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Abstract 

 

Ground settlement due to groundwater drainage during construction is important to be 

considered since ground settlement may cause severe building damages. The calculation of 

ground settlement contained several parameters with different magnitude of uncertainties. 

Thus a risk evaluation of ground settlement is necessary. The aim of this thesis was first to 

build a soil strata model for ground settlement risk evaluation purpose.  Second was to carry 

out the uncertainty and sensitivity analysis of the soil strata model. Third was to carry out the 

ground settlement risk evaluation by integrating soil strata model and two other models, with 

defined uncertainties of each model. The case study site was located in Motala, Sweden with 

area about 0.39 km2. 

The soil strata model was generated by utilizing kriging interpolation. The continuous 

elevations of each soil layer in the soil strata were interpolated from boreholes and then all 

the soil layers were combined to create a “layer-cake model”.  The uncertainty in kriging was 

quantified by prediction standard error. By utilizing Monte Carlo simulation, the stochastic 

representation of the soil strata was created and the uncertainty and sensitivity analysis of the 

soil strata model was carried out. The risk evaluation of ground settlement was conducted by 

carrying out Monte Carlo simulation for the integrated model of soil strata, groundwater and 

ground settlement. 

The uncertainties of the soil strata model were mapped in the form of median, standard 

deviation, skewnesss, etc. from different soil layers. From sensitivity analysis, it could be 

inferred that the most influential parameters on the thickness a soil layer would be the upper 

and lower boundary elevations of that layer. The risk areas of building damage have been 

mapped where the 50th and 95th percentile of the calculated ground settlement exceeded 

critical values. The most influential parameters on ground settlement were found varied in 

different places. More efforts and resources could be spent on these parameters to decrease 

the unacceptable risks. 

It was conclude that kriging interpolation was an effective way for generating soil strata 

model from boreholes.  

Keywords: Kriging, Monte Carlo simulation, Soil strata, Uncertainty analysis, Sensitivity 

analysis, Risk analysis  
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1. Introduction 

 

Groundwater drainage is a common consequence when dealing with tunnel construction and 

deep excavation.  When water drainage happens in the soil, the loss of water content in the 

soils can make soils compress in volume and may present the ground settlement (Terzaghi 

1943). The ground settlement may cause significant building damage. Besides, this kind of 

ground settlement would maybe influence a wider area than the construction itself since the 

groundwater level is also lowered in neighboring areas. Thus it is important for constructor to 

estimate the ground settlement before the actual construction stage.  

In ground settlement estimation there are a number of parameters of different magnitude of 

uncertainties such as permeability, compression and consolidation properties of different soil 

layers and the soil strata generated from boreholes. All the uncertainties in the parameters 

make it necessary to give a stochastic representation of ground settlement rather than a 

deterministic one. If the uncertainties in the parameters are defined, the uncertainties in 

ground settlement could be estimated by stochastic modeling such as Monte Carlo simulation. 

Through sensitivity analysis in Monte Carlo simulation, it is also possible to address the most 

influential parameters on the ground settlement in a certain area. Ground settlement may 

cause building damage. One of the purposes of ground settlement risk evaluation is to tell that 

whether the risk of building damage is too high in a certain place according to the calculated 

ground settlement. Based on the risk evaluation results, corresponding prevention measures 

or further investigations can be addressed. 

Modeling soil strata is of great importance for ground settlement modeling since ground 

settlement is calculated according to the thickness and relative position of every soil layer. 

The continuous soil strata is usually interpolated and extrapolated from boreholes. In this 

thesis, a soil strata model was generated by utilizing kriging. The elevations of each soil layer 

in the soil strata were interpolated and then all the layers were put together to create a “layer-

cake model”.  

The uncertainties exist in kriging interpolation could be quantified by prediction standard 

error. Kriging not only creates a predicted value at each interpolation location but also a 

prediction standard error which measures the uncertainty of the prediction (Kumar and 

Remadevi 2006). This means in this thesis kriging interpolated not an exact value but a 

probability distribution of the elevation. A stochastic representation of the soil strata model 

was given in this thesis by introducing prediction standard error in Monte Carlo simulation. 

The uncertainties and sensitivity analysis were carried out for the soil strata model.  

This thesis was a part of a development project where the aim was to evaluate risks of ground 

settlement in an integrated model of soil strata, groundwater and ground settlement. Except 

for soil strata modeling which was presented in this thesis, the project also included 
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groundwater and ground settlement modeling which were presented in two other separate 

theses. The groundwater modeling part employed results from soil strata modeling part and 

the ground settlement modeling part used results both from groundwater modeling and soil 

strata modeling part. If the readers are interested on these two theses, please refer to Tisell 

(2012) and Hashemi (2012). The uncertainties in each model were defined/calculated first 

and then the three models were integrated to give a stochastic representation of ground 

settlement. Besides, the most influential parameters on the ground settlement were found out 

by sensitivity analysis.  

The case study area was located in Motala, Sweden where a pedestrian tunnel was considered 

to be built.  The ground settlement caused by groundwater drainage during the tunnel 

construction was necessary to be calculated to prevent building damage in surrounding sites.  

 

1.1 Objectives 

 

The objectives of this thesis are: 

1. Utilize kriging interpolation to generate a soil strata model from borehole data.  

 

2. Introducing prediction standard error as a source of uncertainty in soil strata model. 

Create a stochastic representation of the soil strata model by utilizing Monte Carlo 

simulation. Carry out uncertainty and sensitivity analysis of the soil strata model. 

 

3. Create an integrated model of soil strata, groundwater and ground settlement model to 

evaluate risks of the ground settlement. Carry out sensitivity analysis to find out the most 

influential parameters on ground settlement.  
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2. Background 

 

2.1 Soil strata model generation 

 

Soil strata models are useful tools for geologists and engineers (Lemon and Jones 2003). Soil 

strata models are representations of the stratigraphy for the site being modeled. Boreholes are 

the main sources for engineers to know the distribution of soil strata. Boreholes here are holes 

drilled into the ground for soil strata investigation. The boreholes investigation could be 

corresponded with different geotechnical tests, such as various sampling tests and sounding 

tests. In sampling test, the soil sample along the borehole is taken out and soil type 

identification along the borehole is done in the laboratory. In sounding tests, the penetration 

resistance is registered as the sounding rod of the drilling equipment is pushed into the soil. 

Different soil types have different penetration resistance thus the soil types along the 

borehole could be interpreted.  

To create a soil strata model, the boreholes should be spatially interpolated and extrapolated. 

Traditionally, this is done manually on the paper. It is a tedious method and is difficult in 

editing, copying and saving (Zhu and Wu 2005). Utilizing computer aided software like CAD 

to create continuous strata is an improvement compared with manual plotting, but the 

automation degree of the interpolation process is still low. Recently GIS has been used in soil 

strata modeling due to its excellent ability in data management, data analysis and graphical 

visualization. Using GIS for modeling soil strata also makes easier to automate the 

interpolation process (Zhu and Wu 2005).  

Any spatial interpolation methods could be used in creating continuous strata model from 

boreholes. Some of them are Nearest neighbor methods, Trend surface methods, Inverse-

distance weighting methods (IDW) and kriging (Lemon and Jones 2003). Kriging is usually 

regarded as the optimal one among all the other interpolation methods since kriging considers 

the spatial structure of the variable. Besides, a prediction standard error is created in kriging 

at each interpolation location which measures the interpolation uncertainty. However, kriging 

technique requires user to build a semivariogram for each soil layer and this can be difficult 

for sites having insufficient boreholes in order to build a meaningful semivariogram (Lemon 

and Jones 2003).  
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2.2 Kriging 

2.2.1 Overview of kriging 

Kriging, as other spatial interpolation methods, predicts the behaviors at unknown location 

based upon known locations. All the spatial interpolation methods are based on the Tobler’s 

Law – “All places are related but nearby places are more related than distant places”. In other 

words, to estimate the value of a variable at some point, it is more likely that the value is 

similar to the nearby place than the distant place.  

The basic idea of kriging is to discover some general properties of the field from the 

measured values, and then apply those properties in estimating the un-measured locations 

(Longley et al. 2005: 336). 

Kriging not only creates a prediction value at each place but also a prediction standard error 

which measures the uncertainty of the prediction (Kumar and Remadevi 2006). The 

prediction standard error is an important concept in kriging.  Kriging predicts not an exact 

value but the probability distribution of the likely values at each place. The prediction value 

could be regarded as the mean value and the prediction standard error could be regarded as 

the standard deviation. As a common rule, the prediction standard error would be bigger 

further away from sample points. The prediction standard error could be used together with 

the prediction value for decision making, e.g., mapping the probability of ozone exceeding a 

critical threshold (ArcGIS geostatistical analyst tutorial).  

 

2.2.2 Normal procedure of implementing kriging 

Building semivariogram is central of implementing kriging. Semivariogram is a 

representation of the spatial structure of the field, indicates the degree of correlation between 

values of the variable as a function of distance (Virdee 1984). The first step for constructing 

semivariogram is to build an experimental semivariogram by plotting the semi-variance 

between each two samples as a function of the distance. Semi-variance value here is 

calculated by squaring the value difference between two samples and then divided by two. To 

give a summary form of the semivariogram, usually the distance axis is divided into a few 

bins (lags) and the averaged semivariance within each bin is calculated.  

After building the experimental semivariogram, a theoretical model is used to fit it. And this 

theoretical model is intended to represent the whole population of all possible pairs of values 

over the area. The most common theoretical models include linear model, spherical model, 

exponential model and Gaussian model. A typical semivariogram (Figure 1) would start from 

low value (equal to the semivariance for very close points) and rises up with increasing 

distances between points and finally levels off at certain distance. This pattern is observed for 

most of the geographical field (Longley et al. 2005: 336).  
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Different information could be interpreted from the semivariogram: “Range” is the distance 

at which the curve levels off. It defines the maximum distance at which there is any spatial 

dependence; “Sill” is the value of the semivariogram at the distance of range; “Nugget” is the 

point where the curve intercepts the y-axis; Nuggets come from measurement error or small 

scale variations which could not be captured by current scale.  

Often fitting a semivariogram is tricky, and the fitted model depends on the geostatistian’s 

knowledge and experience on the data (Chilès and Delfiner: 104).  

 

Figure 1   An example of semivariogram. The red line is the model used to fit the experimental 

semivariance 

The prediction of likely values at location which has not been sampled is based on the fitted 

semivariogram and the surrounding sample points: 

           

 

   

                    

Eq.1                         

where, z*  is the prediction value at un-measured location; zi  and wi are the value and weight 

of the sample point, respectively; and m is the number of samples included in the estimation. 

Eq.1 could be actually used as a general estimator for all the other interpolation methods that 

decide the sample weights by the closeness. However in kriging, the weights are chosen in a 

way that the prediction standard error is minimized. Refer to Clark and Harper (2000: 239) 

for the calculation of weight and prediction standard error in kriging. 

The quality of kriging could be checked by validation process. There is one kind of validation 

called cross validation which is used especially when a limited number of samples are 

available. In cross validation, the data set omits one sample and uses the remaining samples 

to interpolate the value in that point. The difference between the predicted value and the 

measured value of the omitted sample point is called residual. This process is repeated for all 
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the sample points in the dataset in turn (Clark and Harper 2000: 271).  The averaged 

difference between the predicted and measured value could be represented by Mean Error:  

Mean Error: (ME) = 
 

 
    

     
 
    

And how close the predicted value is to the measured value could be represented by Root 

Mean Square Error: 

Root Mean Square Error (RMSE) =  
 

 
    

     
  

     

where, n is the number of samples used for cross validation.   
 ,    are the predicted value, 

measured value, respectively at the same point. As a practical rule, RMSE should be less than 

the standard deviation of the sample values (Kumar and Remadevi 2006) for considering that 

a specific kriging schema is adequate.   

 

2.3 Monte Carlo Simulation 

 

When there are several inputs with uncertainties in the system being modeled, stochastic 

analysis can be used to analyze uncertainty propagation, i.e., how the uncertainties in the 

inputs affects the performance, reliability and sensitivity of the model (Wittwer 2004).  

In stochastic modeling, the probability distributions of the outputs are described by allowing 

random variation of one or more inputs. Monte Carlo simulation is one kind of stochastic 

modeling where the probability distribution of the output is derived from repeated random 

sampling over the inputs. Usually a large number of simulations were ensured to reflect the 

random variation in the inputs.  

In the soil strata model, the parameters containing uncertainties are elevations of different soil 

layers that calculated from kriging. The uncertainties come from the interpolation process and 

could be measured by prediction standard error. By Monte Carlo simulation, it is possible to 

evaluate how the uncertainties of different soil layers affect each other and the soil strata.  

The Monte Carlo simulations generally follow these steps (Wittwer 2004): 

1. Define the probability distributions of possible inputs. 

2. Generate inputs randomly from the probability distribution over the domain 

3. Define a formula to calculate the results (outputs) from the randomly generated inputs.  

4. Repeat Step 1 – 3 for a large number of times 

5. Aggregates the results  
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The schematic illustration of the Monte Carlo simulation process was showed in Figure 2.  
 
One of the analyses used to quantify the outputs of the model is called uncertainty analysis. 

The word ‘uncertainty’ means that a quantity has a number of different values. The 

uncertainties of the outputs could be described by different ways such as histogram, 

cumulative frequency chart and different descriptive statistics, etc (Roger 1999).  

 

Sensitivity analysis is also used quite often as a complementary to the uncertainty analysis. 

Sensitivity analysis helps to understand how the uncertainty in the output can be apportioned 

to different sources of uncertainties in the model input (Saltelli et al. 2008). The significances 

of the risks relating to different inputs are identified and ranked. More time and research can 

be spent on the significant risks, at the expense of the less significant risks (Roger 1999).  

 

Risk is an overall assessment of probability (or uncertainty) and consequence of a hazardous 

event. The risk can be expressed as a formula: 

 

Risk = probability * consequence 

 

Input3 Input2 Input1 

 Monte Carlo 

Simulation 

Output1 Output2 
Figure 2 The schematic prodedure of Monte Carlo simulation  
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The probability could be obtained from uncertainty analysis. In this thesis, the consequence 

was building damages caused by ground settlement. Thus the risk was the probability of 

building damage.  

 

2.4 Case study 

 

The case study site was located in Motala, Sweden. A pedestrian tunnel was considered to be 

built in the study area. The tunnel involved with excavation below groundwater level, making 

it necessary to drain water both during construction and operating stage. There were a lot of 

residential and industrial buildings around the tunnel, which may be influence by the ground 

settlement caused by groundwater draingae. According to Swedish law (Environmental Code 

1998:808 chp.16), the constructor is responsible for the cost and consequence of the ground 

subsidence damage if an unacceptable risk level is reached. Thus it is important for the 

construction project to know the amount of ground settlement and its uncertainty. If the risks 

are not acceptable, further investigation and preventions measures are maybe necessary.  

There were a number of parameters containing uncertainties in the prediction of ground 

settlement, such as permeability, compression and consolidation properties of diffe rent soils 

and also soil strata generated from borehole. By quantifying the uncertainties of those 

parameters through Monte Carlo methods, it was possible to evaluate the reliability of the 

model and which parameters were significant to the ground settlement in certain area. 

To calculate the ground settlement and evaluate the risks, the work was divided into three 

parts: soil strata modeling (presented in this thesis), groundwater modeling and ground 

settlement modeling. The groundwater modeling and ground settlement modeling were 

presented in two other separate theses. If the readers are interested on these two theses, please 

refer to Tisell (2012) and Hashemi (2012). The groundwater modeling part employed results 

from soil strata modeling part and the ground settlement modeling part used results both from 

groundwater modeling and soil strata modeling part. The uncertainties in each model were 

defined/calculated first and then the three models were integrated to give a stochastic 

representation of ground settlement. A brief description of the three models was given below.   

Soil strata model: 

In this part the soil strata was generated by interpolation from borehole data. The 

interpolation technique used was kriging. The elevations of each soil layer were interpolated 

first and then all the layers were put together to create a “layer-cake model”. The uncertainty 

in the model came from the interpolation error and was measured by prediction standard error 

derived from kriging.  

Groundwater model:  
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The model reflected the groundwater decrease around a drainage well with respect to 

estimated groundwater recharge, the soil strata and the hydraulic conductivity of different 

soils. The parameters with uncertainties in the model were hydraulic conductivity of different 

soil types and annual precipitation.  

Ground settlement model: 

This model calculated the ground settlement based on the soil strata and groundwater 

drawdown.  The parameters with uncertainties in the model were soil modulus, over-

consolidation ratio (OCR) and unit weight of different soil types. The outcome of the model 

included the buildings which were in the risk zone of building damage. By having the 

sensitivity analysis, the type of investigation which was needed for reducing the risks was 

clarified.  
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3. Methods 

3.1 Data and study area 

 

The study area was located in Motala, Östergötland province, Sweden (Figure 3a). Motala is 

situated at the east shore of Lake Vättern. The study area was with dimension of about 580m 

(W-E) and 680m (N-W) (Figure 3b). The surface soil type included clay, sand, till and 

glaciofluvial deposit. The topography was lower in the center and higher at the two sides. The 

tunnel position was indicated in Figure 3b. The soil strata in the study area can be one or two 

layers of clay and friction materials interbedded structure underlain by till (Figure 4). Friction 

material here was defined as coarser material like sand and gravel. 

120 samples were used for interpolation of soil strata and they were mainly concentrated 

around the highway (Figure 3b). Among them, 7 points were read directly from the surface 

soil type map since it was known that the only soil type existing in these samples was till. 

The rest of the sample points were boreholes investigated by different geotechnical methods 

like soil sampling and sounding tests. Some boreholes were drilled recently and some were 

old investigations.  

Ground surface elevation was provided in a 20*20m regular spaced squared grid, provided by 

Lantmäteriet (National Land Survey of Sweden). The map projection used in this study was 

SWEREF 99_15_00. 

 
 

(a) 
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(b) 

Figure 3 (a) Location map of study area. (b) Map of the sample points location, surface elevation, surface 

soil type and buildings and roads.  The tunnel area was marked by blue circle. 

 

3.2 Interpretation of the boreholes 

 

In order to implement kriging interpolation, the boreholes should be interpreted first to 

extract information about soil types and elevations of different soil layers. The boreholes 

were investigated by different geotechnical methods and they could be classified as either 

sampling test or sounding test. In sampling test, the soil sample was taken out from the 

borehole and the soil types and thickness of different soil layers were identified in the 

laboratory. In sounding test, the soil types along the borehole were interpreted by observing 

the soil penetration resistances (firmness of the soil).  
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For the convenience of ground settlement calculation where only the clay layers settlement 

was included, the soil types were divided into clay, friction material (sand, gravel, etc.) and 

till. Maximum two layers of clay and friction material interbedded structure were found along 

the boreholes in the study area and till layer was always regarded as the most bottom layer in 

the study. Thus the maximum number of soil layers to be presented was 5 layers (See figure 4 

illustrating the possible soil stratification). The soil layers were called clay1, friction1, clay2, 

friction2 and till. And the corresponding upper boundary elevations of these layers were 

called Elev_clay1, Elev_fr1, Elev_clay2, Elev_fr2 and Elev_till. The elevation of the ground 

was called Elev_ground. 

  

                Figure 4 A schematic illustration of the possible soil strata in the study area  

 

The boundary elevations of the five soil layers along the boreholes were interpreted in due 

order for each borehole. Not in every borehole we found all the soil layers. This was 

contributed by two factors: Firstly, specific soil layers may never exist in a borehole, e.g., 

borehole 2 in Figure 4 missed clay1 layer; secondly, a borehole may not be investigated deep 

enough to reach all the possible soil layers. Any layer did not found in a borehole was given a 

zero thickness.   
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Figure 5 gave an example of how the borehole was interpreted based on the geotechnical test. 

The borehole has been investigated by two ways, soil sampling (skr) and cone penetration 

test (CPT) (a kind of sounding test). Interpretation of the sampling test was straight forward. 

In figure 5, the soil types along the borehole were presented at the horizontal marks in the 

sampling column and different soil layers elevations could be read directly. The interpretation 

of sounding test was based on penetration resistance (in this case the point resistance) graph 

in the right side of Figure 5. Smaller point resistance value indicated softer material 

encountered like clay and bigger point resistance value indicated harder material encountered 

like sand or gravel.   

 

 

 

 

 

 

 

Sounding 

test result Sampling 

test result 

Point resistance (MPa) 

Soil type 

Le-clay 

Mu-humus 

Sa-sand 

Si-Silt 

 

 

Figure 5 Interpretation of borehole data 
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Table 1 is an example of the interpreted sample points with information of the x and y 

coordinates, name, and elevations at each soil layer. The information in the table could be 

directly used for interpolation. For example, if a continuous Elev_clay1 is going to be created 

from the 4 samples in table 1, the column “Elev_clay1” together with the columns of x, y 

coordination would be used for spatial interpolation.  

All the elevation data was registered in meter and the height system used was RH2000. 

RH2000 has been the official Swedish height system since 2005. The zero level in RH2000 is 

defined by Normaal Amsterdams Peil (NAP). It is a vertica l datum in use in large parts of 

Western Europe. 

 Table 1  An example of interpreted sample points  

x 
coordinate 

y 
coordinate 

name Elev_clay1 
(m) 

Elev_fr1 
(m) 

Elev_clay2 
(m) 

Elev_fr2 
(m) 

Elev_till 
(m) 

150961.1 6491609 4020 93 91.5 91 88.8 88.7 

150953 6491658 4021 93.4 92.2 90.8 88 87.9 

150876.9 6491975 4033 93 93 93 93 93 

150856.1 6491979 4034 98.5 98.5 98.5 98.5 98.5 

 

 

3.3 Soil strata model generation by kriging 

 

The basic idea of soil strata generation was to interpolation each soil layer from borehole first 

and then put all the layers together to create a “layer-cake model”.  Here it was the upper 

boundary elevation of each soil layer was interpolated.  We will call the upper boundary 

elevation of the soil layer “elevation of the soil layer” or “soil layer’s elevation” for 

simplification. The software used for interpolation was Surfer 8 from Golden Software.  

The experimental semivariogram for every soil layer’s elevation was built first. The sample 

points used for building semivariogram of a soil layer were the points having this specific 

layer (not the points missing the specific layer). The outliers would change the appearance of 

semivariogram in a great extent so suspected outliers were removed. After that, a theoretical 

model was fit to the each experimental semivariogram. The range, sill and nugget were 

chosen.   

The interpolation of a soil layer’s elevation was based on the semivariogram. The soil layer’s 

elevations were interpolated in a 10*10m regular spaced square grid. Besides, the prediction 

standard error maps were also created for each soil layer in the 10*10m resolution. The 

prediction values together with prediction standard errors would be used later as inputs in the 

Monte Carlo simulation. The thickness of the soil layer was calculated by the difference 

between upper and lower boundary elevation of that soil layer.  
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Cross validation was carried out for each layer to check how well the model predicted the 

measured values. The sample points used for cross validation of a soil layer were the points 

having this specific layer. Mean Error (ME) and Root Mean Squared error (RMSE) were 

calculated for each soil layer.  The RMSE from cross validation was compared with the 

standard deviation of sample values to evaluate if the semivariogram model could be 

considered adequate.  

The interpolated soil layer elevations (prediction values) needed to be adjusted due to a 

problem found after interpolation. The problem could be described as follows: For the same 

location in the soil strata model, there were 6 elevation values corresponding to 6 different 

layers’ elevation (among them 5 values were obtained from interpolation except for 

Elev_ground). These 6 elevations may overlap each other in vertical direction, i.e., the 

interpolated lower soil layers may have higher elevations than the upper layers. The 

interpolated soil layer elevations were rearranged in the vertical direction so that they did not 

overlap each other. This was done by using the following algorithm in Matlab:  

1. We call the top soil layer “first layer” and the layer beneath it “second layer” and so 

on. For each cell, start from the first layer and compare if it is high than the second 

layer. If yes, nothing happens. If no (which is contradictory to the reality), give the 

elevation of first layer to the second layer.  

 

2. Now check the second layer with the third layer, the third layer with the fourth layer 

as step 1 till all the layers are checked.  Make sure that the upper layer always has 

higher elevations than the lower layer. 

 

 

3. Go through every cell and do step 1 and 2.  

 

To check the overlapping area and magnitude, the areas where Elev_ground and Elev_clay1 

overlapped were mapped. This was done by subtracting Elev_clay1 from Elev_ground. The 

areas where Elev_clay1 and Elev_fr1 overlapped were mapped by using the same method. 

After adjusting overlapping, the soil layers’ elevations were put together and presented in a 

“layer-cake model”. The soil strata cross section along the highway was mapped. 

 

3.4 A stochastic representation of the soil strata 

3.4.1 Monte Carlo simulation 

The uncertainties existed in kriging interpolation was measured by prediction standard error. 

The probability distribution of the soil layer’s elevation was represented by the prediction 

value and prediction standard error obtained from kriging. To build a stochastic 
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representation of the soil strata, we just need to check whether different soil layers’ 

probability distribution overlap each other, similar to the way we did in previous section. The 

software used for Monte Carlo simulation was Oracle Crystal Ball.  

The stochastic representation of the soil strata was created by using Monte Carlo (MC) 

simulation. The stochastic representation of the soil strata was based on a 30*30m regular 

spaced square grid. The cell resolution was changed from 10m*10m in kriging to 30m*30m 

since a 10*10 m grid would result a lot more cells and huge amount of computation that the 

PC used in this study couldn’t manage. Although the MC simulation was based on 30*30 m 

resolution, the results obtained from MC simulation were mapped in 10*10 m resolution 

again. Bilinear interpolation was the resampling method used for changing the cell resolution.  

Figure 6 showed the MC simulation process considering one single cell. This process was 

carried out for all the 480 cells in the study area simultaneously. The probability distribution 

between the cells would not influence each other. The process of the MC simulation could be 

described as following:  

1. The inputs were different soil layers’ elevations with the uncertainties. The 

probability distribution of the input was defined as a normal distribution with the 

prediction value from kriging as mean and prediction standard error from kriging as 

standard deviation. Elev_ground was fixed value but also functioned in the model 

which regulated the elevations of lower layers. 

 

2. In each run of MC simulation, 5 random inputs were generated from the 5 probability 

distributions corresponding to different soil layers’ elevation.  

 

3. The non-overlapping formula worked as to ensure the lower layers’ elevations would 

never be high than the upper layers’ elevations.  For example, the formula compared 

the value generated for Elev_caly1 and Elev_ground. If Elev-clay1 was even bigger 

than Elev_ground which was contradictory to the reality, elev_clay1 was given the 

same value as Elev_ground. And then the value generated for Elev_fr1 was compared 

with Elev_clay1. If Elev_fr1 was even bigger than elev_clay1, elev_fr1 was given the 

same value as Elev_clay1. Similar procedure went through the entire soil strata till all 

the layers were checked.  

 

4. Step 2 and 3 were repeated for 1000 runs. Then the results were aggregated.  
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Figure 6   The Monte Carlo simulation process  considering one single cell 

 

The model was tested to run for both 1000 and 10000 times and the results were extracted for 

two of the soil layers.  It was showed that when comparing the results from model running 

1000 with model running 10000 times, the results differed in a very minor way. So finally 

1000 runs were chosen for the simulation since 10000 runs were much more time consuming 

in both running and data extraction stages.  

3.4.2 Uncertainty and sensitivity analysis of the soil strata  

After 1000 run, the new probability distribution of each soil layer’s elevation was created as 

output (Figure 5). To present the uncertainties of the outputs, firstly 50th percentile and 

standard deviation of the outputs were extracted for all the cells and mapped. A percentile is 

the value achieved below a particular threshold and 50th percentile is the value below which 

half of the observations found. The 50th percentile which measured the central tendency of 

the output was compared with the prediction values from kriging results; the standard 

deviation which measured the dispersion of the output was compared with the prediction 

standard error which also measured the dispersion of the kriging results. The skewness of the 

outputs was mapped to explore the asymmetry of the output probability distribution.  

Except for the elevations of different soil layers, the thicknesses of the two clay layers were 

also interesting for this thesis since the ground settlement was calculated for the two clay 

layers. Thus the thickness of clay1 and clay2 were also extracted as outputs of MC simulation. 
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Firstly, the two clay layers’ thicknesses were mapped in 50th percentile and compared with 

the relevant kriging results. Then the thickness of clay1 was mapped in both 5th and 95th 

percentile. The combination of 5th, 50th and 95th percentile was a good presentation of the 

range of the variable. 

A sensitivity analysis was made to investigate which inputs had significant impacts on the 

variations of clay1 and clay2 thickness, respectively. The sensitivity was determined by rank 

order correlation coefficient (RCC) between every input and the output when the MC 

simulation was running. RCC ranges from -1 to 1. Positive coefficients indicated that an 

increase in the input was associated with an increase in the output. Negative coefficients 

implied the opposite situation. And the larger the absolute value of RCC, the stronger relation 

between input and output. 

 

3.5 Ground settlement risk evaluation 

 

For ground settlement risk evaluation, the soil strata model, groundwater model and ground 

settlement model were integrated with the uncertainties defined in each model. Monte Carlo 

simulation was employed for the stochastic simulation of the integrated model. The software 

used for MC simulation was again Oracle Crystal Ball. The integrated model contained 

parameters from all the three models, e.g., soil layer elevations from soil strata model, annual 

precipitation and hydraulic conductivity of different soils from groundwater model and over 

consolidation rate (OCR), soil modulus of different soils from ground settlement model.   

The uncertainties in the ground settlement were quantified. Risky areas where the ground 

settlement exceeded a critical value were identified. Then a sensitivity analysis was carried 

out to see which parameters contributed to the biggest uncertainties in the ground settlement.   
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4. Results 

4.1 Soil strata model generated by kriging 

 

The descriptive statistics of the sample data elevations were shown in Table 2. Not every 

sample point was observed having all the 5 soil layers as explained before. Among 120 

sample points, 72 points were observed having layer clay1, 54 points having layer friction1, 

etc (see Table 2). Elev_till had the biggest range and variance among all the soil layers. 

Elev_clay1 had the smallest range and variance and Elev_fr2 had the second largest ones.   

For building semivariograms, suspected outliers were removed for each layer so the number 

of sample points used for constructing semivariogram was less than the original number of 

sample points in Table 2, see Table 3. The experimental semivariograms of all the soil layers 

were found to be best fitted by spherical model (Figure 7). The spherical model has form like: 

          
 

 

 

 
 

 

 

  

  
  

where, c0 is the nugget effect, c is the sill and a is the range. The ranges and sills for different 

layers were showed in Table 3. There was no nugget effect found for all the soil layers. 

Elev_till had the largest sill, Elev_clay1 had the smallest one and Elev_fr2 had the second 

largest one. The ranges were the same of 120 m for the three most top layers and decreased to 

70 m for Elev_fr2 and increased to 170 m for Elev_till.  

 

  Elev_clay1 Elev_fr1 Elev_clay2 Elev_fr2 Elev_till 

No.of points  72 54 41 30 109 

Mean(m) 93.64 91.61 89.64 87.25 93.39 

Standard 

Deviation(m) 

1.23 1.47 1.35 1.80 7.13 

Variance(m2) 1.51 2.16 1.82 3.24 50.84 

Range(m) 6.70 8.20 6.35 9.75 25.50 

Minimum(m) 91.30 88.00 87.00 83.00 82.50 

Maximum(m) 98.00 96.20 93.35 92.75 108.00 

 

 

 

Table 2 Descriptive statistics of the sample data for each soil layer  
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Table 3 Semivariogram parameters of each soil layer’s elevation 

 Elev_clay1 Elev_fr1 Elev_clay2 Elev_fr2 Elev_till 

No.of points  71 54 40 29 104 

Sill(m2) 1.15 2.8 2.1 3 15 

Range(m) 120 120 120 70 170 

 

 

Figure 7   Experimental (s mall triangle dots) and fitted (curve) semivariogram of each soil layer’s 

elevation. 
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Tables 4 listed the averaged prediction standard error for the 5 interpolated soil layers 

elevations. Among all the soil layer elevations, Elev_clay1 had the smallest averaged 

standard error of 0.79m. The standard errors increased when the soil layers were further 

lower except for Elev_clay2.   

Table 5 was the cross validation statistics for the interpolated soil layers. The Mean Error 

(ME) was the lowest for Elev_clay1 of 0.1m. The largest ME was found for Elev_fr2 of 

1.77m.  All the layers were over-estimated with observed positive ME except for Elev_till 

was under-estimated.  

The Root Mean Square Error (RMSE) was found for Elev_clay1 of 1.2m and it was a bit 

lower than 1.23m (Table 2), the standard deviation of Elev_clay1 of the sample data. The 

highest RMSE was found for Elev_fr2 of 2.86m and it was higher than 1.80m (Table 2), the 

standard deviation of Elev_fr2 of the sample data. By comparing the cross validation RMSE 

and the sample data standard deviation of different soil layers, the prediction of Elev_clay1, 

Elev_fr1 and Elev_till could be considered adequate but not Elev_clay2 and Elev_fr2. 

 

 

 

 

Table 5 The ME and RMS E from cross validation results  

 

 

 

 

 

 

 

 

 

 

 

 Elev_clay1 Elev_fr1 Elev_clay2 Elev_fr2 Elev_till 

Mean(m) 0.79 1.24 1.12 1.49 2.52 

 Elev_clay1 Elev_fr1 Elev_clay2 Elev_fr2 Elev_till 

ME(m) 0.1 0.27 0.75 1.77 -0.22 

RMSE(m) 1.2 1.33 1.4 2.86 2.8 

Table 4   The averaged prediction standard error of each soil layer  
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Figure 8 (left) showed areas where Elev_ground and the prediction value of Elev_clay1 

overlapped each other. Severe overlapping happened mostly at places far away from the 

sample points. Figure 8 (right) showed areas where the prediction value of Elev_clay1 and 

Elev_fr1 overlapped. The areas and magnitude of overlapping were much smaller.  

 

Figure 8 Overlapping area and magnitude of Elev_ground and Elev_clay1 prediction values (left), 

Elev_clay1 and Elev_fr1 prediction values (right). 

 

The soil strata cross section along the highway was mapped in Figure 9. 

 

Figure 9   The cross section map of soil strata along the highway.  
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4.2 Uncertainty and sensitivity analysis of the soil strata model 

4.2.1 Uncertainty analysis 

In Figure 10, soil layer’s elevations were mapped in 50th percentile from Monte Carlo (MC) 

simulation results (right side) and compared with the kriging results (left side). For 

Elev_clay1, the two contour maps were similar, so as for Elev_fr1. But for Elev_clay2, 

Elev_fr2 and Elev_till, the two contour maps were more different and the MC results tended 

to show lower values, especially at places far from the sample points. 

Elev_clay1 

                             Kriging results                                                 MC results 
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Elev_clay2 

 

 

 

 

 

150700 150800 150900 151000 151100 151200

6491600

6491700

6491800

6491900

6492000

6492100

6492200

150700 150800 150900 151000 151100 151200

6491600

6491700

6491800

6491900

6492000

6492100

6492200

88

90

92

94

96

98

100

102

104

106

150700 150800 150900 151000 151100 151200

6491600

6491700

6491800

6491900

6492000

6492100

6492200

150700 150800 150900 151000 151100 151200

6491600

6491700

6491800

6491900

6492000

6492100

6492200

87

89

91

93

95

97

99

101

103

105



 

 

27 

 

 

Elev_fr2 

    

 

Elev_till 

   

Figure 10   The contour maps of di fferent soil layers ’s elevations from kriging results (left) and 50
th

 

percentile of MC results (right). 

 

For Elev_clay1 and Elev_fr1, the standard deviation from MC results were mapped (Figure 

11 right) and compared with the prediction standard error obtained from kriging (Figure 11 
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left). The standard deviation and standard error of Elev_fr1 were generally bigger than those 

of Elev_clay1. For both Elev_clay1 and Elev_fr1, the standard deviation maps from MC 

results generally showed lower value than the same places in the standard error maps. Similar 

results were found for the other layers.  

Elev_clay1 

                    Kriging results                                                        MC results 

    

Elev_fr1 

   

 Figure 11 The contour maps of standard error from kriging (left) and standard deviation from MC 

results (Right) for Elev_clay1 and Elev_fr1.  
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Figure 12 mapped the skewness of Elev_clay1 from MC results. The data tended to show 

negative skewness and the skewness values were very big in the upper left and lower right 

corner. 

 

 

To better illustrate the skewness observed for Elev_clay1 in Figure 12, cell 101 (see Figure 

12 for its position) was extracted and the probability distributions of Elev_clay1 at that cell 

were examined both before and after MC simulation. The descriptive statistics of Elev_clay1 

at that cell showed the mean, median and standard deviation after MC simulation were lower 

than before MC simulation (Table 6). The data was obviously skewness after MC simuation. 

The probability distribution of Elev_clay1 at that cell was plotted in Figure 13. A very 

obvious peak was observed around 95.03 m and almost 80% of the data was at that value. 

According to the formula defined in MC simulation process, all the generated Elev_clay1 

values from the original distribution were given the same value as Elev_ground if they were 

bigger than the value of Elev_ground (95.03m). This explained the change of probability 

distribution of Elev_clay1at that cell.   

Table 6   The descriptive statistics for Elev_ground and Elev_clay1 before and after MC simulation 

Cell 101 Elev_ground Elev_clay1 

(origin) 

Elev_clay1 

(after Monte Carlo 

simulation) 

Mean 95.03 95.62 94.90 

Median - 95.62 95.03 

Standard 

deviation 

- 0.94 0.33 

Skewness - 0 -3.06 
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 Figure 12  The contour map of 

skewness value for Elev_clay1  
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Figure 13 The probability distribution for Elev_clay1 at cell 101 after MC simulation 

 

Figure 14 mapped the thickness of clay1 and clay2 in 50th percentile from MC results and 

compared with the kriging results. A thinner clay1 layer and clay2 layer were found from MC 

results than kriging results.  The maps looked more different at the places far away from the 

samples.   
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Clay2 layer thickness 

 

Figure 14   The thickness for clay1 and clay2. Left ones were kriging results. Right ones were mapped fin 

50
th

 percentile from MC results. 

 

In figure 15 the thickness of the clay1 was mapped in different percentiles (5th, 50th and 95th). 

The three maps showed quite different results, indicating the ranges of clay1 thickness were 

quite big in some places.  
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Figure 15   The thickness of clay1 mapped in 5
th

, 50
th

, 95
th

 percentile from MC results 

4.2.2 Sensitivity analysis 

The sensitivity analysis showed in every place, input Elev_fr1 and Elev_clay1 had the biggest 

and second biggest rank correlation coefficient (RCC) with the thickness of clay1, 

respectively. The RCCs between the thickness of clay1 and Elev_clay1 were mapped in 

Figure 15 (left) and the RCCs between the thickness of clay1 and Elev_fr1 were mapped in 

Figure 15 (right). Elev_clay1 always had positive RCCs and Elev_fr1 always had negative 

values. Elev_fr1 and Elev_clay1 were the most and second most influential inputs on the 

variations in the clay1 layer thickness, respectively.  

  

Figure 16 Left: the RCC between the thickness of clay1 layer and Elev_clay1. Right: the RCC between 

the thickness of clay1  layer and Elev_fr1. 
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Sensitivity analysis also showed that in every place, Elev_fr2 had the largest RCC with the 

thickness of clay2.  At most of the places, Elev_clay2 had the second largest RCC with the 

thickness of clay2. Some other inputs had the second largest RCCs with the thickness of 

clay2 could be Elev_le1, Elev_fr1 and those values were usually smaller (between -0.25 to 

0.25). The RCCs between the thickness of clay2 layer and Elev_clay2 were mapped in Figure 

17 (left) and the RCCs between the thickness of clay2 layer and Elev_fr2 were mapped in 

Figure 17 (right). Elev_clay2 always had positive RCCs and Elev_fr2 always had negative 

values. Elev_fr2 and Elev_clay2 (at most of the places) were the most and second most 

influential inputs on the variations in the clay2 layer thickness.  

 

   

Figure 17 Left: the RCC between the thickness of clay2 layer and Elev_clay2. Right: the RCC between 

the thickness of clay2  layer and Elev_fr2. 
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4.3 Ground settlement risk evaluation 

 

In Figure 18, the areas inside the marked contour lines were risky area where the standard 

deviation and 95th percentile of the calculated ground settlement exceeding a critical value. 

The critical value is 0.02m for standard deviation of ground settlement and 0.05m for 95th 

percentile of ground settlement. The buildings within the risk area were masked with blue 

color. Figure 18 also mapped the parameters that contributed to the biggest uncertainties in 

the final ground settlement model. Elev_fr1, Elev_fr2, Elev_clay1 were parameters in the soil 

strata model. Further studies and investigation could be made according to this map to 

decrease the risks in ground settlement. For example, if Elev_clay1 was found in this 

sensitivity map in a risky area, then more time could be spent on Elev_clay1 in the hopes of 

reducing its uncertainty, therefore, its effect on the ground settlement.  

Figure 18   The sensitivity map for final ground settlement model. Risky areas where the ground 

settlement exceeded a critical value were showed. 
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5. Discussion 
 

Fitting the semivariogram  

The most common semivariogram models that can fit most of the data sets are the linear, 

exponential, and spherical models (Barnes). If a semivariogram never level off, then a linear 

model should be chosen. If a semivariogram levels off but still curves up a bit, then an 

exponential model should be used. In our case, the spherical models were chosen since all the 

semivariogram leveled off in a certain distance and did not go all the way up.  

The different ranges and sills observed for the soil layers’ elevations indicated that their 

spatial variability were different. The semivariogram in real life would not look the same as 

the theoretical one showed in Figure 1. The experimental semivariogram in Figure 7 showed 

more fluctuation in the high distances than the low distances. The fluctuation of 

semivariogram in higher distances implied the weak spatial dependency between far away 

locations. 

 

Soil layers overlapping in kriging 

The overlapping between different soil layers could be explained by the interpolation error 

(uncertainty), i.e., the incorrectly predicted elevation values caused the overlapping problem. 

From figure 8, we could see that in two kinds of situation, overlapping was prone: First, since 

the place further away from sample points would have more un-reliable results, the 

uncertainties in those places were also bigger. Thus overlapping would happen more in the 

places far away from sample points (Figure 8 left). Second, overlapping happens more in the 

places where the upper layer elevation and lower layer elevation were very similar (Figure 8 

right). And in this case, the degree of overlapping was smaller.  

It can be inferred that the overlapping problem in modeling soil strata from kriging is 

common, since kriging (or any other spatial interpolation method) is an intelligent guesswork 

and erroneous prediction is inevitable.  However, Overlapping problems may indicate an 

inadequate kriging model (semivariogram model) so special cautions need to be paid.  

The solution of treating overlapping always gave the lower layer elevations to the higher 

layer elevations. This was due to that the higher layer elevations were more reliable, since 

more sample points were included for interpolation.  

Stationarity 

The type of kriging used for interpolation in this thesis was Ordinary Kriging. Data 

stationarity is one assumption behind Ordinary Kriging process. A stationary data must 
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satisfy: (1) The mean of the data is the same of all the location, (2) The covariance (or 

semivariance) is the same between any two points that are at the same distance (Haas 1989). 

However in practice, this assumption is often violated. In fact, the data set used in this study 

has shown non-stationarity of mean and semivariance when assessing with Voronoi maps 

suggested by Krivoruchko (2002). An alternative way to perform kriging for non-stationary 

data is to use Moving Window Kriging (MWK) which builds local semivariogram at every 

location to be estimated. The local variogram is minimally affected by data non-stationarity 

and thus allows the accurate modeling of the spatial structure (Krivoruchko 2002; Haas 1989).  

MWK was complicated and difficult to understand. Due to the time limit, MWK was not 

utilized in this thesis.  

Cross validation 

The RMSE from cross validation indicated the prediction of Elev_clay1, Elev_fr1 and 

Elev_till could be considered adequate but not Elev_clay2 and Elev_fr2. This may be 

explained by that the number of samples used for constructing semivariogram of Elev_clay2 

and Elev_fr2 was less than the other soil layers. Insufficient number of sample points may not 

be able to give a meaningful semivariogram (Lemon and Jones 2003).   

 

Uncertainty analysis 

Normal distribution was chosen as the probability distribution for the input due to the reason 

that many natural variables fall into a normal distribution. And the input (soil layer elevation) 

was thought to be symmetric and more likely to near the center than the extremes (Rodger 

1999).   

Figure 9 -13 mapped the central tendency, dispersion and skewness of the output probability 

distributions from Monte Carlo (MC) simulation and compared them with relevant kriging 

results. The central tendency of the output probability distribution showed the stochastic 

representation of the soil strata has been changed from the soil strata generated by kriging. 

Especially in the lower soil layers when the corresponded uncertainties were bigger. MC 

results tended to show lower values in elevations because the values bigger than the upper 

layer elevations were filtered by the non-overlapping formula.  

The change of dispersion and skewness could be explained by the overlapping of probability 

distribution in the inputs. The overlapping values were filtered and caused a “narrower” 

distribution in the output. And since only the bigger values in the distribution were filtered so 

the distribution showed skewness.  

Generally, the MC results and corresponding kriging results were more different at the places 

far away from the samples. In kriging the places further away from the sample points would 

have larger interpolation prediction error so the inputs uncertainties in MC simulation at 

those places were also lager. Larger uncertainties in the inputs would result more overlapping 
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in the probability distributions between the soil layers and thus a more different output 

probability distribution would be found.   

The different cell resolutions also made the extracted maps from kriging results and MC 

results looked different. The soil strata model developed by kriging was based on 10 m 

resolution and the MC results was based on a 30 m resolution simulation. Although the MC 

results were mapped in 10m resolution again later, some details have lost.  

 

Sensitivity analysis 

The thickness of the clay layer was calculated by upper boundary elevation subtracting lower 

boundary elevation. Thus the sensitivity results were consider to be reasonable in two ways: 

first, the two boundary elevations were the most relevant and thus most significant 

parameters for the thickness of the clay layer; secondly, the higher the upper boundary 

elevation, the thicker the clay layer thickness and thus positive correlation was observed 

between them; the higher the lower boundary elevation, the narrower the clay layer thickness 

and thus negative correlation was observed between them;  

The sensitivity analysis showed that the lower boundary elevation always had bigger 

correlation than the upper boundary elevation. This can be explained by bigger uncertainties 

found in the lower boundary elevation than the upper boundary elevation (see table 4). 

Since the thickness of the soil layer was always calculated by upper boundary elevation 

subtracting lower boundary elevation, it could be inferred that for the thicknesses of any soil 

layer, the most influential parameters would be the upper and lower boundary elevation of 

that layer. The upper boundary elevation would have positive correlation and the lower 

boundary elevation would have negative correlation. The degree of correlation depends on 

the uncertainties of the parameters.  

It was argued by Rodger (1999) that RCC between -0.25 and 0.25 may be spurious so special 

cautions should be undertaken when interpreting RCC.  

 

Ground settlement risk evaluation 

At some places in Figure 18, parameters which came from the soil strata model contributed to 

the biggest uncertainties in the ground settlement, such as Elev_clay1, Elev_fr1 and Elev_fr2. 

More effort should be paid on these parameters in the hopes of reducing its uncertainties, thus, 

its effect on the ground settlement. To decrease the uncertainties in the parameters like 

Elev_clay1, one way is to increase the sampling density of soil strata investigation in order to 

decrease the prediction standard error in kriging.  

In reality, the constructor would use the ground settlement risk evaluation results combined 

with economic factors. There are two ways to decrease the risk of building damage: first, 



 

 

38 

 

further investigation (more samples perhaps) could be carried out to decrease the ground 

settlement uncertainties; second, prevention measures could be done to prevent the soils 

undergoing severe settlement.  The constructor could compare the costs for further 

investigations and prevention measures and decide which methods to use.  

 

Other errors/uncertainties existed in the soil strata model that have not been considered 

The uncertainties in the soil strata model in this thesis only included the uncertainties in 

kriging interpolation. There are other kinds of uncertainties, for example the uncertainties 

exist in sample measurement and sample interpretation stage. The samples were measured in 

different times and by different investigation methods (see section 3.1). This corresponds to 

measurement error with different magnitudes. The interpretation of the boreholes contained 

subjectivity and the interpretation error could be minimized by professions with experiences 

in geotechnical engineering and geology.  
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6. Conclusion 

 

In this thesis, the soil strata model was generated for ground settlement risk evaluation 

purpose. The kriging interpolation has been proved to be an effective way for generating soil 

strata in this thesis since it was a much more automatic way of generating soil strata 

comparing with manual plotting. Besides, the spatial structure of the variable was considered 

and the quality of interpolation could be checked by cross validation.  Finally, the 

uncertainties in kriging could be quantified by prediction standard error.  

It was a novel method to build an integrated model of soil strata, groundwater and ground 

settlement with defined uncertainties in each model. By dividing the ground settlement risk 

evaluation task into three parts, more time could be saved and each part could be 

accomplished by some professionals in that field. And the risk evaluation results could be 

referred back to a specific part for further analysis.    

Improvement in soil strata modeling could be made at utilizing Moving Window Kriging in 

generating soil strata to improve the accuracy of interpolation. Besides, more sources of 

uncertainties in soil strata generation could be considered such as the uncertainties contained 

in sample measurement and sample interpretation. 
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