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Abstract 
As a first step in the assessment of carbon flux between the terrestrial environment and the 
atmosphere it is important to accurately quantify the carbon stock of forest ecosystems. 
LiDAR technology, in this respect, has proved to be a valuable tool, able to provide accurate 
estimates of aboveground biomass (AGB). The overall goal of this study was to develop a 
simplified method for assessing AGB for individual trees using remote sensing in conifer-
dominated forest in the southwest of Sweden. Vegetation classification of SPOT-5 image has 
been done in order to improve AGB estimates based on biomass dependence on vegetation 
types. Both local maximum algorithm using a constant size evaluation window and inverse 
watershed segmentation methods were used for forest inventory parameter extraction from a 
LiDAR-derived canopy height model. Final estimation of AGB was conducted using 
regression models derived from measured tree parameters in the field. Field measurements 
were performed over 83 plots by recording trees’ species, height and diameter at breast height 
(1.3 m). Results showed AGB to vary from less than 1 kg/m2 in very young forests up to 94 
kg/m2 in mature spruce forests with RMSE of 2 kg/m2 and 4.7 kg/m2, respectively. Linear 
regression models showed that the introduction of the watershed segmentation does not 
improve the results (R2 = 0.79) in comparison to the results derived from local maximum 
algorithm using a constant size evaluation window (R2 = 0.83). Availability of AGB estimates 
allows further studies of carbon stocks as well as monitoring of this forest ecosystem for 
disturbance and change. 

Key words: LiDAR, SPOT-5, remote sensing, aboveground biomass (AGB), vegetation 
classification, digital elevation model (DEM), canopy height model (CHM), tree segmentation 
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Sammanfattning 
Ett första steg i arbetet att uppskatta kolflödet mellan landbaserade ekosystem och atmosfären 
är att så precist som möjligt analysera kvantiteten ovanjordisk biomassa. LiDAR teknologi 
har i detta avseende visat sig vara ett värdefullt verktyg. Det överlöpande målet med denna 
studie är att utveckla en förenklad metod, baserad på fjärranalys, för att uppskatta ovanjordisk 
biomassa för individuella träd över barrträdsdominerad skog i sydvästra Sverige. Eftersom 
mängden biomassa är beroende av vegetationstyp, har en vegetationsklassificering utförts i 
studieområdet. Både en lokal maximeringsalgoritm, som använder ett konstant 
utvärderingsfönster, och en så-kallad invers avrinningsområdessegmentationsmetod användes 
för extraktion av skogsinventerings-parametrar från en LiDAR-data baserad 
trädkronhöjdmodell. Den slutliga uppskattningen av ovanjordisk biomassa gjordes utifrån 
regressionsmodeller framtagna utifrån trädparametrar mätta i fält. Fältmätningarna gjordes för 
83 jordlotter, där trädart, höjd och diameter (vid brösthöjd, 1.3 m) mättes. Resultaten visar att 
ovanjordisk biomassa varierar mellan mindre än 1 kg/m2 för väldigt ung skog up till 94 kg/m2 

för mogen barrskog med ett standardfel (RMSE) på 2 kg/m2 och 4.7 kg/m2, respektive. Linjära 
regressionsmodeller visade att användningen av avrinningsområdessegmentering inte 
förbättrar resultaten (R2 = 0.79) i jämförelse med resultat från en lokal maximeringsalgoritm 
baserad på ett konstant utvärderingsfönster (R2 = 0.83). 

Nyckelord: LiDAR, SPOT-5, fjärranalys, ovanjordisk biomassa, vegetationsklassificering, 
digital höjdmodell , trädkronhöjdmodell, trädsegmentering   
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Popularized summary 

Globally, carbon dioxide (CO2) is of great concern, as it is partly responsible for the 
increasing greenhouse effect, causing global warming. It is hypothesized that conifer-
dominated forest in Västra Götaland County may be a large source of greenhouse gases 
(GHG) including CO2. Forest biomass stores a lot of carbon, which is exchanged in the form 
of CO2 with atmosphere through respiration and photosynthesis in the process known as 
carbon cycle. In order to approve or reject the hypothesis it is important to quantify the fluxes 
of CO2 from this drained, highly fertile coniferous forest. As a first step for achieving this task 
the amount of carbon stored in the forest should be estimated. Therefore, the overall goal of 
this study is to develop a simplified method for assessing aboveground biomass (AGB) for 
individual trees using remote sensing. In this study, AGB represents the sum of stem, bark, 
branch and foliage biomasses. The developed model was based on the use of airborne laser 
scanning and an image from the SPOT-5 satellite. The capability of laser systems to directly 
provide height measurements allowed us to derive the tree height of individual trees, while 
SPOT-5 image allowed us to classify tree types of the studied area. These two inputs were 
used for calculating AGB over the whole area of study and compared against AGB measured 
in the field based on parameters such as trees’ species, height and diameter. The overall 
accuracy of the developed model, when comparing AGB estimates from remote sensing with 
field observations was equal to 80 %, which proved the validity of the methodology applied. 
Availability of AGB estimates allows further monitoring of this forest ecosystem for 
disturbance or change. Furthermore, AGB values can be directly used in further studies of 
carbon stocks in the area. 

Key words: LiDAR, SPOT-5, remote sensing, aboveground biomass (AGB), vegetation 
classification, digital elevation model (DEM), canopy height model (CHM), tree segmentation 
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1. Introduction 

This master thesis was conducted in the frame of the Swedish inter-university research 
cooperation project called Landscape Greenhouse Gas Exchange (LAGGE). One of the main 
goals of the LAGGE project is to quantify the net fluxes of greenhouse gases (GHG) from a 
drained, highly fertile coniferous forest as it is considered to be a large net source of GHG.  
Globally, the GHG of greatest concern is CO2 (IPCC, 2007) and an understanding of the 
carbon cycle may be considered as one of the fundamental steps in addressing issues related 
to global warming. As a preliminary step in assessment of the carbon flux between the 
terrestrial environment and the atmosphere it is important to accurately quantify the carbon 
stock of forest ecosystems. The carbon stock of forests is a basic parameter for understanding 
carbon exchange between the atmosphere and the forest ecosystem and represents an amount 
of carbon contained in a ‘pool’, such as aboveground forest biomass (AGB) (Houghton, 
2005). Therefore, the overall goal of this study was to develop a simplified method for 
assessing AGB for individual trees using remote sensing. It will be investigated how elevation 
information, such as discrete-return LiDAR data from airborne systems used together with 
spectral information from satellite imagery, may allow robust estimates of AGB in conifer-
dominated forest in southwest Sweden.  

The hypotheses addressed in this study were: 

1) Multispectral SPOT-5 data can be used to provide an accurate forest mapping on 
species level. 

2) Discrete-return LIDAR data may be used to estimate AGB through the use of 
allometric relationships to levels that are not significantly different from field 
measured AGB values. 

In relation to the second hypothesis the priority task was to check the feasibility of using a 
relatively low point density LiDAR dataset in conjunction with satellite imagery for 
individual tree level AGB estimation.  

1.1. Background 

Biomass and carbon stock assessment of forest ecosystems gained importance in connection 
with the Climate Convention and the Kyoto Protocol (IPCC, 2007). In this context, biomass 
presents a huge interest, as it determines the magnitude and rate of  autotrophic respiration as 
well as the amount of carbon emitted to the atmosphere when the ecosystem is disturbed 
(Houghton et al, 2009). Therefore, estimation of the biomass stored in forests may be 
considered as a key area of research for understanding the global carbon cycle (Lefsky et al, 
2001). 

The forest carbon cycle involves carbon exchange between the atmosphere, soil and biomass, 
whose carbon stock change should be estimated. However, it is still a challenging task to give 
an accurate estimate of the forest biomass. So far, our understanding of terrestrial biomass 
amounts and distribution has been primarily based on ground measurements of limited areas 
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with many regions remaining unmeasured (Houghton et al, 2009). At the same time, direct 
estimation of AGB via ground surveys is both time-consuming and expensive and generally 
repeated only at ten-year intervals (Houghton, 2005). Therefore, the possibility of biomass 
estimation using remote sensing is considered to be a good alternative or complement to 
conventional ground-based methods (Hese et al, 2005). 

A substantial number of previous studies have shown that different remote sensing techniques 
can be used for AGB estimation. Both passive remote sensing techniques as well as active 
have been applied in order to explore their potential in biomass studies. Estimation of forest 
carbon stock is difficult for optical and radar sensors, though it was successful in some cases 
on a forest stand level. For example, Mette et al (2004) used polarimetric synthetic aperture 
radar interferometry for forest biomass extraction through forest height-biomass allometry. 
According to their study, both the height extraction and the allometric biomass conversion 
performed well over dense forest stands. However, it is widely recognized that LiDAR 
represents the future of biomass estimation on a single tree level, and, as such, has become 
widely used in vegetation studies (Evans et al, 2009; Jochem et al, 2011). 

LiDAR (Light Detection and Ranging) is an active remote sensing system which transmits 
pulses of laser light toward the ground by means of a scanning mirror. The time between sent 
and reflected pulses is measured and converted into a distance measurement, which is used for 
derivation of a 3D elevation surface (Popescu, 2007; Lewis and Hancock, 2007). A pulse 
generated by a LiDAR system is in the near infrared or visible part of the electromagnetic 
spectrum (900 – 1064 nm) and can penetrate the vegetation canopy during data acquisition 
(Evans et al, 2009).  

The capability of LiDAR systems to provide height measurements allows us to derive the 
vertical extent of forest stands. Using this capability, various methodologies have been 
developed for extracting biomass using both discrete-return and full waveform LiDAR 
systems (Lefsky et al, 2001; Bortolot and Wynne, 2005; Popescu, 2007; Edson and Wing, 
2011). Discrete-return LiDAR systems have a small footprint (typically 20 – 80 cm in 
diameter) and are able to record one to several returns through the forest canopy depending on 
the laser energy intensity returned to the sensor. In contrast, waveform sensors have larger 
footprints (10 – 100 m) and digitize the complete waveform of each returned pulse in fixed 
distance intervals (Evans et al, 2009; Lewis and Hancock, 2007). 

One of the main considerations when assessing AGB using discrete-return LiDAR data is the 
point density of measurements. Generally, AGB estimation at individual tree level requires 
high point densities of more than 5 points/m2 and is based on regression models using 
LiDAR-derived parameters, such as tree height, and estimates of AGB measured in the field 
(Jochem et al, 2011). In this way, Popescu (2007) developed a method for biomass extraction 
from LiDAR-derived tree height and crown diameter in combination with regression models 
at individual tree level. For individual tree extraction he used a window of variable size over 
the canopy height model (CHM) in order to locate local maximum. Variable window size 
implies that for low trees smaller window was used than for tall trees. In his study the model 
performance for AGB estimation at individual tree level was good with R2 of 0.93, thus 
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proving the usefulness of airborne LiDAR data for forest inventory parameters extraction 
(Popescu, 2007). 

A comparison of commonly-used algorithms for individual tree parameter derivation and 
subsequent estimation of biomass was undertaken by Edson and Wing (2011) for mixed and 
spruce forest sites. Three software algorithms to delineate and measure the forest including 
FUSION, TreeVaW (Popescu, 2007), and inverse watershed segmentation (Andersen, 2009) 
were tested. By using the output form mentioned above (tree delineation software algorithms), 
the biomass was estimated and compared to biomass estimates from the field. The results 
demonstrated that biomass predicted by FUSION and TreeVaW was underestimated by 25 % 
and 31 % respectively, while watershed segmentation produced overestimation of about 10 %. 
It was also noted that using the FUSION algorithm, which analyzes LiDAR point clouds, was 
favorable compared to TreeVaW and watershed segmentation, which both rely only on a 
canopy height model (CHM) for extraction of forest inventory parameters. The main 
drawback of methods using CHM is the inability to use points from trees existing under 
primary canopy, which are eliminated in rendering the CHM surface (Edson and Wing, 2011). 

Although, there were many successful attempts to estimate AGB using LiDAR data, it is still 
considered to be a challenging task in terms of model complexity and data availability. 
Furthermore, the research in the area of LiDAR data integration with vegetation classes 
derived from satellite imagery for estimation of AGB is not well documented. Therefore, this 
study, among other things, is going to address the possibility of integrating LiDAR-derived 
tree heights with vegetation types derived from satellite imagery. According to Chen et al 
(2012) the integration of optical imagery and LiDAR data can result in substantial 
improvement of biomass estimates compared to the use of LiDAR data alone. 

1.2. Study area 

The Skogaryd study area (58°22′10″ N, 12°08′47″ E) is located in southwest Sweden (Västra 
Götaland county) and occupies an area of approximately 30.5 km2 (Figure 1). The topography 
of this region is characterized by an average elevation above sea level of 80 m, with a 
minimum of 50 m and a maximum of 110 m and predominately gentle slopes. The main soil 
types are highly organic postglacial clays and silts.  
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Figure 1. Map of Sweden with location of the study area being zoomed to RGB orthophoto image on the left. 

Source: @ Lantmäteriet, Dnr: i2012/927. 

The forest in the Skogaryd area is highly fertile and has drained soils covered by stands of 
spruce, pine and birch in various developmental stages and is owned by private citizens. 
Figure 2 illustrates typical types of forest encountered during fieldwork. In most cases forest 
stands were dominated by coniferous species with rare occurrence of deciduous or mixed 
species. Variations in mineral composition of the soil and management practices across the 
Skogaryd area resulted in different densities and stages of forest maturity. The typical 
representatives of flora beneath the canopy layer consisted of species such as juniper and 
blueberry. The ground layer was often covered by feather moss with a certain amount of 
fallen trees on it. 
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Figure 2. Typical types of forest encountered during fieldwork in the Skogaryd: a) Plot #6: deciduous mature 
forest b) Plot #69: pine mature forest c) Plot #47: spruce mature forest, d) Plot #11: spruce young forest (photos 
taken during fieldwork). Spatial location of plots may be viewed in Appendix 2. 

Overall, the area is characterized by a patchy landscape with dominant coniferous forests. 
However, lakes and bogs as well as agricultural fields are scattered throughout the region and 
such a fragmented landscape has historically been formed due to farming and rural 
development. 

  

 a  b 

 a  d  c 
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2. Materials and Methods 

To manage, visualize, process and analyze airborne LiDAR data and optical imagery, two 
commercial software packages were used: ESRI ArcGIS 10.1 and Merrick & Company 
MARS Explorer 7.0. In addition, SAGA GIS software was used for individual tree 
segmentation using inverse watershed algorithm and MathWorks MATLAB 2012b for 
statistical analysis. The methodology used for AGB estimation was mainly based on 
integration of approaches from previous studies. 

2.1. Measured field data 

The fieldwork in the Skogaryd was performed for the purpose of collecting ground truth data 
and was divided into two phases. The first phase ran from June 26th to July 6th, 2012. The 
second phase was performed from August 21st to August 27th, 2012. Trees within a total of 83 
square field plots of approximately 15 m by 15 m were measured for diameter at breast height 
(DBH). The tree height measurements were performed only in 18 of the surveyed plots, 
mainly due to time constraints and difficulties associated with treetop detection in highly 
dense forest stands. These tree parameters represent the most important element of this 
project, as they were required for AGB estimation. The delimitation of plots in the field was 
done using ordinary measuring tape and was often complicated in highly dense forest. The 
coordinates of the plot centers were measured using a ‘Magellan Explorist 510’ GPS unit with 
preinstalled topographic maps of the area studied and maximum accuracy of 4 m. The 
coordinates were collected with GPS in geographic coordinates (lon/lat) on the WGS 1984 
ellipsoid and later transferred in GIS format and reprojected in the SWEREF99 coordinate 
system. The location of the 83 plots measured in the field is presented in Appendix 2 for 
assessment of the sampling scheme. Figure 3 shows the equipment used during fieldwork for 
individual tree parameter measurements. The tree diameter measurements were performed 
with calipers, while tree heights were measured using a highly accurate hypsometer (Vertex 
IV) with a height resolution of 0.1 m. The Vertex IV is an instrument designed for precision 
height and distance measurement using ultrasonic signals (Haglöf, 2012). In order to measure 
the tree height, the accompanying transponder was fastened to the tree at breast height 
(approx. 1.3 m). Then the user moved away from the tree to a distance approximately equal to 
the tree height and recorded up to three height readings for the treetop. Figure 4 demonstrates 
this procedure.  
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Figure 3. Fieldwork equipment: calipers, GPS  Figure 4. Tree height measurements procedure. A – tree  
unit, hypsometer, transponder, measuring tape,  top, B – ground surface, C – user’s position, D – 
measuring stick and field log (photo taken  transponder's position (Haglöf, 2012). 
during fieldwork). 

During both phases of fieldwork an additional 230 ground control points were collected for 
validation of the vegetation classification. 

2.2. Remotely sensed data 

All remotely sensed data available for this project were provided by the Swedish Land Survey 
(@ Lantmäteriet, Dnr: i2012/927) as part of a collaboration with Swedish universities 
including Lund University. Remotely sensed imagery consisted of orthorectified SPOT-5 
images with 10 m spatial resolution and four spectral bands (green, red, near-infrared and 
mid-infrared) acquired on July 29th, 2011 and aerial orthophoto with 1 m spatial resolution 
from 2009. These types of data were primarily used for vegetation classification.  In addition, 
a discrete return airborne LiDAR dataset, obtained on July 3rd, 2011 using the Leica ALS50-II 
airborne LiDAR system was used as the basis for canopy height determination.  

LiDAR data covered the whole area of interest (approx. 30.5 km2) and consisted of point 
clouds with multiple returns (up to 5). The point density varied from less than 0.0625 to 1 
points/m2 with an average density of 0.8 points/m2 and can be viewed in Appendix 3. The 
varying point density of the LiDAR data is mainly a consequence of overlapping flight strips 
(Jochem et al, 2011). The scanner had a footprint size of around 0.5 m and a scanning angle 
of ± 20 º. The mean flight altitude was 2000 m. The x, y, z data was georeferenced to the 
SWEREF99 coordinate system and the RH2000 height system. Points were preclassified by 
Swedish Land Survey into three classes: unclassified, ground and water using automated 
routines in TerraScan software (Lantmäteriet, 2012). 

2.3. Vegetation classification 

Initially, a preliminary vegetation classification was performed as a basis for the fieldwork 
planning. Afterwards, the data collected in the field served as an input to final classification. 
In both instances similar methodologies were applied. Classification of vegetation species was 
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exclusively based on the orthorectified SPOT-5 image, which was initially georeferenced by 
Swedish Land Survey. Georeferencing took into account the Earth’s curvature, height 
differences, parallax errors and others factors that displace the image data (Lantmäteriet, 
2012). A precision of less than 0.1 pixels was achieved. 

2.3.1. Feature isolation 

In order for any other cover type not to interfere with the classifier of forest pixels, it was 
important to delineate accurate and up-to-date boundaries of forest stands. The extraction of 
forest stands for preliminary classification was based on a relatively coarse and outdated land 
cover map, which was developed by the Swedish Land Survey in 2007 due to the 
unavailability of LiDAR data at the beginning of this project. After obtaining access to a 
LiDAR dataset of the study area it was possible to derive an accurate vegetation mask, which 
has potentially improved final classification. This was achieved by vectorization of a digital 
terrain model (DTM) (see chapter 2.4.2) and its subsequent refining by excluding all forest 
vegetated and unvegetated areas with a total area less than 1000 m2. The resulting vector 
mask was smoothed using the PAEK (Polynomial Approximation with Exponential Kernel) 
method and used for clipping out orthorectified SPOT-5 image. 

2.3.2. Classification scheme 

An important issue in remote sensing vegetation mapping is to select a suitable classification 
scheme (Muise, 2011). Considering that remote sensing can only detect optical signatures of 
different species, the following classes were developed: pine, spruce and deciduous forest. As 
coniferous forest was of special interest for this study, both spruce and pine classes were 
additionally divided into different age classes. A threshold of 15 cm in diameter at breast 
height was used for determination of tree maturity. Such a division will allow for example the 
monitoring of young forest stands only, which is important for growth projections (Edson and 
Wing, 2011). 

2.3.3. Supervised Maximum Likelihood Classification   

By analyzing data collected in the field and spectral information (orthophoto) available from 
the study site, training areas for final vegetation classification were selected. Forest sites 
surveyed in the field with species homogeneity of more than 80 % were considered when 
choosing training areas. When working with orthophoto images, it was difficult to identify 
subtle differences between vegetation types. Applying a stretch renderer such as histogram-
equalization made it easier to pick out areas of different vegetation species. The 
recommended number of pixels per training area is 10 to 100 times the number of bands in the 
imagery. Generally such a number of pixels will supply the classifier with sufficient 
information to classify each pixel in the image (Muise, 2011). Thus, training areas of around 
200 pixels per class were created for further classification analysis. A final scheme with 
training areas statistics used for classification of the SPOT-5 image in this study is shown in 
Table 1. 
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Table 1. Classification scheme and training areas statistics. 
Species: DBH threshold (cm) Homogeneity ratio (%) Sample size (pixels) 

Spruce mature ≥ 15 > 80 212 
Spruce young < 15 > 80 216 
Pine mature ≥ 15 > 80 210 
Pine young < 15 > 80 158 
Deciduous 2 - 40 > 80 210 

 
One of the traditional supervised classification algorithms, the Maximum Likelihood 
algorithm, was selected. It calculates the probability of the information class membership for 
each pixel based on the probability density function. Each pixel is assigned to the information 
class with the highest probability (Mehner et al, 2004). The resulting classified image was 
smoothed using the 3 by 3 majority filter in order to get rid of noise in the form of single 
misclassified pixels. 

2.4. LiDAR analysis  

An important challenge when estimating AGB was the ability to accurately extract individual 
trees and their canopy height from the discrete-return airborne LiDAR dataset. This was 
achieved by using a simple algorithm to classify potential canopy returns and their following 
segmentation into individual trees. The effectiveness of the algorithm applied was verified 
using the measured data in the field.  

2.4.1 Point cloud classification 

The raw LiDAR data were provided by the Swedish Land Survey as a point cloud classified 
into three classes: ground, water and unclassified. Three additional classes: high vegetation, 
buildings and reserved were created by applying automated algorithms in MARS Explorer 
software. High vegetation class was defined as all points in the range 2 m to 40 m as 
calculated from triangular irregular network (TIN) ground surface using a ‘height from 
ground’ algorithm. This range of heights was chosen based on the lowest (2 m) and highest 
(35 m) trees measured in the field. All points having a height value of less than 2 m remained 
unclassified and potentially represented points reflected from very young trees, bushes or 
stones. Buildings were classified using a ‘building’ filter, which identifies relatively smooth 
surfaces built from the points in the seeding classifications point set (Merrick & Company, 
2012). The seeding classifications point set contained points strongly identified as canopy. In 
addition, by knowing exact coordinates of all artificial high-rise structures, such as eddy-
covariance towers, it was easy to classify these points manually into the reserved class. This 
was done in order to exclude erroneously classified vegetation points from digital surface 
model (DSM) calculation. An example of the final classification of LiDAR points cloud can 
be found in Figures 5 and 6. 
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Figure 5. 3D subset of classified LiDAR points over the      Figure 6. 2D subset of classified LiDAR points over  
Skogaryd area.  Area is approximately 40 m by 40 m. the Skogaryd area. Profile is 2 m wide. 

It is also important to note that the absence of major power lines over the area of study 
facilitated the classification scheme.   

2.4.2. Digital elevation models extraction 

A digital elevation model (DEM) represents height information without any specifications as 
to the surface and is used as a generic term for digital surface model (DSM) and digital terrain 
model (DTM) (Peckham, 2007). A DTM, which represents the bare ground surface without 
any objects like plants and buildings, was derived by building a geodatabase of terrain from 
all points in the ground class and converting it to a raster format with a cell size of 3 m 
(Appendix 4). A rule of thumb used when deciding on a cell size for DTM was to set it at four 
times the average point spacing (ESRI, 2011). A DSM, which represents the earth's surface 
and includes all objects on it, was built using only the first returns in the high vegetation class. 
Other returns were considered to be not representative of canopy height but rather provided 
information on canopy structure (Edson and Wing, 2011). When creating the DSM, only 
LiDAR points with maximum elevation in 0.5 m by 0.5 m cells were used. This cell size was 
chosen based on average point density to allow an accurate delineation of the canopy surface 
(Popescu, 2007). Gap filling of the resulting DSM was performed using a 3 by 3 mean filter. 
Finally, a canopy height model (CHM) was derived by simple subtraction of the DTM height 
value from the DSM height value in each pixel. The CHM may be described as a 3D surface 
that contains information about vegetation heights above ground surface (Popescu, 2007). A 
3D example of a CHM over a small area of the study is presented in Figure 7, while a 
complete map of the CHM can be viewed in Appendix 5. 
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Figure 7. The subset of canopy height model derived from LiDAR data over the Skogaryd. 

Initially, the LiDAR data was checked for the presence of any inconsistencies or anomalies. 
The overlap, of at least 200 meters, between scanned areas resulted in quite inconstant 
spacing between points with an average point density of 0.8 points/m2 and a range between 
0.1 and 1 points/m2 (Lantmäteriet, 2012). Consequently, lower accuracies are expected when 
extracting digital elevation models (DEM) in areas with relatively low point densities. 

2.4.3. Individual tree segmentation 

It is widely accepted that extraction of individual trees from the CHM may improve the 
estimates of AGB as it allows canopies to be treated as independent entities (Bortolot and 
Wynne, 2005). In this study, an approach for individual tree delineation was applied in the 
form of local maximum algorithm using a constant size evaluation window. The method 
implies the extraction of maximum values from the CHM by using a search window of user-
defined size. This introduces direct underestimation or overestimation of AGB depending on 
the window size used. Window sizes of 2 m by 2 m and 3 m by 3 m were tested in order to 
examine the impact of changing cell sizes on biomass estimation. Both these methods were 
constrained in terms of tree canopy delineation and were not able to detect more than 56 and 
25 trees per plot, respectively. The better approach would be to use local maximum algorithm 
with variable-size window, where window size is directly proportional to the tree canopy 
height. Such an algorithm is implemented in FUSION and TreeVaW software as described in 
Edson and Wing (2011). Unfortunately, this approach was not properly tested due to time and 
resources constraints. 

Another method for individual tree canopy delineation used in this study was an inverse 
watershed segmentation (IWS) algorithm. IWS is one of the methods commonly used for 
extraction of forest inventory parameters at an individual tree level from a LiDAR-derived 
CHM (Edson and Wing, 2011). When applied, the inverted canopy surface raster is 
segmented into the equivalent of individual hydrologic drainage basins by identification of 
local maximum and the nearest minima values (Andersen, 2009). Thus, IWS is potentially 
able to delineate distinct tree entities with height values and raster crown diameter from the 
CHM. In this project, this algorithm was applied using freeware SAGA GIS software. It was 
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assumed that IWS would improve the accuracy of biomass estimations in comparison to a 
local maximum approach with a constant window.   

2.5. Statistical accuracy assessment  

The final step in analyzing and interpreting remote sensing data is statistical accuracy 
assessment, which provides important information about the quality of the maps and the 
usefulness of the model developed (Congalton, 1991). 

2.5.1. Vegetation classification 

Statistical accuracy assessment in the context of vegetation classification is required in order 
to make a more objective evaluation than can be achieved visually. An independent sample of 
ground validation points located across the investigation area with a random spatial 
distribution pattern was used for a statistical accuracy assessment of vegetation classification. 
Initially 230 collected ground truth points were refined by excluding points of the same class 
within 30 m of each other. Additionally, ground truth points classified as mixed and 
ambiguous (e.g. class boundaries) were removed. This left 196 points which were used in the 
accuracy assessment. 

The accuracy assessment of classification was carried out by calculating the kappa coefficient 
in addition to obtaining the overall accuracy using an error matrix (Table 3). Both user’s and 
producer’s accuracies were derived, which respectively corresponds to error of commission 
and omission (Congalton, 1991).  The kappa value shows the difference between observed 
agreement of the classification and reference data and therefore the precision of the 
classification (Mehner et al, 2004). 

𝐾𝑎𝑝𝑝𝑎 = 𝑁𝐴−𝐵
𝑁2−𝐵

    (1) 

where A is the sum of diagonal elements, B is the sum of products (row total multiplied by 
column total) and N is the total number of elements in the error matrix (Table 3). 

Total accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

× 100  (2) 

2.5.2. Evaluation of model performance 

For evaluation of goodness of fit for allometric models and overall model evaluation, statistics 
such as RMSE and R2 were calculated. For the purposes of model validation, the coefficient of 
determination (R2) was preferred owing to the fact that it is useful in regression studies to 
check how successful the fit is in explaining the variation of the data (Noone and Vong, 
2009). It is defined as follows: 

𝑅2 = 𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇

   (3) 



14 
 

In this equation, SSR is the sum of squares of the regression or simply explained variation, 
which measures the deviation of the observations from their mean: 

𝑆𝑆𝑅 =  ∑ (𝑧̂𝑖 − 𝑧̅)2𝑛
𝑖=1    (4) 

The SSE represents unexplained variation and stands for the sum of squares due to error. This 
statistic measures the deviation of observations from their predicted values. The closer this 
value is to 0 the more useful the fit will be for prediction and the smaller the random 
component of the model is (MATLAB, 2012). It is defined as: 

𝑆𝑆𝐸 =  ∑ (𝑧𝑖 − 𝑧̂𝑖)2𝑛
𝑖=1    (5) 

In equations 4 and 5, 𝑧̂𝑖 are the estimated values, 𝑧̅ is the mean value of measured values and 
𝑧𝑖 are the measured values. Finally, SST is the total sum of squares and presents the total 
variance of data. It is defined as: 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸    (6) 

The coefficient of determination can range from 0 to 1, where values closer to 1 indicate that 
the regression model was able to explain a greater portion of the variance (MATLAB, 2012). 

Another statistic applied in this project was the root mean squared error (RMSE), which is a 
measure of the differences between values predicted by a model and the values actually 
observed and is defined as: 

𝑅𝑀𝑆𝐸 = �𝑆𝑆𝐸
𝑛

    (7) 

where 𝑛 is the number of verifying points. Similar to SSE statistics, the closer the RMSE value 
is to 0 the more useful a fit is for prediction. 

The student's t-test was performed for each of the models developed in order to check whether 
the predicted values of AGB were statistically different from the measured in-the-field AGB 
values (Noone and Vong, 2009). The t statistic gives an idea of how far the prediction is from 
the truth and was calculated using a two tailed test at the 0.05 significance level as follows: 

𝑡 = 𝑥̅𝑚−𝑥̅𝑒

𝑆𝑥𝑚𝑥𝑒×�2𝑛

    (8) 

where 𝑆𝑥𝑚𝑥𝑒  is the pooled standard deviation of measured and estimated AGB values, 𝑥̅𝑚 is 
the mean of measured AGB,  𝑥̅𝑒 is the mean of estimated AGB values and 𝑛 is the sample 
size. 

2.6. Reference biomass estimation 

Plot aboveground biomass estimates were obtained by applying species allometric 
relationships derived from harvested stands in Sweden. In this study, AGB represents the sum 
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of stem, bark, branch and foliage biomasses (Zianis et al, 2005). The DBH parameter alone is 
commonly used for AGB prediction via allometric equations. However, the inclusion of tree 
height parameter as another independent variable in the model can improve overall biomass 
prediction (Marklund, 1988; Johansson, 1999). Height-AGB allometric functions were 
derived only for the dominant tree species in the Skogaryd, which are Norway spruce (Picea 
abies), Scots pine (Pinus sylvestris) and Silver birch (Betula pendula). Pine and spruce 
biomass functions were developed by Marklund (1988), while birch allometry was provided 
by Johansson (1999). In this study, biomass is defined in dry weight terms. The calculation of 
AGB was based on biomass functions for different tree components (Zianis et al, 2005): 

𝐴𝐺𝐵 = 𝐶𝑅 + 𝑆𝑇  (8) 

where AGB – total aboveground biomass, CR – crown biomass (branch and foliage biomass) 
and ST – total stem biomass (stem wood and bark biomass) 

Other minor species encountered during fieldwork, such as rowan, were treated as birch. 
Table 2 shows a summary of equations used for reference biomass estimations. 

Table 2. Biomass equations for tree species in Sweden. Number of sampled trees (n), coefficients of 
determination (R2), diameter at breast height (DBH) and height (H) of sampled trees (Zianis et al, 2005). 

 Bio 
mass 
(kg) 

DBH H n R2 Equation a b c D 

Spruce ln(CR) cm - 544 0.945 a+b·[D/(D+13)] -1.2804 8.5242 - - 
Spruce ln(CR) cm m 544 0.949 a+b·[D/(D+13)]+c·H+d·ln(H) -1.2063 10.9708 -0.0124 -0.4923 
Spruce ln(ST) cm - 546 0.988 a+b·[D/(D+14)] -2.0571 11.3341 - - 
Spruce ln(ST) cm m 546 0.994 a+b·[D/(D+14)]+c·H+d·ln(H) -2.1702 7.469 0.0289 0.6858 
Pine ln(CR) cm - 482 0.901 a+b·[D/(D+10)] -2.8604 9.1015 - - 
Pine ln(CR) cm m 482 0.922 a+b·[D/(D+10)]+c·ln(H) -2.5413 13.3955 -1.1955 - 
Pine ln(ST) cm - 488 0.978 a+b·[D/(D+13)] -2.3388 11.3264 - - 
Pine ln(ST) cm m 488 0.99 a+b·[D/(D+13)]+c·H+d·ln(H) -2.6768 7.5939 0.0151 0.8799 
Birch AGB mm - - 0.985 a·Db 0.00087 2.28639 - - 

 
2.7. Regression analysis 

Thereafter, a regression analysis was carried out in order to describe the relationship between 
tree height and AGB. The use of DBH parameter was considered to be inappropriate for AGB 
prediction, as it cannot be directly captured by remote sensing techniques. Moreover, tree 
height is the only forest parameter that is able to predict biomass estimates, with an accuracy 
of approximately 85 % (Papathanassiou et al, 2005). Therefore, the task was accomplished 
by deriving allometric equations, among which the most typical for describing the relation 
between tree height and biomass is a power function of the form 𝑦 = 𝑎 × 𝑥𝑐 (Mette, 2006). 

Sample size for height-AGB allometry derivation consisted of 189 spruces and 145 pines. A 
power function fitted well (Figures 8 and 9) and resulted in the following dependencies: 

𝐴𝐺𝐵𝑆𝑃𝑅𝑈𝐶𝐸 = 0.1183 × 𝐻2.528  (9) 
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𝐴𝐺𝐵𝑃𝐼𝑁𝐸 = 0.6696 × 𝐻1.996   (10) 

Unfortunately, no height measurements of deciduous trees were performed in this study. 
Therefore, general relations which were empirically derived from forest yield tables for 
coniferous and broadleaf tree species in Middle Europe were applied for AGB estimation of 
birch (Mette et al, 2004): 

𝐴𝐺𝐵𝐵𝐼𝑅𝐶𝐻 = 0.8 × 𝐻1.748   (11) 

 
Figure 8. Power model for AGB prediction from  Figure 9. Power model for AGB prediction from 
LiDAR-derived height estimates for spruce trees.  LiDAR-derived height estimates for pine trees. 

The R2 values of 0.758 and 0.648 mean that the fit explains 75.8 % and 64.8 % of the total 
variation in the data about the mean, respectively (MATLAB, 2012).  

Finally, the vegetation classification was used in conjunction with the CHM for final AGB 
estimation. Predicted tree canopies with defined heights and species class served as an input 
for allometric regression models and thus biomass over the area of interest was calculated. 
AGB was averaged in 10 m by 10 m squares. 
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3. Results 

In this section the outcome of the model developed, with accuracy values, will be presented. 
All resulting maps are in SWEREF99 coordinate system with following extent, left: 331195, 
top: 6476475, right: 335975, bottom: 6470075. In addition, maps are overlaid by the WGS 
1984 grid, which is more intuitive. 

3.1.  Reference aboveground biomass estimates 

AGB estimates for each of the measured plots in the field can be found in Appendix 1. There 
was quite substantial variation in biomass observed over the 83 different plots due to age, type 
and density of the forest. By knowing the total amount of AGB in each of the surveyed plots 
in the field, it was also possible to determine average AGB over each of these plots in kg/m2. 
AGB varied from 2.5 kg/m2 in very young sparse forest stands to 44 kg/m2 in mature dense 
forest stands. 

By using measured data in the field it was also possible to determine the percentage of AGB 
over plots corrected for different tree height and DBH ranges. Across surveyed plots only 0.1 
% of biomass was present in trees below 2 m in height and 3 cm in DBH, reaching a 
maximum of 5 % in dense young forest.  On the other hand, 0.7 % of AGB was present in 
trees below 3 m in height and 4 cm in DBH with a maximum of 25 % in dense young forest. 
Therefore, it was decided that application of the algorithm for canopy extraction with a height 
threshold of 2 m should be satisfactory over the whole area of study. The application of such a 
threshold would potentially account for 99.9 % of the AGB in the coniferous dominant forest.  

The number of trees measured in the field plots varied substantially depending on forest type 
and ranged from only 6 trees per plot in sparse mature forest to more than a hundred in highly 
dense young forest (Appendix 1). 

3.2. Vegetation classes 

The final map of vegetation types based on maximum likelihood classification to be found in 
the Skogaryd area is presented in Figure 10. According to the classification performed, the 
dominant species in the area are spruce and pine, which both occupy equal areas of 7.9 km2. 
In contrast, deciduous forest takes up only 4.6 km2 and is mostly found in inhabited areas. 
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Figure 10. Vegetation map from SPOT-5 data for July 2011 (10 m pixel resolution). Water bodies layer was 

provided by: @ Lantmäteriet, Dnr: i2012/927 

The error matrix of this classification including user’s and producer’s accuracies is presented 
in Table 3. In addition, kappa coefficient and total accuracy were calculated to be as follows: 

𝐾𝑎𝑝𝑝𝑎 ≈ 0.75 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑡𝑎𝑙 ≈ 81 % 

Table 3. Error matrix for vegetation classes. 

 
Spruce 
Mature 

Spruce 
Young 

Pine 
Mature 

Pine 
Young Deciduous Totals User's Producer's Area 

(km2) 
Spruce Mature 67 3 5 0 1 76 88 % 92 % 5.4 

Spruce Young 2 25 3 0 1 31 81 % 86 % 2.5 

Pine Mature 4 1 32 8 0 45 71 % 68 % 4.6 

Pine Young 0 0 7 10 0 17 59 % 50 % 3.2 

Deciduous 0 0 0 2 25 27 93 % 93 % 4.6 

Totals 73 29 47 20 27 196    

 
As it can be seen from the error matrix above the main misclassification occurred among pine 
young and pine mature classes, while all the other classes were identified with accuracies 
higher than 80 %. 

3.3. LiDAR-derived forest inventory parameters 

In general, the number of trees identified by the CHM segmentation algorithms has not 
corresponded to the number of trees measured in the field. As expected, there was a huge 
overrepresentation of trees when using local maximum algorithm with 2 m by 2 m evaluation 
window, while the same approach with a larger window resulted in underrepresentation of 
tree canopies. The IWS showed the best delineation of tree canopies across young forest. It 
was able to identify on average 68 % of trees measured during fieldwork in the young forest 
stands, while mature forests remained largely overrepresented.  

Regression analysis was carried out to investigate the relationship between LiDAR-derived 
and measured tree heights over the measured field plots. Figures 11 and 12 show the mean 
and maximum heights calculated from the CHM plotted against field canopy heights. The 1:1 
line shows the perfect match between measured and estimated values. In addition, the impact 
of GPS accuracy on the relationship is depicted in the form of a range of LiDAR-derived tree 
heights in a radius of 5 m from the plot center. Considering, that it was impossible to correlate 
tree heights of individual trees it is assumed that the mean and maximum statistics of tree 
height over each plot should provide good information for tree height validation.  
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Figure 11. Predicted vs. field-measured mean tree    Figure 12. Predicted vs. field-measured maximum tree 
height per plot. Numbers correspond to the plots    height per plot. Numbers correspond to the plots  
measured in the field (see Appendix 2).     measured in the field (see Appendix 2). 

As can be seen from Figure 12 above, there is substantial underestimation of the highest trees. 
On average, this is about 14 % and ranges from 0.2 % to 34 %. The comparison of mean tree 
height measured in the field against LiDAR-derived heights resulted in slightly worse 
correlation with no clear underestimation.  

3.4. Aboveground biomass estimates over the study area 

The comparison of LiDAR-derived AGB with the “in situ” aboveground biomass 
measurements revealed the most accurate segmentation algorithm. Surprisingly the best AGB 
prediction was achieved when using a local maximum algorithm with a constant 3 m by 3 m 
evaluation window, as can be seen in Figure 14. In contrast, there was a huge overestimation 
of AGB when using a 2 m by 2 m evaluation window, showing that an approximation of 4 m2 
for individual tree crowns over the area is inappropriate. Significant LiDAR biomass 
overestimation occurred in 86 % and underestimation occurred only in 7% of the plot 
comparisons (Figure 13). 
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Figure 13. Field-measured vs. predicted AGB using    Figure 14. Field-measured vs. predicted AGB using 
local maximum algorithm with constant 2m by 2m    local maximum algorithm with constant 3m by 3m 
evaluation window.      evaluation window. 
 
Estimation of AGB using the IWS approach gave similar results as the local maximum 
algorithm with a constant 3 m by 3 m evaluation window, though with slightly worse 
statistical accuracy. The main misestimation when using IWS occurred in the spruce 
dominated plots (Figure 15). 

 
Figure 15. Field-measured vs. predicted AGB using inverse watershed segmentation (IWS) algorithm.  

 
A t-test revealed that estimated values of AGB using both local maximum with a 3 m by 3 m 
window size and IWS segmentation algorithms were not significantly different from 
measurements of AGB in the field at the 0.05 significance level. In case of local maximum 
with a 2 m by 2 m window size the null hypothesis was rejected, as the p value was 
significantly smaller than 0.05. 

Although inverse watershed segmentation was not able to improve AGB estimation as 
compared to a local maximum algorithm with a constant 3 m by 3 m evaluation window, it 
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was expected to at least produce better results for young forest. In Figures 16 and 17 the 
comparison of the above approaches over young forests is shown. Surprisingly enough, both 
methods showed similar results, proving that IWS was not able to better delineate small 
canopies in young forest stands. 

 
Figure 16. Field-measured vs. predicted AGB in Figure 17. Field-measured vs. predicted AGB in 
young forest using local maximum algorithm young forest using inverse watershed segmentation 
with constant 3m by 3m evaluation window.  (IWS) algorithm.    
 
The final aboveground biomass map using the best model derived for June 2011 is presented 
in Figure 18. The biomass was predicted to vary from 0.01 to 93.5 kg/m2. However, it is 
important to note that the mean AGB in the area was equal to 9.4 kg/m2 with standard 
deviation of 9.2 kg/m2 and that extreme values of more than 50 kg/m2 were quite rare and 
occupied only 1 % of the area.  

Overall, the Skogaryd area is characterized by a patchy AGB distribution with high values of 
more than 50 kg/m2 located strictly in mature spruce forest stands as identified by the 
performed vegetation classification. Also, considering that forest AGB in this study is a 
function of tree height and the number of trees per unit area, the resulting AGB map in Figure 
18 is well correlated with the CHM in Appendix 5. 
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Figure 18. Aboveground biomass map for June 2011 over the Skogaryd area based on a using local maximum 
algorithm with a constant 3 m by 3 m evaluation window approach (R2 = 0.83) (10 m pixel resolution). Water 

bodies layer was provided by: @ Lantmäteriet, Dnr: i2012/927. 
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4. Discussion  

In this section, the effectiveness of the method applied for the estimation of AGB over the 
studied region as well as possible sources of uncertainties will be discussed. 

4.1.  Effectiveness of the vegetation classification 

The result of 0.81 for the total accuracy of the maximum likelihood classification can be 
considered acceptable or even good for optical types of data. Although there was a time gap 
of one year between the satellite data acquisition and the ground-truthing carried out, it has a 
presumably minor effect on the classification performed. The average speed of height growth 
for coniferous forest is roughly 30 cm per year (Lieffers et al, 1996). Therefore the time gap 
of one year may be considered as negligible in terms of forest age structure change. On the 
other hand, the Skogaryd area is comprised of forest stands that are significantly influenced 
by human activity and a rapid change of land cover between 2011 and 2012 was observed in 
many places, e.g. due to clear-cutting and thinning of forests. The influence of land cover 
change was completely avoided owing to the feature extraction procedure. 

With regards to the spectral separability of the different vegetation types, the main issue was 
that pine mature and pine young forests were often misclassified. This might have been 
caused by substantial spectral overlap between those classes. It is most probably caused by the 
density of the forest influencing the spectral signature in areas of pine stands. In addition, 
during the fieldwork, it was noticed that a lot of pine forest stands were located in wetlands, 
which influenced the growth of trees. Therefore, such mature pine forest stands might feature 
spectral properties similar to young pine forest. Another consideration when assessing the 
classification output was the influence of shrub and ground layers on the spectral separability 
of vegetation classes. This is an issue especially in sparse forest stands, where ground layer is 
visible to the satellite sensor. Consequently bare earth with certain degrees of stoniness 
creates mixed pixel values together with green vegetation leading to a large standard deviation 
for each of the vegetation classes.  

In general, the spectral similarity among green tree vegetation posed a severe problem to the 
classifier. In Figures 19 and 20 spectral scatter plots for classified SPOT-5 image bands are 
presented, where the means (crosses) and two standard deviations from the mean (ellipses) of 
training areas are also shown. On these figures colors correspond to the frequency of 
occurrence for a particular pixel value pair. Pixel pairs colored in magenta have a low 
frequency of occurrence while those colored in red have a high frequency, with several colors 
in between. The axes are in DN (digital number), which is closely related to reflectance 
values. It is clearly seen that there is substantial overlapping between training areas of 
vegetation classes in terms of spectral characteristics. It is especially pronounced when 
comparing red and near-infrared (NIR) bands, while differentiation between NIR and middle-
infrared (MIR) bands provides the best separability of vegetation classes.  
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Figure 19. NIR-MIR spectral scatter plot.   Figure 20. Red-NIR spectral scatter plot. 

A possible solution for classification improvement is to assign an additional class for mixed 
forest based on training areas identified from ground truth data. Whether a trial-and-error 
based rearranging of training areas could have improved the overall results remains 
speculative. Regardless, the significant spectral overlap is inherent among the different types 
of green vegetation and all forest types can still be identified reliably, being only a little 
underclassified or overclassified. 

4.2.  LiDAR-derived tree metrics uncertainties 

The algorithm developed in this study for LiDAR analysis was able to classify tree canopies 
with its subsequent segmentation into distinct trees. These outputs were crucial in prediction 
of individual tree heights and thus AGB. Uncertainties in obtaining forest inventory 
parameters from LiDAR data may be related firstly to the nature of LiDAR measurements and 
secondly to introduction of errors during processing. 

Numerous studies (Gaveau and Hill, 2003; Bortolot and Wynne, 2005; Lewis and Hancock, 
2007) have examined main factors influencing the derivation of tree parameters from discrete-
return LiDAR data. Firstly, it is uncertain that a laser beam from the sensor will strike the top 
of the tree. Secondly, there is a chance that a laser beam will penetrate through the tree 
canopy before being reflected. Lastly, there is no assurance that a laser beam will strike the 
actual ground surface (Bortolot and Wynne, 2005). For example, errors in LiDAR-derived 
height estimates could have been caused by ground vegetation which was registered as ground 
returns (Lantmäteriet, 2012). All these factors are valid for the measurement unit (Leica 
ALS50-II) used for LiDAR surveying in this study and could lead to the observed 
underestimation of the tree height. In addition, the Leica ALS50-II system has a beam 
divergence of 0.22 mrads, meaning that the size of the sensor’s footprint at an altitude of 2000 
m was around 50 cm. The relatively small footprint of the LiDAR sensor implies that there 
was a higher chance of complete beam absorption by the tree canopy before it reached the 
ground and that the beam return represents blurred records of tree height over the sensor’s 
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footprint area. In contrast, it also implies a higher chance for a beam to penetrate holes in the 
vegetation canopy, thus providing ground samples (Lewis and Hancock, 2007). Another issue 
to be considered is the point density of the LiDAR dataset, which was relatively low (~0.8 
points/m2), and therefore the chance of a point actually striking the very top of a tree was also 
low. This effect is particularly pronounced for trees with a large crown diameter (Ireland, 
2011). Increasing sampling density can therefore result in model improvement. 

Validation of the model applied showed a tree height underestimation of around 14% when 
comparing maximum measured and predicted heights over plots. This underestimation could 
be due to the nature of the discrete-return LiDAR scanning as explained above and presents 
evidence of a limitation in the algorithm. Previous studies also indicate significant 
underestimation of the field-measured height in coniferous trees by LiDAR (Morsdorf et al, 
2004; Andersen, 2009). Unfortunately, it was impossible to investigate the individual 
contribution of the factors mentioned above due to the lack of information on undergrowth in 
the Skogaryd and the echo-triggering mechanism of the system used for LiDAR 
measurements (Ireland, 2011).  

There was also uncertainty embedded in the LiDAR dataset in the form of measurement 
accuracy. According to the Swedish Land Survey, the vertical precision of the individual laser 
points was in general better than 10 cm on planar, open surfaces. However, locally precision 
and accuracy varied significantly depending on slope steepness and terrain accessibility. For 
example, in areas with dense forest the point density on the ground decreases, which leads to 
the loss of small terrain formations. On the other hand, the horizontal precision of the 
individual laser points was even lower – around 30 cm – which decreased further with 
increasing slope steepness (Lantmäteriet, 2012). 

Another important source of error when estimating AGB was due to shortcomings in the 
processing of the LiDAR data. The classification of raw LiDAR data was performed using 
automated methods, which are far from perfect. For example, such objects as power lines 
might have been classified as high vegetation leading to overclassification of biomass in the 
area. In areas of dense low vegetation the laser points could have been classified as ground, 
although they actually represent grass level. Some points of building edges remained to be 
classified as high vegetation. Thus, classification is never flawless and a small amount of 
points will always be assigned to the wrong class (Lantmäteriet, 2012). This led to errors in 
both the DSM and the DTM, and eventually the CHM, which was difficult to detect even in 
manual reviews.  

4.3.  Individual tree approach 

Estimation of AGB at an individual tree level using LiDAR data is highly dependent on 
successful canopy detection and characterization. In turn, the accuracy of individual tree 
identification depends on the point density of LiDAR data and the segmentation algorithm 
applied and is lower in dense and heterogeneous forests (Li et al, 2012). Generally, methods 
developed in this field can only detect dominant trees in the upper canopy with relatively 
good accuracies (Edson and Wing, 2011). 
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In this study two different types of CHM segmentation were applied. It was expected that 
IWS would provide an advantage over a local maximum algorithm with a constant 3 m by 3 
m evaluation window. In the latter method, the maximum height tree point per cell is 
extracted, which potentially underestimates the number of trees in dense and especially young 
forest stands. According to previous studies, IWS was able to identify individual trees in some 
forest types (Andersen, 2009). It is efficient in coniferous forests, but usually fails in 
deciduous forests by mixing trees into one watershed, or in forests where sub canopy is 
hidden under major canopy. However, this is the case with the majority of CHM based 
approaches for tree modeling (Edson and Wing, 2011). 

Initial constraints for local maximum algorithms have strongly affected the resultant AGB 
estimates. For example, a 2 m by 2 m window size proved to be inappropriate, especially for 
delineating individual trees in mature forest. The overrepresentation of tree crowns occurred 
due to approximation of tree crowns to the size of the constant window used and eventually 
led to overestimated AGB values. This is evident considering the average canopy width for 
mature coniferous trees is equal to 3 - 5 m (Kantola and Mäkelä, 2004). 

The IWS from the SAGA GIS software was not able to identify individual trees and thus give 
an AGB estimate with accuracies higher than that of the local maximum method. When using 
both methods, the output tree crowns in mature forests were relatively overrepresented, while 
underrepresentation took place in young forests. This was fed into the AGB prediction 
process and caused the misestimates observed. Though application of the local maximum 
approach for delineation of individual tree canopies resulted in better correlation, many trees 
were still missed and others were mixed into one canopy. The application of local maximum 
with a variable-size window approach for CHM segmentation might resolve this issue. 

4.4. Aboveground biomass estimation over the study area 

The approach used for AGB estimation through LiDAR-derived tree heights is mainly based 
on previous studies, which proved tree height to be the most reliable parameter in AGB 
prediction (Mette et al, 2004; Papathanassiou et al, 2005). Established relationships between 
AGB and LiDAR-derived tree heights approximated the first order power function, which led 
to the introduction of errors into the AGB calculation. As can be clearly seen from Figure 9, 
the model developed for biomass prediction in pine produced highly-overestimated values of 
AGB among young trees. Moreover, the uncertainty in AGB prediction grows with increasing 
canopy height owing to the small sample size of the highest trees. Nevertheless, the ability of 
LiDAR-derived tree heights to predict AGB may be considered as quite strong. The 
regression analysis showed relatively good goodness of fit statistics for predicting 
aboveground biomass in pine and spruce trees, with R2 values of 0.65 and 0.76, respectively. 

The main parameters used for AGB estimation across surveyed plots were DBH and tree 
height. It was suggested that the use of both these parameters would result in improved AGB 
estimates. However, as shown in Jonsson (1999) and Marklund (1988) the introduction of a 
tree height variable leads to less than 1 % increase in the R2 value of the prediction models. 
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Thus, the absence of height measurements for the majority of plots introduces a minor error 
into the prediction of AGB. 

After investigation of allometric models used in this study for AGB estimation, it was found 
that AGB is highly dependent on tree species. This dependence can particularly be observed 
between coniferous and deciduous species, though the relation used in this study for the 
estimation of AGB in deciduous trees represents a generalized relationship developed for both 
broadleaf and coniferous species. For example, as can be seen from the figure below, the 
difference in AGB estimates for coniferous and deciduous 20 m high trees was around 200 
kg. The estimates for deciduous trees might be improved by deriving AGB-height allometry 
equations from the relationship between DBH and height as shown in Mehtätalo (2005). 
Comparison of height-biomass allometric relationships for different tree species used in this 
study is presented in Figure 21. 

 
Figure 21. Height-biomass allometric relationships developed in this study using regression analysis. 

The equations derived in this study for AGB prediction were successfully applied over the 
whole area of study, showing the model’s good predictive ability. However, when separating 
the young forest from mature areas, the model demonstrated lower performance, owing to 
flaws in the tree segmentation algorithms and the relatively low point density of the LiDAR 
dataset. Indeed, the ability of low-density LiDAR to detect small trees or trees hidden under 
the canopies of high trees is usually less accurate due to the smaller size of the crown. The 
accuracy of detection is also worsened due to the proximity of returns from smaller trees to 
ground returns. Nevertheless, young forest stands with small crowns play an important role in 
carbon cycling and determination of AGB (Ireland, 2011).  

There were, of course, other uncertainties related to AGB estimation over the study area. 
Firstly, the time gap between the LiDAR survey and the fieldwork was more than a year, 
which means that any forest disturbance in the form of clear-cutting, thinning or storms might 
affect the output. For example, during fieldwork it was noticed that plot #53 contained a 
relatively large amount of stumps. This has an effect on the LiDAR-derived biomass estimate, 
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which was double the amount of AGB measured in the field. This suggests that there was 
thinning performed in this area between summers 2011 and 2012. Secondly, substantial 
numbers of trees in the studied area were without tops, most likely due to a recent storm. 
According to Swedish mass media, the remnants of Hurricane Katia in September 2011 
battered Sweden, especially Västra Götaland County, with strong winds of up to 24 m/s. 
SMHI issued a class 1 warning. The storm caused significant forest damage in the area of 
study, as a lot of trees were blown down or lost their treetops (The Local, 2011). Thirdly, 
approximately 75 % of the data available should have been used in the process of model 
development and the rest held back for validation (Smith and Smith, 2007). Nevertheless, in 
this study the whole set of field tree height data was used in order to evaluate the regression 
relationships. This was done due to time constraints during fieldwork which limited the 
number of validation points. Finally, as the averaged LiDAR-derived tree heights were 
underestimated by 14%, there was also an underestimation of AGB across the whole area of 
study as the tree heights derived from LiDAR data were not corrected. 

Although many studies have successfully been able to extract forest inventory parameters at 
individual tree level from LiDAR data using automatic computer algorithms (e.g. Morsdorf et 
al, 2004; Bortolot and Wynne, 2005; Edson and Wing, 2011), results are usually presented at 
stand or plot levels (Popescu, 2007). This made it complicated to compare the outcome of 
biomass calculations in this study in kg/m2 to other estimates of aboveground biomass over 
similar types of forest. A good comparison can be made between this study and research made 
by the Woods Hole Research Center and the U.S. Geological Survey, who have been able to 
create a forest map of the USA based on satellite radar and optical sensors and a huge amount 
of ground-based data (NASA, 2012). For instance, the detailed map of conifer-dominated 
forests of the Pacific Northwest provides values of AGB estimates ranging from 0 to 60 kg/m2 
as compared to 0 to 94 kg/m2 in the Skogaryd. However, it is important to note that AGB in 
their study was mapped down to 30 m in contrast to 10 m in this study. 

4.5. GPS accuracy assessment 

The readouts of GPS accuracy measurements in the field varied from 4 m to 6 m. When 
performing analysis for the best derived models it was decided to shift 15 m by 15 m plots 
within a 5 m radius and examine how much of the uncertainty might be involved in AGB 
estimation due to GPS unit constraints. As can be seen from Figures 22 and 23, there are plots 
which can be considered heterogeneous with biomass change of more than 20 %. 

The absolute values of standard deviation are of course higher in mature forest plots, while 
relative values of this parameter are more attributable to young forest plots. Considering the 
methodology applied, this suggests that young forest plots measured in the field were 
characterized by lower homogeneity as compared to mature forest plots. 
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Figure 22. GPS accuracy assessment when using local maximum algorithm with constant 3 m by 3 m evaluation 

window. 

Figure 23. GPS accuracy assessment when using watershed segmentation (IWS) algorithm. 
 
An exclusion of relatively heterogeneous plots from model validation might produce better 
results. However, there is no assurance that this heterogeneity is caused by GPS inaccuracy 
only. Imperfect tree segmentation algorithms might present another significant cause of over- 
or underrepresentation of trees in plots. 
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5. Conclusions 

This project was performed as a baseline for future work on GHG exchange in the Skogaryd 
area within the frame of the LAGGE project. The robust estimate of AGB for conifer-
dominated forest in Västra Götaland County using a fusion of discrete-return airborne LiDAR 
and satellite imagery is given, which proves the validity of the methodology applied. Results 
show AGB to vary from less than 1 kg/m2 in very young forests up to 94 kg/m2 in mature 
spruce forests with RMSE of 2 kg/m2 and 4.7 kg/m2, respectively.  

With respect to the first hypothesis, the analysis based on SPOT-5 data was able to provide an 
accurate mapping of tree species and thus may be used for classification of LiDAR-derived 
CHM. With respect to the second hypothesis, LIDAR data proved to be useful for AGB 
estimation through the use of allometric relationships. Using a local maximum algorithm with 
a constant 3 m by 3 m evaluation window method gave the most accurate prediction of AGB 
(R2 = 0.83), with the lowest RMSE value. It is shown that the introduction of watershed 
segmentation does not improve the result (R2 = 0.79).  

Availability of baseline AGB estimates allows further monitoring of this forest ecosystem for 
disturbance and change, though an extensive program of flights is required in order to collect 
adequate amounts of data. Furthermore, AGB values can be directly used in further studies of 
carbon stocks in the Skogaryd, assuming carbon to be 45 % of total biomass following 
Whittaker (1975). 

Potentially, the algorithm developed in this study may be used for assessment of individual 
tree components of biomass, such as foliage or stem wood, since allometry for tree 
components is readily available. Moreover, intermediate results derived in this study, such as 
DTM and DSM models, are also valuable in forest applications. The DTM in itself is quite 
helpful for planning and operational activities, while the DSM alone delineates vegetation 
structure and thus may be used for understanding forest roughness.  

For further research in this field it is suggested to fully explore the potential of other 
algorithms for individual tree segmentation, the use of which can potentially provide an 
improved baseline estimate of AGB. However, in order to accurately validate such 
segmentation the precise position of each tree in the field should be measured, which is only 
possible by using differential GPS unit. It would also be useful to test if the model for AGB 
prediction in this study would be effective in other parts of Sweden. 
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Appendices 
Appendix 1. Summary statistics of forest inventory parameters in measured plots (15m by 15m). The spatial 

location of these plots can be found in Appendix 2. 

# Dominant 
species 

AGB 
(kg/plot) 

AGB 
(kg/m2) 

Tree 
count # Dominant 

species 
AGB 
(kg/plot) 

AGB 
(kg/m2) 

Tree 
count 

1 Spruce 6157.6 27.37 26 43 Pine 2325.8 10.34 27 
2 Pine 4107.3 18.25 29 44 Spruce 7429.0 33.02 18 
3 Birch 3436.0 15.27 23 45 Mixed 4955.4 22.02 55 
4 Spruce 3626.3 16.12 27 46 Spruce 4915.8 21.85 20 
5 Pine 569.7 2.53 33 47 Spruce 4696.8 20.87 18 
6 Birch 3610.4 16.05 36 48 Pine 3349.8 14.89 27 
7 Spruce 6718.3 29.86 57 49 Spruce 7448.4 33.10 12 
8 Spruce 6355.9 28.25 17 50 Spruce 860.7 3.83 39 
9 Spruce 1671.3 7.43 68 51 Pine 1828.3 8.13 34 
10 Pine 2820.4 12.53 6 52 Spruce 3639.3 16.17 24 
11 Spruce 556.5 2.47 63 53 Spruce 4301.3 19.12 9 
12 Pine 1926.6 8.56 23 54 Spruce 3736.9 16.61 24 
13 Spruce 7025.8 31.23 15 55 Pine 1232.6 5.48 17 
14 Mixed 3509.5 15.60 52 56 Pine 987.2 4.39 26 
15 Spruce 4714.7 20.95 29 57 Pine 1756.4 7.81 33 
16 Birch 3028.7 13.46 32 58 Pine 850.2 3.78 34 
17 Spruce 1195.0 5.31 81 59 Pine 2911.9 12.94 34 
18 Pine 4049.1 18.00 18 60 Spruce 4332.8 19.26 32 
19 Pine 2370.6 10.54 19 61 Pine 2831.6 12.59 28 
20 Spruce 789.2 3.51 60 62 Spruce 4748.0 21.10 19 
21 Birch 787.4 3.50 90 63 Spruce 5621.2 24.98 23 
22 Spruce 3829.6 17.02 36 64 Mixed 3142.2 13.97 63 
23 Spruce 1506.0 6.69 16 65 Spruce 3232.9 14.37 68 
24 Spruce 5893.5 26.19 17 66 Spruce 3457.1 15.36 25 
25 Spruce 7566.1 33.63 17 67 Pine 1403.5 6.24 93 
26 Birch 3803.4 16.90 29 68 Spruce 4591.9 20.41 19 
27 Pine 1293.7 5.75 70 69 Pine 4132.7 18.37 39 
28 Spruce 832.0 3.70 61 70 Spruce 640.0 2.84 45 
29 Pine 1234.5 5.49 23 71 Spruce 7515.3 33.40 15 
30 Spruce 6276.5 27.90 14 72 Birch 2039.0 9.06 50 
31 Pine 2657.2 11.81 29 73 Mixed 2582.2 11.48 78 
32 Pine 1453.9 6.46 19 74 Spruce 3520.2 15.65 89 
33 Spruce 6718.8 29.86 12 75 Spruce 5330.9 23.69 15 
34 Spruce 1939.9 8.62 59 76 Spruce 4375.1 19.44 23 
35 Spruce 6576.5 29.23 16 77 Mixed 1296.2 5.76 56 
36 Pine 1940.9 8.63 21 78 Birch 2258.0 10.04 9 
37 Pine 1392.1 6.19 19 79 Spruce 3153.1 14.01 27 
38 Pine 2707.7 12.03 17 80 Spruce 882.0 3.92 49 
39 Birch 2789.8 12.40 45 81 Spruce 5828.3 25.90 39 
40 Pine 2476.2 11.01 19 82 Pine 898.9 4.00 138 
41 Pine 1147.6 5.10 90 83 Spruce 5373.5 23.88 18 
42 Spruce 9881.0 43.92 23 
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Appendix 2. Orthophoto of the Skogaryd area with location of plots measured in the field (1 m pixel resolution). 

The orthophoto image was provided by @ Lantmäteriet, Dnr: i2012/927. 
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Appendix 3. Density of LiDAR point cloud over the Skogaryd area (10 m pixel resolution). Source: @ 

Lantmäteriet, Dnr: i2012/927. 
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Appendix 4. Digital terrain model (DTM) of the Skogaryd area (3 m pixel resolution). 
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Appendix 5. Canopy height model (CHM) of the Skogaryd area (0.5 m pixel resolution). Water bodies layer was 

provided by: @ Lantmäteriet, Dnr: i2012/927. 
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