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Nomenclature

ACF  Autocorrelation function

GAPES Gapped-data amplitude and phase estimation
GRIB General Regularly-distributed Information in Binary form
ICAO International Civil Aviation Organization

ISA  International Standard Temperature

ISCS International Satellite Communications System
NOAA National Oceanic and Atmospheric Administration
PACF Partial autocorrelation function

SADIS SAtellite DIstribution System

WAFS World Area Forecast System

WMO World Meteorological Orqanization
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1 ABSTRACT

1 Abstract

In the world of aviation, the need for accurate weather data is very
important in order to plan and conduct a safe flight. Due to technology,
there are ways to recieve accurate weather data live today, but also,
due to technology, this data might not be available. Thus the need for
accurate statistical data is desirable. Is this possible to achieve using
the SADIS data we currently have available? We will try to find the
answer to this question by modelling the data as either an AR(p) or an
ARMA ((p,q) model using different types of estimation. It turns out that
we can model the wind speed rather well using an AR(3) model and
the wind direction using an ARMA(5,7) model, where the parameters
are estimated using recursive LMS. In conclusion we can see that the
type of data we have can be modelled using straightforward methods.
However, we cannot simply take our predicted models and apply those
everywhere. But what we can do, is take the methods which resulted in
the given models and apply that to all desired locations.

Mathematical statistics — page 4 — Infocom



2 BACKGROUND

2 Background

Even in the early days of aviation, it was realized that meteorological
information was vital for the planning and a constant factor for the safe
conduct of flights. In the 1950’s a milestone was reached in aeronauti-
cal meteorology with the introduction of numerical weather prediction
including the analysis and prediction of broad scale weather phenom-
ena and upper winds. In the late 1960’s computer generation of winds
and forecasts began, minimizing unnecessary fuel uplift thus maximizing
revenue payload.

At Flygprestanda we perform flight planning and many other avia-
tional services and there are weather report services inplace that provide
weather forecasts for a period of up to 48h in the future. Problem oc-
cur when the flight planning is made several months in advance and a
method including statistical weather data will greatly improve the ac-
curacy of the costs for any particular flight.

The economic and financial impact of the weather on the aviation indus-
try is difficult to quantify. Documented impacts in one country indicates
that unexpected weather conditions at arrival times can result in a loss
of as much as €265.000 in additional operating costs per day®.

Furthermore, 80% of all reported delays over 15 min are caused by the
weather, resulting in an estimated economic loss of over €750.000 million
per year world wide.

According to planecrashinfo.com? about 30% of all accidents ranging
from the 1950’s up to present day, were caused by weather or weather
related phenomena.

2.1 ICAO

A specialized agency of the United Nations, ICAO was created in 1944 to
promote the safe and orderly development of international civil aviation
throughout the world. It sets standards and regulations necessary for
aviation safety, security, efficiency and regularity, as well as for aviation
environmental protection. The Organization serves as the forum for
cooperation in all fields of civil aviation among its 191 Member States.

2.2 WAFS

Within the ICAO network, the provider of aeronautical weather infor-
mation is known as the World Area Forecast System or WAFS. This
system provides meteorological authorities and other authorized users
with information required for international air navigation.

There are two World Area Forecast Centers in the world that provide
this information. One being the NOAA in Washington, and the other

IThere is no indication to what country this refers to.
2A website that keeps an updated database about accidents in aviation.
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2 BACKGROUND 2.3 General Wind Aspects

the UK Met Office in Exeter. These two publish the same information
in order for one to be able to replace the other should the need occur.

Each of these two services operates its own satellite-based broadcast
system to distribute data to airports all over the world. The U.S. NOAA
broadcast system is ISCS and mainly covers America and the Pacific
Ocean. The UK Met Office is called SADIS and mainly covers Europe,
Asia, Indian Ocean and Africa. At Flygprestanda AB, we use SADIS.

2.2.1 GRIB

The format in which the distribution systems transmits their data is
called GRIB. The GRIBs contain alot of data and the manual is 73
pages long, we will not cover all of it, we will simply explain the parts
that are relevant to this paper.

First off we can give a better view of what kind of forecasts the GRIB

contains.

<70
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In the figure the + sign indicates where 0 degrees lie and the coordinates
indicate the location of the octants of the globe, the numbers are the
corresponding grid identification numbers, and the letters are the grid
identification used in the WMO heading.

The grid point separation is 1.25x1.25 degrees on a latitude/longitude
array, but the grid is ’thinned’ by reducing the number of points in each
row as one move away from the equator.

The latitudinal increment is always 1.25 degrees, resulting in 73 rows
including the pole.

The longitudinal spacing on the equator is also 1.25 degrees, thus there
will be 73 grid points at the equator in each octant.

The number of points on each latitudinal row, other than the equator,
is calculated as the integer number of 2.0 + (90.0/1.25) * cos(latitude).

This formula results in there being 2 points at the pole, one on each
meridian that deliniate the edges of the octant.

When all this is put together the result is that there are 3447 points of
data actually transmitted in any individual GRIB bulletin containing
one octant of the globe.

2.3 General Wind Aspects

By general agreement in the meteorological and aviation communities,
the term "wind direction" is defined as the compass heading FROM
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2 BACKGROUND 2.3 General Wind Aspects

which the wind is blowing. This is in contrast to the term "bearing"
which indicates the direction toward which an object is moving.

2.3.1 The Coriolis force

Since the globe is rotating, any movement on the Northern hemisphere
is diverted to the right, if we look at it from our own position on the
ground. (In the southern hemisphere it is bent to the left). This appar-
ent bending force is known as the Coriolis force (Named after the French
mathematician Gustave Gaspard Coriolis 1792-1843).

In the Northern hemisphere, the wind tends to rotate counterclockwise
(as seen from above) as it approaches a low pressure area. In the South-
ern hemisphere, the wind rotates clockwise around low pressure areas.

The wind rises from the equator and moves north and south in the
higher layers of the atmosphere. Around 30 degrees latitude in both
hemispheres the Coriolis force prevents the air from moving much far-
ther. At this latitude there is a high pressure area, as the air begins
sinking down again. As the wind rises from the equator there will be a
low pressure area close to ground level attracting winds from the North
and South.

At the poles, there will be high pressure due to the cooling of the air.
Keeping in mind the bending force of the Coriolis force, we thus have
the following general results for the prevailing wind direction.

Prevailing wind directions
Latitude Direction
90-60N NE
60-30N SW
30-0N NE
0-30S SE
30-60S NW
60-90S SE

Prevailing wind directions can be a helpful tool in the initial prediction
of the wind direction.

2.3.2 Geostrophic and Surface Winds

The geostrophic winds are largely driven by temperature differences,
and thus pressure differences, and are not very much influenced by the
surface of the earth. The geostrophic wind is found at altitudes above
1000 metres (3300 ft.) above ground level. The geostrophic wind speed
may be measured using weather balloons.

Unlike geostrophic winds, the surface winds will be affected by the
ground surface at altitudes up to 100 metres (330 ft). The wind will
be slowed down by the earth’s surface roughness and obstacles. Wind
directions near the surface will be slightly different from the direction of
the geostrophic wind because of the Coriolis force. When dealing with
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WIND SPEED

2.4 Aim

aviation we are generally not concerned with the surface winds. The
only time the surface winds are inflicting on avaiation is during landing
and take-off.

2.4 Aim

The aim of the thesis is to build a foundation for automatic generation
of statistical models for time series in the Java programming language
for Flygprestanda AB, to be used in their flight planning software. The
main interest lies in wind data such as speed and direction. But there
is also a general interest in the ability to generate statistical models for
different time series.

3 Wind speed

The geographic position we have chosen for the data is suitingly enough
the 1.25°by 1.25°sqaure that houses Sturup airport, or ESMS as it is
know as in the aviation industry. ESMS is its corresponding ICAO code.
The location of ESMS is 55°32’10"N /13°22’23"E. The pressure level of
our chosen data is 850mb, and according to the altitude to pressure
conversion table in appendix D, this correpsonds to approximately 4500
ft. This is not really an altitude that you contingously fly at, but this
is the highest occuring pressure that the WAFS contain.

The forecast used is a 6h forecast, meaning that the received values will
be valid from the point of receival and 6h forward. The same transmis-
sion also contains 12h/18H/24h/30h/36h forecasts, correlation between
these can be investigated at a later time.

The interval that the data is received is 6h, meaning there are 4 sam-
ples/day starting at 0200 (0000 UTC). There are some irregularities
occuring with the times that the data is recieved, during some intervals
they start at 0100. This is believed to have with daylight savings to do
and is ignored.

In figure 1 we can clearly see that the data series is not ideal. There are
many missing values and starting at approximately sample 1200 there
is a huge chunk missing. If we are to use the data as it is, we will not
be able to make a fair analysis.

3.1 Reconstructing missing samples

We need to reconstruct the missing values in some way if we can. The
first thing is to pick a smaller sample size that is faster to work with
and has less missing values, see figure 2.

An easy way to replace the single missing values is to use interpolation,
which simply takes the mean of two adjacent values. For the purpose
of this report the use of interpolation would have sufficed, had it not
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3.1 Reconstructing missing samples

Figure 1: Wind speed data

'J
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Figure 2: Wind speed data sample 1-1000

been for the missing chunk of samples in the original data. For the sake
of trying to reconstruct the chunk of missing data we interpolate our
smaller sample size and use that as our reference, resulting in figure 3.

Matlab code for the algorithm used to fill in the missing values can be
found in appendix C.

We now remove a chunk from the data, as seen in figure 4, to resemble
what we actually have in order to see if it is possible to reconstruct with
satisfactory result.

For the reconstruction we will be using Gapped-data amplitude and
phase estimation, reference [7]. The reason for this approach is becasue
GAPES uses an approach that estimates the spectrum for the signal
based on the values that do exist and continues to fill in the gaps via
least squares fit.

Using the GAPES algorithm with default parameters, we try to recon-
struct the missing values. The result is seen in figure 5 and a comparison
between the interpolated version and the one filled with GAPES can be
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WIND SPEED 3.1 Reconstructing missing samples
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Figure 3: Wind speed data sample 1-1000 interpolated
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Figure 4: Wind speed data sample 1-1000 interpolated and gapped

seen in figure 6, the result is not quite satisfactory and along with the
execution time being insanely long we should try a different approach.

To further examine this method of reconstructing missing chunks of data
we need to improve the calculation speed alot. By decreasing the sample
size even more, down to a number of 128 samples, figure 7, we should be
able to achieve a more respectable calculation speed. We then proceed to
remove some values corresponding to roughly the same relative amount
missing in the original data, figure 8.

We then start things off by running the algorithm with defaults parame-
ters and the result is seen in figure 9. In figures 64-67 found in Appendix
A, the result of using different filter lengths as a percentage of the sam-
ple size can be seen. And in figures 68-71 we have also modified the
initial filter length as percentage of the sample size.

In conclusion the decision is taken not to use the GAPES algorithm to
fill in the gap of missing samples. As seen on the data of 128 samples,
the result is not very accurate. There might be some way of getting a
better result but with the calculation time of close to 3 days for the 2280
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3 WIND SPEED

3.2 Transforming the data

Figure 5: Wind speed data sample 1-1000 interpolated and gapped, filled with

GAPES
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Figure 6: Comparison between interpolated and GAPES

sample size data on a regular workstation provided with 70Gb swap file,
it would simply take to long to produce a satisfactory result.

Instead we will be using the interpolated subset of the original data set
consisting of the first 1000 samples where interpolation has been used
to fill in the missing values as shown in figure 3.

3.2 Transforming the data

As stated in reference [9] p.36-38 as well as reference [10], it is known that
the average wind speed is Weibull distributed with the shape paramater
close to 2 in Europe. This is a special case of the Weibull distribution
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"A Rayleigh distribution is often observed when the over-
all magnitude of a vector is related to its directional compo-
nents. "

This quote is taken from the website of the Danish Wind Industry As-
sociation, and is also stated in reference [10], and matches very well the
kind of data we currently are working with. Since the values received
are the orthogonal 2-dimensional vector components of the wind speed.
And from these they are translated to wind speed in meters per second
and wind direction in degrees.

If we take a look at the histogram for the data, shown in figure 10,
we can see that the data is not Gaussian distributed. This is further
confirmed with a normality plot, figure 11.

300 T T T T T T

Figure 10: Histogram for wind speed data, sample 1 through 1000

If we take into considering what we think we know, the wind speed
should be Weibull distributed with a shape parameter A = 2, i.e. Rayleigh
distributed. Figure 12 shows a Weibull plot of the data and makes us
happy since it confirms what we suspected.

For further confirmation we generate a random Weibull distruted sample
size with shape parameter A\ = 2 for comparison. The plots are shown
in figures 13 - 15 with the random data on the left hand side and our
wind speed data on the right hand side.

3.2.1 Log transformation

The log function has the defining property that log(x * y) = log(z) +
log(y) Therefore, using the logarithm tends to convert multiplicative re-
lationships to additive relationships, also it tends to convert exponential
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3.2

Transforming the data
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Figure 11: Normality plot for wind speed data, sample 1 through 1000
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Figure 12: Weibull plot for wind speed data, sample 1 through 1000

trends to linear trends.

By taking logarithms of variables which are

multiplicatively related and/or growing exponentially over time, we can
often explain their behavior with linear models.

3.2.2 Square root transformation

This transformation of data is appropriate for the data sets where the
variance is proportional to the mean. Here, the data consists of small
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3 WIND SPEED 3.2 Transforming the data

Figure 13: Histogram comparison for wind speed data
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Figure 14: Weibull plot comparison for wind speed data
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Figure 15: Normality plot comparison for wind speed data

whole numbers, for example, data obtained in counting rare events. This
data set generally follows the Poisson distribution and square root trans-
formation approximates Poisson to normal distribution. Furthermore,
the square-root transformation is just a special case of Box-Cox power
transformation with 12=0.5 and omitting some centering.

3.2.3 Box-cox power transformation

The logarithm and square root transformations are commonly used
for positive data. The power transform is a family of transformations
parametrized by a non-negative value 1z that includes the logarithm,
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3 WIND SPEED 3.2 Transforming the data
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Figure 16: Histogram after log transformation
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Figure 17: Normality plot after log transformation

square root, and multiplicative inverse as special cases. To approach
data transformation systematically, it is possible to use statistical esti-
mation techniques to estimate the parameter Iz in the power transform,
thereby identifying the transform that is approximately the most appro-
priate in a given setting. In regression analysis, this approach is known
as the Box-Cox technique.
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Figure 18: Histogram after square root transformation
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Figure 19: Normality plot after square root transformation

Box-cox transformation reference [3] p.179;

-1 i
yN =0 5m o HAZD (1)
log(y;) itA=0

With A = 0.4528 the cost function is minimized and a satisfactory result
is achieved. The resulting histogram and normality plot can be seen in
figures 20 and 21.
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3 WIND SPEED 3.2 Transforming the data

Figure 20: Histogram after Box-cox transformation
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Figure 21: Normality plot after Box-cox transformation

Seeing the resulting A = 0.4528 after the Box-cox transformation and
knowing that the square root transformation is a special case of the
Box-cox transformation with A = 0.5, we can say that the square root
transformation is the better choice here since the result is very similar
and the square root is a simpler transformation.
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3 WIND SPEEMB.3 Autocorrelation function and partial autocorrelation function

3.3 Autocorrelation function and partial autocorre-
lation function

Now when we achieved Gaussian distributed data, we want some clues
about the structure of it. In order to get a clue about the model structure
we look at the autocorrelation function and the partial autocorrelation
function, namely ACF and PACF for the series.

We will restrict ourselves to wide-sense stationary (WSS) processes here,

since this is what we aim to achieve using transformation. A process is
considered WSS if

1. The mean of the process is constant.

2. The auto-covariance Cys, y; only depends on the difference (s —t),
and not on the actual values of s and ¢.

3. The variance of the process is finite, i.e., Ely,|* < inf.

The moving average process.
Definition 2.8 from reference [1] p.24. The process y; is called a moving
average (MA) process if

Y =ertcre1+ o+ cger_q = C(2)e, (2)
where C(z) is a monic polynomial of order g, i.e.,
C(Z)=14crz 4+ ez, (3)

where c; = 0, and e, is a zero-mean white noise process with variance
o2, The process is always stable, and is invertible if and only if all
the zeros to the generating polynomial C(2) are strictly within the unit

circle. Which allows us to express the MA(q) process as
yr = C(2)er (4)

The autoregressive process.
Definition 2.9 from reference [1] p.28. The process y; is called a au-
toregressive (AR) process if

ARy £ yr+ ar1ye—1 + -+ + apyr—p = €4, (5)
where A(z) is a monic polynomial of order p, i.e.,
A(z) =1+4a1z7 4+ ap2 7P, (6)

where a, = 0, and e; is a zero-mean white noise process with variance
a2, being uncorrelated with yu, for | > 0. The process is stationary
(and thus an AR-process) if and only if all the zeros of the generating
polynomial A(z) are strictly within the unit circle. An AR-process is
always invertible.
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3 WIND SPEEMB.3 Autocorrelation function and partial autocorrelation function

The autoregressive moving average process.
Definition 2.10 from reference [1] p.34-35. The process y; is called an
autoregressive moving average (ARMA) process if

A(2) = C(2)ey, (7)
where A(z) and C(z) are monic polynomial of order p and g, respectively,
i.e.,

A(z) =1+4az7 4+ ap2 P, (8)
CZ)=1+ciz7 4 F gz, (9)
2

and e; 18 a zero-mean white noise process with variance o

2.
Definition 2.4 from reference [1] p.11. The auto-covariance function
for y; is defined as

ry(k) = Cys,yi i = Elys — mg][ye—r — my|” (10)

= Eywy; _j, — mym, (11)
Similarly, we define the cross-covariance of the WSS processes xy and
Yt as
Tey(k) = Coe,yi_y = Elye — my][yr—k — my]", (12)
where my and m,, denote the means of the respective processes.

Definition 2.5 from reference [1] p.11. The auto-correlation function
for y; is defined as

ry(k)

k) =Y 13
and will therefore be bounded such that |p, (k)| < 1, with equality for
k=0, as well as, possibly, for k =1, with I > 0, if the signal is periodic
with period. Similarly, we define the cross-correlation of the processes
xy and y; as

__ ray(k)
= o) (14)

which will be bounded as |py,y (k)| <1

The partial auto-correlation function, reference [1] p.39. recalling defi-
nition 2.9, consider the AR(p)-process,

Yo = O aYi—1 + -+ Ok pYi—p + €t (15)

where the notation ¢y, denotes the l:th (negative) AR-coefficient of
the k:th order AR model. Clearly, using our earlier notation, ¢;; = a;.
We may express the Yule-Walker equations, definition from reference [1]
p.29, [2] p.357-358, [3] p.122, [4] p.111, [5] p.57 and [6] p.875, for the
correlation function of (15) as

1 py(1) o py(L=K)] [ py(1)

py(—1) 1 s py(2—K)| | r2 Py(2)
: : - : S R B (16)

py(k‘._ 1) py(k -2) - 1 Ok k pu(k)
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3.4 Initial model estimation

Table 3.3 shows the characteristics of the ACF and PACF for different
processes, reference [1] p.41. This is what we will be using for the initial
guess of the structure and order of the process.

Process | ACF \

PACF

Damped exponential
and/or sine functions

AR(p)

b =0for k>p

MA(q) p(k) =0 for k > ¢

Damped exponential
and/or sine functions

Damped exponential
ARMA(p, q) | and/or sine functions
after lag p — ¢

Damped exponential
and/or sine functions
after lag p — ¢

3.4 Initial model estimation

Looking at the ACF, eq.13, seen in figure 22 we can suspect an expo-
nentially decaying trend. Together with the PACF, eq.16, figure 23, it is
looking much like the presence of a low arder AR(p) process according

to the table 3.3 above.

Sample Autocorrelation Function

sl ________ SRS . ________ - _________________________________ _
_§ 0.6 A
# 1 ) S TR e st ]
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70 an a0 100

Figure 22: Autocorrelation function for wind speed data

At this point we are not fully confident that we have extracted all the
information we can from the data. We are fairly certain that there is
need to do a seasonal filtering due to the nature of the wind and the fact
that the ACF is showing some correlation at greater lags. Due to the
samples in the data corresponding to the wind speed every 6 hours we
might think that a low level AR(p) process can describe this seasonality

well, such as an AR(1) or perhaps AR(2

).

Considering real world physics and how the wind behave suggests the
use of an AR(1) process and at the maximum an AR(2). Thinking
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3.4 Initial model estimation

Sample Partial Autocorrelation Function
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Figure 23: Partial autocorrelation function for wind speed data

that the wind speed occuring 6 hours prior and our current is correlated
somehow seems likely, but imagining the same 12 hours prior is harder.

With this in mind we tried different approaches using the prediction
error method, PEM, to estimate a 24h the seasonal model. We have
a strong feeling that it will be a pure AR(p) process of low order, but
the need to add MA(q) terms to create ARMA(p,q) processes is not
unlikely. But as suspected, the loss function was minimal for an AR(1)
process.

Seasonal model.
Discrete-time IDPOLY model: A(q)y(t) = B(qu(t) + e(t)
A(g) =1 - 0.6905 q~-1

B(q) = 0.02915

Estimated using PEM using SearchMethod = Auto on data set data_s

Loss function 1.45413 and FPE 1.45997
Sampling interval: 1

After seasonal filtering we examine the ACF and PACF. Figure 24 show
these. Looking at these the desire to use an AR(3) is arising, even though
there is still some correlation at higher lags present inte the ACF.

When estimating our model we are using approximately 75% of our
data set. Leaving the last 25% for evaluation. Even though everything
points to an AR(3) process, we still play around with our parameters
and examine what happens when using higher order processes such as
AR(15) as well as adding low level MA(q) terms. In the end the AR(3)
process resulting in the best fit is shown below along with the achieved
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Figure 24: ACF and PACF after seasonal 24h filtering

fit which is shown in figure 25. What we see in figure 25 is the last 250
samples of our data that were not used to create our model, compared
to 250 smples predicted by our model.

Estimated model.
Discrete-time IDPOLY model: A(q)y(t) = e(t)
A(g) =1 -1.682 g -1 + 0.7825 q~-2 + 0.03399 gq~-3 - 0.1315 g~-4

Estimated using ARMAX
Loss function 0.714577 and FPE 0.722271
Sampling interval: 1

This looks like a rather satisfying result. To help us decide if the pre-
dicted values are good enough we use a few so called whiteness tests.
These are Ljung-Box-Pierce, McLeod-Li, Monti and the sign change test
as well as plotting the ACF for the residual.

Ljung-Box-Pierce

The test-statistic is

h ~2

Pk

Q=n(n+2)) (17)
k=1

where n is the sample size, py is the sample autocorrelation at lag k, and

h is the number of lags being tested.

McLeod-Li
The test-statistic is

h A

an(n+2)2ﬁ (18)
k=1
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Figure 25: Fit for our predicted samples, AR(3)

where n is the sample size, g is the autocorrelation for the standard
deviation at lag k, and h is the number of lags being tested.

Monti
The test-statistic is
h 9
k

Q:n(n+2)2ﬁ (19)
k=1

where n is the sample size, py is the sample partial autocorrelation at
lag k, and h is the number of lags being tested.

In all the above cases, for significance level «, the critical region for
rejection of the hypothesis of randomness is

Q > Xifoé,h (20)

Where x? is the Chi-squared distribution with 1 — «a degrees of freedom.

Sign change
The sign change test counts the number of sign changes in the data and
the number seen when refererred to is the ratio.

Whiteness test with 5% significance
Ljung-Box-Pierce test: 0 (white if 43.78 < 36.42)

McLeod-Li test: 0 (white if 52.32 < 36.42)
Monti test: 0 (white if 47.87 < 36.42)
Sign change test: 0 (white if 0.42 in [0.44,0.56])

The whiteness tests should return a 1 if the process is believed to be
white. As we see above, non of the tests return a positive result. If we
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Figure 26: Whiteness plot for the residual, AR(3) model prediction

also take a look at the ACF for the residual it should resemble that of
a random signal, in other words, it should be white. And by white we
mean that the correlation at lag v, = 1 when k = 0 otherwise 0.

Figure 27 shows the ACF for the residual and we can clearly see that
the value at k = 1 is well outside the limit for zero. This, along with
the whiteness tests, adds to our impression that the selected model is
not optimal.

Carrelation function of residuals. Output y1
1 T T T T

04 L L L L

lag

Figure 27: The ACF for the residual, AR(3) model prediction
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One indication given by this is that we might want to try adding an
MA(1) term or perhaps even an MA(2) term to account for this. We
jump straight to the residuals to see if we managed to affect the ACF
by adding MA terms. In figure 28 we can see that we haven’t removed
the term in k£ = 1 by adding an MA(1) term. Looking at figure 29 we
can see that by adding an MA(2) term we add to the problem since the
value in k = 2 starts drifting the wrong direction as well.

Carrelation function of residuals. Output w1
1 T T T T
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04 b
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04 L L L L

lag

Figure 28: The ACF for the residual, ARMA(3,1) model prediction
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Figure 29: The ACF for the residual, ARMA(3,2) model prediction

This leads us to believe that the problem is not with the model structure
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or even the order. The problem might be that the mean is not stationary
and that it could cause some kind of drift. To try to account for this we
will take a look at recursive estimation.

3.5 Recursive estimation of parameters

In this approach we will be using the forgetting factor algorithm, which
in the linear regression case is known as recursive least sqaures or RLS.
If a forgetting factor of A = 1 is used it is the equivalent of the Kalman
filter with R; = 0 and Ry = 1. We will not be diving in to the Kalman
filter much more but it is worth mentioning since it is very common in
signal analysis.

Recursive least square filters are discussed in [5] p436-466, [4] p.541-551,
[3] p-314, and the discrete Kalman filter is disussed in chapter 7.4 in [4]
p.371-380, [5] p.466-506,554,638,656 and [3] p.289-296.

We go back to our AR(3) but this time using RLS with forgetting factor
of A = 0.98 to estimate the parameters.

I L
0
750 800 850 900 950 1000

Figure 30: Prediction fit for recursive estimation, AR(3) model prediction

Whiteness test with 5% significance
Ljung-Box-Pierce test: 1 (white if 23.20 < 36.42)

McLeod-Li test: 0 (white if 47.14 < 36.42)
Monti test: 1 (white if 23.91 < 36.42)
Sign change test: 1 (white if 0.49 in [0.44,0.56])

After the recursive estimation we perform the whiteness tests once more
and the results can be observed above. All except the McLeod-Li test are
positive, this is very good, infact this is good enough since the McLeod-
Li test also measures higher order moments. Meaning it is hard to get
that test to pass unless the residual is, in Gaussian terms, good.
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Figure 32: Whiteness plot for the residual, recursive AR(3) model prediction

3.6 Testing our model on different pressure levels

When we test our model stucture for the other pressure levels present
in our data we get a pretty good overall fit. Images for ACF and PACF
after seasonal filtering, fit after recursive estimation, whiteness plot and
ACEF for the residual along with the results from the whiteness tests can
be seen for all pressure levels in appendix B, even if not referenced here.

For the pressures 700, 600 and 500mb the only whiteness test that does
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not go through is the sign change test. But when plotting the ACF for
the residual in these cases, figures 74, 78 and 82, we can see that they
are within the limit of a 95% confidence interval. For 400mb we can
see that the Monti test is the one not giving a positive response, this
is concerning since that should be easier to pass than the McLeod-Li.
Arriving at 300mb, the only thing concerning us here is the fact that
the residual ACF does not look as good as we would want, falling short
with 6 out of 100 outside the allowed interval for our 95% confidence
interval. This can be seen below in figure 33. At 200mb, the McLeod-Li
test is returning negative as well as the sign change test, but once again
looking at the residual ACF we are within our limits. Even though we
are within our 95% confidence interval we can see a trend where the
ACF for the residual is getting noisier.
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Figure 33: Residual ACF recursive AR(3), 300mb

Along with the residual ACF getting noisier we also have a trend in the
PACF when the pressure decreases where the correlation coefficent at
lag k = 4 is getting noticable. This can be seen in figures 72, 76, 80, 84,
88, 92 in Appendix B.

This suggests that we might need to use an AR(4) model as we get
to higher altitudes i.e, the pressure decreases. This is for our case of
Malmoe airport and the same cannot be said about the rest of the world
at this stage.

3.7 A different approach - differentiation

Another way to handle a drifting mean, other than the recursive ap-
proach, is to use differentiation.

After differentiation we take a quick look at the data, figure 34. It is
looking more random now then before the differentiation, this is a good

Mathematical statistics — page 29 — Infocom



3 WIND SPEED 3.7 A different approach - differentiation

sign, and the ACF, figure 35, and the PACF, figure 36, are suggesting
the presence of an ARMA(p,q) model. We will be using PEM for the
seasonal model as talked about earlier.

1} 100 200 oo 400 500 600 ¥0O aoo 900 1000

Figure 34: Differentiated wind speed data
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Figure 35: Autocorrelation function for wind speed data after differentiation

Corresponding seasonal model for fit 1.

Discrete-time IDPOLY model: A(q)y(t) = B(qu(t) + C(q)e(t)

A(g) =1 - 0.09158 g~-1 + 0.04503 q~-2 + 0.1334 q~-3 + 0.1208 q~-4
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Sample Partial Autocorrelation Function
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Figure 36: Partial autocorrelation function for wind speed data after differenti-

ation

B(g) = 0.004772

70

an a0 100

C(g) =1 - 0.05309 g~-1 - 0.1122 g~-2 - 0.01684 g~-3 - 0.8179 q~-4

Estimated using PEM using SearchMethod =

Loss function 0.767863 and FPE 0.781867

Sampling interval: 1

Predicted model for fit 1.

Discrete-time IDPOLY model: A(q)y(t)

A(q) =1 -0.8384 g°-1 + 0.12 q~-2 + 0.2225 q~-3 + 0.12 q~-4

C(q) =1 -0.748 g°-1 - 0.1428 gq~-2 + 0.1059 q~-3 - 0.6527 q~-4

Estimated using ARMAX

= C(qle(t)

Auto on data set data_s

- 0.1822 q~-5

+ 0.4253 g~-5 + 0.01233 q~-6

Loss function 0.702923 and FPE 0.723963

Sampling interval: 1

Whiteness test with 5% significance

Ljung-Box-Pierce test: 1 (white

McLeod-Li test: 0 (white
Monti test: 1 (white
Sign change test: 1 (white

if
if
if
if

20.41 < 36.42)
39.32 < 36.42)
33.57 < 36.42)
0.49 in [0.44,0.56])
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3.7 A different approach - differentiation
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Figure 37: The differentiated wind speed data after seasonal filtering
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Figure 38: ACF and PACF for differentiated wind speed data after seasonal

filtering

After alot of testing we achieve the best fit of 33% with an ARMA(5,6)
model, figure 39. If we take a look at the whiteness tests above it is yet
again the McLeod-Li that is negative, but this is acceptable. Overall this
approach with differentiation might be a viable optionin some cases, but
for us it resulted in a more complicated model with a worse fit for our
predicted samples.
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Figure 39: Prediction fit for differentiated wind speed, AR(3) model prediction
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Figure 40: Whiteness plot for the residual, AR(3)

4 Wind direction

At first we take a look at the data for the wind direction and there
are some gaps in this as well, this is expected since this data comes in
the same transmission as the wind speed. Meaning that any missing
wind speed value will result in a missing wind direction value as well.
We use the same simple interpolation as before and figure 42 shows the
corresponding 1000 values of wind direction for the wind speed data
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Figure 41: Residual ACF.

used earlier.

We will also introduce the rose plot here, which is commonly used when
talking about wind direction. Since the values are between 0 and 360,
the rose plot will give us a good overview of the actual direction the
wind is coming from geographicly. A rose plot for the data is seen in
figure 43.
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0 100 200 300 400 S00 00 YOO §00 900 71000

Figure 42: Wind direction sample 1 through 1000

As stated earlier the prevailing wind direction for our data would in fact
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270

Figure 43: Rose plot

Figure 44: Histogram

be south west, meaning values of roughly 180 - 270, and if we take a
look at the histogram in figure 44 we can see that it pretty much agrees
with our prevailing wind direction.

We also take a look at the ACF and PACF for the data, figure 45 and
figure 46.

If we apply the same approach for the wind direction as we did earlier for
the wind speed, we can rather quickly see that a simple AR(3) process
is a good starting point.
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Figure 45: ACF

Sample Partial Autocorrelation Function
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Figure 46: PACF

Discrete-time IDPOLY model: A(q)y(t) = e(t)
A(q) =1 - 0.6472 g~-1 - 0.3289 gq~-2 + 0.001983 q~-3

Estimated using ARMAX
Loss function 3168.52 and FPE 3194.04
Sampling interval: 1

The fit is not very good, telling us that our model might not be suitible.
We take a look at the ACF for the residual and perform our whiteness
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Figure 47: Fit for our predicted samples

Figure 48: Rose plot comparison

tests nontheless.

Whiteness test with 5 significance
Ljung-Box-Pierce test: O (white if 77.23 < 36.42)

McLeod-Li test: 0 (white if 41.84 < 36.42)
Monti test: 0 (white if 64.26 < 36.42)
Sign change test: 0 (white if 0.41 in [0.44,0.56])
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Figure 50: Whiteness plot, AR(3)

After looking at the residual we can confirm that our model is nowhere
near as good as we would want. But first things first, as in the case with
the wind speeds, the same sort of seasonal filtering might be a good idea
to help with the initial fit of the prediction.

Without to much repetition of things, we perform the same kind of
filtering, by estimating the seasonal parameters using PEM.

After seasonal filtering, using the same model structure and order AR(3),
we get the signal fit seen in figure 51.
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Figure 51: Fit after seasonal filtering, AR(3)

This is looking more like something we can expect. Looking at the
ACF for the residual after seasonal filtering in figure 52 we see that the
residual is nowhere near white.
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Figure 52: Residual ACF, AR(3)

Looking at the residual we get the indication that adding some MA-
terms might be a good idea. But before we start complicating our model,
we might want to go back the the ACF for our data and consider the
correlation indicated in & = 5. If we simply focus on the resulting fit for
our predicted model and the ACF for the residual we can power through
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a couple of model variations quite fast.

Trying the AR(5) we get the fit seen in figure 53 and the residual ACF
seen in figure 54.
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Figure 53: Fit after seasonal filtering, AR(5)
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Figure 54: Residual ACF, AR(5)

Not much did change in the residual when adding to the order of the
model. We are still left with the feeling that MA-terms are needed.

After some testing we are left with two good candidates, ARMA(5,2) and
ARMA(5,7). We get similar results with both these, but the whiteness
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tests are not going through and there is still a problem at k = 7 where
the value is outside the boundaries.

A similar situation that we had with the wind speed that the mean is
not stationary might be the issue here as well. Running the RLS for the
wind direction as well expecting the ARMA(5,2) and the ARMA(5,7)
to perform the best with a slight upperhand for the latter.

The best result was obtained with the ARMA(5,7) model, or more cor-
rect, the only model that performed well with the whiteness tests was
this model.

Whiteness test with 5 significance
Ljung-Box-Pierce test: 1 (white if 29.81 < 36.42)

McLeod-Li test: 0 (white if 54.35 < 36.42)
Monti test: 1 (white if 34.31 < 36.42)
Sign change test: 1 (white if 0.45 in [0.44,0.56])
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Figure 55: Fit ARMA(5,7)

Figure 55 shows the fit for the model and figure 56 shows a rose plot
comparison for the last 250 samples. The residual ACF is seen in figure
57 and by looking at that we can conclude that this model is satisfactory
in terms of the residual, we also have the whiteness plot in figure 58
which does not lead us to believe otherwise. On the other hand, looking
at the predicted fit in figure 55 once more we can see that we have
a problem with the result set not taking into consideration that the
wind direction is cirkular. In short, all values not within the bounds of
0 < x < 360 is simply not a valid wind direction.

Taking a look at figure 59 where we have used modular 360 on our pre-
dicted samples to represent the cirkular behavior of the wind direction.
At a first glance it seems to be very off in its prediction. But after taking
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Figure 56: Rose plot comparison, ARMA(5,7)
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Figure 57: Residual ACF, ARMA(5,7)

a closer look we can see that the directional values are not that far off,
the distance from 350 degrees over to 10 degrees is only 20 degrees, but
in the plot it looks like alot more.

Looking back at our initial conclusion that the model was satisfactory
in terms of the whiteness of the residual, we can add to this that we are
satisfied with our predicted fit as well.
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Figure 58: Whiteness plot
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Figure 59: Fit for recursive ARMA(5,7) modular 360

5 Spatial Dependency

If we look at the wind speed data for both Kastrup airport and Sturup
airport for the year 2011 at pressure level 850mb, both seen in figure
60, we can clearly see some similarity. Looking at the cross correla-
tion between the two, figure 61, we can see that the data for Kastrup
seems to be pretty much identical to that of Sturup, except it is shifted
approximately 35 samples. 35 samples is roughly 9 days.

Since the the grid point separation is 1.25°by 1.25°, which is roughly
140km by 140km on the equator, the use of spatial dependency seems
less useful the closer you are to the equator.

On the other hand, when looking at the correlation between Copenhagen
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Figure 60: Wind speed for Sturup and Kastrup
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Figure 61: Cross correlation between Sturup and Kastrup

and Malmoe, as well as Los Angeles and San Diego, figures 62 and 63, we
can come to the conclusion that spatial dependency is already accounted
for in the models used to generate the forecasts. As a result of this, there
should not be any need for us to account for spatial dependency a second
time if we can achieve a good enough model.
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6 CONCLUSION AND DISCUSSION

1500

Figure 62: Wind speed for Los Angeles and San Diego
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Figure 63: Cross correlation between Los Angeles and San Diego

6 Conclusion and discussion

It is known that predicting long term wind speed with less than a year
of data can be subject to large errors.

Recursive estimation seems like the way to go for both the speed and
direction, since the mean will not be stationary for any of those.

As conclusion we can say that a recursive model, initially generated
from the approximately 2 years of data available at the company, that
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7 TOPICS OF FURTHER RESEARCH 6.1 Additional Sources

updates whenever there is new samples available will give a more than
satisfactory result for the purpose of the companys use. As well as the
fact that the models will contingiously improve, there is also no need to
retrieve any new sources of data.

6.1 Additional Sources

Given the purpose of the company use of the data, a seasonal mean data
set would be very good since this will provide reliable models in case the
live weather sevices are not operational. One big problem with this is
the availability of such data that can be used to create a seasonal mean
data set with the resolution we require. We have been in contact with
MetOffice and by the time of writing (mid 2012) they are 12-18 months
away from being able to provide historical GRIB data.

Another option is to use the current normal period of statistical weather
data. The problem here will most likely lie in the resolution, but this is
unconfirmed since it has proven difficult to recieve a sample from that
data.

7 Topics of further research

e How does a multivariate approach affect the models.

e Is there an algorithm or a numerical approach suitable for au-
tomating the generation of models based on the method described
in this paper.
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

B Wind Speed Model Testing For Different
Pressure Levels

B.0.1 Pressure Level 700mb

Whiteness test with 5, significance
Ljung-Box-Pierce test: 1 (white if 26.94 < 36.42)

McLeod-Li test: 1 (white if 27.19 < 36.42)
Monti test: 1 (white if 30.67 < 36.42)
Sign change test: 0 (white if 0.43 in [0.45,0.55])

Sample Autocorrelation Function

Sample Autocorrelation

Sample Partial Autocorrelations

Figure 72: ACF and PACF for pressure 700mb

B.0.2 Pressure Level 600mb

Whiteness test with 5% significance
Ljung-Box-Pierce test: 1 (white if 21.50 < 36.42)

McLeod-Li test: 1 (white if 30.55 < 36.42)
Monti test: 1 (white if 26.39 < 36.42)
Sign change test: 0 (white if 0.43 in [0.45,0.55])
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Figure 73: Fit after recursive estimation for 700mb, AR(3)
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Figure 74: Residual ACF recursive AR(3), 700mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS
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Figure 75: Whiteness plot for the residual, 700mb

Sample Autocorrelation Function

Sample Autocorrelation

] 10 20 3o 40 a0 G0 70 ao 30 100
Lag
Sample Partial Autocorrelation Function

Sample Partial Autocorrelations

Figure 76: ACF and PACF for pressure 600mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Figure 77: Fit after recursive estimation for 600mb, AR(3)
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Figure 78: Residual ACF recursive AR(3), 600mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS
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Figure 79: Whiteness plot for the residual, 600mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

B.0.3 Pressure Level 500mb

Whiteness test with 5 significance
Ljung-Box-Pierce test: 1 (white if 21.92 < 36.42)

McLeod-Li test: 1 (white if 18.88 < 36.42)
Monti test: 1 (white if 26.58 < 36.42)
Sign change test: 0 (white if 0.43 in [0.45,0.55])
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Figure 81: Fit after recursive estimation for 500mb, AR(3)
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Sample Autocorrelation Function
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Figure 82: Residual ACF recursive AR(3), 500mb

1 T T T T T T
5% significance test

nar

0ar

05

Clw)

n4r

0ar

1
] 0.5 1 1.5 2 2.5 3
Frequency

Figure 83: Whiteness plot for the residual, 500mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

B.0.4 Pressure Level 400mb

Whiteness test with 5 significance
Ljung-Box-Pierce test: 1 (white if 35.99 < 36.42)

McLeod-Li test: 1 (white if 10.72 < 36.42)
Monti test: 0 (white if 44.78 < 36.42)
Sign change test: 1 (white if 0.45 in [0.45,0.55])
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Figure 85: Fit after recursive estimation for 400mb, AR(3)
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Sample Autocorrelation Function
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Figure 86: Residual ACF recursive AR(3), 400mb
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Figure 87: Whiteness plot for the residual, 400mb
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

B.0.5 Pressure Level 300mb

Whiteness test with 5 significance
Ljung-Box-Pierce test: 1 (white if 25.28 < 36.42)

McLeod-Li test:
Monti test:
Sign change test:

1 (white if 33.44 < 36.42)
1 (white if 32.61 < 36.42)

0 (white if 0.41 in [0.45,0.55])
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Figure 89: Fit after recursive estimation for 300mb, AR(3)
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Sample Autocorrelation Function
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Figure 90: Residual ACF recursive AR(3), 300mb
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Figure 91: Whiteness plot for the residual, 300mb

Mathematical statistics — page 61 — Infocom



B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

B.0.6 Pressure Level 200mb

Whiteness test with 5 significance
Ljung-Box-Pierce test: 1 (white if 16.45 < 36.42)

McLeod-Li test: 0 (white if 74.46 < 36.42)
Monti test: 1 (white if 21.23 < 36.42)
Sign change test: 0 (white if 0.41 in [0.45,0.55])
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Figure 93: Fit after recursive estimation for 200mb, AR(3)
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B WIND SPEED MODEL TESTING FOR DIFFERENT PRESSURE LEVELS

Sample Autocorrelation Function
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Figure 94: Residual ACF recursive AR(3), 200mb
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Figure 95: Whiteness plot for the residual, 200mb
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C INTERPOLATION ALGORITHM

C Interpolation Algorithm

% A counter for the number of O-values to replace

counter = 0;

% The non-zero value that comes before a value to replace
nonZeroStart = 0;

% Loops for traversing the matrix column by column
for i=1:n
for j=1:m-1
% Case for when there is only one consecutive zero
if ( data(j,i) == 0 && data(j+1,i) "= O && counter == 0 )
data(j,i) = (nonZeroStart + data(j+1,i)) / 2;
% Several consecutive zeros
elseif ( data(j,i) == 0 && data(j+1,i) ==0 )
counter = counter + 1;
% When reaching a non-zero value after several consecutive zeros
elseif ( data(j,i) == 0 && data(j+1,i) = 0 )
counter = counter + 1;
nonZeroEnd = data(j+1,i);
increment = (nonZeroEnd - nonZeroStart) / (counter+1);
value = nonZeroStart;
for k=1:counter
data(j-counter+k,i) = value + increment;
value = value + increment;

end

counter = 0;
else

nonZeroStart = data(j,i);
end

end
end
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D ALTITUDE TO PRESSURE CONVERSION TABLE

D Altitude to Pressure Conversion Table

Barometric Pressure

The altitude to pressure conversion table is derived using the US Stan-
dard Atmosphere 1976 barometric formula for geopotential altitude with
the following physical constants and multi-valued constants for sea level
up to a height of 36,089 ft (11,000m)

P:Pb[

.
Ty + Lb(h — hy

1

go M

P, = Standard atmospheric pressure at sea level, 1013.25 mb
T, = Standard temperature (K),288.15K (15°C)
L, = Standard temperature lapse rate —0.0065(K/m) in ISA

h = Height above sea level (meters)
hy = Height at bottom of layer b (meters; e.g., hy = 11000 meters)

R* = Universal gas constant for air: 8.31432 Nm/(molK)
go = Gravitational acceleration (9.80665 m/s?)
M = Molar mass of Earth’s air (0.0289644 kg/mol)

ft m mb/hPa psi mmHg | inHg

0 0 1013.25 | 14.696 | 760.00 | 29.921
50 15.240 | 1011.42 | 14.669 | 758.63 | 29.867
100 | 30.480 | 1009.59 | 14.643 | 757.26 | 29.813
200 60.960 | 1005.95 | 14.590 | 754.52 | 29.706
300 | 91.440 | 1002.31 | 14.537 | 751.80 | 29.598
400 121.92 | 998.689 | 14.485 | 749.08 | 29.491
500 | 152.40 | 995.075 | 14.432 | 746.37 | 29.385
600 | 182.88 | 991.472 | 14.380 | 743.67 | 29.278
700 | 213.36 | 987.880 | 14.328 | 740.97 | 29.172
800 | 243.84 | 984.298 | 14.276 | 738.28 | 29.066
900 274.32 | 980.727 | 14.224 | 735.61 | 28.961
1000 | 304.80 | 977.166 | 14.173 | 732.93 | 28.856
2000 | 609.60 | 942.129 | 13.664 | 706.65 | 27.821
3000 | 914.40 | 908.117 | 13.171 | 681.14 | 26.817
4000 | 1219.2 | 875.105 | 12.692 | 656.38 | 25.842
5000 | 1524.0 | 843.073 | 12.228 | 632.36 | 24.896
6000 | 1828.8 | 811.996 | 11.777 | 609.05 | 23.978
7000 | 2133.6 | 781.854 | 11.340 | 586.44 | 23.088
8000 | 2438.4 | 752.624 | 10.916 | 564.51 | 22.225
9000 | 2743.2 | 724.285 | 10.505 | 543.26 | 21.388
10000 | 3048.0 | 696.817 | 10.106 | 522.66 | 20.577
15000 | 4572.0 | 571.820 | 8.2935 | 428.90 | 16.886
20000 | 6096.0 | 465.633 | 6.7534 | 349.25 | 13.750
25000 | 7620.0 | 376.009 | 5.4536 | 282.03 | 11.104
30000 | 9144.0 | 300.896 | 4.3641 | 225.69 | 8.8855
35000 | 10668 | 238.423 | 3.4580 | 178.83 | 7.0406
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