches the original 
Partial Difference Equation, PDE, as ∆𝑡 and ∆𝑥 goes to zero.  

Stability- A numerical solution method is considered to be stable if it does not magnify the 
errors that appear in the course of the numerical solution process. All errors decay so to 
speak.  

Convergence- if a numerical method can satisfy the two important properties of consistency 
and stability, one generally find that the numerical procedure is convergent.  Property of a 
numerical method to produce a solution which approaches the exact solution as the grid 
spacing is reduced to zero.  

Accuracy- The truncation error is the difference between the discretized equation and the 
exact one, which gives a mean of evaluation in the accuracy of the solution for the partial 
differential equation.  

The order of the truncation error coincides with the order of the solution error if the grid 
spacing are sufficiently small and if the initial and auxiliary boundary conditions are 
sufficiently smooth. It is commonly implied that an improvement in accuracy (from the 
truncation error) of high-order approximations can be achieved for a sufficient fine grid. 
Accuracy is usually problem dependent; an algorithm that is accurate for one model problem 
may not necessarily be as accurate for another more complicated problem. A converged 
solution does not necessarily mean a accurate solution. [2] 
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A study of added- mass effect in the design of partitioned algorithms for fluid-structure 
problems, made by Causin el al [6] show these results for stability in FSI :  

It was observed that for these cases numerical instabilities are found:  

• For a given geometry, as soon as the density of the structure is lower than a certain 
threshold. 

• For a given structure density, as soon as the length of the domain is greater than a 
certain threshold. 

By running the solution with “strongly” coupled methods, i.e. we ensures at each time step an 
exact balance of energy by sub-iterating several times between the fluid and the structure. 
When the subiterations consist of a relaxed fixed-point method, it was observed that an 
increasing amount of relaxation is needed when 

• The density of the structure decreases 
• The length of the domain increases 

The fact that numerical stability depends on the structure density has a clear physical 
interpretation. This is not the same for the dependence on the geometry, which is quite 
amazing; since the main physical phenomena is a wave propagating with a finite velocity, it 
is surprising that the length of the domain modifies the stability of the algorithm.  

The goal is to show that explicit algorithms might be unconditionally unstable in certain 
cases, depending on the relative mass density of the structure and the fluid and on some 
geometric properties of the domain. 

One conclusion that was made, for the explicit scheme, was if equation (3.15) was fulfilled 
the system is unconditionally unstable.  

𝜌𝑠ℎ𝑠
𝜌𝑓𝜇𝑚𝑎𝑥

< 1             (3.15) 

where 𝜌𝑓 is the density for the fluid, 𝜌𝑠 the density for the structure, 𝜇𝑚𝑎𝑥 is the largest 
eigenvalue of the operator 𝑀𝐴 (se the section of FSI for definition of the operator) and ℎ𝑠 is 
the thickness of the structure.  

Thought it appears that even when 𝜌𝑠ℎ𝑠
𝜌𝑓𝜇𝑚𝑎𝑥

> 1 , that is when, for example, the structure is 

much denser than the fluid, instabilities may occur if the structure is characterized by a large 
Young’s modulus. Nevertheless, in such a case, the scheme can be stabilized by suitable 
decreasing the time step.  

The added mass effect, when accelerating a particle one immediately accelerates everything 
around it. This will end up with a system that perceived as heavier. Then equation (3.15) is 
approaching 1 the added mass effects get a higher impact which leads to complications in the 
numerical system due to the extra inertia that has been given in the system.  
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Chapter 4 
Simulation and Results 

FSI-simulation in ANSYS 
With the knowledge gained from previous work that has been done in this topic, FSI on 
pouring case, and with a basic model made by Tobias Berg from ANSYS Inc in Gothenburg, 
an ANSYS model was made and further developed to come as close to the real case as 
possible. The objective with the ANSYS model for FSI was to evaluate the behaviour of the 
pouring case and to see if we could cut down the simulation time as much as possible. To 
evaluate the stability for the system and what affects the different parameters in the numerical 
solution. One important goal was to come up with a strategy for these kinds of simulations.  

The first test was, as mentioned above, the basic case implemented by Tobias Berg where the 
material for the model was steel with a changed Young’s modulus, which was set to 4 ∗ 108 
Pa. The package in this test was smaller, 0.13 litre, than the real one litre TBA package. The 
surface tension was also neglected for this model. To solve the model an explicit schema was 
in use with a time step of 0.0005 s. Six sub iterations in Fluent was set and a boundary source 
coefficient of 0.065 was selected.  

The tests which will be represented below are all further developments off the first model, i.e. 
the basic model presented above, in which some changes has been made to obtain a better 
understanding of FSI for the pouring case and to get as close to the real model as possible, to 
end up with a best practise so to speak.  

All the graphs have been made in the programming software Python, where a programming 
script has been made. This script reads in the values of interest and plots them. The FFT for 
the cases of interest has also in programmed in Python with the help of the built in function 
fft() in Python. 

Modelling  
The shape of the package that is studied in this thesis is simplified, since this is a basic model 
of the TBA-package filled with water. Hence, no seals are considered. The modelling 
procedure is more difficult to solve. Two models have been made for this thesis. This is due 
to the fact that no solution could be obtained when surface tension included, in the first 
model. When surface tension was switched on, it was realized that the deformation becomes 
bigger and a fix cap can no longer be assumed, as it gives rise to negative volumes in the 
deformed mesh when running the simulation. The package material is made of a linear elastic 
material with a Young’s modulus of initially 4*108 Pa and a density of 7500 𝑘𝑔

𝑚3.  

Initially, for both models, the package is fixed in a tilted position, see figure 11. This is done 
due to limited time. We assume that the result will not be much different from if we would 
have a rotation of the whole system, from standing to tilted position (as in figure 11).  
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Figure 11. Figure of the simulation of the package 

 

The following settings have been chosen in ANSYS FLUENT for the fluid part. Finite 
Volume Method is used for the discretization method. The solution methods are: 

Pressure-velocity coupling:  

Scheme-SIMPLE 

Spatial discretization:  

Gradient- last squares cell bases 

Pressure-PRESTO! 

Momentum-bounded central differencing 

Volume fraction- modified HRIC/or compressive (used both for different simulations) 

The boundary conditions for the model are set to: 

The shear condition is set to No slip and the wall condition is set to stationary wall for all of 
the package walls which are: 

Wall_package_bottom, Wall_package_mx, Wall_package_mz, Wall_package_px, 
Wall_package_px, Wall_package_pz, Wall_package_top.  

The modal analysis where done in ANSYS Mechanical by the operator modal. For solving 
this system the same loads as for the FSI problem was applied. The analysis was done with an 
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empty package due to the fact that one wanted to know the effect of the eigen frequencies of 
the package for the gulping.  

Test 1 Impact of the Boundary Source Coefficients   
The first test was to see how the boundary source coefficient, c, did affect the numerical 
stability and result of the simulation. Four values of the coefficients were tested with the 
values 0.07, 0.065, 0.05 and 0.03. An explicit scheme is set with a time step of 0.0005. The 
results of the tests are presented below. 

Figure 12 shows the result of a close-up of the response graph of static pressure as a function 
of iterations in fluent. The red curve represent c set to 0.03, the black one set c to 0.05, yellow 
is set to c 0.065 and the green one is set to c as 0.07. 

 

Figure 12. A close-up of the response graph for static pressure as a function of iterations in fluent 

The result from figure 12 showed that the lowest coefficient as possible gave best 
convergence, and will be used as the reference values throughout the project for the test 
further on. The figures below, figures 13 to 16, show the results for the reference case. Figure 
13 shows that the amplitude of the deformation is 0.15 mm.  
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Figure 13. Deformation in Z-direction as a function of flow time for the reference case.  

 

Figure 14. Close-up of the response graph for static pressure average as a function of iterations in fluent for the reference 
case.  
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Figure 15. Static pressure average as a function of iterations in fluent for the reference case for the reference case.  

  

 

Figure 16. Static pressure average as a function of flow time for the reference case for the reference case 

Figure 17 shows the time history of the wall deformation and the FFT thereof for the 
reference case. The FFT was of interest when changing some of the properties in the model 
further on. The oscillation frequency for this case is 6.4 Hz. 
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Figure 17. The FFT, the picture at the bottom, of the reference case.  

 

Discussion 
Figure 12 gave the result that the lower the value of the coefficient c the better the 
convergence within a time steps in Fluent is given.  

The lowest possible value of the coefficient was 0.03, lower than that and the simulation did 
not converge, due to large errors in the mass conservation. This strengthens the fact that a 
boundary source coefficient, introduced from ANSYS, is necessary.  

Test 2 Explicit versus Implicit- Scheme  
Figure 18 shows the result of static pressure average as a function of time where the red curve 
represents the explicit reference case and the black curve is the implicit case where the time 
step is set to 0.0005 s and the boundary source coefficient to 0.05. Figure 19 shows the 
deformation in Z-direction as a function of time for the same case. As can be seen, the 
amplitude of the motion is  0.15 mm.  

 

Figure 18. Static pressure average as a function of time 
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Figure 1919. Deformation in Z-direction as a function of time 

Figure 20 shows the frequency content of the deformation for the implicit case. The 
frequency is 7.0 Hz. 

 

Figure 200. FFT, the graph below, for the implicit scheme 

Discussion 
Figure 18 shows that the explicit case has some oscillations in the numerical solution, this can 
be due to the fact that the explicit case has higher resolution of the interface. It captures the 
behaviour better than the implicit case because of this. Not very significant differences are 
seen for the explicit and the implicit cases. Figure 18 and figure 19 shows that the difference 
that appears between the implicit and explicit scheme in pressure is recovered in the 
deformation, which is expected.    

Test 3 Implicit – time step validation  
Figure 21 show the result for the deformation in Z-direction as a function of flow time, where 
the red curve is the explicit reference case and the black curve is the implicit case with a time 
step of 0.006 and a coefficient of 0.5. The amplitude is 0.14 mm. Figure 22 illustrates the 
result of static pressure average as a function of time for this case. 
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Figure 21. Deformation in Z-direction as a function of flow time 

 

Figure 22. Static pressure average as a function of flow time 

Figure 23 shows a close-up of the response graph for static average pressure as a function of 
iterations in fluent. Time step is set to 0.004 s with c = 0.08 with a compressive solver for the 
VOF.  



45 
 

 

Figure 213. Close-up of the response graph for static pressure average as a function of iterations in fluent 

 

Figure 24 shows the static pressure for the implicit scheme with a time step of 0.006 s and a 
boundary source coefficient of 0.05.  

 

Figure 28. Close-up of the response graph for static pressure average as a function of iterations in fluent 

Figure 25 show the frequency spectrum, for the deformation, for the implicit case for the time 
step 0.006 and boundary source coefficient set to 0.05. The value of the frequency is 6.6 Hz. 
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Figure 225. FFT, the graph below, for the implicit scheme 

Discussion 
Increasing the time step size, which is a necessary criterion for Tetra Pak to lower the 
simulation time, for a converged solution was only obtained with the implicit scheme. It was 
possible to increase the time step size by a factor 12.  

By looking at the FFT for both cases, implicit and explicit, one realise that the frequency is 
the same for the explicit case and for the implicit case, which strengthen the argument for 
running implicit scheme more. 

The larger the time step the larger boundary source coefficient is needed. It’s a trade of 
between time and accuracy.  

By looking at figures 21 and 22 we see that a twelve times larger time step gives an 
acceptable result with a much faster solution. The difference in the result ought to be that the 
larger time step, results in loss of information in wave propagation due to too large time step 
will introduce implicit spatial filtering. 

By having the time step set to 0.0005 s and run to 0.24 seconds it takes 6 hours. A simulation 
with a time step of 0.006 s run in 2.88 seconds takes 14.4 hours to run. This means that it 
takes 25 hours to run 1 second for the time step 0.0005 but just 5 hours to run 1 second with a 
time step set to 0.006 s. We have got a solution which is 5 times faster.  
Both cases are run with 60 cores. This is representative result for a small package, for a larger 
package computational power will be increased. 

Test 4 Young’s modulus 
Figure 26 show the response graph for deformation in Z-direction as a function of time for 
the implicit scheme with a time step of 0.006 and a coefficient of 0.05. All three cases have 
more or less the same amplitude, which is 0.1 mm. Figure 27 shows the result of static 
pressure average as a function of time for the same case.  In test 5 the Young’s modulus has a 
value of  2 ∗ 108 , in test 6 the value is 4 ∗ 108 and for test 7 the modulus is  8 ∗ 108.  
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Figure 26. Deformation in Z-direction as a function of flow time 

 

Figure 27. Static pressure average as a function of flow time  

Figure 28 show the frequency spectrum, for the deformation, for implicit case with a Young’s 
modulus of 2*108 Pa. The value of the FFT is 6.1 Hz in frequency.  

 

Figure 28. FFT, the picture below, of the implicit scheme with a Young’s modulus of 2*108 Pa 
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Discussion 
The larger the Young’s modulus for the package material, the higher the static pressure is in 
the package, which can also relate to the deformation and shows that the package has smaller 
contraction for higher values.  

If we take a look at figure 26, which shows the deformation, we realize that the amplitudes 
for the three cases are very similar, although the Young’s modulus differs for each one of 
them. This should make the pressure different, such that the one with highest Young’s 
modulus should have the highest pressure. By looking at figure 27 we state that this is 
correct.  

The conclusion of this is that for any chosen Young’s modulus in this interval will not have 
an impact on the gulping frequency or amplitude.   

Test 5 Density validation 
Figure 29 shows the response graph for deformation in Z-direction as a function of the flow 
time for the implicit coupling algorithm with a time step of 0.006 s and a boundary source 
coefficient of 0.065.  The green curve shows the result for a density set to  𝜌 = 7500 𝑘𝑔

𝑚3 and 

the blue graph has the density 𝜌 = 2000 𝑘𝑔
𝑚3. The Young’s modulus is set to 𝐸 = 2 ∗ 108 𝑃𝑎. 

The purple curve have a density set to 𝜌 = 800 𝑘𝑔
𝑚3 and a Young’s modulus of 𝐸 = 2 ∗

108 𝑃𝑎, the coefficient is set to 0.15. All curves have more or less the same amplitude, which 
is 0.1 mm. Figure 30 illustrates the result for static pressure average as a function of flow 
time for the same case. 

 

Figure 29. Deformation in Z-direction as a function of flow time 
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Figure 3023. Static pressure average as a function of flow time 

 

Figure 31 shows the frequency spectrum for the deformation for the blue curve where the 
frequency is 6.3 Hz.  

 

Figure 31. FFT , the picture at the bottom, of the case (changed density) 

One simulation, where the Young’s modulus was set to 4*108 Pa, had a coefficient set to 0.08 
and density of 1000 𝑘𝑔

𝑚3 , was tested but did not converge. The cause was negative volumes in 
the mesh, which is an indication of that the mesh deformation was too large in some region.  

Discussion 
Higher density should give a lower frequency which can be explained by Newton’s second 
law of physics; F = ma. If the density increases, the mass for the system increase. This causes 
the acceleration to decrease for the same force.  

The instability issue can be related to equation (3.15) which stated that for a given geometry, 
as soon as the density of the structure is lower than a certain threshold, causes numerical 
instabilities. Therefor the coefficient has to increase, as seen in the test above.  
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By setting the boundary source coefficient to a much higher value, to 0.15, the simulation 
converged. This is due to the fact that our coefficient is volume cell adapted, which means 
that when the value reaches one, the numerical stability will increase.  

Test 6 Scale up model to one litre 
The following figures in this section show the result for the basic small model with a scaled 
up made in ANSYS Fluent and in ANSYS mechanical to 1.974 times bigger in each 
direction, going from 0.13 litre package to 1 litre package. The surface tension is not applied 
for this model. The package walls are thicker than in the real case as well, and set to 0.987 
mm. A volume adaption was also made for the whole mesh. 

Figure 32 shows the result for deformation as a function of time. The figure below shows the 
result for a modified HRIC solver for the VOF with a time step of 0.006 and a coefficient of 
0.05. The amplitude for this case is 0.5 mm. The frequency of the system is calculated by 
hand to 4 Hz. 

 

Figure 242. Deformation in Z-direction as a function of time  

Figure 33 illustrates the result for static pressure average as a function of time for implicit 
scheme with a time step of 0.006. Test 1 shows the result of the original case, no scale up, 
with a coefficient of 0.05 and modified HRIC solver. Test 2 is a scale up and has the 
modified HRIC solver with a coefficient set to 0.05.  
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Figure 33. Static pressure average as a function of time  

Discussion 
Figures 32 and 33 shows that the result of a scale up is possible to simulate and be able to 
converge, without numerical difficulties. To run this case with surface tension was not 
possible and therefore model 2 was made, which is presented below in test 7.  

Test 7 surface tension on one litre package 
Test 6 did not converge with surface tension and there for a new model was made. This 
model has got more grids than the other one and the cap is not fixed as for the old model. To 
be able to compare the results with Test 6, two models have been tested in this case - one 
with a thicker wall of the package, the same as for Test 6, 0.987 mm. The other one has a 
wall thickness of 0.5 mm. This was made because of the fact when a scale up was made in 
test 6 the walls also got thicker. We want to compare test 7 with test 6, but also come closer 
to the “real” TBA package (which has a wall thickness of 0.5 mm), and there for two models 
where tested. The surface tension is set to 0.072 N/m in ANSYS fluent and the Wall 
Adhesion to 90 degree for x+, y+ and z+. The Young’s modulus is set to 4*108 Pa.  

Thicker wall: 
The response graphs below show the result of an implicit scheme with a compressive scheme 
for the VOF. The green curve has a time step of 0.004 s and a boundary source coefficient of 
0.1. The blue curve has a time step of 0.002 and a coefficient of 0.05. The purple one a time 
step of 0.002 and a coefficient of 0.08. Figure 34 illustrates the deformation in Z-direction as 
a function of time whereas figure 35 shows the deformation in X-direction as a function of 
time. The static pressure average as a function of time is shown in figure 36 and close-up of 
figure 36 is seen in figure 37. The amplitude, for the deformation in Z-direction, for the three 
cases is 0.4 mm. 
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Figure 34. Deformation in Z-direction as a function of time 

 

Figure 255. Deformation in X-direction as a function of time 
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Figure 36. Static pressure average as a function of time 

 

Figure 3726.  Close up of static pressure average as a function of iterations in fluent  

Figure 38 shows the frequency content of the deformation in Z-direction for the thicker wall 
with a time step of 0.004 and a coefficient of 0.1. The frequency is 1.9 Hz. 

 

Figure 3827. FFT, figure at the bottom, of the case with a time step set to 0.004 and a coefficient set to 0.1  
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Discussion  
A scale up to one litre model is possible to run. By looking at figure 37 we see that not all of 
the time steps have converged out fully. The best result of them gave the one with a time step 
of 0.002 and a coefficient of 0.05. By just looking at the other figures this is not shown. A 
test that ought to be made is if better results are obtained by increasing the iterations number 
in Fluent, but we leave that to future work.  

With and without surface tension 
The response graphs below shows the results of an implicit scheme with a time step set to 
0.006 s and a coefficient of 0.1, and a wall thickness set to0.987 mm. The green curve shows 
the result when the surface tension is applied to the system, for Model 2, while the blue one 
shows the result without surface tension, with Model 1. The purple curve shows the result of 
Model 2 without surface tension. The red curve shows the result of Model 2 but with a fix 
cap and without surface tension. Figure 39 shows the result for deformation in Z-direction as 
a function of time. The amplitude for the green curve is 0.25 mm (from result above the blue 
curves amplitude was given to 0.5 mm). The static pressure average as a function of time is 
illustrated in figure 40.  

 

Figure 39. Deformation in Z-direction as a function of time 
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Figure 4028. Static pressure average as a function of time 

 

Figure 41 shows the frequency spectrum of the deformation when the surface tension is 
applied to the system (the green curve). The value of the FFT is 2,4 Hz in frequency.  

 

Figure 41. FFT, picture at the bottom, for the one litre model with surface tension and thicker wall  

Figure 42 show the FFT of the deformation when the surface tension is not applied to the 
system (the purple curve). The value of the FFT is 4.2 Hz in frequency. 

 

 

Figure 42. FFT, picture at the bottom, for the one litre model without surface tension and thicker wall 
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Figures 43 and 44 show the grids for Model 1 and Model 2 in the proximity of the mesh of 
the cap. Figure 51 has 16*6 cells in the cap and figure 52 has 20*9 cells in the cap in the x-y 
plane.  

  

Figure 43. Mesh of the outlet, Model 1 

 

 

Figures 45 and 46 show the grid in Model 1 and Model 2 in the plane normal to the cap. 
Figure 45 has 12 cells in the diameter of cap and figure 46 has 24 cells in the diameter of the 
cap in the x-z plane.  

 

 

 

 

 

 

 

 

 

 

 

Figure 47 shows the volume fraction in the region close to the cap for Model 2 to better 
understand where the surface tension is acting.  

Figure 44. Mesh of the outlet, Model 2 

Figure 45. Mesh of the outlet, model one  Figure 46. Mesh of the outlet, model two 
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Figure 47. Zoom on the cap for model 2 

Discussion 
By comparing the results from figure 39 and 40 for Model 1and Model 2 (with a fix cap) both 
without surface, the blue and the red curve, we see that the different models gave different 
results, which is an effect from the different meshes- which can be seen in figures 43 and 44. 
Model 2 has almost twice as many cells as model 1. This gives the result of that the case is 
mesh dependent.  

Comparing Model 2 with surface tension and Model 2 without surface tension, the green and 
the purple curve, we realize that surface tension lowers the frequency. By looking at figure 47 
and equation (2.39) we get that smaller diameter gives higher impact on surface tension. 

Thinner wall: 
The response graphs, figures 56 to 58, show the result of an implicit schema with a 
compressive scheme for the VOF and a time step set to 0.002 s. The blue curve shows the 
result of the thinner wall with a coefficient of 0.1 and an end time of 6 s. The green curve is 
the result of the thicker wall with a coefficient of 0.05 and an end time of 3.12. Figure 48 
illustrates the result for deformation in X-direction as a function of time while figure 49 
illustrates the result for deformation in Z-direction as a function of time, where the amplitude 
for the thinner wall is 0.7 mm. The result for static pressure average is shown in figure 50. 
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Figure 4829. Deformation in X-direction as a function of time 

 

 

 

Figure 4930. Deformation in Z-direction as a function of time 
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Figure 50. Static pressure average as a function of time 

Figure 51 show the FFT for the deformation in Z-direction for the blue curve. The value of 
the FFT is 0.48 Hz. 

 

 

Figure 51. FFT, picture at the bottom, for the one litre model with surface tension and thicker wall 

Discussion 
The bending stiffness of a 2-dimensional homogeneous isentropic body with a distributed 
load, where the system is in steady stat is given by the equation below. This case can be 
compared with the bending stiffness, however the system for the pouring case is transient and 
a FSI-approach has to be taken into account. This equation is valid for cases with small 
deformation, 𝑠𝑖𝑛𝛼 = 𝛼.   

𝐷 = 𝐸∗ℎ3

12(1−𝑣2)
           (4.1) 

Equation (4.1) tells us that a higher bending stiffness is given for thicker walls.  

Thicker wall- Changed Young’s modulus 
These simulations were made to find out if the behaviour for the small package is similar to 
the larger one, where the result was that for the given interval for Young’s modulus the 
amplitude and the frequency were not affected . Figures 52 and 53 below illustrate the result 
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for model 2, one litre package with thicker wall, density set to 7500 𝑘𝑔
𝑚3 , time step of 0.006 

and a boundary source coefficient of 0.1. The red curve has a Young’s modulus set to 4*108 
Pa and the black curve has the value of 8*108 Pa. Figure 52 shows the deformation in Z-
direction as a function of time while figure 53 illustrates the result for static pressure average 
as a function of time for the same case.  

 

Figure 52. Deformation in Z-direction as a function of time  

 

Figure 5331. Static pressure average as a function of time  

Figure 54 show the FFT for the deformation in Z-direction for the black curve. The value of 
the FFT is 4.4 Hz. 
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Figure 54. FFT, picture at the bottom, for the one litre model without surface tension, Young’s modulus 8*108 Pa and 
thicker wall 

Discussion 
Young’s modulus does not have an impact on the frequency for Model 2 for the given 
interval. The amplitude is little affected by the change in Young’s modulus, where a Young’s 
modulus set to 4*108 Pa gives an amplitude difference of 3*10-4 and a Young’s modulus set 
to 8*108 Pa gives an amplitude difference of 2*10-4.  

Test 8 Module Analysis 
The figures below show the result for the module analysis that was made in ANSYS 
Mechanical, modal. In figure 55 the Young’s modulus is set to 4*108 Pa and had a density of 
7500 𝑘𝑔

𝑚3, whereas in figure 56, for the same Young’s modulus, the density is set to 800 𝑘𝑔
𝑚3. 

Figure 57 illustrates the result for the module analysis for a Young’s modulus set to 2*108 Pa 
and had a density of 800 𝑘𝑔

𝑚3. Please note that no effect of water was considered. 



62 
 

 

Figure 55. Modal analysis for E=4*108 pa and 𝝆 = 𝟕𝟓𝟎𝟎 𝒌𝒈
𝒎𝟑 

 

Figure 32. Modal analysis for E=4*108 pa and 𝝆 = 𝟖𝟎𝟎 𝒌𝒈
𝒎𝟑 
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Figure 57. Modal analysis for E=2*108 pa and 𝝆 = 𝟖𝟎𝟎 𝒌𝒈
𝒎𝟑 

Discussion 
The modal analysis gives the result of that the amplitude and the frequency that is given for 
the FSI problem is not effected of the eigenvalues of an empty package. 

The modal analysis is performed on an empty package, i.e. the results obtained are the in 
vacou eigenfrequencies. This means that the effect of added mass in the eigenfrequencies is 
not accounted for. However, even though the added mass effect would lower the 
eigenfrequencies somewhat they would still be, for the geometries considered, consideranbly 
higher than the frequencies obtained for the gulping. Hence, one may assume that the 
eigenmodes of the package does not influence the gulping frequency.  

The result in the figures 55 to 57 shows that the lower the density for the system the higher 
the eigenfrequencies will be. This can be related for the equation for the beam, where the 
eigenfrequency is given by: 

𝑓𝑛 ∝ �𝐸
𝜌
           (4.2)    
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Chapter 5 
Concluding Remarks 

Conclusions  
In this master thesis we did choose to focus on some parameters, to understand there 
importance. The choice of parameters was made because we wanted to investigate their 
impact on the system, as this was unclear. The parameters that were focused on and their 
results are presented below.  

• Boundary source coefficient, necessary to have in the system to get convergence for 
this highly coupled problem. If the system didn’t converged a higher coefficient is 
necessary to get convergence.  

• Young’s modulus , no impact on the solution for the interval that was chosen, which 
was 2*108 Pa - 8*108 Pa 

• Schemes - An implicit VOF scheme gave the result of a 12 times larger time step with 
the same accuracy. This resulted in that the system could run complete 5 times faster 
(for both systems 60 cores were set where Fluent used 52 and mechanic 8). 

• Density of the package material- no impact on the solution for the interval that was 
chosen. 

• Surface tension- gives a result of lower frequency but the same amplitude for the 
deformation. Figure 47 and equation (2.39) provides a result of smaller diameter gives 
higher impact on surface tension. 
 

During the time the thesis was on going, the effect of the thickness of the walls was 
investigated. This was captured when a scale up of Model 1 was made, which led to that the 
wall was doubled (in thickness). Model 1 could not run complete with surface tension, due to 
negative cells that appeared when running the system, and because of this Model 2 was made, 
which had more cells in the mesh. By comparing model 1 and model 2 with the same settings 
different results were given, which gave the conclusion of mesh dependent systems. 

From equation (2.63) we see that the thickness has a large impact on the system both for the 
steady state and the transient state. While the Young’s modulus has a linear impact on the 
system for the steady state, which in this case is the initial deformation. By looking at the 
results that are given for the system the compartments is quite similar.  

Comparing the thickness of the walls the result gave that a twice a thicker wall gave lower 
amplitude and higher frequency that a thinner wall. This can be compared with a beam in 
bending with an applied force over the whole area, where the bending stiffness of the system 
is proportional to the thickness in cubic whiles just linear to the Young’s modulus.  

Summary of the conclusions can be said by: 
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• Success with FSI in ANSYS for a conceptual pouring application due to the fact 
that the case did run complete  

• With the help of the boundary source coefficient we are able to perform strong 
coupled systems for the pouring application  

• FSI coupling has proven robust through different challenging process, by 
changing density ratios, Young’s modulus, thickness of the wall, package volume 

• There are strong indications that the geometry and design have a large impact in 
the result, while the material properties have less impact on gulping 

• With given parameters such as Young’s modulus and density expected results can 
be made in regarding the gulping of the package.   
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Summary 
Table 2 shows a summary of all the tests that have been made for frequency and the 
amplitude that were given for the tests, from the deformation in Z-direction. The Young’s 
modulus is a factor of x*108 Pa. 

Table 1. Summary of the tests made for frequency and amplitude 

 

Future work 
By having worked with this thesis we realize how much interest Tetra Pak has to retrieve in 
this topic, FSI in pouring application. This also opens doors for further development, jobs and 
further master thesis. This thesis is in the interface between numerical models and the real 
case for the pouring application, and the next step for future work might be: 

• Recreate validation pouring case to validate with experimental data 
• A deeper understanding of the material and egenvalues for the structure 
• Possible to derive analytical expression for pouring  
• Next step is to take the model further on to the real pouring application  
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