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Abstract 

 

The day of bud burst (DBB) of different tree species are known to be affected by factors such 

as growing degree days and temperature. In this paper a two state Markov chain is used to 

model DBB for birch. The model is fit using logistic regression and LASSO regularization is 

used to evaluate which of many potential factors best forecast DBB. Data of birch from both 

Finland and the United Kingdom is studied and differences between the models adapted to the 

two countries are investigated. For modeling purposes to capture the environment of 

forecasting, estimated interpolated gridded climate data was used and not directly measured 

climate data. 

 

It is found that the models give very accurate predictions on the DBB. For Finland it is little 

more than 2 days in mean absolute error (MAE). The model is also fairly compact having less 

than 10 explaining covariates. The covariate, accumulated growing degree days, was as 

expected part of the models as well as among others variation of precipitation. 
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1. Introduction 

This analysis sets out to investigate which climate factors best predict the day of bud burst 

(DBB) for birch (lat. Betula pendula) trees in Finland and the United Kingdom. Observations 

(location and year) of DBB are given together with climate covariates; temperature, 

precipitation, day length, latitude and elevation are considered in different combinations.  

This analysis is inspired by Song (2010) who analyzed the DBB of different tree species in 

Canada with respect to only growing degree days (GDD). This analysis expands on the work 

of Song by investigating the effects of many factors, and how they best make up a forecast 

model for predicting the DBB.  

 

A tree goes through a series of phenological stages such as budburst and shedding of leaves. 

Kramer (1994) refers to Vegis (1964) three stage rest model in which only at the third stage 

post-rest growth is possible. The state transition between the three stages (pre-rest, true-rest, 

post-rest) is triggered by chilling attaining certain threshold values. See also the thermal time 

model by Cannell & Smith (1983). Other models propose amount of daylight as a key 

triggering factor for budburst. A long photoperiod could substitute for lack of chilling (Vegis, 

1964). Thus day length is considered as a covariate in the many factor model. Further the 

amount of rain during the year before could affect budburst. Stress due to drought could affect 

the rest needed. Therefore different periods are also considered as possible covariates, the 

amount of rain along with number of rain days. The different, so called, constant covariates 

(see appendix for list of covariates) are considered to assess the impact of various weather 

conditions over the previous year and their influence on the condition of the tree. Unfavorable 

weather conditions could potentially delay the budburst the next year. 

 

The aim of this analysis is to take a statistical approach on modeling the bud burst. No effort 

(more than the choice of the covariates made by my advisor Johan, Anna and Cecilia) is made 

to link actual biological relevance of the different covariates and interactions. The focus is 

entirely on the statistical modeling and the predictive power of the model. For previous 

models it has been common to look at mechanistic factors such as GDD, chilling followed by 

forcing temperature and photoperiod. The purely statistical approach taken here could help in 

finding other relevant biological factors linked to the DBB and even so could be used with 

climate models for prediction.  
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2. Data 

Phenology data for trees are collected irregularly across countries and are located differently 

from climate data. Many phases of the tree cycle are recorded and in this model only the DBB 

is used. The exact definition of the DBB used is event no 11 in the BBCH scale (Feller, 

1995). Event 11 is when the first true leaf has unfolded. The DBB data where retrieved by the 

PEP725 project (2012). Birch (lat. Betula Pendula) DBB data are used in this analysis. 

 

The data for parameter estimation in the Finland model is chosen as 2/3 of the DBB 

observations and are randomly selected. In the UK the 418 gridded climate data locations are 

randomly selected and grouped hierarchal in three models in order to study the dependence on 

the number of observations and model resulting model size. The third model is a subset of the 

second being a subset of the first. The DBB stations associated with these climate locations 

are used for parameter estimation. The three models have 33%, 17% and 11% percent of the 

gridded climate data locations associated with them.  

 

Temperature & Precipitation 

Climate data were obtained from Heylock (2008) on a gridded 0,5 x 0,5 degree grid. DBB is 

assigned to the closest grid cell. Coastal data are dropped due to lack of climate data. 

Temperature and precipitation data is collected from the closest climate cell relative the DBB 

station. The climate data consists of daily average temperatures and minimum respectively 

maximum daily temperatures, as well as precipitation (amount of rainfall each day). 

 

Day length 

The day length data, or number of hours of light, is calculated from the time of year and 

latitude for each station. 

2.1 Stations 

 

Finland 

For Finland there are 33 DBB phenological observation sites well spread in space with DBB 

data for birch over the years 1997-2005. Se figure 2a & b 

 

United Kingdom 

There are 3169 phenological observation sites across the UK with DBB data for birch during 

the years 1972-2005, with almost all of the data coming from 1999-2005. The 3169 DBB 

stations are situated within 418 - 0,5 x 0,5 degree cells providing climate data. Therefore 

many DBB stations have the same climate data. This will affect the predictions since the 

coefficient estimation for the different covariates have to weight in several ‘right’ answers to 

the same data. In effect an ‘average’ is calculated to best fit all data. Se figure 2c & d
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Figure 2b Availible DBB data for each station and year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a DBB phenological observation sites in Finland used in the analysis and 

corresponding gridded climate data locations closest to each DBB cell. 
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Figure 2c DBB stations in the United Kingdom used in analysis for the UK3 model 

having approximately 11% of the data and corresponding climate grid cells closest to 

each DBB cell. 

Figure 2d Used DBB data for each station and year for the UK3 model. 
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 Years Number of 

DBB stations 

Number of 

climate stations 

Median DBB min/max DBB 

FI 1997-05 33 29 138 119/172 

UK (1972-98) 1999-05 3169 418 103 32/150 

Figure 2f  The distribution of the various DBB instances for the UK data. The data 

varies as much as from day 32 to day 150. In addition the local variation is large. 

Table 2e Data table for Finland and the UK. Note that extreme values are kept.  

Figure 2g Boxplot of weather station 363 UK data showing the variability within a 

year. Number of observation sites each year in boxplot  

year 1999 2000 2001 2002 2003 2004 2005 

instances 2 0 10 11 14 10 5 

 



  

9 

 

3. Model setup 

Our model focus is on the DBB, which can be interpreted as time-to-event data. By time-to-

event is meant a sequential time dependent process having a transition at a specific time 

(Song, 2010, ch 2.2). The transition is an event or state change. More specifically for bud 

burst this transition will be absorbing from no leafs to presence of leafs. Absorption implies 

that when the state is reached the process cannot reverse. In a natural way a more general 

sequence of state transitions can be modeled. We assume that the states are 0=’no leafs’ from 

start of the year up to the DBB where it changes to 1=’leaves’ and then stays in that state for 

the remainder of the year. So for each observation of one DBB-every indexed i, we have time 

points 0, 1,...,t  defined for each day starting at January 1 and we have an indicator variable 

, {0,1}i tY  reflecting the status of the tree where 0 stands for “bud burst has not occurred” and 

1 for “bud burst has occurred”. Let iT be the time to event for observation i  then: 

 
,

,

0,  

1,  

i t i

i t i

Y t T

Y t T

 

 
 

Now we further assume there are time dependent vectors of covariates, ,i tX ,which affect iT . In 

the continuing we will assume that both covariates and response, exists for all observation 

couples (location and year).  

3.1 Equivalence between Markov chain transition model and logistic regression 

 

We are now interested in the conditional event of DBB given a set of covariate values. 

Extending the notation above to cover sets of time points we get the model: 

 ,0: , ' ,0 ,0 , ' , , ,0: 1 , '

1

P( | ) P( | ) P( | , )
t

i t i t i i i t i s i s i s i t

s

Y X Y y X Y y Y X   



    

It’s easy to show that under the assumptions above the conditional probabilities on the right 

hand side of the equation can be reduced to depend only on the event just before due to the 

Markov property of time-to-event models. It is a model assumption that 

( | ) ( | )P DBB T X P Y X  so that the probability of DBB depends on the covariates (Song, 2010, 

ch 2.3.1). We get the simplified model: 

 ,0: , ' ,0 ,0 , ' , , , 1 , 1 , '

1

P( | ) P( | ) P( | , )
t

i t i t i i i t i s i s i s i s i t

s

Y X Y y X Y y Y y X    



     

The conditional probability of bud burst at time it is: 

,0 ,1 , 1 , , 1

, , 1

,0 ,1 , 1 ,

P( | ) P( 0, 1 | )

                         = {since P( 1 | 1) 1 0}

                         = P( 0, 1 | )

               

i i i

i i

i i

i i i i i i t i t i t i

i t i t

i i i t i t i

T t X Y Y Y Y Y X

Y Y

Y Y Y Y X

  

 

  



        

    

    

 ,0

1

, , 1 , , 1

1

          = using the markov property and inital assuption of ( 0) 1

                         = P( 0 | 0, ) P( 1 | 0, )
i

i i

i

t

i s i s i i t i t i

s

P Y

Y Y X Y Y X


 



 

 
     

 


 



 

 

It is clear in this case that the covariates can only be influencing up to their present time so 

that ,0:i sX should replace iX in the above derivation, and ,0P( 0 | ) 1i iY X  by assumption (before 

January 1 there is no budburst). 

 

Now assuming the transition probabilities can be written as equation: 

1

1

1
( =1| =0,X)= logit ( )

1
t t t X

P P Y Y X
e 



 
 


 

then the probability of having budburst at time T t is: 

 

1

1

1

1

( 1 | 0)

( 1)

( ) (1 )   ,  1

t t t

t

s t

s

P P Y Y

P T P

P T t P P t







  

 

    

 

And the probability of having budburst not later thanT t is: 
1

1

1 2 1

( ) ( ) (1 )
t t u

s u

u u s

P T t P T u P P P


  

         

3.2 Regression 

 

The method of linear regression is commonly used to model the dependence between 

explanatory variables and a response variable under analysis (Rawlings, 2001).  Least squares 

(LS) minimization is applied to the coefficients of the explanatory variables in order to 

minimize the squared error of the fitted model and the original data. The residual error of the 

model is assumed to be standard normal Gaussian with mean 0 and variance 2 . The setup of 

multiple linear regression is: 

 0 1 1 ...i i p pi iY X X e        

The explaining variables can have any form: continuous, constant (the intercept being the 

default constant equal to one) or categorical. However the response Y must be continuous in 

order for the least squares to make sense. So in the case of a categorical response having 

values of zeros and ones standing for the states true and false linear regression cannot be 

applied.   

 

3.3 Multiple logistic regression 

 

In the case of a binary response {0,1}iY  as for the Markov chain (see figure 3) described in 

3.1 above, iY is distributed as (1, ) ( )Bin n Bernoulli n . Here (0, 1) stands for (DBB not occurred, 

DBB occurred). It is interesting to model the probability ip of success given explanatory 

variables .X Trying 

 0 1 1 ...i i pp ip ip X X X         

fails since [0,1]ip  and we cannot guarantee that [0,1].i ip X   The transformation 

 logit( ) log
1

i
i

i

p
p

p

 
  

 
 



 

 

maps the probabilities to the real line and linear regression can be applied. This mapping 

function is called the logit-link function. However Y is not continuous and therefore the 

method of maximum likelihood (ML) is used to find optimal coefficients. The logit 

transformation is natural since it defines the natural parameter for the corresponding 

exponential family (Andersen, 1970) which the binomial distribution belongs to. Thus there 

exist sufficient statistics (Casella, 2002) and there are conjugate priors (Gelman, 2003) in 

Bayesian analysis. The model will for each observation fit a value on the real line and the 

transformation, using the inverse logistic function: 

 1 1
( ) logit ( )

1 x
P x x

e




 


 

converts the values back to probabilities. So the model: 

 0 1 1logit( ) ...i i p ip ip X X X         

inverted with the logistic function gives 

 
1

1 1

i

i i

X

i X X

e
p

e e



 



 
 

 
 

which can be estimated by maximizing the binomial likelihood (Christensen, 1990, ch 2.6): 

 
 1

1

1 1 1

1 1
(1 )

1 1 1

ii iii

i i

i i i

yy XyXN N N
y y

i i X X X
i i ii

ee
L p p

y e e e


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


  





  

    
      

      
    

Here
i

y is the response for observation vector iX  . Another change compared to linear 

regression is that the residuals are non-Gaussian due to the transformation. The maximization 

of the likelihood estimates  and we get the transition probabilities using the logistic function 

on the prediction covariates multiplied with  as described at the end of section 3.1. See also 

(Song, 2010, ch 2.3.3) 

 

 

 

 

Figure 3 Two state Markov transition model. The Markov chain is in the ’zero’ state and 

remains there at each timepoint t  with probability 1 tP . Consequently the chain changes state 

with probability tP  at each timepoint t . When the markov chain has changed state to the ’one’ 

state it will remain there with probability 1 and has thus been absorbed by the ’one’ state. 
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4. Variable selection by regularization 

When fitting a regression model with many covariates linear regression or logistic regression 

may over fit the model. To over fit means that the model will readily explain the data used to 

estimate parameters but will do poorly trying to predict responses given new covariate data. 

This happens since more explanatory variables will increases the fit, and thereby the 

likelihood. Common methods to resolve the over fitting problem is to penalize the likelihood 

of the model for having many parameters allowing a compromise between model complexity 

and fit. This gives rise to information criteria upon which to choose between different models. 

One usually uses the Akaike information criteria (AIC) or the Bayesian information criterion 

(BIC). See  (Brokwell, 1991).  

 

Another way of handling over fitting is to use cross validation (CV) (Picard, 1984). Part of 

the data used to estimate parameters are used to estimate the prediction error of the model. 

This can then be used to differentiate between models. Additional validation data is then used 

to assess the accuracy of predictions. These procedures can be applied to cases where a few 

models are being compared. Otherwise one will have to manually compare many different 

models where the estimated models can change drastically if some covariate(s) are 

added/removed, making it hard to pinpoint the most relevant factors. Effectively one will 

have to check all combinations often making the methods computationally intractable. There 

are also situations where covariates cancel each other out. They can at the same time be good 

predictors in the model and have the same amount of relevance. 

 

Dealing with hundreds or more covariates the problem of variable selection can be (more) 

objectively solved with regularization of the regression. By adding a penalty in the regression 

model to the coefficient sizes the optimization will shrink some coefficients quicker to zero 

and by applying CV the penalty term which maximizes the out of sample prediction error can 

be determined. This maximization at the same time reduces the number of explaining 

variables by minimizing the coefficients (one typically chooses a cutoff point for the 

regression coefficients when to discard a covariate or as in the case of lasso, coefficients 

automatically shrink to zero). Hopefully the covariates that remain in the model will be few 

enough to make good predictions and many enough to, at the same time, explain existing data 

well.  

4.1 Ridge regression 

 

One common regularization method is ridge regression, or Tikhonov regularization (Dykes, 

2012). This adds the sum of the squared coefficients as a penalty. Correlated coefficients with 

high variance are thereby prevented from cancelling each other by having coefficients with 

different signs. 



 

 

 2 2 1

0

1 1 1

ˆ arg min ( ) ( )
p pN

ridge T T

i ij j j

i j j

y x


      

  

 
      

 
   X X I X y  

As seen the intercept is not penalized to avoid dependence on the origin of Y. Looking closer 

on this expression the first term is the negative log likelihood of a multivariate Gaussian 

distribution which is the setup for linear regression having independent observations. The 

second term is the negative log likelihood of a Bayesian prior distribution. 

2

1

( ) exp
p

j

j

p   


 
  

 
  

 Regarding the coefficients as independent, this introduces a prior distribution precisely  

with (0,1 / (2 ))j N  .  

  

4.2 Lasso 

 

The lasso (Tibshirani, 1996) is slightly different from ridge in that it penalizes the sum of the 

magnitudes of the coefficients instead of their squares. It has the advantage of forcing small 

coefficients to zero, eliminating the need of choosing a cutoff threshold.  

 2

0

1 1 1

ˆ arg min ( ) | |             (1)
p pN

lasso

i ij j j

i j j

y x


    
  

 
    

 
    

The lasso has no closed form solution but it is a quadratic programming problem and related 

to convex optimization problem (Hastie, 2009, ch 3.4.2) and efficient algorithms exists. Lasso 

also works for logistic regression since the regularization can be viewed as setting a prior on 

the coefficients. For lasso the prior is | |( )p e    , or a laplace distribution. See (Tibshirani, 

1996, ch 8) 

 

Cross validation 

  

The penalty term in (1) needs to be specified and it’s not obvious which value to choose. 

The solution is to apply cross validation to the data set. One divides the set into k sub 

partitions and performs the estimation on all but one set. The remaining set is used for 

validation. This procedure is repeated for each partition. The parameter is then selected as 

what minimizes the deviance or root mean square error (RMSE), to maximize the likelihood 

of the validation set. At minimum min those variables not set to zero are the datasets best 

predictors. This set is then further reducible by increasing the lambda parameter so much so 

that the error of the minimum still overlapped by one standard deviation 1se . The two models 

( min and 1se ) are still within statistical significance as the error estimates of the cross 

validation overlap to 50% (=1se). So from the point of view of the cross validation the two

values are statistically overlapping (or there’s a 50% chance they are equal). 
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5. Analysis 

5.1 R – Package 

 

The open source statistical computing environment R has been used for this analysis. The R-

package glmnet (Friedman, 2010) provides tools for lasso analysis of among other logistic-

regression. The covariates for each station are pre-computed and saved for efficiency. The R-

package maps (Becker, 2012) is used when illustrating the data. Tables printed using the 

gplots (Warnes, 2012) package. 

5.2 Covariates 

 

The main aim of the analysis is to find relevant covariates determining the DBB for birch in 

Finland and the United Kingdom. The covariates are divided into two groups, constant and 

varying. The constant covariates are fixed for each year and station such as: location or mean 

temperature the previous year. The varying covariates are temperature, GDD etc. Along with 

these covariates all interactions between the time constant and varying are considered. An 

interaction between two covariates is simply the multiplied value of the two covariates. In this 

case it will capture dependence on the previous year and/or location. Some conditions might 

inhibit budburst and others promote.  See  the appendix for a complete list of covariates. In 

this case we have with interactions 11 17 11 17 215    covariates to choose from. 

5.3 Data selection 

 

For the regression to work all covariates must exist. A much more complicated model could 

of course handle the case of missing covariate values, but given the abundance of data the 

added complication is not justifiable. So the available stations for a full analysis are 

considered. In general 2/3 of the locations are used for analysis and 1/3 for validation. For the 

United Kingdom the number of DBB stations is far more than the number of climate cells. 

Therefore the climate cells are used and a smaller subset is randomly selected. The DBB 

stations associated with the climate cells are used in analysis. It turns out that too much data 

only over fits the model. The three models (UK3 a subset of UK2 beeing a subset of UK1) 

analyzed are: 

 

UK1 – 33% of the climate cells associated. 

UK2 – 17% of the climate cells associated. 

UK3 – 11% of the climate cells associated. 

 

 

 

 



 

 

5.4 Parameter estimation 

 

For the cross validation to work properly the data needs to be grouped according to the 

observations which in this case are a set of days (1 January up to the DBB) instead of the 

default random grouping of Y. This is done by supplying an nfoldid parameter to glmnet, 

which indexes, for each observation, what CV-group it should belong to, figure 5.4a 

illustrates with an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters estimated through the lasso regularization are those constrained by 

penalization. Thus estimating them using only GLM should give slightly larger values. In 

addition parameter standard errors are also obtained.  

 

Finland 

 

The stations for analysis are shown in figure 2a and after lasso cross validation the minima 

and one standard error reduction are shown in figure 5.4b. The minima minimize the cross 

validation error but do so having a very large set of covariates in the model. Intuitively if a 

point on the curve has it’s CI overlapping half that of the minima it is statistically close. This 

is where the 1se point lies, and one chooses 1se to ensure the largest possible reduction in the 

number of covariates. Figure 5.4c shows the coefficient trajectories as a function of , note 

the shrinkage to 0 for large penalties. 

 

Table 5.4d shows the covariates for the 1se model and coefficients before and after re-

estimation. Clearly three covariates doesn’t seem to have significance in the model, but it is 

not clear how to reduce the model further. By insignificant means that the standard error is 

large compared to the coefficient estimate. In this case the standard error is as big, or almost, 

as the coefficient. 

 

 

 

Figure 5.4a nFoldid structure marking the individual observations for 10 folds 

crossvalidation. Note that the 10 groups are randomly selected, but the 0/1 sequence 

associated with one DBB observation is not split between groups. 
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Figure 5.4b Cross validation for binomial logistic regression with lasso regularization on 

Finland data. At minimum there are 22 relevant coefficients (including the intercept) and 

one standard error away that number is reduced to 8. The reduction is not monotone. 

Figure 5.4c The model coefficients for Finland are forced to zero as gets larger (varying 

from just above zero to one). The lines for the  and  are as in figure 5.4b 
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Table 5.4d After 10 fold cross validation these are the one standard deviation  estimated 

parameters for the Finland data and shown are the estimated parameters using GLM only. As 

seen all the coefficients are larger in magnitude. This is due to the lack of the penalizing 

term. The covariates 4, 5 and 7 have p-value less than 90% significance.  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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The United Kingdom 

 

The stations for analysis of the UK3 model are shown in figure 2c. After lasso cross 

validation the minimum
min and one standard error reduction of the model

1se are shown in 

figure 5.4i. The coefficient trajectories are shown in figure 5.4j. Table 5.4e shows the 

estimated coefficients of the lasso regularization along with the glm re-estimated coefficients 

for the UK3 1se model. As seen the covariate latitude:agdd5 change sign at re-estimation 

although all coefficients have significance. For comparison the covariates for the UK2 model 

are shown in table 5.4f. There are five covariates in the UK2 model which are missing in the 

UK3 model. In addition we see that the covariate latitude:agdd5 is new to the UK3 model. 

 

The covariate latitude:agdd5 is therefore removed from the UK3 model and the re-estimated 

coefficients are as in table 5.4g. This new model, called (UK3 re-estimated reduced), has the 

covariate chill5:agdd0 with no significance (large standard error). Removing the covariate 

chill5:agdd0 and creating the model, UK3 re-estimated reduced 2, all parameters have 

significance (see table 5.4h). These two reduced models again gives good predictions only 

slightly worse than for the other models. The model in table 5.4h is the smallest and most 

efficient containing only 5 covariates. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4e After 10 fold cross validation these are the one standard deviation (.1se) estimated 

parameters for the UK3 data and shown are the estimated parameters using GLM only. As seen 

most of the coefficients are larger in magnitude. One have however changed sign, marked in 

blue. It could mean the model is further reducible. Note that the model gives standard errors for 

the coefficient estimations. 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 5.4f The UK2 model after cross validation. There are six covariates, colored red, that 

isn’t in the UK3 model (see the preceeding table 5.4e). In addition the covariate for the UK3 

model that changes sign at re-estimation is new compared to the UK2 model. 

Table 5.4g  The UK3 re-estimated and reduced model. No coefficients change sign. 

Predictions are good. The covariate chill5:agdd0 can be dropped and the resulting model 

have all coefficients significant see table 5.4h. 

Table 5.4h The further reduced UK3 model. All coefficients are significant. This is the 

most efficient model for the UK data set. 
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Figure 5.4i Cross validation for binomial logistic regression with lasso regularization on 

UK3 data. At minimum there are 17 relevant coefficients (including the intercept) and one 

standard error away that number is reduced to 8. The reduction is not monotone. 

 

Figure 5.4j The coefficients are forced to zero as gets larger (varying from just above zero 

to one). The lines for the and are as in figure 5.4i. 

The above curve is for day length. It might model a linear accumulated state in the response. 

One day one unit. For the Finland data with no local variation it is not represented. 
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5.5 Predictions 

 

The predictions are made with both the lasso coefficients and the re-estimated coefficients 

using generalized linear model (GLM) for the validation data. Two types of prediction 

intervals (PI) are formed: 

 

1. The accumulated probability PI is described in chapter 3.3 and is the probability that 

the budburst occurs at a specific day given the previous days of the year. See figure 

5.5h for an example. 

  

2. The transition probability PI is the regression probability for each day of having 

budburst individually. See figure 5.5i for an example. 

 

The PI is formed as centered at the day closest to having 50% probability (for respective 

interpretation) and the upper 97.5% and lower 2.5% respectively.  It turns out that the re-

estimated model optimizes predictions at the 50% point of the second PI and that the lasso 

regularized model at the 50% point of the first PI. 

 

The two data sets are very different as the DBB information for Finland has no local variation 

(only one DBB value per climate cell and year). Se figure 2e-g. As a consequence the 

prediction get more accurate for Finland. Overall the prediction results are good as seen in 

table 5.5f. Comparing with (Song, 2010, table 4.4) both the MAE and RMSE is significantly 

reduced. The results are also comparable to the sequential-i model evaluated in (Kramer, 

1994, table 2). It is clear that the min min model is comparable to the 1se model. The simpler

1se model can therefore be used without loss of predictive accuracy. 

 

The predictions together with the observed DBB are showed graphically in figure 5.5a-d. 

The UK model doesn’t take into account DBB observations below around 85 and above 125 

as seen in figure 5.5b. They are treated as extreme observations and are rare. So rare that they 

might be errors in the data set but that is out of the scope of this analysis. Clearly it is 

important that the modeled data is correct and doesn’t vary too much if the predictions are to 

be accurate.  

 

For reference the predictions on the regression data set is in table 5.5g. The values are only 

very slightly better than for the validation set. It is also clear the for the UK data too much 

stations in the analysis creates over fit and the model becomes overcomplicated without 

gaining in prediction accuracy. The model UK3 with about 11% of the stations gives 8 

covariates including the intercept and gives as good prediction result as the other models.  

The model can be further reduced to only 5 covariates and the intercept.  

 

The prediction interval both for the Finland data and the UK data are too wide. The problem 

is in finding a better way of forming the PI in a consistent way. The extreme values of the UK 



 

 

data, in this case less than 80 and more than 130 in DBB, make up about 2.7% of the 

validation data. That could account for the slightly low value of the PI cover of around 93% 

for the re-estimated UK models. For Finland it is clear that the lower part of the PI is far too 

low. It is though not trivial to adjust the lower limit of the PI. One ‘quick-fix’ would be to 

measure the length between the upper limit and the prediction point and then subtract a scaled 

amount from the prediction to get the lower limit. Doing this for a scaling of 2 actually brings 

the average PI length down to about 14 days for the Finland data see figure 5.5e. Doing the 

same but with a scaling of 1 on the UK3 data reduces the average PI length from 64 days to 

37.2 days and a PI cover of 93.6% comparable to the UK re-estimated models.  

 

Trying to put an upper limit for the PI will take down the PI cover by the extreme values. 

Imagine putting a horizontal line somewhere in the red band in figure 5.5b around 130 and 80, 

which is the interval for all predictions. It is clear that then the extreme values will pull down 

the PI cover. But since the extreme values aren’t modeled, or at least seem ignored by the 

predictions, it is not really possible to anticipate them, and therefore the PI length cannot be 

made smaller. The model makes a weighted choice and therefore the predictions are close to 

the mean values and hence the extreme values  

 

For the UK data additional errors are calculated as: 

 

(1) ,| |i i

obs median obs

i

T T , the theoretical best MAE error. 

(2) 2

,( )i i

obs mean obs

i

T T , the theoretical best RMSE error. 

(3) ,| |i i

pred mean obs

i

T T , the predicted DBB against observed mean for MAE estimate. 

(4) 2

,( )i i

pred mean obs

i

T T , the predicted DBB against observed mean for RMSE estimate. 

The error estimates (1) and (2), calculate the optimal MAE and RMSE for data having 

multiple values that is to be estimated with one value. For the MAE being in the L1-norm this 

one value that minimizes the error is the median of the values to estimate (or in this case the 

median of the DBB for a climate cell and year pair). For the RMSE the value that minimizes 

the climate cell/year observations is the mean of the observations. 

 

The error estimates (3) and (4) calculate the errors between the predictions and the mean of 

the climate cell/year observations. That would be the errors if one would form the averages of 

the observations and thereby removing local variation. Technically there is a difference in 

taking the averages before analysis and then doing predictions. 

 

The error estimates (1) and (2) are zero for the Finland data since observed DBB coincides 

with median and mean. The cases (3) and (4) coincide with the ordinary MAE and RMSE 

estimates for Finland.
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Figure 5.5a The predictions compared to the observations for the Finland data 

together with prediction upper and lower intervals. Note that the low part is shifted 

downward. 

Figure 5.5b The predictions compared to the observations for the UK data together 

with prediction upper and lower intervals. Due to large local variation the predictions 

with PI are irregular. Note that values of DBB below around 80 and above 130 are 

not modeled at all. 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5c Predictions compared to observation according to the climate cells. The gray 

lines are the maximum respectively the minimum observations at each climate cell. The 

curves vary very much since even the variation across years are taken into account (see 

Figure 5.5d for the year 2001 specifically). The red PI curves are the average max/min PI 

for each climate cell. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5e The predictions (on the validation set) together with observations and upper and 

lower PI curves. The lower PI part is formed as the distance between the predictions (green 

curve) and the upper PI part times 2 taken below the prediction curve. The average length of 

the PI cover reduces from 20.9days to 14.1days without changing the PI cover.  

Figure 5.5d Predictions compared to observation according to the climate cell means for the 

UK data year 2001. 
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 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

Model 

size 

MAE 

(1) 

RMSE 

(2) 

MAE 

(3) 

RMSE 

(4) 

Finland .1se 2.51 3.33 0.1 92.8% 20.9 8     

Finland .min 2.59 3.56 0.3 84.3% 13.9 22     

Finland re-estimated  2.42 3.34 0.2 85.5% 11.0 8     

UK1 .1se 7.74 10.06 0.2 95.2% 52.2 17 5.42 7.96 4.44 6.16 

UK1  .min 7.53 9.85 0.2 94.7% 52.2 42 5.42 7.96 4.29 5.81  

UK1 re-estimated  7.68 10.02 -0.3 93.9% 37.6 17 5.42 7.96 4.38 6.09 

UK2 .1se 7.75 10.11 -0.4 95.5% 57.0 13 5.40 7.96 4.54 6.23 

UK2  .min 7.76 10.10 0.3 94.6% 49.5 13 5.40 7.96 4.49 6.21 

UK2  re-estimated  7.71 10.09 -0.4 93.2% 37.1 13 5.40 7.96 4.51 6.19 

UK3 .1se 7.77 10.13 -0.8 95.9% 64.0 8 5.38 7.95 4.60 6.28 

UK3  .min 7.76 10.09 0.3 94.7% 50.4 17 5.38 7.95 4.50 6.21 

UK3  re-estimated  7.70 10.05 -0.3 93.3% 37.0 8 5.38 7.95 4.51 6.15 

UK3  re-est.& red. 1 7.71 10.07 -0.3 93.6% 36.8 7 5.38 7.95 4.55 6.19 

UK3 re-est.& red. 2 7.82 10.21 -1.7 92.6% 36.4 6 5.38 7.95 4.76 6.41 

 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

Model 

size 

MAE 

(1) 

RMSE 

(2) 

MAE 

(3) 

RMSE 

(4) 

Finland .1se 2.42 3.18 -0.6 90.4% 21.6 8     

Finland .min 2.27 2.95 -0.4 86.7% 14.0 22     

Finland re-estimated  2.50 3.33 -0.3 88.5% 10.9 8     

UK1 .1se 7.53 9.86 0.2 94.7% 52.2 17 5.42 7.96 4.29 5.81 

UK1  .min 7.49 9.78 0.7 94.1% 45.4 42 5.42 7.96 4.17 5.70  

UK1  re-estimated  7.47 9.80 -0.2 93.9% 37.5 17 5.42 7.96 4.18 5.72 

UK2 .1se 7.41 9.69 -0.3 95.6% 57.1 13 5.40 7.96 4.10 5.59 

UK2  .min 7.36 9.59 0.3 94.8% 72.3 13 5.40 7.96 3.98 5.42 

UK2  re-estimated  7.33 9.65 -0.2 94.1% 37.1 13 5.40 7.96 4.04 5.52 

UK3 .1se 7.40 9.70 -0.8 96.4% 64.2 8 5.38 7.95 4.07 5.50 

UK3  .min 7.33 9.59 0.3 94.3% 50.5 17 5.38 7.95 3.87 5.30 

UK3  re-estimated  7.31 9.64 -0.2 93.8% 37.2 8 5.38 7.95 3.94 5.39 

UK3  re-est.& red. 1 7.33 9,68 -0.2 93.4% 36.8 7 5.38 7.95 3.93 5.46 

UK3  re-est.& red. 2 7.45 9.83 -1.5 92.5% 36.4 6 5.38 7.95 4.25 5.72 

Table 5.5f Prediction results on the validation data before and after coefficient re-estimation. The MAE 

and RMSE for the error estimates (1)-(4) are included. For (3) and (4) the errors are actually smaller 

since the logistic regression tends to approximate the original DBB data closer to the cell average. The 

MAE for the optimal prediction (1) is taken with respect to the median not the average since it is the 

minimizer in the L1 norm. The best models are marked in blue. The UK models have 33%, 17% and 

11% of the available gridded climate cells for model estimation. Clearly too many stations doesn’t add 

to prediction and only over fit the model. The UK3 re-estimated and reduced models is the most 

compact and efficient (among the analyzed) model for the UK data.  

Table 5.5g Prediction results on the regression data (data that estimated the coefficients) before and 

after coefficient re-estimation. The values are only slightly better than those for the validation set. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5h Predictions on the UK3 .1se model with the 50% probability marked with blue 

line. That is the point where it is as much probable for a DBB to have occurred as it is to not 

have occurred. This is the first variant of the PI described in 5.4. The 95% prediction cover is 

marked with red lines. The true DBB days are marked with green lines. Note the stretching of 

the cumulative distribution function (CDF) curve (the dotted curve) making the left part of the 

PI land farther to the left. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5i Predictions on the UK3 .1se re-estimated and reduced model 1 with the 50% 

probability marked with blue line. That is the point where the transition probability for 

budburst is 50%. This is the second variant of PI described in section 5.4. The 95% 

prediction cover is marked with red lines. The true DBB days are marked with green lines. 

Note that the transition probability curve is not monotone. Also note that the PI is much 

smaller than for the first PI variant (figure 5.5h).  
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6. Conclusions 

 

6.1 Summary 

 

The Markov transition model viewed as a multiple logistic regression model can successfully 

model the day of bud burst for trees. Setting up the model the regularization method of lasso 

was used in order to get a manageable and hopefully relevant set of describing covariates. 

Both models gave a small set of covariates that have the relevant factors discussed both by 

Song and Kramer. For Finland the constant covariate modeling the total amount of rain the 

year before stood out. For the UK the covariate modeling day length complemented the 

covariate modeling the growing degree days.   

 

The Finland model gave very good predictions. Both the MAE and the RMSE for the UK 

model came very close to their theoretical optimum. Prediction intervals are in both cases too 

large. For Finland the lower PI limit was shifted downwards and it was not clear how to adjust 

in general, though the PI could clearly be reduced. For the UK the high variability seemed to 

create extreme values not captured in prediction. Those values put direct limits on the size of 

the PI. 

6.2 Future work 

 

The approach taken in this bachelor thesis need to be analyzed further to get a larger picture 

of how the logistic regression modeling of the DBB works in general. The confidence 

intervals are not obviously defined and needs further understanding. In order to make more 

accurate prediction on DBB more phenology factors can be considered alongside of bud burst. 

Another extension of the analysis would be to model a distribution field with Markov 

properties over time and space. 
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Appendix – Covariates 

 

Constant Formula Variable(s) 

Chilling days last fall  Threshold values -5, 0,5,10 degrees Celsius.  

The number of days last fall having minimum 

temperature below thresholds. Calculated 

over Oct-Dec 

chillm5, chill0, 

chill5, chill10 

Last year mean 

temperature  

 mean.year 

Last fall mean 

temperature 

Calculated over Oct-Dec mean.fall 

Number of rain days 

last year divided into 

periods 

Calculated over periods: spring (May-June), 

summer (July-August), fall (September-

December) 

number.spring, 

number.summer, 

number.fall 

Total rain last year 

divided into periods 

Calculated over periods: spring (May-June), 

summer (July-August), fall (September-

December) 

total.spring, 

total.summer, 

total.fall 

Latitude of station  latitude 

Height of station Height for climate and DBB stations height.dbb, 

height.climate 

Continentality A = max(T_mean_monthly)- 

min(T_mean_monthly); 

     CI_c = 1.7*A'./sin( (lat+10)*pi/180 ) - 14; 

     CI_g = 1.7*A'./sin( lat*pi/180 ) - 14; 

   where T_mean_monthly is the average 

monthly temperature (average over days in 

   month and all years) for each month. 

continentality.cic, 

continentality.cig 

 

Varying Formula Variable(s) 

Growing degree days 

GDD 

Accumulated temperature above a threshold -

2, 0, 5 degrees Celsius from January 1 

gddm2, gdd0, gdd5 

Chilling degree days 

CDD 

Accumulated cold temperature below a 

threshold -2, 0, 5 degrees Celsius from 

January 1 

cddm2, cdd0, cdd5 

Growth season Number of days since the beginning of the 

growth season. I.e. the first occurrence of 

four consecutive days with temperature above 

5 degrees Celsius 

growthseason 

Frost days Number of days with frost since the 

beginning of the growth season. I.e. number 

of days with temperature below -2 degrees 

Celsius 

frostdays 

Last frost Number of days since the last frost beginning 

from the growth season 

lastfrost 

Day length Day length in hours daylength 

Temperature Average daily temperature temperature 

 


