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Analysing a bistable switch in systems biology with stochastic
simulations

Abstract
We analyse biological switches with the aid of computers and the Gillespie method, a
stochastic solver. Stochastic calculations can lead to spontaneous switches which are, in
part, determined by a subset of the parameters. In a deterministic description this is
hidden. Initial analysis using a deterministic description of the system will reveal that by
applying certain constraints on the system we can greatly simplify the calculations. This
gives us a quick and simple way to calculate not only how many fixed points a system has
for any specified set of parameters, but also the equilibrium concentrations. This is in great
contrast to when the calculations are done stochastically, where you unlock certain
behaviours and loose others, such as being able to accurately calculate equilibrium
concentrations (number of molecules). We will also see that, as a rough estimate, the
highest equilibrium concentration is dependent on a specific parameter, namely the
quotient between the production and degradation rate. Finally we also look at a system in
which an external signal is added, driving the system to switch.

Introduction
Biochemical systems can be described by either continuous (concentration) or discrete
(number of molecules) variables. One common way of describing the dynamics of the
systems is by treating the system as deterministic. However, on the cellular level where the
concentration of chemicals can be as low as single molecules per unit volume, the
randomness of chemical reactions becomes increasingly important. In such a case
stochastic mathematics might be a better way of describing chemical reactions, especially
if the system shows multi-stability or switch-behaviour.
Daniel T. Gillespie wrote a paper!'" back in '77, describing a new method of simulating
chemical systems by using stochastic mathematics and computers. The method, called the
Gillespie method, has become widely used when you wish to look at systems with coupled
chemical reactions and is easy to implement, requiring at most four steps in the main body.
We will use the stochastic method to analyse a simple network presented in
Gardner et al®®, dealing with what they call “Construction of a genetic toggle-switch in
Escherichia-coli”. We use this simple synthetic switch system which has the potential to
spontaneously switch from one state to another.
It has been discovered that nature sometimes takes advantage of gene constructions
which act as switches, since they have been found to exhibit multi-stability and switching.
Some examples of these are the bacteriophage A switch and the Cyano bacteria
circadian oscillator®. These types of objects can be said to be addressable cellular
memory units and so they can be used in bio-tech applications such as biocomputing or in
the field of gene therapy®. Various types exist, both synthetic (engineered) and natural.
In the paper Gardner and his team construct a bistable switch and they analyse it
deterministically. We will compare the deterministic analyses with the stochastic using the
aforementioned method. The switch itself contains only two inducers, two promoters and
two repressors which act on each others promoters (Fig. 0A). Two versions will be studied.
In the first one the system will not have any switch inducers, whereas the second will
include one inducer. This will then be analysed with the mass-action formalism using a
system of differential equations as well as with stochastic methods.



Methods

The Gillespie method
In 1977 Daniel Gillespie wrote a paper describing a new way of simulating stochastic
systems. The general problem discussed is a study of the time evolution of chemical
reactions which are coupled together. The main approach is that time is continuous and at
any point in time only one reaction can occur. With this idea it is now possible to construct
a method for simulating systems. Time step is represented with a random variable
according to a distribution, describing the time to the next reaction event to happen (see
below). After the time step has been chosen it is added to the recent time point.

To this you generate a second random number which is going to represent the chosen
chemical reaction at the above chosen time and the system is updated. The crucial steps
of the algorithm can be summarised as follows

1: Generating a random time step.
2: Generating a random reaction.

3: Update system.

4: Repeat until final time is reached.

As a precaution one can add a step in between the first and second steps to check
whether one has overstepped one's time limit or not.

As this was just a rough description of the method used, | will now describe in detail how it
was implemented. First of all we know that every reaction known has its own reaction rate,
propensity if you will, and so this has to be used in order to accurately describe the
development of the system. This is done in the following manner. We know that a reaction
with a larger rate will evolve at a higher speed. And so, the probability of choosing the
reaction with the higher rate has to be higher than the probability for the reaction with a
lower rate. This can be represented by introducing a factor in the probability,
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The C,'s are the stochastic reaction constant, i.e. the average probability that a specific
reaction will happen in the next time interval dt. H, is the number of distinct molecular
combinations in the state (Xj,,,X,), where X; is the number of molecules of type i. When we
work with the chosen time step we also have to use a probability distribution to accurately
describe the flow of time. The Gillespie algorithm uses the logarithm distribution with the
inverse of the random number, r, which is drawn from a uniform distribution in the interval
(0,1)

log(l) )
r
The reason for this comes from statistical mechanics and is given as follows. To quote
Gillespie directly!, given that R, is the p:th reaction in a set of reactions {R}, with state
(X1,,,Xn) and defining a, as H, times C,:
“Po(T), the probability that, given the state (X4,,,X,) at time t, no reaction will occur in the



time interval (t,t+1); times a, dr, the subsequent probability that an R, reaction will occur in
the time interval (t+1, t+71+dT): P(T,n)d1=a,P,(7)dT. To find an expression for P(T), we first
note that

l—z a, dt’
is the probability that no reaction will occur in time d1' from the state (X1,,,X,). Therefore
M
Py(t'+dt')=P,(t") (1= a,dT")
v=1

from which it is readily deduced that

—iavT »
Py(t)=e ™

This shows why we have to have the log distribution. With this in mind it now follows that
when we take a random time step we should choose it in the following way
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When it comes to choosing the right reaction we only have to view the situation when we
look at a bag filled with balls with the reaction numbers printed on them. Then we randomly
pick one ball after another. To correctly give the probabilities we have to add weights to the
balls so some reactions will be picked more often than others. This can be represented by
simply adding a,:s and multiplying with a random number between 0 and 1 from a uniform
distribution. After which we compare the product with the cumulated sum of the factors
between the stochastic reaction constant and the number of distinct R, molecular
combinations in the state (X4,,,X,) and choose the reaction which corresponds to the
nearest lowest cumulated sum.

The Taylor approximation
According to Taylor, any function which is two times differentiable can be expanded around
a point x, with Ax as a polynomial as

2
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The extremum finding method
Because the simulations are stochastic, the statistics will not be smooth and so one has to
allow for roughness which was accommodated by looking at larger areas, introducing
averaging tools. For this we used a converted version of the simple standard numerical
derivative given as.
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With Y as a function of x, in our case meaning the number of molecules in the distribution
of outputs, but instead of using the exact expression we used the expression.

Y(/+10)_ Y(i—10) [ii]

In this version we average over twenty-one steps instead of three, then we checked the
product between one of these differences and the one starting where the first one ends. If
this was less than zero then the value of the distribution at that point and that point's
position in u and v was logged, but not if the new position were smaller than the previous
one.

Models

Mass-action formalism
In the mass-action formalism we look at chemical reactions and the formalism gives us a
way of analysing the reactions deterministically. The main assumption in this formalism is
that the reaction rate is proportional to the product between the concentrations of the
reacting species, and the rate constant is the constant of proportionality. To find the time
derivative of the concentration we have to account for the number of molecules of a
specific type involved in the reaction, and determining the sign depending on if they are
reactants(-) or products(+).

Chemical system

A+AS B
Time derivative
%: -2k, A? ;@: K, A?
at at

It's derived using the assumptions that the medium is well stirred and and that the
concentrations of the partaking species are low. The assumption of mass-action formalism
has the consequence that the probability for a reaction to occur is not dependent on the
environment and in no part of the container is one reaction favoured over the others.

The Bistable switch
The chemical reactions describing the system of proteins with bound and unbound
promoters are given as follows

K kz Kq
u—»g,yu+p,ep,.p,~p,+u
K,
. P K, [iii]
v »,pv+p,ep,,,. P, P,V
k
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Where u and v are proteins whereas the py is the promoter of the protein x and py is the
bound complex which is built out of p, and y, the “other” protein. k, are the rate constants in



the reaction. B, y are seen in the reactions above as how many molecules of uand v are
partaking in the two-way reaction. § and y are important for the behaviour of the system
regarding the number and type of fix-points. In this paper we will choose to set the B and y
to 2, meaning we will construct a complex which takes one promoter and a dimer or simply
2 molecules of either u or v depending on which promoter we use. This choice will allow for
bi-stability in the system.

The first and the fifth reaction are two degradation reactions. In the fourth and the eighth
reactions, the partaking promoters are generating new u:s and v:s. The second, third, sixth
and the seventh reactions are two-way reactions, which tend to arrive at equilibrium
concentrations in the partaking molecules' concentrations. When we derive the
deterministic model, we will assume that the two-way reactions are fast and always at
equilibrium, the time derivative of the concentrations of the promoters and the bound state,
px and pox, are set to zero for all times. The properties of the system are such that
whenever the system is in the bound state there will be no promoter to sustain the creation
of the molecule which the specific promoter promotes and so other reactions will be
conducted until the system becomes unbound again. Hence u and v acts as repressors of
each others' production. A reaction is said to be fast if its speed of evolution is such that,
relative to a system's complete set of reactions, it is greater than a majority of the system's
reactions. The consequence of being a fast reaction is that the reaction will arrive at the
equilibrium in such a way that the reaction can become a bottleneck in the system or fast
to respond to any perturbation from the equilibrium.

Derivations
We will now derive the deterministic model of the system defined in the previous section
and analyse it.
With the Michaelis-Menten or Hill description, the total derivatives in py, pw, pv and py, are
set to zero. This comes from the assumption that the binding-unbinding reaction is fast and
always at equilibrium. It means that whenever we see a change in the amount of
molecules of one species it will not be long before the system has undergone a change to
accommodate the loss of concentration in one of the molecules, id est, the equilibrium will
be restored in an instant. We also assume we have one promoter per gene

pu-i_lobu:-I
pv+pbv:‘I

With these assumptions, u's and v's derivatives can be written as

dt c+v*
ﬂ: bc _ev
at c+u’ _ [iv]

The parameters a, b, ¢, e are determined by the reaction constants in [v].

ks _Kv =k, b=k, ,e=k =k
=, 85K, 0= Ky, =K =Kg [V]
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Having completely defined the deterministic model allows us to analyse the dynamics of
the system. In order to find the fix-points, the derivatives are set to zero and the system of
equations can be simplified into

ac Y ByY ByY
0=e(—) v+ce(c+v")'v—bec(c+Vv")

e .
bc i
0=e(?) u+ce(c+u’)u—ac(c+u’)

where we will choose to use B=y=2. We use these two equations ([iv]) to numerically
search for parameter sets which give three positive values in uand v which result in
derivatives with the value 0. Depending on the sign of the expressions of the derivatives,
two of them will be stable with the other one being unstable or vice versa. Stability is
defined as the behaviour a system has when it is perturbed around the fix-point. The fix-
point is stable if, when the system is perturbed around the fix-point, the system will always
be drawn to it. Unstable means that if, when the system is perturbed around the fix-point,
the system will move a way from it.

For a given system, we can always start to calculate the so called null-clines. These are
lines in which a single variable has zero derivative (Fig. 0B).
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Fig OA: Model of the switch. Promoter x is px in our system, Repressor y is u or v in our system. This picture was obtained with
permission from Macmillan Magazines Ltd. Nature. Fig. 0B: Nullclines for the system where a=b=379.269, c=10, e,degradation, is equal
to 10, The intersections are the points which results in zero derivatives in both v and v at the same time. For this specific symmetric,
a=b, choice of parameters fix-points for u and v will be 0.2655 ,6.7785 and 37.6615.

Simulation results
We now display the results we obtained during our simulations. When the values are
changed on the parameters the resulting change in number of fix-points can be quite
visible as is seen in Fig. 1.
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Fig. 1a Left: Parameter search when ¢ has been set to 10, blue represents 1 equilibrium concentration of stability whereas red means 3,
where one is unstable. Fig. 1b Right: Parameter search when ¢ has been set to 100, Blue represents 1 equilibrium concentration of
stability whereas red means 3 where one is in-stable. In both pictures you have a and b as the x and y axis. e, the degradation, was kept
constant at 10. Please note logarithmic scales.

The red areas in Fig. 1 can be tabulated to give the different parameter sets which results
in one or three equilibrium concentrations, [Tab. A1]. This allows us to do initial
calculations in the deterministic environment, solving the system of differential equations
[iv]. The method used for this is the second order Taylor approximation, [i]. The resulting
calculations are shown in picture Fig. 2, in which we have chosen to display two evolutions
of the same system but with different initial states. Meaning that U and W correspond to
the same variable (u) and so do Vand Y (v).
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Fig. 2 Above: The initial state in the U/V system is U,=40.001 and V,=40.000 whereas the initial state in the W/Y system is W,=6.8
whereas Y,=6.77. a and b is 379.269, c=10, e,degradation, is equal to 10.

The U/V system first makes an initial dip down towards the unstable equilibrium
concentration. Then the curves increase their separation. The variable with higher
concentration shoots up towards the high equilibrium concentration and the lower one
moves down to the low equilibrium concentration. W's initial state in the W/Y system is
0.022 above the unstable equilibrium concentration where as Y's initial state is 0.008
below the equilibrium concentration. The curves began immediately to diverge from each
other and they moved towards their respective stable equilibrium concentration.

The deterministic system gives us nothing more than how an initial state will evolve in time.
But when we do these in a stochastic environment, then we open up new behaviours
which were not allowed in the deterministic environment. The major difference between the
two environments, deterministic and stochastic, is being able to “switch”, jump from one
region to another. Initially it was noticed that the frequency of switching might depend on



one parameter only or several, this might not be visible or have a corresponding
counterpart in the deterministic environment (Fig. 3).
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Fig. 3 Left and Right: has the reaction constants ki, ks, ks and ks in common, k; and ks as 12.74 and k, and ks 1000. Fig. 3a Left: has
¢=100 with k. and ks as 1 and k; and k; as 100. Fig. 3b Right: has c=100 with k. and ks as 100 and k; and k; as 10000. e was kept
constant and the same in both simulations.

We investigate when the stochastic model leads to spontaneous switching. In the first part,
the model was analysed by varying the values of k, and kg, corresponding to varying a and
b in the Hill formalism, see Fig. 1.

After generating 100 models with varying values on k; and ks, we implemented the
Gillespie algorithm to conduct simulations with a project called organism®. To simplify the
system and to study the effect of varying only k4, and kg, the rest of the reaction constants
were kept fixed, k; and ks at 10 whereas k. and ks were kept at 10 and k; and k; at 100 to
keep c fixed at 10. This was done in one of two simulations and in the other ¢ was
increased to 100 meaning that k, and ks were shifted to 1. From these 2 sets of simulations
the number of switches, between the high state and the low, were in each simulation
collected. As well as the concentration of molecules in the high state, which is situated
where the largest cluster, at the highest number of molecules, of data points are sitting on
the distribution. This corresponds to looking for the position of highest equilibrium
concentration in the deterministic environment.

A stochastic model of the bistable switch leads to spontaneous switching
We now investigated the bistable switch with the Gillespie algorithm.
The parameters k, and kg were varied between 158 and 10000 logarithmically in 10 steps.
The reason for the choice 158 is that when we work with the logarithm of the parameters a
and b, ks and kg, then it becomes easy to work with them if the lengths of the steps are 0.2
or 0.4. We mapped out the region of bi-stability for comparison with the stochastic
simulations (cf. Fig. 4 with Fig. 1). The simulations in the deterministic system showed the
same as the fix-point analysis.
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Fig. 4 Above: Number of equilibrium concentrations calculated by searching deterministically the domain of (u')'s function when ¢ is 10.
X-axis is a and Y-axis is b. The scales are logarithmic.

Next we investigated the number of spontaneous switches between the two states, high u
and low v and low u and high v. As we move upwards in k, and kg the number of switches
declined quite rapidly (Fig. 5a and Fig. 5b).
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please note logarithmic scales pleaze note logarithmic scales
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Fig. 5a Right: Number of switches in v. Fig. 5b Left: Number of switches in u. c=10, a and b is in [1072.2 1074] and e=10. Starting state is
Uo=30 and v,=0. The scales are logarithmic.

We also investigated where the system has its high stable state by analysing the
distribution of concentration from the stochastic simulations (Fig. 6).
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Fig. 6 Above: Example distribution of outputs in one simulation.

From the distribution, we then extracted the position of the highest equilibrium
concentration by searching for the maximum at the highest concentration by using the



method [ii]. These equilibrium concentrations were then mapped out (Fig 7).
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Fig. 7a Left: Extracted highest state in u from statistics, the scales are logarithmic. Fig. 7b Right: Extracted highest state in vfrom
statistics, the scales are logarithmic. Fixed c at 10 in both cases and fixed degradation, e, at 10.

Fig. 7a and Fig. 7b show asymmetry which was investigated. The reason for the
asymmetry was the initial states. The initial states were interchanged and we got the
reverse effect (Fig. 8). Meaning, there exist regions in the a/b-graph where it's increasingly
difficult for the species which is sitting in its low state to manage to jump upwards to its
high region. This is indicated by the large triangular areas of blue colour.
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It will later be shown that the system with ¢ as 100 also exhibits the same asymmetry and
there also the reason is the initial states.

To further analyse the switching behaviour, we investigated the time spent in each state by
calculating the distributions of concentrations through a simulation.

We then analysed statistics for varying sets of parameters. Fig. 9 illustrates some features
of switching behaviour, but the difference between the two needs a bit of explaining. Due to
the fact that the highest equilibrium concentration in Fig. 9a is situated very low, it nearly
becomes ambiguous when and where the system has switched. It can be shown with
simulations that sometimes the statistics becomes so cluttered that the high state is
indistinguishable from the low state. We can clearly see in Fig. 9b a difference in the
amount of visits to the high state for v and v. Additional simulations at the stated values on
a and b showed that these phenomena are statistical fluctuations (Fig. 10). Fig. 9c and Fig.
9d show two normal situations, 9c displaying a peak at 1000 and 9d showing a peak at 251
in rough accordance with one tenth of one of the parameters listed in the diagram. The
reason for the tenth comes from the fact that the degradation is exactly 10.

Fig 8a left and 8b right: Showing the reverse asymmetry in Fig. 7a and Fig. 7b. The scales are logarithmic.
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Fig. 9 These figures represent different scenarios with different sets of parameters. The upper number in the title is b's value and the
lower is a's. Fig. 9a Top Left: Switching system with a low maximum equilibrium concentration. Fig. 9b Top Right: Switching system with
a medium high maximum equilibrium concentration. Fig. 9c Bottom Left: Peak in v situated at 1000. Fig. 9d Bottom Right: Peak in u
situated at 251.Please note that the overall maximum has been cut off in order to show the behaviour more clearly.

The difference in amplitude in the distributions in Fig. 9b was investigated with 100
simulations with the same parameter set (Fig. 10) and the means were calculated. The
mean in u is at 2467 and 2454 in v. The standard deviation is at 67 and 68 in uand v
respectively. The difference between the means were roughly 1%.
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Fig. 10 Above: 100 simulations at a=b=630.957 with c=10, k, and ks at 0.1 and k; and k; at 1, and e at 10. The mean value in u is 2467
and v at 2454, the standard deviations are at 67 for uand 68 for v.

Sometimes when we studied the statistics in one of the scenarios we could see one stable
state for u and a different one for v (Fig. 11), this is obvious since for every set of unequal a
and b it is probable that if one were to switch the a and b we would find a new set of
parameters which also has three equilibrium concentrations. The logic behind it is that if
one were to switch a and b then this is the same as switching v and v, meaning u becomes



v and vice versa.
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Fig. 11 Left: Statistics for one set of parameters, please note the two peaks. Please note also that because the majority of cases has the
bulk of the statistics lying at the first point id est zero it drives scales on the axis upwards causing the rest of picture to drown and so the
first point has been excluded to show these two peaks. The upper number in the title is b's value and the lower is a's.

Slowing down the binding process
The procedure was now repeated but with ¢ shifted by a factor 10. We start with the
deterministic chart telling when we have more than one equilibrium concentration (Fig. 12).

22
22 24 26 23 3 3.2 34 3B 35 4

a

Fig. 12 Left: Number of equilibrium concentrations calculated by searching the domain of u's function when c is 100 X-axis is a and Y-
axis is b. The scales are logarithmic.

Due to the fact that ¢ has been shifted by a factor of 10, it becomes increasingly difficult to
find parameter sets which show three equilibrium concentrations (Fig. 12). But as it was
seen when ¢ was 10, only a few sets show the behaviour of being prone to spontaneously
switch from the low state to high and vice versa, making it even more difficult to find
candidate sets which result in switches. So we expect higher equilibrium concentrations in
the parameter set of a and b which correspond to the same parameter set when c is 10.
With this we expect to find more molecules and less relative noise.
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Fig. 13a Right: Number of switches in v. Fig. 13b Left: Number of switches in u. c=100, a and b is in [1072.2 10"4] and e=10. Starting
state is u0=30 and v0=0.The scales are logarithmic.

We analysed the statistics with equation [ii], (cf. Fig. 7).
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Fig. 14a Left: Extracted highest state in u from statistics, the scales are logarithmic. Fig. 14b Right: Extracted highest state in v from
statistics, the scales are logarithmic. Fixed c at 100 in both cases and fixed degradation at 10.

As it was predicted when ¢ equals 10, the same asymmetry was seen with the same
reason, the initial states(Fig. 15).
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Fig. 15a left and 15b right: Showing the reverse asymmetry in the system represented by Fig. 14a and Fig 14b. The scales are
logarithmic.

As with ¢ equals 10, In Fig. 16 we see different outcomes of 4 scenarios when the statistics
had been sorted. There is no major difference between this case and the case when ¢
equals 10.

However it wasn't possible to find a similar case when the maximum equilibrium
concentrations differed between u and v in this set of parameters. In Fig. 16a we see a



system which does not show any particular switching behaviour. This is also confirmed by
looking at the system's parameters in Fig. 16a and comparing them to the deterministic
map (Fig. 12) which shows the amount of equilibrium concentrations for each set of a and
b.
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Fig. 16 These figures represent different scenarios with different sets of parameters. The upper number in the title is b's value and the
lower is a's. Fig. 16a Top Left: Switching system with a low maximum equilibrium concentration. Fig. 16b Top Right: Non-switching
system with a medium high maximum equilibrium concentration. Fig. 16c Bottom Left: Switching system with peak at 36. Fig. 16d
Bottom Right: Switching system with peak at 63.

The system showed in Fig. 16b has the same properties as the one in Fig. 16a but has four
to five times wider peak as the peak in Fig. 16a. In Fig. 16¢c and Fig. 16d we see two clear
pictures of when we have entered a parameter region where the system will exhibit
switching.

Analysing the behaviour by adjusting protein-DNA binding dynamics,
altering spontaneous switching

We will show that statistics can be improved upon by changing parameters while retaining
the equilibrium concentrations.
In order to improve the statistics (Fig. 5 and Fig. 13) we made further simulations. This
time decreasing the binding/unbinding constants (k», ks, ke ,k7) by a factor of 100 while
keeping c fixed at 10 and as it was anticipated it did have its effect (Fig. 17) as it was
predicted in Fig. 3. Even though we did not do the same simulations for ¢ at 100, we now
predict that the same will happen if we do the same shift when ¢ equals 100.
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Fig. 17 Above: Number of switches in u when ¢ is 10. The scales are logarithmic.
From these statistics, the maximum equilibrium concentrations were then mapped out in
Fig 18.

Fosition of the highest level, u Fasition of the highest level, v
Flease note Logarithmic seales Flease note Logarithmie seales
4

38

36

a4 24

32 22

3 2

28 - 4 18

26 16

24 14

22 12 22
22 24 2B 28 3 32 34 3B 38 4 22 24 2B 28 3 32 34 36 38 4
b b

Fig. 18a Left: The position of u's high equilibrium concentration. Fig. 18b Right: The position of v's high equilibrium concentration. The
scales are logarithmic.

From picture Fig. 17, it is clear that the largest amount of switches occurs when k, and ks,
id est a and b, have low values, but now the region with spontaneous switching has
increased. Then the amount declines as we go upwards.

Adding an inducer to the system
Next we wanted to see if adding a switch inducer could drive the switching.
In Gardner et al.®! it was shown that he could make a system switch by adding IPTG, an
agent which acts as a switch inducer. We then explored the possibility of doing the same.
Because it was not a system switching by random chance, there had to be modifications to
the system. The system was altered by adding two species and two reactions.

1 k2 4
uLﬂ,2u+pV©pbv,puLpu+u
ks

ks ke kg
v~ ,2v+p,ep,,.P,— P,V
k7
8 5IPTG, u+IPTGS Ul

These two species were then given their own initial states. The first added reaction was a
creation reaction which creates IPTG. The second added molecule was a complex



consisting of one IPTG and one u, represented by the last reaction. The idea was that the
reaction will, with the aid of the inducer, start to bind u and the inducer into a complex. We
used 1 parameter set for all 100 simulations (Fig. 19). Because of the chosen parameter
set and the need to only run the simulations during a fraction of the normal total time,
which before was 10°, the simulations were fast. In this system, it was also vital to express
a way to evaluate if and when the system had switched. Because the simulations were
done with Gillespie, we chose specific time points. These were not the same for all
simulations, meaning that we sometimes had to accept that the data point were only the
nearest to the chosen time point. After that, the states were summed together to give a
mean of the total amount of molecules.
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Fig. 19a Left: Time evolution of the total system in u with the parameters ki=ks=10, ko=ke=2, ks=k;=20, ks=600, k=300, with kg as the
creation of the IPTG with the value 13.5 and ki as the new included mass action reaction with the value 10. Fig. 19b Right: The same
but instead v.

We saw that, if u started in the high state, u began to decrease and that v, which started in
the low state, grew in number of molecules. The number of molecules in IPTG grew
proportional to time (Fig. 20).

the series of v and u with the logarithm of ipty
B0 T T T T

S0

tean Concentration
w =
=] =]

r
=]

o L ! ! I I L I L !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

Fig. 20: Average time evolution from 100 simulations and with 100 steps between 0 and 5000 in every simulation. The parameters were
the same as the above system. Green represents u and blue represents v. Red is the logarithm of the concentration of IPTG, the switch
inducer.

Conclusions and discussions
We have implemented the Gillespie method and simulated a small stochastic system.
When it comes to the performance of the Gillespie method, we found that for our system
the Gillespie method is efficient and the implementation was straightforward. It should
however be noted that while a majority of our simulations were fast (approx. 1min.), for
some we saw an increase in simulation time more than an order of magnitude (20-25 min).



We could correlate this to large production rates which cause larger number of molecules
and shorter time steps between each reaction. Interestingly we also saw a large decrease
in simulation time when we lowered the binding and unbinding rates, although the number
of molecules did not increase (cf. Figs. 7 and 18). This effect might be a limiting factor
when one does simulations in larger systems. This can be circumvented by using methods
which are derivatives of the Gillespie method, like the tau-leaping methods®.

For our investigations we used a well known system of a bistable switch. Despite the
simple construction of using only two repressors the system can have one or two stable
states.

Initially we analysed the deterministic description of the system. This was used to map out
parameter regions where the system shows a bistable behaviour, focusing on the change
in production rates. We could see a trend of getting bi-stability with increased production
rates (Fig. 1). This guided the choice of parameters in our further stochastic analysis.

We did stochastic simulations in parameter regions where the deterministic model
exhibited bi-stability to investigate whether the stochasticity can lead to spontaneous
switch behaviour. We could indeed see spontaneous switching, highlighting the differences
between the stochastic and deterministic approach to simulations of systems involving
bistable states. Still, when we analysed the frequency of switching we found large
variations (Fig. 5). The region in which we saw a higher switch behaviour was limited to the
region where the production rates are low but still high enough to get bi-stability. In biology
spontaneous switching relates to the robustness of the decision making mechanism. A
system that stays in one of the two states is considered to be robust. For example
differentiation is often driven by a bistable switch and here it is important that a selected
state is maintained!”), but for other systems spontaneous switches might be favourable.

To investigate the spontaneous switching further we studied the dependence of the
number of spontaneous switches, on the parameter ¢ which corresponds to the quotient
between the unbinding and binding rates. Larger ¢ means increased unbinding. We saw
that increasing c lead to decreased number of spontaneous switches (Fig. 5 and Fig. 13).
We relate this to increased number of molecules in the system with larger ¢ which makes
switching less likely.

Interestingly we found that changing the binding and unbinding rates while keeping the
ratio (c) fixed also affects the switching behaviour of the system. Decreasing the binding
and unbinding rates by factor 100 resulted in a larger region of parameter space in which
switching was pronounced (Fig. 5 and Fig. 17). The consequence of a slow
binding/unbinding rate is that a promoter gets locked in a repressing (or non-repressing)
state for longer times, leading to larger deviations in protein production (and numbers of
molecules). This locking behaviour hence promotes spontaneous switching. This hints that
the internal dynamics of the system is important for its behaviour in the stochastic case.
This change is not available in the deterministic Hill description and so the effect is not
visible. This shows an increased possibility for analysing the bistable switch network in
our stochastic simulations compared to if a Hill description is used.

In our simulations we saw that the stable equilibrium concentrations were dependent on a
and b but not on ¢ or k, and k; (cf. Fig. 7 and Fig. 14). Equation [iv] together with definitions



[v] show that we can eliminate the dependence of the system equations on the parameter
c by rescaling the variables. The consequence of this is that the position of the stable fix-
points depend solely on production and degradation rates but they do not depend on c or
Ko, Ka.

Finally we investigated the behaviour of the system when switching was driven by an
external signal. The signal inactivates one of the repressors. We found that it is indeed
possible to use IPTG as a switch inducer. We found that if u had a high initial state the
number of molecules decreased. We relate this to when v and the u-promoter (p,) binds
together to form the bound complex (pw,). If this happened, the creation of u would be shut
off and only degradation and the IPTG-complex reaction would affect the number of
molecules in u. This allowed v to increase in number of molecules and switch. Our model
had a slower switching response relative to the Gardner et al.”® but we found a similar
behaviour (Fig. 20).
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Appendix

1
[Tab. A1]:

A B C D |max |[Num| A B C D |[max |Num| A B C | D |max [Num| A B G | D |max [Num
885.87 |1 885.87 | 10 | 10 | 7.54| 3 [6158.48|6158.48/12.92/16.68(28.13| 3 [2335.722335.72| 10 [27.83| 6.96 | 3 |6158.48|6158.48|16.68/21.54|16.11| 3
1438.45(1438.45| 10 | 10 |13.66] 3 |[6158.48| 10000 [12.92/16.68|27.26] 3 |3792.69|3792.69| 10 |27.83|12.86| 3 | 10000 | 10000 |16.68|21.54|27.22| 3
2335.72(2335.72] 10 | 10 [22.93] 3 | 10000 |6158.48/12.92|16.68(46.32| 3 [6158.48/6158.48| 10 [27.83]|21.68| 3 |3792.69|3792.69(16.68/27.83| 4.19| 3
2335.72(3792.69| 10 | 10 [22.08)/ 3 | 10000 | 10000 [12.92|16.68|46.14| 3 [6158.48| 10000 | 10 [27.83]|20.76| 3 |6158.48|6158.48|16.68/27.83|11.87| 3
3792.69(2335.72] 10 | 10 [37.83] 3 [2335.72|2335.72|12.92/21.54| 6.37 | 3 | 10000 [6158.48| 10 [27.83|35.84| 3 | 10000 | 10000 |16.68|27.83|20.75| 3
3792.69(3792.69| 10 | 10 [37.67| 3 [3792.69|3792.69|12.92/21.54]12.61| 3 | 10000 | 10000 | 10 [27.83|35.66| 3 |6158.48|6158.48/16.68/35.94| 8.26 | 3
3792.69/6158.48| 10 | 10 [37.21| 3 |6158.48|6158.48(12.92/21.54|21.54| 3 [2335.72|2335.72| 10 |35.94| 4 | 3 | 10000 | 10000 |16.68/35.94|15.62| 3
3792.69| 10000 | 10 | 10 [35.78] 3 [6158.48| 10000 [12.92|21.54]20.25| 3 [3792.69(3792.69| 10 [35.94| 9.51 | 3 | 10000 | 10000 |16.68|46.42|11.46| 3
6158.48(3792.69| 10 | 10 [61.53] 3 | 10000 |6158.48/12.92/21.54|35.81| 3 [6158.48/6158.48| 10 [35.94|16.54| 3 | 10000 | 10000 [16.68/59.95| 7.89 | 3
6158.48]6158.48] 10 | 10 [61.43] 3 | 10000 | 10000 [12.92]21.54]35.58] 3 [6158.48| 10000 | 10 [35.94|15.06] 3 |2335.72|2335.72|21.54| 10 |8.23| 3
6158.48| 10000 | 10 | 10 [61.15] 3 [3792.69(3792.69(12.92/27.83| 9.15| 3 | 10000 [6158.48] 10 [35.94| 27.7 | 3 |[3792.69|3792.69|21.54| 10 [16.29] 3
10000 [3792.69| 10 | 10 [99.99| 3 [6158.48|6158.48/12.92/27.83]16.35| 3 | 10000 | 10000 | 10 [35.94|27.47| 3 |6158.48|6158.48(21.54| 10 |27.82| 3
10000 [6158.48] 10 | 10 [99.97] 3 [6158.48] 10000 [12.92]27.83] 13.8 | 3 [3792.69(3792.69| 10 [46.42] 6.68 | 3 |6158.48] 10000 [21.54] 10 |26.15] 3
10000 | 10000 | 10 | 10 [99.9| 3 | 10000 |6158.48/12.92|27.83]27.66| 3 |6158.48/6158.48| 10 [46.42|12.47| 3 | 10000 |6158.48(21.54| 10 |46.25| 3
885.87 | 885.87 | 10 [12.92/ 476 | 3 | 10000 | 10000 [12.92/27.83]27.36] 3 | 10000 | 10000 | 10 [46.42|21.07| 3 | 10000 | 10000 [21.54| 10 |45.95| 3
1438.45(1438.45| 10 |12.92(10.16] 3 |[3792.69(3792.69(12.92/35.94| 6.03 | 3 |3792.69|3792.69| 10 |59.95| 3.25 | 3 |3792.69|3792.69|21.54(12.92/11.81| 3
2335.72|12335.72| 10 |12.92/17.52| 3 |6158.48|6158.48(12.92/35.94|12.22| 3 |6158.48|6158.48| 10 |59.95/ 9.19 | 3 [6158.48|6158.48/21.54|12.92|21.12| 3
2335.72(3792.69| 10 |12.92/16.21| 3 | 10000 | 10000 |12.92/35.94|20.93| 3 | 10000 | 10000 | 10 |59.95/16.06| 3 |6158.48| 10000 (21.54|12.92|17.83| 3
3792.69(2335.72| 10 |12.92/29.24| 3 |6158.48|6158.48/12.92/46.42| 8.81 | 3 |6158.48/6158.48| 10 [77.43| 6.39 | 3 | 10000 |6158.48(21.54/12.92|35.72| 3
3792.69(3792.69| 10 |12.92/29.03| 3 | 10000 | 10000 |12.92|46.42|15.87| 3 | 10000 | 10000 | 10 |77.43|12.09| 3 | 10000 | 10000 [21.54|12.92|35.33| 3
3792.69(6158.48| 10 |12.92| 28.4 | 3 |6158.48|6158.48/12.92/59.95/ 5.69 | 3 | 10000 | 10000 | 10 | 100 | 8.88 | 3 |3792.69|3792.69(21.54/16.68| 7.79 | 3
3792.69| 10000 | 10 |12.92/26.09| 3 | 10000 | 10000 |12.92/59.9511.83| 3 |1438.45/1438.45/12.92| 10 | 9.83 | 3 |6158.48|6158.48(21.54/16.68|15.78| 3
6158.48(3792.69| 10 |12.92{47.61| 3 | 10000 | 10000 |12.92|77.43| 8.48 | 3 |2335.72|2335.72|12.92| 10 |17.34| 3 | 10000 | 10000 [21.54|16.68|27.03| 3
6158.48/6158.48| 10 [12.92/47.48| 3 | 10000 | 10000 {12.92] 100 | 5.32 | 3 |2335.72|3792.69(12.92| 10 [15.29| 3 |6158.48|6158.48/21.54|21.54|11.38| 3
6158.48| 10000 | 10 |12.92[47.12| 3 |1438.45|1438.45/16.68| 10 | 5.7 | 3 |3792.69(2335.72/12.92| 10 [29.21| 3 | 10000 | 10000 (21.54|21.54| 20.5 | 3
10000 |3792.69| 10 [12.92(77.41| 3 |2335.72|2335.72/16.68| 10 [12.69] 3 [3792.69(3792.69|12.92| 10 [28.92| 3 |6158.48|6158.48/21.54|27.83| 7.34 | 3
10000 (6158.48| 10 |12.92/77.38| 3 |3792.69|3792.69|16.68| 10 |21.98| 3 |3792.69(6158.48(12.92| 10 [28.09| 3 | 10000 | 10000 (21.54|27.83|15.28| 3
10000 | 10000 | 10 [12.92| 77.3 | 3 |3792.69|6158.48/16.68| 10 [20.19| 3 |3792.69| 10000 [12.92| 10 [24.03| 3 | 10000 | 10000 (21.54/35.94/10.95 3
1438.45(1438.45| 10 |16.68| 7.25| 3 |6158.48(3792.69(16.68] 10 |36.75| 3 |6158.48|3792.69/12.92| 10 |47.59| 3 | 10000 | 10000 [21.54|46.42| 6.86 | 3
2335.72|12335.72| 10 |16.68/13.25| 3 |6158.48|6158.48(16.68) 10 [36.47| 3 |6158.48|6158.48(12.92| 10 [47.42| 3 |[3792.69|3792.69|27.83| 10 |11.14| 3
3792.69(3792.69| 10 |16.68/22.29| 3 |6158.48| 10000 |16.68| 10 [35.63| 3 |6158.48| 10000 [12.92| 10 [46.95| 3 |6158.48|6158.48(27.83| 10 | 20.8 | 3
3792.69(6158.48| 10 |16.68/21.41| 3 | 10000 |6158.48/16.68| 10 [59.85| 3 | 10000 [3792.69(12.92| 10 |77.41| 3 | 10000 | 10000 27.83| 10 |35.15] 3
6158.48(3792.69| 10 |16.68/36.82| 3 | 10000 | 10000 |16.68| 10 [59.67| 3 | 10000 |6158.48/12.92| 10 |77.37| 3 |3792.69|3792.69(27.83|12.92| 542 | 3
6158.48/6158.48| 10 |16.68]36.65| 3 |2335.72|2335.72|16.68/12.92/ 8.99 | 3 | 10000 | 10000 [12.92| 10 |77.26] 3 |6158.48|6158.48(27.83/12.92|15.33| 3
6158.48| 10000 | 10 |16.68]36.18| 3 |3792.69|3792.69|16.68/12.92| 16.6 | 3 |1438.45/1438.45/12.92{12.92| 6.7 | 3 | 10000 | 10000 (27.83/12.92|26.79| 3
10000 (6158.48| 10 |16.68/59.89| 3 |6158.48|6158.48|16.68/12.92|27.99| 3 |2335.72|2335.72{12.92|12.92/13.01| 3 |6158.48|6158.48(27.83/16.68|10.66| 3
10000 | 10000 | 10 [16.68/59.79| 3 |6158.48| 10000 |16.68|12.92|26.81| 3 [3792.69(3792.69(12.92]12.92/22.16| 3 | 10000 | 10000 (27.83/16.68|20.17| 3
1438.451438.45| 10 [21.54| 4.41| 3 | 10000 |6158.48/16.68|12.92|46.29| 3 |[3792.69|6158.48/12.92|12.92/120.93| 3 | 10000 | 10000 |27.83|21.54|14.81| 3
2335.72(2335.72| 10 |21.54/ 9.83 | 3 | 10000 | 10000 |16.68|12.92]46.06] 3 |6158.48]3792.69(12.92(12.92/36.79| 3 | 10000 | 10000 (27.83|27.83|10.19] 3
3792.69(3792.69| 10 |21.54[17.02| 3 |2335.72|2335.72|16.68|16.68| 5.17 | 3 |6158.48|6158.48(12.92(12.92|36.57| 3 |6158.48|6158.48(35.94| 10 |14.69| 3
3792.69|6158.48| 10 |21.54/15.63| 3 [3792.69(3792.69(16.68|16.68(12.28] 3 [6158.48| 10000 [12.92]12.92/35.94] 3 | 10000 | 10000 |35.94| 10 |26.47| 3
6158.48(3792.69| 10 |21.54/28.46] 3 |6158.48|6158.48|16.68|16.68]21.36] 3 | 10000 |6158.48(12.92]12.92|59.87| 3 |6158.48|6158.48(35.94/12.92| 9.48 | 3
6158.48(6158.48| 10 |21.54/28.24| 3 |6158.48| 10000 |16.68|16.68(19.45| 3 | 10000 | 10000 [12.92]12.92/59.74| 3 | 10000 | 10000 [35.94/12.92|19.73| 3
6158.48| 10000 | 10 |21.54[27.59| 3 | 10000 |6158.48|16.68|16.68(35.77| 3 [2335.72|2335.72[12.92|16.68] 9.48 | 3 | 10000 | 10000 [35.94|16.68|14.14| 3
10000 (6158.48| 10 [21.54/46.34| 3 | 10000 | 10000 |16.68|16.68(35.47| 3 [3792.69|3792.69(12.92|16.68|16.84| 3 | 10000 | 10000 [35.94/21.54| 8.86 | 3
10000 | 10000 | 10 [21.54] 46.2| 3 [3792.69]3792.69]|16.68|21.54| 8.62 | 3 [3792.69|6158.48]12.92]16.68]14.58] 3 | 10000 | 10000 |46.42] 10 [19.12] 3

6158.483792.69/12.92(16.68/28.42| 3 | 10000 | 10000 [46.42[12.92/13.16] 3
10000 | 10000 [59.95| 10 [11.45] 3

Fig. Tabulated sets of parameters C is quotient between k. and ks or ks and k, D is the degradation or k; and ks A and B are C times ks or
ke. Max is where the highest equilibrium concentration is sitting and Num is the amount of equilibrium concentrations for that set of
parameters.
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