
ISSN 0280-5316
ISRN LUTFD2/TFRT--5912--SE

Improving the Inertial Navigation System of
the CV90 Platform Using Sensor Fusion

Johan Ambrius
Jimmie Jönsson

Lund University
Department of Automatic Control

December 2012

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS
Date of issue
January 2013
Document Number
ISRN LUTFD2/TFRT--5912--SE

Author (s)

Johan Ambrius
Jimmie Jönsson

Supervisor
Erik Nygård, BAE Systems, Karlskoga, Sweden
Rolf Johansson, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsor ing organization

Ti tle and subti t le
Improving the Inertial Navigation System of the CV90 Platform Using Sensor Fusion

Abstract
The aim of this thesis was to synthesize and evaluate an inertial navigation system (INS) for the Combat Vehicle 90
Platform. The INS that was created utilize sensor fusion in order to combine the different signals coming from the
vehicle’s multitude of sensors to estimate the vehicle’s position and heading in some known global reference frame. The
CV90 standard INS, the NAV90 system, had performed the task of navigation with an unpredictable behavior due to the
fact that it relied on heading estimates from a magnetic compass that is strongly influenced by nearby metallic objects,
e.g. other vehicles. It will be demonstrated in this thesis that with a two-axis gyroscope mounted on the weapon’s
rotational axis, the position and heading estimate from the INS can continue to provide reliable information even during
long periods with without GPS signal reception.

Keywords
inertial navigation system, Kalman filter, sensor fusion, NAV90, CV90

Classi fication system and/ or index terms (i f any)

Supplementary bibl iographical information

ISSN and key ti t le
0280-5316

ISBN

Language
English

Number of pages
1-106

Recipient’s notes

Secur i ty classi fication

ht tp://www.control.l th.se/publ icat ions/

Improving the
Inertial Navigation System

of the CV90 platform
using Sensor Fusion

A M.Sc. Thesis

Authors
Johan Ambrius
Jimmie Jönsson

Advisor
Erik Nyg̊ard

Examiner
Rolf Johansson

Department of Automatic Control
December 2012

Abstract

The aim of this thesis was to synthesize and evaluate an inertial navigation system
(INS) for the Combat Vehicle 90 Platform. The INS that was created utilize sensor
fusion in order to combine the different signals coming from the vehicle’s multitude
of sensors to estimate the vehicle’s position and heading in some known global refe-
rence frame. The CV90 standard INS, the NAV90 system, had performed the task of
navigation with an unpredictable behavior due to the fact that it relied on heading
estimates from a magnetic compass that is strongly influenced by nearby metallic
objects, e.g. other vehicles. It will be demonstrated in this thesis that with a two-
axis gyroscope mounted on the weapon’s rotational axis, the position and heading
estimate from the INS can continue to provide reliable information even during long
periods with without GPS signal reception.

Keywords: inertial navigation system, Kalman filter, sensor fusion, NAV90, CV90

iii

Table of Contents

Abstract iii

List of Figures vii

List of Tables ix

Acknowledgments 1

1 Introduction 3

2 The CV90 Platform 5

3 Theoretical Background 7
3.1 Cartesian Coordinate Systems . 7
3.2 Euclidean Coordinate Transformations . 8

4 Available Sensors 11
4.1 Compass . 12
4.2 Angle Sensors Turret/Weapon . 12
4.3 Odometer . 12
4.4 Two-axis Gyroscope . 13
4.5 GPS receiver . 14
4.6 NAV90 . 14

5 A Mathematical Model of CV90 15
5.1 Linearization . 17
5.2 Discretizing the Linearized State Space Equations 18

6 Simulink Models 19
6.1 Signal Generator . 19
6.2 Gyroscope Model . 20

6.2.1 Gyroscope Errors . 21
6.2.2 Testing the gyroscope Model . 25

6.3 Odometer Model . 26
6.3.1 Odometer Errors . 27
6.3.2 Testing the Odometer Model . 28

6.4 GPS Model . 29
6.4.1 GPS Errors . 29
6.4.2 Testing the GPS Model . 29

7 Data Acquisition from the Real Vehicle 30
7.1 Relevant Data . 30
7.2 Data Extraction . 30

v

Improving the INS for the CV90 Platform using Sensor Fusion

8 The Kalman Filter 32
8.1 Implementation . 32
8.2 Noise Specifications . 34

9 Test Cases for the Real Vehicle 36
9.1 Previous Test . 36
9.2 Skövde, 2012-10-10 . 37

9.2.1 Test 8 (8) . 38
9.2.2 Test 9 (9) and Test 10 (10) . 38

9.3 Skövde, 2012-10-26 . 39
9.3.1 Test 2 (14) . 40

9.4 Skövde, 2012-11-15 . 41
9.4.1 Test 1 (19, 20) . 43
9.4.2 Test 2 (21, 22) . 50
9.4.3 Test 4 (24) . 51
9.4.4 Test 5 (25, 26) . 53
9.4.5 Test 6 (27, 28) . 60

10 Problems that were Encountered 68

11 Conclusions and Recommendations 70

A How to Run Simulations 72
A.1 Real Test Cases . 72

A.1.1 About NAV90 Logs . 72
A.1.2 Define a Test Case . 73
A.1.3 An Example . 74

A.2 Fictional Test Cases . 75
A.2.1 Define a Test Case . 75
A.2.2 An Example . 79

A.3 Optional Run-time Parameters . 84
A.4 Plot Results . 86
A.5 Simulation Output . 87
A.6 Possible Sources of Errors . 88

B Animate Raw Sensor Data 89
B.1 I/O . 89

References 91

vi

LIST OF FIGURES

List of Figures

2 The CV90 Platform 5
2.1 CV90 with 3D camouflage, front view. Source: Lars Pihlström [13] 5
2.2 CV90 with 3D camouflage, front-side view. Source: Lars Pihlström [14] . . 6

3 Theoretical Background 7
3.1 The 3D Cartesian coordinate system. Source: Jorge Stolfi [17]. 7
3.2 Translation and rotation in two dimensions. Source: Per-Erik Bergman [4]. 9
3.3 Rotation and translation in two dimensions. Source: Per-Erik Bergman [3]. 9
3.4 Definitions of Roll, Pitch and Yaw. Source: Anja Schönhardt [16]. 10

4 Available Sensors 11
4.1 Overview of the CV90 sensors. Source: Erik Nyg̊ard [12]. 11
4.2 Fiber optic gyroscope. Source: D. McFadden [9]. 13

6 Simulink Models 19
6.1 Simulink model of the gyroscope. 20
6.2 Simulink model of the gyroscope error sources. 21
6.3 Detailed view of the gyroscope Simulink model. 22
6.4 Bode plot of the low-pass filter effect in the gyroscope. 23
6.5 Testing the gyroscope model. 25
6.6 Simulink model of the odometer. 26
6.7 Testing the odometer model. 28

8 The Kalman Filter 32
8.1 Flowchart of a Kalman filter. Source: Petteri Aimonen [1]. 33

9 Test Cases for the Real Vehicle 36
9.1 Previous INS test done by BAE Systems. Source: Erik Nyg̊ard [11]. 36
9.2 Heading, Test 9 (9) and Test 10 (10). 38
9.3 Position, Test 2 (14), with GPS. 40
9.4 Position, Test 2 (14), without GPS. 41
9.5 Position, Test 1 (19, 20), with GPS. 43
9.6 Position, Test 1 (19, 20), without GPS. 44
9.7 Detailed position, Test 1 (19, 20), with GPS. 45
9.8 Detailed position, Test 1 (19, 20), without GPS. 46
9.9 Error, Test 1 (19, 20), with GPS. 47
9.10 Error, Test 1 (19, 20), with GPS. 48
9.11 Heading, Test 1 (19, 20), with GPS. 49
9.12 Position, Test 2 (21, 22), without GPS. 50
9.13 Position, Test 4 (24), with GPS. 51
9.14 Position, Test 4 (24), without GPS. 52
9.15 Position, Test 5 (25, 26), with GPS. 53

vii

Improving the INS for the CV90 Platform using Sensor Fusion

9.16 Position, Test 5 (25, 26), without GPS. 54
9.17 Detailed position, Test 5 (25, 26), with GPS. 55
9.18 Detailed position, Test 5 (25, 26), without GPS. 56
9.19 Error, Test 5 (25, 26), with GPS. 57
9.20 Error, Test 5 (25, 26), with GPS. 58
9.21 Heading, Test 5 (25, 26), with GPS. 59
9.22 Position, Test 6 (27, 28), with GPS. 61
9.23 Position, Test 6 (27, 28), without GPS. 62
9.24 Detailed position, Test 6 (27, 28), with GPS. 63
9.25 Detailed position, Test 6 (27, 28), without GPS. 64
9.26 Error, Test 6 (27, 28), with GPS. 65
9.27 Error, Test 6 (27, 28), with GPS. 66
9.28 Heading, Test 6 (27, 28), with GPS. 67

viii

LIST OF TABLES

List of Tables

7 Data Acquisition from the Real Vehicle 30
7.1 Signals extracted from the vehicle. 30

8 The Kalman Filter 32
8.1 Standard deviations for the process noise. 34
8.2 Standard deviations for the measurement noise. 35

9 Test Cases for the Real Vehicle 36
9.1 Tests done in Skövde on 2012-10-10. 37
9.2 Tests done in Skövde on 2012-10-26. 39
9.3 Tests done in Skövde on 2012-11-15. 42

ix

Acknowledgments

The success of this project is the result of the combined knowledge and experience of
many different people and I would like to extend my sincere thanks and gratitude to all
of them.

My friend Jimmie Jönsson was a dependable colleague and roommate, and I am
glad to have worked with him during this thesis project. Our stay in Karlskoga was
a very pleasant experience, which was in large part due to Pär Eriksson, who never
hesitated to extend a helping hand. The work environment at BAE Systems was excellent
and the friendly atmosphere always made us feel welcome. Working there was very
informative and educational thanks to the sage advice frequently offered to us by our
advisor Erik Nyg̊ard and our colleague Boyko Iliev. Our supervisor Rolf Johansson made
sure we stayed on the right path throughout the project and provided valuable input
and suggestions.

Finally, I would like to thank my mother Carina, my father Jonny, and my sister
Pernilla, for their love and support, without which I would not be where I am today.

Johan Ambrius
Lomma, 20 December 2012.

More than five years ago I arrived in Lund to pursue a master’s degree in engineering.
The path I had chosen was not without its trials, and I was tempted to give in on more
than one occasion, but with the help of an incredible group of friends and family I made
it. I owe a debt of gratitude to several people, not least my friend and coworker Johan
Ambrius, who made it possible for me to complete my Masters of Engineering thesis.

I would like to thank our advisor Erik Nyg̊ard for all his help and valuable insight.
More than once he casually suggested a solution that had eluded both Johan and me. I
would also like to thank the rest of the nice people at BAE Systems in Karlskoga who
made us feel right at home.

Finally, I would like to thank the Department of Automatic Control at Lund Uni-
versity and especially professor Rolf Johansson.

Jimmie Jönsson
Lund, 25 December 2012.

1

1 Introduction

The whole is greater than the sum of its parts.

Aristotle (384 BC - 322 BC)

Greek philosopher and polymath.

In an active combat zone it is extremely important for a vehicle to be able to
determine its exact location since a reliable position estimate could mean the difference

between life and death. As most combat vehicles around the world are equipped with a
Global Positioning System (GPS), which has become the de facto standard in accurately
pinpointing one’s current position, this usually is not a problem. The concern is, however,
what happens when the connection to the GPS satellite is lost.

Today, the Combat Vehicle 90 platform (CV90) is outfitted with an inertial navigation
system (INS) that is highly dependent on its compass, which is very sensitive to magnetic
disturbances such as other vehicles, scrap metal, containers and even the vehicle’s own
metallic components. This has been known to pose a problem when navigating without
GPS support in an urban environment, such as in Afghanistan.

The goal of this thesis is to develop and propose a new kind of INS using sensor
fusion that relies more on already available data from the two-axis gyroscope and angle
sensors, and that is able to navigate for longer periods of time without constant GPS
satellite contact.

3

2 The CV90 Platform

Figure 2.1: CV90 with 3D camouflage, front view. [13]

The CV90 platform is a family of light armored vehicles designed and manufactu-
red in a joint venture between BAE Systems Hägglunds AB and Saab Bofors AB.

The vehicles all share a common chassis design as well as component designs, differing
mostly in weapon systems and special equipment, which contributes to a low life-cycle
cost. The development began after the decisions of the Swedish Ministry of Defence in
1977 and 1982 to increase the mechanization within the Swedish Armed Forces [8].

5

Improving the INS for the CV90 Platform using Sensor Fusion

Figure 2.2: CV90 with 3D camouflage, front-side view. [14]

The CV90 family is highly adaptable and can perform a multitude of different functions,
and this is one of the reasons for the platform’s success among many armies around
the world. Denmark, Finland, The Netherlands, Norway and Switzerland have ordered
a total of 576 vehicles, while the Swedish Armed Forces currently have 509 vehicles.
Most implementations of the vehicle are basic light armored infantry vehicles designed
to engage infantry fighting vehicles, other ground targets and helicopters. Other models
assume the roles of e.g. fire-control; combat management; electronic warfare; towing and
anti-air. The engine is a 550 HP Scania DSI14, giving a top speed of 70 km/h, and the
latest generation of vehicles has a range of 600 km. Common armaments include a Bofors
40 mm gun, a coaxial 7.62 mm machine gun as well as six grenade launchers intended
for smoke grenades [20].

6

3 Theoretical Background

Almost all of the sensor data generated by the combat vehicle need to be pro-
cessed in some way. While global position and speed measurements may be handled

directly, others, e.g. gyroscope readings, require additional consideration.

3.1 Cartesian Coordinate Systems

A system where numbers are used to uniquely determine the position of a geometric ele-
ment on a manifold, such as Euclidean space, is called a coordinate system. Consequently,
the numbers are called coordinates. The focus in this thesis will be the three-dimensional
Cartesian coordinate system, where a position is specified by its signed distances to three
mutually perpendicular planes spanned by the coordinate axes of the system [10]. An
example of a right-handed, or positive oriented, Cartesian coordinate system can be seen
in Fig. 3.1.

Z

Figure 3.1: A three dimensional Cartesian coordinate system, with origin O and axis
lines X, Y and Z, oriented as shown by the arrows. The dot marks on the axes are one
length unit apart. Source: Jorge Stolfi [17].

7

Improving the INS for the CV90 Platform using Sensor Fusion

In the coming sections the notation frame of reference, or frame, will refer to a coordinate
system that describes points in space. For the purpose of this thesis the following frames
are defined,

Ground Fixed North (Horizonted Frame), Ground
The positive x-axis points east, the positive y-axis points north and and the positive
z-axis points up. The origin is placed in a point on the surface of the Earth.

Carrier
The x-axis is aligned along the vehicle body and is positive in the direction of
movement, the y-axis is defined in a positive Cartesian coordinate system and the
positive z-axis is perpendicular to the carrier body and points upward. The origin
is placed in the mass center of the vehicle.

Turret/Upper Mount
The x-, y- and z-axes are parallel to the axes in the Weapon Frame when all
rotations are zero. The origin is placed in the weapon’s center of rotation.

Sensor/Weapon
The x-axis is aligned along the weapon and is positive in the fire direction, the
positive y-axis points to its left and the positive z-axis points upward. The origin
is placed in the center of rotation.

The point of interest is the position of the vehicle on the ground, which is why some
kind of transformation between the different frames must be devised. Some measurements
must also be transformed to the ground frame before they may be used as a comparison
tool as the meaning of the measurements is lost otherwise.

3.2 Euclidean Coordinate Transformations

A mapping of points in the Euclidean plane to themselves which preserve distance is
a called an Euclidean transformation. While there exist more types of these mappings,
this thesis will focus on translations and rotations.

The translation of a point (x, y) is the equivalent of adding a fixed pair of numbers
(a, b) to it, i.e. the new coordinates will be (x′, y′) = (x + a, y + b), while the rotation
by some angle θ counterclockwise around the origin is equivalent to the new coordinates
(x′, y′) = (x cos θ − y sin θ, x sin θ + y cos θ). A translation followed by a rotation is not
always equivalent to a rotation followed by a translation, which is illustrated in Fig. 3.2
and Fig. 3.3.

8

3 THEORETICAL BACKGROUND

Figure 3.2: Example of translation and rotation of a system. The original position of
the square is in the left plot, it is translated along the red arrow of the system in the
middle plot and, finally, it is rotated clockwise π/4 rad in the right plot. Source: Per-Erik
Bergman [4].

Figure 3.3: Example of rotation and translation of a system. The original position of the
square is in the left plot, it is rotated clockwise π/4 rad in the middle plot and, finally,
translated along the red arrow of the system. Source: Per-Erik Bergman [3].

Rotations in Euclidean space can also be expressed by matrices, thus providing a simple
algebraic description of such rotations, [5]. By introducing the rotation matrix R

R =

[
cos θ − sin θ
sin θ cos θ

]
, (1)

and the column vector p

p =

[
x
y

]
, (2)

the rotation by some angle θ counterclockwise around the origin can be described as
the matrix multiplication p′ = Rp. All Euclidean transformations can be represented
using matrix multiplication if an extra dimension is added to R, thus making the trans-
formation linear. This is not favored, however, from a computational standpoint as it
introduces many unnecessary operations.

9

Improving the INS for the CV90 Platform using Sensor Fusion

To describe the orientation of a frame {B} in relation to a known reference frame {A}
the notion of rotation matrices can be generalized to three dimensions. By starting from
{A} and performing successive rotations around the axes X, Y and Z respectively, the
orientation of {B} can be found. The derivation of the equivalent rotation matrix RXY Z
is straightforward and is given as

RXY Z(γ, β, α) = RZ(α) RY (β) RX(γ)

=

cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1
−sβ 0 cβ

1 0 0
0 cγ −sγ
0 sγ cγ

 , (3)

where cx = cosx, sx = sinx, γ is the rotation about X, β is the rotation about Y and
α is the rotation about Z. The roll, pitch and yaw angles in Eq. (3) are γ, β and α,
respectively, and are illustrated in Fig. 3.4.

Figure 3.4: Roll, pitch, and yaw rotations and their corresponding angles. Source: Anja
Schönhardt [16].

As each of these three rotations takes place about an axis in the fixed reference frame {A}
the convention for specifying the orientation is called X-Y-Z fixed angles. Furthermore,
as rotation matrices are orthogonal matrices the relation RT = R−1 holds, a useful fact
when the inverse transformation p = R−1p′ is calculated.

10

4 Available Sensors

CV90 is equipped with a number of different sensors, some were part of the original
design while others have been added on later as force multipliers, e.g. the two-axis

gyroscope for weapon stabilization and the GPS receiver for obtaining exact position
information. The sensors are connected internally in the vehicle according to the diagram
in Fig. 4.1, and are presented in more detail in the following subsections.

Figure 4.1: A graph showing the various sensors in the vehicle and how they are inter-
connected. Source: Erik Nyg̊ard [12].

11

Improving the INS for the CV90 Platform using Sensor Fusion

4.1 Compass

The compass is located at the top-back of the carrier frame and is, as expected, very
sensitive to changes in the magnetic field in its surroundings. During certain circumstan-
ces this has become a problem. Specifically, when the weapon is in the vicinity of the
compass, i.e. pointing back across the carrier, it interferes with the compass’ reading
of the earth’s weak magnetic field. Problems also arise when the vehicle is close to any
large quantities of metal, e.g. another vehicle or a large metal container.

The first problem has been circumvented somewhat by the algorithms in the NAV90
system, which filters all the compass data before it does any calculations with it. These
algorithms, however, can not remove any errors that occur when the vehicle is in the
vicinity of other large structures of metal. This uncertain behavior can cause initial
heading estimations to be incorrect, and since this is an important function to have for
a new INS, this suggests that the compass is a sensor which should be improved, or
replaced, in the future.

4.2 Angle Sensors Turret/Weapon

These sensors measure the angular position of the turret in relation to the carrier, and
of the weapon in relation to the turret. Both give measurements in radians and the
on-board computer in the vehicle also calculates the angular velocities of the respective
angles.

The sensors themselves are mounted on the gears that manipulate the turret and
weapon structures and are therefore mechanically linked with what they measure, which
make them quite reliable.

4.3 Odometer

The odometer is placed in the gears in the drive train that is connected to the engine
and consists of a Hall Effect sensor that emits a pulse when a gear tooth has passed it,
and the on-board computer then counts the amount of cogs that has passed in total. The
resolution of the odometer is 2.5 cm, i.e. the vehicle has to move at least 2.5 cm for the
odometer to register a change in the distance traveled, which is a restriction imposed by
the size of the cogs.

The odometer in CV90 not only measures distance but also calculates a speed, and
so it also functions as a speedometer and at the beginning of this thesis it was uncertain
if the odometer could handle neutral and reverse gear, i.e. give zero speed in neutral gear
and a negative speed in reverse gear. However, it was found that the sensor could indeed
handle these cases, see Sec. 9.4.3, which simplified the data extraction of the odometer
signals since no flags had to be checked in order to deduce in which gear the vehicle was
currently engaged.

12

4 AVAILABLE SENSORS

4.4 Two-axis Gyroscope

The two-axis gyroscope is a Fiber Optic Gyroscope (FOG) mounted concentrically with
the weapon’s rotation axis and measures angular rotation by utilizing the Sagnac effect.
The physical system consists of a light source, e.g. a diode laser, a detector to measure
the interference, and a fiber optic coil which may have several loops, see Fig. 4.2.

Figure 4.2: A diagram showing the general structure of a fiber optic gyroscope. Source:
D. McFadden [9].

Two laser beams are injected into opposite ends of the fiber coil by beam splitting
optics. The beams then exit the coil and if there has been any angular rotation in
the FOG’s reference frame, one beam will have experienced a slightly shorter path delay
than the other beam, since they traveled in opposite directions. This phenomena is called
the Sagnac effect and is the electromagnetic counterpart of the mechanics of rotation.
A detector at the exit measures the interference of the beams and produces a value
signifying how much any angular velocity has affected the system [19].

Since the strength of the Sagnac effect depends upon the effective area of the closed
optical path, a higher quantity of loops provide better measurements. Due to this fact
the fibre optic cables in FOG’s are usually very long, sometimes as long as 5 km.

13

Improving the INS for the CV90 Platform using Sensor Fusion

4.5 GPS receiver

The GPS receiver used during most of the testing was a standard GPS90 unit with a
resolution of 1 meter in all three spatial dimensions. A u-blox GPS was used during
the third testing day in Skövde on 2012-11-15, Sec. 9.4. The u-blox unit had better
performance than the GPS90 system, both in spatial resolution as well as in the ability
to find GPS satelittes.

A GPS receiver estimates its position by timing the signals broadcast by the network
of GPS satellites, called the GPS constellation, that orbit the earth. The signals contain
the time at which the message was transmitted as well as the satellite position at that
time. With this information the receiver can calculate the transit time of each message
and compute the distance to each satellite using the speed of light. These distances are
then interpreted as a number of radii which in turn defines a collection of spheres, where
the receiver is located at the intersection of these spheres.

The location is calculated by using the navigation equations, which can be done both
analytically and numerically depending on the implementation. In standard operation,
four or more satellites must be visible to get accurate results. This restriction can be
relaxed to three satellites when one variable is known, e.g. the altitude.

There exists several global navigation systems, e.g. GPS (USA), GLONASS (Russia)
and Galileo (EU). The tests done during this thesis used the network of 30 GPS satellites,
orbiting at an altitude of approximately 20,200 km, to determine the vehicle’s position.

4.6 NAV90

NAV90 has been the de facto INS for the CV90 platform for most of the platform’s time
in service and it makes use of all the previously named sensors, except the gyroscope
and GPS, as can be seen in Fig. 4.1.

While this thesis was meant to find an alternative to this system, some information
that the NAV90 provides was utilized as initial conditions when running simulations.
The information consisted of the carrier heading, roll and pitch. The intricacies of the
NAV90 system are not covered in this thesis.

14

5 A Mathematical Model of CV90

Amodel that describes the CV90 is needed in order to simulate how the vehicle
behaves. By using sensor data from the odometer, the two-axis gyroscope and the

side and elevation angle sensors, the movement in the carrier frame can be described.
The movement in the ground frame is given by the transformation

v′ = RXY Z(γ, β, α)v, (4)

where the velocity vector v is

v =
[
vx vy vz

]T
, (5)

and where the transformation matrix RXY Z , see Eq. 3, is determined by how the carrier
frame is rotated in relation to the ground frame. As the carrier only can travel along its
x-axis, Eq. 5 becomes

v =
[
vx 0 0

]T
. (6)

The ground velocities of the carrier can thus be expressed as

v′ = RXY Z(γ, β, α)v (7)

=

cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1
−sβ 0 cβ

1 0 0
0 cγ −sγ
0 sγ cγ

vx0
0


=

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

vx0
0


=

cαcβsαcβ
−sβ

 vx, (8)

where cx = cosx and sx = sinx. By Eq. 8 the movement in the ground coordinates x,
y, z are therefore

ẋ = vx cosα cosβ (9)

ẏ = vx sinα cosβ (10)

ż = −vx sinβ. (11)

For some purposes the ground frame might be defined with the positive z-axis pointing
downward, which is why a second rotation must be applied to Eq. 4 as

v′ = RX(π)RXY Z(γ, β, α)v, (12)

with the end result

ẋ = vx cosα cosβ (13)

ẏ = −vx sinα cosβ (14)

ż = vx sinβ. (15)

15

Improving the INS for the CV90 Platform using Sensor Fusion

The angular velocity of the carrier around the z-axis in the ground frame is the difference
between the gyroscope measurement around this axis and the angular velocity of the
turret, computed from the side angle sensor. Similarly, the angular velocity around the
y-axis is the difference between the gyroscope measurement around this axis and the
angular velocity of the weapon, computed from the elevation angle sensor. In order
to the keep the mathematical model from being overly complicated it is assumed that
all coordinate transformations are completed, i.e. sensor data from the gyroscope is
transformed to the carrier frame, and that the measurements from the angle sensors
have been subtracted from the corresponding gyroscope axis. As a result, the angle
sensors does not need to be included in the formulation, and the angular velocities of
the carrier are simply given as

α̇ = uα (16)

β̇ = uβ, (17)

where uα is the gyroscope measurement around the z-axis and uβ is the gyroscope
measurement around the y-axis, each in the ground frame, with the corresponding angles
α and β. The carrier is only fitted with a two-axis gyroscope why it is not possible to
estimate the angular velocity around the x-axis, i.e. the angle γ.

Measurements from the gyroscope are corrupted by various kinds of errors, see
Sec. 6.2.1, and so two extra equations for each gyroscope axes should be included in
the model, corresponding to the bias repeatability error and the bias stability error, re-
spectively. Using Eq. 11 and Eq. 17 a mathematical model of CV90, where the gyroscope
errors affect the angular velocities of the carrier, can be summarized as

ẋ = f(x,u) =



ẋ1 = vx cosx4 cosx5

ẋ2 = vx sinx4 cosx5

ẋ3 = −vx sinx5

ẋ4 = uα − x6 − x7
ẋ5 = uβ − x8 − x9

ẋ6 = −1

τ
x6

ẋ7 = 0

ẋ8 = −1

τ
x8

ẋ9 = 0.

(18)

A natural choice of states is to let the Cartesian coordinates, the angles of rotation and
the gyroscope errors be separate states. From the model, the position of CV90 is given
by x1, x2 and x3 while the orientation is given by x4 and x5. Due to the limitations of
the gyroscope, nothing can be said about the roll angle of the vehicle.

16

5 A MATHEMATICAL MODEL OF CV90

5.1 Linearization

In order to use a linear Kalman filter with the derived state-space model, the nonlinear
functions f(x,u) must be linearized by a Taylor series expansions around a stationary
operating point (x0,u0), [6]. As not all points of operation are stable, the system is
linearized around the current estimate of the carrier angles with a zero velocity, i.e.
vx = 0. The Taylor series expansion is

f(x,u) ≈ f(x0,u0) +
∂

∂x
f(x0,u0)(x− x0) +

∂

∂u
f(x0,u0)(u− u0), (19)

and by introducing the new variables

∆x = x− x0

∆u = u− u0,

the linearized system can be written as

∆ẋ = A∆x + B∆u. (20)

The system matrix A is

A =
∂f

∂x
=

[
A1 A2

A3 A4

]
, (21)

with the submatrices

A1 = 03,3, A2 =

−vx sinx4 cosx5 −vx cosx4 sinx5

vx cosx4 cosx5 −vx sinx4 sinx5 03,4

0 −vx cosx5



A3 = 06,5, A4 =



−1 −1 0 0
0 0 −1 −1
− 1
τ 0 0 0

0 0 0 0
0 0 − 1

τ 0
0 0 0 0

 ,

while the input matrix B is

B =
∂f

∂u
=

[
B1

B2

]
, (22)

with the submatrices

B1 =


0 0 cosx4 cosx5
0 0 sinx4 cosx5
0 0 − sinx5
1 0 0
0 1 0

 , B2 = 04,3.

17

Improving the INS for the CV90 Platform using Sensor Fusion

As only the position and the heading of the vehicle is measurable the matrix C becomes

C =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

 . (23)

5.2 Discretizing the Linearized State Space Equations

Assuming that the system input u is piece-wise constant [7],

u(t) = ukh, t ∈ [kh, (k + 1)h) (24)

where h is the sample time, a linear system, such as the one described in Sec. 5.1, can
be discretized into

xkh+h = Φxkh + Γukh + wkh (25)

ykh = Cdxkh + vkh, (26)

where the covariances are wk ∼ N (0,Qd) and vk ∼ N (0,Rd). The system matrices are
discretized as [21]

Φ = eAh (27)

Γ =

∫ h

τ=0
eAτdτB (28)

Cd = C. (29)

The noises in the continuous-time model are modeled from the noises that appear in a
discrete electro-mechanical system, and there is no need to discretize them again. This
gives the simple relationship

Qd = Q (30)

Rd = R. (31)

The initial state and the noise vectors at each time step are all assumed to be mutually
independent.

18

6 Simulink Models

There are several components that have to be modeled in order to be able to
introduce relevant errors and noise into the complete system,

Signal Generator
Generates the accelerations and angular accelerations that are needed to drive the
system.

Gyroscope
Measures angular velocities around three orthogonal axes.

Odometer
The odometer measures the distance traveled but it can also function as a speedo-
meter.

GPS Receiver
Acquires the ”true” position, i.e. true in the sense that it is the best position
estimate available.

Angle Sensors
Gives the horizontal position of the turret and the vertical position of the weapon.

The angle sensors have Simulink models but since they only add noise and quantizise
the signal, they are trivial in complexity compared to the listed components and so they
will not be covered in detail.

6.1 Signal Generator

To generate signals representing the real system in an efficient manner, a signal generator
was implemented in the form of a Simulink model with a high sampling rate of 1 kHz
in order to provide enough resolution. The model takes the three angular accelerations
of the carrier, the angular accelerations of the turret and of the weapon, as well as
the carrier’s acceleration vector. This gives a total of 8 input signals that have to be
defined before a simulation can be run. The output of the model are the input signals as
well as their integrated and twice integrated signals, i.e. their velocities and distances,
respectively, for a total of 24 possible output signals.

The frames in Sec. 3.1 are defined in order to establish how the generated signals
act in their relevant coordinate system. The angular velocities are generated in different
frames depending on their properties, e.g. the readings from the gyroscope are dependent
on both the side angle of the turret and the elevation angle of the weapon which is why
the signal is generated in the ground frame and then transformed to the real sensor
frame.

Others, e.g. the side angle of the turret, directly correspond to the input in the
signal generator and is thus in the correct coordinate system from the start. The carrier
velocities can be used as directly since they already are in the correct reference frame.

19

Improving the INS for the CV90 Platform using Sensor Fusion

6.2 Gyroscope Model

The gyroscope takes true values, i.e. untainted signals, of the angular velocities and
filters them to produce estimated angular velocities. In the model the true signal is first
passed through a low-pass filter, then passed through a sub block where the errors are
added, and, finally, quantizied. An overview of the Simulink model of the gyroscope
can be seen in Fig. 6.1.

Figure 6.1: Simulink model of the three gyroscope channels. A variable in the switch for
each channel controls whether the low-pass filtered signal or the unfiltered signal enters
the main gyroscope block. This functionality was mainly used for model verification
purposes.

20

6 SIMULINK MODELS

6.2.1 Gyroscope Errors

The inputs will be low-pass filtered through a filter which has characteristics that are
determined in the gyroscope’s specification [15], and they will also be contaminated by
noise of various types. Although many different noises and errors can be modeled, only
the most significant error sources will be covered in this thesis, specifically: low-pass
filtering; additive noise in the form of bias stability, bias repeatability, and random walk;
and finally, quantization errors.

Other commonly specified errors that exist within gyroscopes, but which has not been
taken into consideration here, are: scale factor errors; linearity errors; misalignment of
axes; as well as linear and nonlinear sensitivity drift.

The three additive noises can be seen in Fig. 6.2. The quantization acts just before
the signal is sent out of the sensor, see Fig. 6.3.

Figure 6.2: The additive error block for the yaw channel of the gyroscope. A similar
block is present in the roll and pitch channels as well. The upper pipeline creates the
bias stability error, the middle pipeline creates the bias repeatability error, and the lower
pipeline creates the random walk error. All of the errors are summed and outside the
block they are added to the true angular velocity signal.

21

Improving the INS for the CV90 Platform using Sensor Fusion

Figure 6.3: An inside view of the gyroscope model block for the yaw channel as seen in
Fig. 6.1. The original angular velocity r is summed with the errors delta_r coming from
the errors seen in Fig. 6.2. This noisy signal is then quantized and divided up into one
velocity signal and one integrated position signal.

Low-pass Filter

According to [15], the low-pass filter will have a minimum bandwidth of 300 Hz when
the phase lag is −90◦, i.e. the gain at 300 Hz should be −6 dB. This is equivalent to a
continuous second order system of the form

G(s) =
3.553 · 106

s2 + 3770s+ 3.553 · 106
(32)

and will give the bode diagram shown in Fig. 6.4.
In order for this filter to be implemented in the Simulink model it has to be trans-

formed to discrete form. Applying standard continuous to discrete transformations, with
sample rate 1 kHz, yields the following discrete filter

H(z) =
0.562z + 0.1574

z2 − 0.3037z + 0.02305
(33)

which in the model is defined in the low-pass filter blocks seen in Fig. 6.1. The low-
pass filter makes it impossible to accurately detect very fast changes in the system. It is,
however, a highly improbable occurrence that the gyroscope should move at the angular
speeds needed in order for this to become a real problem.

22

6 SIMULINK MODELS

−80

−60

−40

−20

0

X: 300
Y: −6.021

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (Hz)

Figure 6.4: Bode plot of the continuous version of the low-pass filter that affects the
gyroscope input signals.

Bias Stability Error

Bias stability is sometimes called correlated noise and is a measurement of how the
gyroscope bias drifts over time and is in a sense one of the best ways to evaluate the
performance of a gyroscope. It is modeled in the top signal pipeline in Fig. 6.2.

This error is modeled as an integrator driven by a combination of white noise and
feedback of its own output divided by a correlation time τ . The driving noise has a
variance depending on τ , [2],

σ2wτ = 2 ·
σ2gbs
τ
, (34)

where σ2gbs is the variance of the gyroscope’s bias stability, so it is possible to vary its
variance by changing τ . The initial condition of the integral is

M0 τ = σ2gbs (35)

where, [15],

σgbs = max 20 ◦/h = max 0.0056 ◦/s. (36)

23

Improving the INS for the CV90 Platform using Sensor Fusion

Since τ was not given in the specifications, an educated guess was made and it was set
to τ = 600, which yields an initial condition of

M0 τ = 9.4018 · 10−9 rad2/s2. (37)

The bias stability error gives 1 extra state for each gyroscop axis.

Bias Repeatability Error

Bias repeatability is sometimes called random bias and is included in the model in the
middle signal pipeline in Fig. 6.2. This error creates a constant velocity bias each time
the gyroscope is turned on and in this case it is specified, [2], as

M0 Bias = σ2gbr (38)

where σgbr is the gyroscope’s bias repeatability which is defined, [15], as being

σgbr = max 180 ◦/h = max 0.05 ◦/s (39)

This gives the integral an initial condition of

M0 Bias = 7.6154 · 10−7 rad2/s2. (40)

The bias repeatability error gives 1 extra state for each gyroscop axis.

Angular Random Walk

The angular random walk additive noise corresponds to integration of white noise and
is represented in the model by the lower signal pipeline in Fig. 6.2.

The white noise error will affect the integrated signal by adding a bias to the variance
of the output signal. This bias will be proportional to the square root of the integration
time, which is the reason that the random walk specification is given as ◦/

√
h. In this

case the value is σrandom walk = max 0.5 ◦/
√

h, [15]. This means that after 1 hour the
added bias will be 0.5 ◦ and after e.g. 100 hours it will be 0.5 ·

√
100 ◦ = 5 ◦.

The random walk error will not contribute to any new states in the state space model
since it consists of pure white noise.

Quantization

Due to the finite resolution of the gyroscope, the input signals will become quantized to
some extent. In this thesis it has been deemed appropriate to have a quantization level
of 0.1◦.

24

6 SIMULINK MODELS

6.2.2 Testing the gyroscope Model

The error sources were set according to the specifications described earlier and two
situations were tested. In the first the input signal represented one complete rotation
around every axis, with constant angular velocity and a total rotation time of 10 s. The
second test was the same as the first test except the time had been increased to 60 s.
The results can be seen in Fig. 6.5.

9.99 9.995 10 10.005
359.9

359.95

360

360.05

360.1

360.15

360.2

Gyro estimate of degrees traveled, 10 s

time / s

po
si

tio
n

/ d
eg

re
es

59.6 59.8 60

359.6

359.8

360

360.2

360.4

360.6

360.8

361

361.2

361.4

361.6

Gyro estimate of degrees traveled, 60 s

time / s

po
si

tio
n

/ d
eg

re
es

Roll
Pitch
Yaw

360°

Figure 6.5: Two test cases for the gyroscope. The left plot shows the estimated end
position when all three axes has performed one rotation during a time period of 10 s.
The right plot shows the same test but with a time period of 60 s.

The filtered angles are not noticeably erratic during the simulation for either of the test
cases, but the difference between the final values and the real end value of 360◦ differs
between the two tests. These results reflect the performance of the gyroscope component
and shows that while noise is low, there is still some drift present which increases with
the integration time.

25

Improving the INS for the CV90 Platform using Sensor Fusion

6.3 Odometer Model

The speed that is obtained from the odometer is used in conjunction with the velocity
vector, given by the gyroscope, to calculate the carrier’s velocity vector. The odometer
Simulink model can be seen in Fig. 6.6.

Figure 6.6: The odometer model takes the real speed of the carrier and adds noise. The
signal is then integrated and quantized to get an approximation of the length traveled,
which gives a stair-like curve. This curve is then differentiated and signed to create pulses
which are sent back to the workspace and counted to produce a speed estimate.

26

6 SIMULINK MODELS

6.3.1 Odometer Errors

Since the odometer had to be able to estimate speeds up to 70 km/h, the sampling rate
of the odometer had to be relatively high. The number of pulses the odometer would
have to detect if the vehicle was traveling at 70 km/h is

70

3.6
· 1

0.025
≈ 778. (41)

Due to this the sampling rate of the odometer was set to 1 kHz. The model takes a
defined true speed and adds normally distributed Gaussian noise, with an option to add
offset as well. The signal is then quantized with resolution 2.5 cm and differentiated in
order to get a pulse train. The pulse train is sent out to the workspace where the pulses
are summed over a preset sample time, which in this case was set to 1 s, and thus an
average velocity over that sample time is obtained.

Another error that could be present in the odometer is the inability to detect slip
between the bands of the vehicle and the terrain, which could lead the INS to believe
that it has traveled further than it actually has. This error was not modeled due to
the fact that slip is a relatively complicated phenomenon to model and detect, and its
impact on the precision of the simulations was deemed to be negligible compared to the
error that would be introduced by quantization, offset and noise.

27

Improving the INS for the CV90 Platform using Sensor Fusion

6.3.2 Testing the Odometer Model

A test track was created for the odometer in the form of an acceleration profile repre-
senting acceleration up to 70 km/h and then braking to 0 km/h, in a repeating pattern.
The result of this test can be seen in Fig. 6.7.

0 20 40 60
0

20

40

60

80
Speed

time / s

sp
ee

d
/ k

m
/h

0 20 40 60
−4

−2

0

2

4
Speed error

time / s

er
ro

r
/ k

m
/h

0 20 40 60
0

200

400

600

800
Distance in m

time / s
di

st
an

ce
 /

m

0 20 40 60
−10

−5

0

5
Distance error

time / s

er
ro

r
/ m

Figure 6.7: A test of the odometer model with a sampling rate of 1 Hz. The vehicle
accelerated to 70 km/h and then decelerated to 0 km/h, and then repeated the procedure
one more time. Plot (1,1) shows the true speed, in blue, and the estimated speed, in
red. The 1 s delay is clearly visible and, depending on how the true speed fluctuates, it
can cause both an overestimation and underestimation of the true speed. This difference
is only observable when the carrier is accelerating or decelerating and does not appear
at constant speeds. Plot (2,1) shows the difference between the true and estimated
speeds. This error is either negative or positive depending on if the vehicle is accelerating
or decelerating, respectively. Plot (1,2) displays the true distance, in blue, and the
estimated distance, in red, of the carrier. The estimated value is slightly behind during
acceleration and deceleration, however, it catches up during constant speeds. Plot (2,2)
shows the difference between the true distance and the estimated distance. This error
is always negative regardless of whether the carrier is accelerating or decelerating, but
goes to zero when the carrier has constant speed.

28

6 SIMULINK MODELS

6.4 GPS Model

The GPS model receives coordinates, with optional offset, with a set sample rate which
describes the real world system, in this case set to 1 kHz. This information has normally
distributed Gaussian noise added to it and is then quantized with a customizable reso-
lution. The signal is then sampled at the GPS sample rate, which is set to 10 Hz, to
represent how often the GPS takes information from the satellites.

This signal is then sampled again with the GPS refresh rate, which represents how
often the GPS sensor sends information regarding position to the INS. The GPS refresh
rate is usually set to 1 Hz, however, this is not usually a constant value due to the different
priorities of the processes in the real time system in which the INS is implemented. This
causes the 1 s sample time to fluctuate between certain values, in this case it has been
set to be in the interval trr ∈ [0.95, 1.05] s.

6.4.1 GPS Errors

Many factors have an impact on the precision of the GPS, such as the amount of available
satellites it can receive information from, which can change drastically with weather and
latitude, and the preset precision of information from the satellites, which is decided by
those who control and maintain the satellites. Another error which is common in urban
environments is so called multipath effects, which occur when GPS signals bounce of
off nearby structures, causing the signal to be somewhat delayed and thereby introduce
inaccuracies in the position estimate.

The GPS Simulink model circumvents the modeling of these problem by, as pre-
viously mentioned, simply taking the offset signals and not taking into consideration
how they got the offsets.

6.4.2 Testing the GPS Model

The GPS model was tested and verified using different values for the offset, noise and
resolution. All of the error values were based on information provided by BAE Systems.
The model handled all the cases well and produced the expected output.

An interesting fact that was learned during the hunt for realistic values to use for
testing was that in real GPS systems the z coordinate has a larger offset and error
variance than the x and y coordinates. The reason for this is that all GPS satellites
are not visible at all points on the globe, since the earth is very good at blocking their
signals. The geometric pattern of the satellites that remain visible from one’s current
location makes it relatively easy to find the x and y coordinates, while the z coordinate
will be harder to estimate.

29

7 Data Acquisition from the Real Vehicle

Real sensor data generated in real world conditions needed to be acquired in
order to simulate the movement of CV90. The details of this enterprise are described

in the following subsections.

7.1 Relevant Data

The signals needed to perform and evaluate the simulations of the system in Matlab
are presented in Table 7.1.

Component Signal Unit

GPS
x coordinate m
y coordinate m
Reception status bool

Gyroscope
Side Angle Velocity rad/s
Elevation Angle Velocity rad/s

Angle Sensors

Side Angle Position rad
Side Angle Velocity rad/s
Elevation Angle Position rad
Elevation Angle Velocity rad/s

Odometer Velocity km/h

NAV90

Time s
Pitch rad
Roll rad
Heading rad
UTC Time s
Laser Fired Status (PFP) bool

table 7.1: table describing the signals that were extracted from the vehicle, as well as
their units. The table also shows from which component the specified signal originated.

7.2 Data Extraction

The data were extracted from the vehicle using an Ethernet cable connected to a CAN
bus port in the turret. The other end of the cable was connected to a laptop computer
and the data were extracted using software developed by BAE Systems Bofors AB in
Karlskoga.

30

7 DATA ACQUISITION FROM THE REAL VEHICLE

The data were given in .log format where columns of data represented the different
signals shown in the previous section. These files had to have their columns sorted in
Matlab since the signals were saved in a random order in the files. Another problem
was the fact that it was only possible to log the internal data bus for a maximum of ca 10
minutes before a new log had to be started. This was due to limitations in the software,
and it introduced gaps in some of the longer tests which made it necessary to adjust the
heading manually after each log switch in order for the INS to follow the track properly.

31

8 The Kalman Filter

The main problem in this thesis consists of determining the precise current location
of a CV90 using dead reckoning, i.e. using only old data to compute a new estimate.

As the vehicle is expected to follow the laws of physics its position can be estimated
by using the integrated velocity, obtained from the odometer, and the heading, derived
from the gyroscope. Typically, dead reckoning will provide a very smooth estimate of
the position, but it will drift over time as small errors from the integrations accumulate.

The vehicle is equipped with a GPS unit that also provides an estimate of the position
within a few meters. The GPS estimate is likely to be noisy, i.e. readings will ”jump
around”rapidly, but will, however, always remain within a few meters of the real position.
The proposed INS takes this randomneess into account and uses the GPS position to
improve the dead reckoning position estimate.

8.1 Implementation

The Kalman filter was implemented in its recursive form. The main advantage of the
recursive Kalman filter is its ability to use a series of measurements observed over time
and to choose a statistically optimal weighting for these measurements. This usually
produces estimates of unknown system variables that tend to be more precise than those
that would be based on a single measurement alone. While the internal state often have
more degrees of freedom than is observable, the Kalman filter can estimate the entire
internal state by combining a series of measurements. The basic is idea is illustrated in
Fig. 8.1.

The Kalman filter model assumes that the true state at time k + 1 is evolved from
the state at k according to the discretized system model in Eq. 25 and Eq. 26, where
Φ is the state transition matrix, Γ is the input matrix, and where wkh and vkh are the
process and measurement noise, respectively, are assumed to be drawn from a zero mean
multivariate normal distribution.

The main phases of the Kalman filter are ”Predict” and ”Update”. The predict pha-
se produces an estimate of the state at the current time step by utilizing information
from the previous time step. This is why this estimate is called the a priori state esti-
mate because it does not include observation information from the current time step.
The update phase refines the state estimate by combining the a priori estimate with
information of the system from the current time step. This new estimate is called the
a posteriori state estimate. The details of the algorithm are described below with the
assumption that the sampling time is h = 1 [18].

32

8 THE KALMAN FILTER

Prediction step

Based on e.g.

physical model

Prior knowledge

of state

Update step

Compare prediction

to measurements

Measurements

Next timestep

Output estimate

of state

Figure 8.1: The Kalman filter keeps track of the estimated state of the system and the
variance of the estimate. The estimate is updated using the state transition matrix,
Eq. 27, and measurements. Source: Petteri Aimonen [1].

Predict

Predict an a priori state estimate through the discretized model of the system

x̂k|k−1 = Φkx̂k−1|k−1 + Γkuk−1.

Predict an a priori covariance estimate using the previous covariance estimate and the
current system and process covariance matrices

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + Qk.

Update

Compute the measurement residual using the current measurement and the current state
estimate

ỹk = yk −Cx̂k|k−1.

Compute the residual covariance matrix from the observation matrix and the measure-
ment noise covariance matrix

Sk = CPk|k−1C
T + R.

33

Improving the INS for the CV90 Platform using Sensor Fusion

The optimal Kalman gain at time k is now

Kk = Pk|k−1C
TS−1k .

Update the a posteriori state estimate using the Kalman gain and the innovation

x̂k|k = x̂k|k−1 −Kkỹk.

Update the a posteriori estimate covariance matrix using the Kalman gain and the a
priori covariance estimate

Pk|k = (I−KkC)Pk|k−1.

8.2 Noise Specifications

Much process noise was expected from the odometer sensor due to e.g. gearbox backlash,
friction, physical disturbances, etc. The gyroscope, however, was considered to be very
accurate. As the first three states are a combination of the odometer and the gyroscope
sensor data the resulting standard deviations had to be qualified guesses. The standard
deviations for the last four states, with known noise characteristics, were given by the
specifications for the gyroscope [15]. While the real dynamics of states four and five were
not known, they were updated using transformed gyroscope sensor data which is why
the standard deviations for these states were chosen from the gyroscope specifications.
The values are presented in Table 8.1.

σ Value Unit

σx1 0.1 m
σx2 0.1 m
σx3 0.1 m
σx4 1.5 · 10−4 rad
σx5 1.5 · 10−4 rad
σx6 5.6 · 10−6 s
σx7 0.001 s
σx8 5.6 · 10−6 s
σx9 0.001 s

table 8.1: Standard deviations for the process noise.

The GPS sensor was considered accurate with only a small amount of noise corruption
and its position was considered to be the true position of the vehicle. Because of this,
the measurement noise for the GPS was modeled as the noise of the noise i.e. how
much the noise varied and not how much the measurement varied. The last available
measurement, the vehicle heading, proved to always be unreliable and so its standard
deviation was chosen to be large. The values, all of which are educated guesses, are
presented in Table 8.2.

34

8 THE KALMAN FILTER

σ Value Unit

σxgps 0.1 m
σygps 0.1 m
σzgps 0.1 m
σheading 10 rad

table 8.2: Standard deviations for the measurement noise.

The weighting matrices for the Kalman filter are thus

R = E{vkvTk } =


σ2xgps 0 0 0

0 σ2ygps 0 0

0 0 σ2zgps 0

0 0 0 σ2heading

 , (42)

Q = E{wkw
T
k } =



σ2x1 0 0 0 0 0 0 0 0
0 σ2x2 0 0 0 0 0 0 0
0 0 σ2x3 0 0 0 0 0 0
0 0 0 σ2x4 0 0 0 0 0
0 0 0 0 σ2x5 0 0 0 0
0 0 0 0 0 σ2x6 0 0 0
0 0 0 0 0 0 σ2x7 0 0
0 0 0 0 0 0 0 σ2x8 0
0 0 0 0 0 0 0 0 σ2x9


, (43)

and

N = E{wkv
T
k } = 0, (44)

as the noise vectors are assumed to be mutually independent.

35

9 Test Cases for the Real Vehicle

The tests on the real vehicle were all performed inside the Skaraborg Regiment P4
Armored Vehicle facility in Skövde, using various models of the CV90. The exception

to this is the test described in the first subsection, which was a test conducted by BAE
Systems before this thesis started.

Even though a lot of different tests were done, not all of them were used in the deve-
lopment of the algorithms or in the model verification process, and so only a subsection
of them have been described in detail in the following subsections. The Test number in
the lists represent the tests done during that particular day and this number resets every
new test day. The case numbers is a running total of the tests but mainly functions as
a way to keep track of the independent tests in Matlab. The arrow that is present in
all figures indicates the driving direction.

9.1 Previous Test

This test case was done in order to evaluate the performance of the NAV90 INS as well as
to explore the performance of an possible INS that used the two-axis gyroscope system
installed on some CV90 vehicles, see Fig. 9.1. The data from this test was used in the
early stages of this thesis to test the algorithms.

0 50 100 150 200
−80

−60

−40

−20

0

20

40

60
North position vs. east position

y
/ m

x / m

GPS
NAV90
BAE Prototype INS

Figure 9.1: The previous test where the vehicle was driven on asphalt. The NAV90
system’s erratic behavior is most obvious in the circular motions on the right hand side
of the plot. Source: Erik Nyg̊ard [11].

36

9 TEST CASES FOR THE REAL VEHICLE

9.2 Skövde, 2012-10-10

During this day 12 different tests were performed, 11 were done on a CV9040C and 1
was done on a CV9040TD. Due to complications with the GPS receiver, GPS data were
not collected during any of the tests performed during this day. The fact that the GPS
was not functioning made some of the planned tests, where the vehicle was to be moving
along a track, unnecessary and so only tests where the vehicle was standing still were
performed. All the tests are described further in Table 9.1.

Test (case) Log ID Description

1 (1) 092740 Standing still inside for a duration of 8 minutes.

2 (2) 093632 Standing still inside for a duration of 1 minute.

3 (3) 094848 Waited 10 minutes after the last test and then logged
for 1 minute while the vehicle was standing still.

4 (4) 095916 Waited 10 minutes after the last test and then logged
for 1 minute while the vehicle was standing still.

5 (5) 100228 Standing still inside for a duration of 8 minutes.

6 (6) 102754 Standing still outside for a duration of 2 minutes.

7 (7) 104052 Standing still outside for a duration of 4 minutes.

8 (8) 112907 Standing still outside for a duration of 4 minutes.

9 (9) 114247 Standing still outside while the turret rotated 2 comple-
te turns. The elevation angle was locked at 0 degrees.

10 (10) 114706 Standing still outside while the turret rotated 2 com-
plete turns. The elevation angle was locked at approx-
imately 24 degrees.

11 (11) 114940 Standing still outside with the turret locked at 0 de-
grees. The weapon was raised and lowered two times
between in an interval spanning between its maximum
and minimum elevation angles.

12 (12) 133624 Standing still inside for a duration of 1 minute and 20
seconds.

table 9.1: table showing the various test that were done during the first test day in
Skövde on 2012-10-10.

37

Improving the INS for the CV90 Platform using Sensor Fusion

9.2.1 Test 8 (8)

This test was used in order to find any offset present in the stationary gyroscope signals.
These signals were averaged and it was found that the offset in each channel was 0.52
mrad/s around the z-axis, i.e. yaw, and 0.08 mrad/s around the y-axis, i.e. pitch. These
values were then subtracted from the gyroscope signals in the algorithms to improve the
performance of the simulations, since the majority of the simulations modeled the data
of the exact same vehicle.

9.2.2 Test 9 (9) and Test 10 (10)

A comparison between the carrier yaw rotation during these two test was performed in
order to find out how the angle of the weapon affected the heading estimate. Fig. 9.2
shows the yaw angles for both of these tests.

0 20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ng

le
 /

°

Time / s

Drift in the yaw angle during rotation of the turret

Test 9, weapon elev. 0 °
Test 10, weapon elev. 24 °

Figure 9.2: Two tests where the turret performed two full rotations with the weapon at
different elevation angles. A loss in heading estimate accuracy was observed when the
weapon elevation angle was significantly different from the original 0◦ position.

It is apparent that when the weapon is in an angle significantly different from the default
rest position, the heading estimate deteriorates. This shows the limitation that is inherent
in using a two-axis gyroscope in a system which has three degrees of freedom.

38

9 TEST CASES FOR THE REAL VEHICLE

9.3 Skövde, 2012-10-26

The tests done during this day focused on collecting data while the vehicle was moving,
since this had not been possible during the previous test day. The primary course for
the vehicle was decided to be a square-like shape, and different dynamics of the turret
and weapon were tested during each run, see Table 9.2.

Test (case) Log ID Description

1 (13) 103916 The vehicle was driven along the square track with the
weapon and turret locked at 0 degrees, i.e. pointing
straight ahead in relation to the carrier.

2 (14) 104230 Same track as the previous test with the exception of
idling the vehicle ca 1 minute before and after driving
the track. This was to check so that the algorithm could
handle the case where the system was fixed in position,
i.e. when the velocity was 0 m/s.

3 (15) 105332 The vehicle was driven along the square track with the
weapon stabilized at ca 0 degrees in elevation while the
turret was pointed towards the center of the square for
the duration of the test.

4 (16) 105907 The same test as the previous except the elevation ang-
le was set to be close to maximum, i.e. around 24 de-
grees.

5 (17) 110315 A 2 minute test where the vehicle and all of its com-
ponents were motionless. This test case was more of a
comparison test where the data were compared with
the similar test done during the previous test day.

6 (18) 110539 The vehicle had zero speed while the turret spun
around 2 full rotations and the weapon was raised and
lowered in a wavelike pattern.

table 9.2: table showing the various test that were done during the second test day in
Skövde on 2012-10-26.

39

Improving the INS for the CV90 Platform using Sensor Fusion

9.3.1 Test 2 (14)

The test was mostly used for verification of the model and it was noticed that the
vehicle sometimes changed orientation of the NAV90 z-axis, sometimes it was ”up” and
sometimes it was ”down”. It was also noticed that the initial idling time made the NAV90
able to find a good estimate of the initial heading, in fact it was the best heading estimate
of all the tests done during this day.

−40 −20 0 20 40 60
−10

0

10

20

30

40

50

60

70

80

90

x / m

y
/ m

Test case: "104230"simulated for: 3 min 26.8 s. Distance: 375 m.
The Kalman filter is ON: 21.0 s − 3 min 5.0 s.

GPS90
INS
Kalman ON

Figure 9.3: Position estimate with the INS assisted by the Kalman filter. Notice how the
INS jumps back towards the GPS90 position and how the heading is not updated.

40

9 TEST CASES FOR THE REAL VEHICLE

−40 −20 0 20 40 60
−10

0

10

20

30

40

50

60

70

80

90

x / m

y
/ m

Test case: "104230" simulated for: 3 min 26.8 s. Distance: 278 m.
The Kalman filter is off during the entire simulation.

GPS90
INS

Figure 9.4: Position estimate with only the INS active. The path is much smoother since
no jumping occurs. With a proper initial heading it is evident that the INS estimates
the position well.

9.4 Skövde, 2012-11-15

This was the final data gathering excursion and also the one where the longest tests were
run. The tests were done on the training grounds outside the P4 regiment base and the
details are described in Table 9.3.

Data were lost during Test 3 (23) due to a bad connection and so this test will not
be analyzed in detail. A laser was used to estimate distance towards a known waypoint,
specifically the TV Mast waypoint located outside of Skövde proper, in order to evaluate
the heading error and how this would affect the estimated location of targets. A glitch
in the transfer of the laser ranging flag meant that the distance information could only
be used on Test 1 (19, 20) and Test 5 (25, 26).

All plots have been reset so that coordinate [0, 0] represents the Amundtorp waypoint.
The green line in the plots represent the u-blox GPS coordinates and these are taken to
be the ”true” coordinates, and so the distances to waypoints etc. are calculated using the
u-blox GPS information. Furthermore, due to difficulties in synchronizing the NAV90
and the u-blox GPS UTC times, the u-blox data is slightly shifted to the right in the
heading plots.

41

Improving the INS for the CV90 Platform using Sensor Fusion

Test (case) Log ID Description

1 (19, 20) 115111

120137

Driving in hilly terrain and alongside a forest for the
latter half of the circuit. Laser fired at the end. Laser:
6473 m (TV Mast).

2 (21, 22) 133817

134943

A long circuit from Amundtorp in the north to the
firing range in the south. GPS data were unreliable
during this test and data from the NAV90 system was
lost during the final segment of the circuit.

3 (23) 140624 The vehicle moved forward ca 20 m, then reversed a few
meters, then performed a center turn, and then finally
went back to the starting position. The data connection
was lost during most of the test and so nothing of value
could be extracted.

4 (24) 141024 Same as Test 3 (23) except the data connection was
good during the entire test.

5 (25, 26) 143146

144039

A long test taking the vehicle from the firing range in
the south to a position northwest of Amundtorp in the
north. The weapon was stabilized during the entire test
and the laser was fired near Amundtorp. Laser: 6468
m.

6 (27, 28) 145530

150318

Same track as Test 1 (19, 20) but with a stabilized
weapon and all combat hatches open. This was done in
order to simulate a worst case scenario for the compass
and the gyroscope.

table 9.3: table showing the various test that were done during the third and final test
day in Skövde on 2012-11-15.

42

9 TEST CASES FOR THE REAL VEHICLE

9.4.1 Test 1 (19, 20)

The track is followed well both with and without GPS assistance and the heading at
the time of the range estimation to the TV Mast waypoint is very accurate. The final
stage of the track for the two simulations can be viewed in more detail in Fig. 9.7 and
Fig. 9.8, respectively. The norm of the error in the x and y coordinates of the position
estimate, for the model with the Kalman filter activated, can be seen in Fig. 9.7. The
error is smaller after the log switch mostly due to the fact that the vehicle is stationary
for a short period during the end of the test. This could also explain why there is such
a large difference between the u-blox GPS heading and the INS heading during the last
part of the test.

−4500 −4000 −3500 −3000 −2500 −2000 −1500 −1000 −500 0 500
−1000

0

1000

2000

3000

4000

5000

x / m

y
/ m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is ON: 2.0 s − 11 min 11.0 s.

GPS90
u−blox GPS
INS
Kalman ON
Log switch
Target
Estimated target
GPS target acq.
INS target acq.

Distance to T: 6449 m
Dist. T ↔ ET: 13 m
Dist. error: 0.2%
Heading error: 0.9 mrad
Pos. error x: −7.4 m
Pos. error y: −2.1 m

Figure 9.5: The circuit starts and ends approximately at the Amundtorp waypoint. With
the Kalman filter on the heading error is only 0.9 mrad and the distance error is only
0.2%. The difference between the estimated ranging location, the small square, and the
true ranging position, the large square, is (−7.4,−2.1) m.

43

Improving the INS for the CV90 Platform using Sensor Fusion

−4500 −4000 −3500 −3000 −2500 −2000 −1500 −1000 −500 0 500
−1000

0

1000

2000

3000

4000

5000

x / m

y
/ m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS
Log switch
Target
Estimated target
GPS target acq.
INS target acq.

Distance to T: 6449 m
Dist. T ↔ ET: 2 m
Dist. error: 0.0%
Heading error: 0.9 mrad
Pos. error x: 4.9 m
Pos. error y: 1.6 m

Figure 9.6: The circuit starts and ends approximately at the Amundtorp waypoint. With
the Kalman filter off the heading error is still only 0.9 mrad but the distance error is
0.0%. The difference between the estimated ranging location, the small square, and the
true ranging position, the large square, is (4.9, 1.6) m. The smaller error, compared to
the end difference for the GPS assisted INS coordinates, is probably due to the fact that
the INS is pushed towards the GPS90 coordinates which are offset from the ”true” value
of the u-blox GPS coordinates.

44

9 TEST CASES FOR THE REAL VEHICLE

−20 −15 −10 −5 0 5 10 15

−20

−15

−10

−5

0

5

10

15

20

25

x / m

y
/ m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is ON: 2.0 s − 11 min 11.0 s.

Distance to T: 6449 m
Dist. T ↔ ET: 13 m
Dist. error: 0.2%
Heading error: 0.9 mrad
Pos. error x: −7.4 m
Pos. error y: −2.1 m

Figure 9.7: Since the u-blox GPS is taken as ”true”, the real laser ranging position is at
the end of the green line, and not the last blue GPS90 coordinates that the INS relies
on.

45

Improving the INS for the CV90 Platform using Sensor Fusion

−20 −15 −10 −5 0 5

−20

−10

0

10

20

30

x / m

y
/ m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is off during the entire simulation.

Distance to T: 6449 m
Dist. T ↔ ET: 2 m
Dist. error: 0.0%
Heading error: 0.9 mrad
Pos. error x: 4.9 m
Pos. error y: 1.6 m

Figure 9.8: When no new information from GPS90 is relayed to the INS the final position
is closer to the ”true” position of the u-blox GPS. This indicates that with a better GPS
to depend on the INS could perform better.

46

9 TEST CASES FOR THE REAL VEHICLE

100 200 300 400 500 600 700 800 900
−25

−20

−15

−10

−5

0

5

10

15

20

Time / s

E
rr

or
 /

m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is ON: 2.0 s − 11 min 11.0 s.

Northing error
Easting error
Kalman ON
Log switch

Figure 9.9: The error is relatively stable before the log switch, but it has a few spikes.
After the log switch the INS heading is replaced with another value which gives a smaller
error which is more stable since the vehicle is standing still and the Kalman filter does
not reset the position.

47

Improving the INS for the CV90 Platform using Sensor Fusion

100 200 300 400 500 600 700 800 900
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time / s

E
rr

or
 /

m

Test case: "115111" and "120137" simulated for: 16 min 37.0 s. Distance: 3218 m.
The Kalman filter is off during the entire simulation.

Northing error
Easting error
Log switch

Figure 9.10: The error oscillates in the interval [−25, 25] m and after the log switch, when
the vehicle stops moving, it becomes stationary. Notice that the error shown specifies
the difference between the INS and the GPS90 data, and not the more reliable u-blox
GPS.

48

9 TEST CASES FOR THE REAL VEHICLE

0 200 400 600 800 1000
−200

−150

−100

−50

0

50

100

150

200

Time / s

A
ng

le
 /

°

Heading for test case: "115111" and "120137".

INS
u−blox GPS

Figure 9.11: The u-blox GPS heading is only being sampled with h = 1 s which gives it
a noisy appearance in the beginning. The INS estimates the heading well except in the
end, however, during this part it is probably the u-blox which gives the wrong heading
since the vehicle is stationary and the GPS coordinates are in the area close to that
position. Note that the heading for both versions of the INS is basically the same since
the heading is not affected by the GPS coordinates.

49

Improving the INS for the CV90 Platform using Sensor Fusion

9.4.2 Test 2 (21, 22)

The track is followed quite well during the first part of the track, however, due to a
faulty connection with the vehicle data bus, information was missing during a period
at the end of the track. For this reason the last part has been moved to where it was
estimated to have occurred if complete signal data were available, and it seems to fit
relatively well. This test showed that the extracted data could be incoherent, and if that
were the case the NAV90 system would not point this out via e.g. time stamps.

0 500 1000 1500 2000

−2500

−2000

−1500

−1000

−500

0

x / m

y
/ m

Test case: "133817" and "134943" simulated for: 15 min 9.2 s. Distance: 4101 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS
Logg switch
Connection points
Re−positioned curve

Figure 9.12: The connection points show where the original INS line has been cut in
order to place it where it was estimated to have occurred during the actual test. The
re-positioned curve seems to fit well but due to the loss of some information it is not a
perfect fit.

50

9 TEST CASES FOR THE REAL VEHICLE

9.4.3 Test 4 (24)

This test was done in order to find out how the NAV90 system relayed information
regarding the speed of the vehicle when the vehicle turned and was in neutral gear, and
when it reversed and was in reverse gear. NAV90 handled this by giving a speed of 0
km/h when the gear was in neutral and a negative speed when the gear was in reverse.
This was fortunate since this meant that no ”gear indication flag” had to be extracted
from the carrier data bus in order to help the algorithm know if the vehicle moved
forwards or backwards.

−20 −15 −10 −5 0

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

x / m

y
/ m

Test case: "141024" simulated for: 4 min 11.0 s. Distance: 212 m.
The Kalman filter is ON: 15.0 s − 3 min 1.0 s.

GPS90
u−blox GPS
INS
Kalman ON

Figure 9.13: The INS follows relatively well since it is moved each time a new GPS value
is obtained.

51

Improving the INS for the CV90 Platform using Sensor Fusion

−20 −15 −10 −5 0

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

x / m

y
/ m

Test case: "141024" simulated for: 4 min 11.0 s. Distance: 212 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS

Figure 9.14: The INS does not come all the way back after the vehicle has performed
the carrier rotation during the middle part of the test, in the lower left hand side of the
plot, the reason for this is unknown.

52

9 TEST CASES FOR THE REAL VEHICLE

9.4.4 Test 5 (25, 26)

The true position on the track was estimated well in both cases and the low heading
error shows that the INS followed the true heading accurately. The log switch did not
introduce any major deviations from the real target position. The error is stable for the
entire test except for a spike that occurs at the log switch.

−4000 −3000 −2000 −1000 0 1000

−2000

−1000

0

1000

2000

3000

4000

5000

x / m

y
/ m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is ON: 14.0 s − 11 min 44.6 s.

GPS90
u−blox GPS
INS
Kalman ON
Log switch
Target
Estimated target
GPS target acq.
INS target acq.

Distance to T: 6449 m
Dist. T ↔ ET: 76 m
Dist. error: 1.2%
Heading error: −11.7 mrad
Pos. error x: 0.3 m
Pos. error y: −0.3 m

Figure 9.15: The laser ranging occurred at the Amundtorp waypoint. The heading error
was relatively high compared to Test 1 (19, 20), but still within acceptable boundaries.
The same could be said for the distance error. The difference between the estimated
ranging location, the small square, and the true ranging position, the large square, is
(0.3,−0.3) m.

53

Improving the INS for the CV90 Platform using Sensor Fusion

−4000 −3000 −2000 −1000 0 1000

−2000

−1000

0

1000

2000

3000

4000

5000

x / m

y
/ m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS
Log switch
Target
Estimated target
GPS target acq.
INS target acq.

Distance to T: 6449 m
Dist. T ↔ ET: 76 m
Dist. error: 1.2%
Heading error: −11.7 mrad
Pos. error x: −14.4 m
Pos. error y: 12.9 m

Figure 9.16: The laser ranging occurred at the Amundtorp waypoint. The heading error
was the same as for the simulation with the Kalman filter but the distance error was
slightly larger, probably due to the fact that the INS curve no longer ”jumped” toward
GPS90 coordinates. The difference between the estimated ranging location, the small
square, and the true ranging position, the large square, is (−14.4, 12.9) m. The larger
error, compared to the end difference for the GPS assisted INS coordinates, is probably
due to the log switch and the change it creates in the system.

54

9 TEST CASES FOR THE REAL VEHICLE

−20 −15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

20

x / m

y
/ m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is ON: 14.0 s − 11 min 44.6 s.

Distance to T: 6449 m
Dist. T ↔ ET: 76 m
Dist. error: 1.2%
Heading error: −11.7 mrad
Pos. error x: 0.3 m
Pos. error y: −0.3 m

Figure 9.17: A detailed view of the laser ranging position. The estimated ranging position
occurs a few meters behind the true position. The reason for this could be a synchro-
nization issue between the log files since the ranging happens just moments after a log
switch had taken place.

55

Improving the INS for the CV90 Platform using Sensor Fusion

−40 −30 −20 −10 0 10 20 30 40
−60

−40

−20

0

20

40

60

x / m

y
/ m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is off during the entire simulation.

Distance to T: 6449 m
Dist. T ↔ ET: 76 m
Dist. error: 1.2%
Heading error: −11.7 mrad
Pos. error x: −14.4 m
Pos. error y: 12.9 m

Figure 9.18: Same heading and distance error as the simulation with the Kalman filter,
but since the position is not pushed along, as it is in the case with the filter, the final
position error is slightly larger.

56

9 TEST CASES FOR THE REAL VEHICLE

100 200 300 400 500 600 700
−8

−6

−4

−2

0

2

4

6

Time / s

E
rr

or
 /

m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is ON: 14.0 s − 11 min 44.6 s.

Northing error
Easting error
Kalman ON
Log switch

Figure 9.19: The error is stable both before and after the log switch. However, a spike
occurs at the log switch and the reason for this could be a synchronization issue.

57

Improving the INS for the CV90 Platform using Sensor Fusion

100 200 300 400 500 600
−25

−20

−15

−10

−5

0

5

10

15

20

Time / s

E
rr

or
 /

m

Test case: "143146" and "144039" simulated for: 12 min 18.4 s. Distance: 3966 m.
The Kalman filter is off during the entire simulation.

Northing error
Easting error
Log switch

Figure 9.20: The error oscillates in a slightly smaller interval compared to Test 1 (19, 20),
Sec. 9.4.1, and the oscillation has a longer period. This could be due to the straighter
path, compared with the somewhat circular path performed in Test 1 (19, 20), that the
vehicle is traveling during this test. Notice that the error shown specifies the difference
between the INS and the GPS90 data, and not the more reliable u-blox GPS.

58

9 TEST CASES FOR THE REAL VEHICLE

0 100 200 300 400 500 600 700
−200

−150

−100

−50

0

50

100

150

200

Time / s

A
ng

le
 /

°

Heading for test case: "143146" and "144039".

INS
u−blox GPS

Figure 9.21: The heading corresponds well to the somewhat noisy u-blox GPS heading.
The idling times in the beginning and the end of the tests are apparent in the plot in the
form of large differences between the headings. Note that the heading for both versions
of the INS is basically the same since the heading is not affected by the GPS coordinates.

59

Improving the INS for the CV90 Platform using Sensor Fusion

9.4.5 Test 6 (27, 28)

This test was designed to really strain both the NAV90 system, by having all the battle
hatches open to interfere with the compass, as well as the gyroscope, by constantly
rotating the turret and moving the weapon.

It was expected that the GPS assisted system would handle the test well, and it did,
but also the INS without GPS handled the challenge surprisingly well. It was surprising
because in previous tests on manually generated test tracks the INS had not given results
of this caliber, but this could also be due to the fact that it is difficult to recreate real
world signals.

It is noticeable, however, that after the log switch the INS travels a shorter path than
the real system. The explanation for this could be that during the log switch the system
believed it had a small pitch angle, i.e. moving along an upwards slope, and during the
down time of the log switch, which was 4 s, the vehicle could have returned to traveling
parallel to the ground. The INS would not have integrated this signal since it did not
receive information during the down time and would have continued to believe that the
vehicle was traveling upwards.

Since the plots show the coordinates projected in the xy-plane, the projected path
would be shorter. This suspicion was verified when the data showed that the system
believed that it was at a height of 400 m at the end of the track, when in reality it
should have been at 0 m. This shows that the INS can be improved in this area and it
is discussed further in Sec. 10.

60

9 TEST CASES FOR THE REAL VEHICLE

−600 −400 −200 0 200 400 600
−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

x / m

y
/ m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is ON: 39.0 s − 11 min 30.4 s.

GPS90
u−blox GPS
INS
Kalman ON
Log switch

Figure 9.22: As expected the track is followed well when the GPS is activated.

61

Improving the INS for the CV90 Platform using Sensor Fusion

−600 −400 −200 0 200 400 600
−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

x / m

y
/ m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS
Log switch

Figure 9.23: The track is followed with surprising accuracy when no GPS data is available.
However something happens at the log switch and the system believes it is traveling with
a non-zero pitch angle for the rest of the test, which results in the somewhat shorter
path.

62

9 TEST CASES FOR THE REAL VEHICLE

−12 −10 −8 −6 −4 −2 0 2 4

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

x / m

y
/ m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is ON: 39.0 s − 11 min 30.4 s.

GPS90
u−blox GPS
INS
Kalman ON
Log switch

Figure 9.24: The system functions as expected and has an accurate heading in the last
part of the track.

63

Improving the INS for the CV90 Platform using Sensor Fusion

−40 −20 0 20 40 60

−60

−50

−40

−30

−20

−10

0

10

x / m

y
/ m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is off during the entire simulation.

u−blox GPS
INS
Log switch

Figure 9.25: The shift in between the INS and u-blox GPS position is evident and it
results in large end position errors.

64

9 TEST CASES FOR THE REAL VEHICLE

100 200 300 400 500 600 700
−6

−4

−2

0

2

4

6

8

Time / s

E
rr

or
 /

m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is ON: 39.0 s − 11 min 30.4 s.

Northing error
Easting error
Kalman ON
Log switch

Figure 9.26: The error is relatively stable with the exception of a few spikes. No noticeable
differences can be seen after the log switch.

65

Improving the INS for the CV90 Platform using Sensor Fusion

100 200 300 400 500 600
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time / s

E
rr

or
 /

m

Test case: "145530" and "150318" simulated for: 11 min 50.6 s. Distance: 3231 m.
The Kalman filter is off during the entire simulation.

Northing error
Easting error
Log switch

Figure 9.27: The error magnitude is relatively stable before the log switch, with a mag-
nitude only reaching up to 25 m. After the log switch, however, the error begins to
diverge. This is probably because of the INS thinks that the vehicle has a negative pitch
angle, i.e. that the vehicle is following an upward-pointing velocity vector.

66

9 TEST CASES FOR THE REAL VEHICLE

0 100 200 300 400 500 600 700
−200

−150

−100

−50

0

50

100

150

200

Time / s

A
ng

le
 /

°

Heading for test case: "115111" and "120137".

INS
u−blox GPS

Figure 9.28: The heading is followed very accurately except in the beginning and end of
the track when the vehicle is stationary. The synchronization issue between the heading
logs causes a shift which is apparent in the plot. Note that the heading for both versions
of the INS is basically the same since the heading is not affected by the GPS coordinates.

67

10 Problems that were Encountered

The data extraction from the vehicle had some problems associated with it.
The extraction was slowed down by data logs that did not follow any predetermined

pattern for saving data and because of this they had to be parsed and rearranged in
Matlab to follow a standard layout.

Important data such as PFP flags, which were used for finding the time stamps at
which laser ranging had taken place, were not always extracted properly which resulted
in that a majority of the tests lacked any ranging information.

The time limit that imposed restrictions on the amount of data that could be collected
in a single log file produced gaps in the simulation that were hard to fix, and the NAV90
system gave no indication, via e.g. time stamps, when said gaps had occurred in the logs.

At one occasion the extraction tool started to overwrite the current log file from
the beginning, in all columns except the time column. This caused the beginning of the
test to become unavailable and at the same time it was hard to find where the newly
overwritten data ended and the real data started. Due to this a section of that test had
to be cut out before simulation.

Further problems were encountered with the GPS90 system, which is the current GPS
receiver on the majority of CV vehicles. The system had a long startup time, sometimes
not starting at all, and the data it produced had relatively low resolution. The data also
had many outliers which, if they were not removed or filtered, introduced errors in the
simulations.

Another problem with the mutual dependence of the GPS90 and NAV90 systems was
the fact that if GPS data were unavailable, then the NAV90 UTC time did not function
and this made it impossible to sync NAV90 logs to other logs via UTC time.

The biggest problem was that the third gyroscope, which was installed on the third
test day, could not be used since the flag responsible for syncing the third gyroscope’s
log with the NAV90 log could not be extracted properly due to a software bug. In the
beginning of the project this was an important part of the evaluation of the new INS,
to see if it could be significantly improved with a third gyroscope axis. This part of the
thesis had to be abandoned due to the problems with the data extraction.

A problem that may appear in the future development of a new INS that uses this
thesis as a basis is rewriting the various algorithms and functions to a fast and efficient
program intended for embedded systems. The modeling and simulations were mainly
performed within the Matlab and Simulink environments and some of the functions
were CPU intensive, e.g. transformations. Among the biggest concern for an embedded
implementation is the system matrix discretization which requires the matrix exponten-
tial to be recomputed each time step.

68

11 Conclusions and Recommendations

This thesis has shown that with the right tools it is possible to introduce an
inertial navigation system for the CV90 platform that utilizes the two-axis gyroscope

present on most CV90 vehicles. The performance of this INS has been deemed to be
excellent and it is a worthy successor to the previous NAV90 system. The INS can
estimate both position and heading in a robust manner for time periods in excess of 10
minutes, which can be considered to be a long duration since the standard operating
times for an INS on this platform is active only a few minutes at a time in worst case
scenarios.

It is clear from the testing and validation of the algorithms that the new INS can
work in real world scenarios. However, there is room for improvement.

It is recommended that the now obsolete GPS90 system is replaced by a new and
modern GPS system, i.e. the GPS08 system, in order to obtain even better performance
of the INS. With a new system, the z coordinate could be utilized for height positioning
as well as updating of the pitch state in the system model. This problem was evident in
Test 6 (27, 28), Fig. 9.23, where the INS path became shorter due to the fact that the
algorithms believed that the vehicle was moving at an upwards angle.

A new GPS system could also provide heading corrections in a reliable manner by
filtering its data and only updating the yaw state in the system model when certain
conditions are held, e.g. the vehicle must be on a straight path etc.

Further improvements could be made in the initial heading estimation. In its current
form the NAV90 provides this information and it is not always of a high enough quality.
If the initial heading is wrong then the system will follow the correct path but the path
will be rotated by an amount of degrees that is equal to the initial heading error. This
could be remedied by using the GPS information to update the yaw state in the system
model, as previously mentioned.

For vehicles where it is critical for correct position and heading estimation, it is re-
commended to pursue the testing of the third gyroscope axis. This additional axis would,
at least theoretically, provide a perfect reconstruction of the system and its dynamics.

70

Improving the INS for the CV90 Platform using Sensor Fusion

A How to Run Simulations

Much about the behavior of CV90 can be explored by simulating the vehicle
using either real or fictional data, the latter describing perhaps more extreme envi-

ronmental scenarios. In the sequel it is assumed that the folder CV90_Simulation_Suite
and all of its sub-folders are added to the Matlab path. All simulations are run from
the file runSimulation.m. If a run-time variable such as the duration of the simulation is
changed, the simulation can be rerun by run_simulation.m which assumes a valid test
case is already loaded. Other functions should in general not be altered1 as this could
have unforeseen consequences.

When a test case is set up and loaded it will be processed once and then saved to
disk in order to minimize the time spent setting up a simulation. If any changes are
found in the test case file, describing the test, this signal generation has to be performed
again otherwise the saved test file on disk will be used. Sometimes errors can occur while
saving or loading a test case why it is always a good idea to delete any old versions of
the test case on disk if the program does not work as expected. For further information
see Sec. A.6.

A.1 Real Test Cases

A.1.1 About NAV90 Logs

The foundation in a test case based on real sensor data is the actual sensor data, extracted
from CV90. The log should optimally contain measurements in all the categories listed
below, but in special cases it will be possible to run a simulation even if this is not
the case. For example, UTC time must only be provided when comparing the simulation
results to an external source such as a secondary GPS receiver. If PFP values are provided
then the log file must also contain the UTC time for syncing purposes. If laser ranging
was not performed during the real test run, and the only source for GPS measurements
is GPS90, then only the first 11 inputs must be specified. The order in which they appear
in the log does not matter.

’Tid’

’CAN-Buss:Vagnsfast vinkel elev’

’CAN-Buss:Vagnsfast vinkel sida’

’CAN-Buss:Vagnsfast vinkelhastighet elev’

’CAN-Buss:Vagnsfast vinkelhastighet sida’

’CAN-Buss:Gyrohastighet elev’

’CAN-Buss:Gyrohastighet sida’

’CAN-Buss:Vagnshastighet’

’Electronic Unit:Roll’

’Electronic Unit:Pitch’

1With one exception: the file extract_data_from_bin.m must be extended as more real test cases
become available.

72

A HOW TO RUN SIMULATIONS

’Electronic Unit:Heading’

’Electronic Unit:UTC Tid’

’X7:Riktdon skytt PFP’

Given the above, a simulation using dead reckoning only can be carried out with the
implemented Kalman filter turned off. An additional log file containing the GPS data
from NAV90 must be supplied in order to fully take advantage of the devised algorithm.
The log should optimally contain the following, and as before the order does not matter.
While the UTC time is optional, some functionality will be lost should it not be supplied.

’Tid’

’Electronic Unit:Pos X’

’Electronic Unit:Pos Y’

’Electronic Unit:GPS Status’

’Electronic Unit:UTC Tid’

Specifying log files that contain other measurements than the ones mentioned above will
cause the program to crash. It is assumed that the same logging equipment as already
encountered will be used.

A.1.2 Define a Test Case

Given a standard NAV90 log, and optionally a NAV90 GPS log, a test case can be defined
in Matlab. It is assumed two files exist, conveniently named nav90.log and gps.log,
respectively. The steps to define a test case are described below.

1. Type edit extract_data_from_bin.m in the Matlab terminal. The file will con-
tain previously performed tests, see Table 9.1, Table 9.2 and Table 9.3. Denote the
new test by an integer case number that is not already in use. At the time of this
publication numbers 1 through 28 were in use. If the test consist of two or more
logs, a separate case must be set up for each log. Should there not exist a GPS log
the variable fileg must not be defined. Two examples are shown below.

case 99

filel = ’nav90.log’;

fileg = ’gps.log’;

or alternatively, if no GPS data is available,

case 99

filel = ’nav90.log’;

73

Improving the INS for the CV90 Platform using Sensor Fusion

2. Create a new test case file by File->New->Script in Matlab2 and save it as
test_case_demo.m for instance. The file must contain test_case_ before the ac-
tual name or else the file will not be found. The file must contain the two lines

test_case = 99;

skovde_data_gen

The first line specifies the case in extract_data_from_bin.m while the second
line calls another script that handles the data extraction and the initialization of
variables. Specifying a test that consist of two or more logs are as easy as naming
all the case numbers, e.g.

test_case = [99, 100];

skovde_data_gen

3. The most basic type of test case is now defined. There exist a number of optional
parameters, see Sec. A.3, that get initialized to default values. Depending on the
situation, or how the test was performed, they can also be included in the test
case.

A.1.3 An Example

The following is taken from the test case amundtorp_1km.m. The Kalman filter is on from
t = 0 to t = 40, off from t = 40 to t = 100 and then on for the rest of the simulation3.
All GPS coordinates are considered and validated by the tolerance TOL, set to 25 meters.
The call to the function extract_third_gyro_data.m is included for consistency, even
though no testing using a third gyro was carried out.

% OBLIGATORY

test_case = [19, 20];

skovde_data_gen

% OPTIONAL

% start angles (c = carrier, t = turret, s = sensor):

% "c_alpha", "c_beta", "c_gamma", "t_alpha", "s_beta"

% default: c_alpha = NAV90, c_beta = NAV90, c_gamma = 0,

% t_alpha = SIDE_ANGLE(1), s_beta = ELEVATION_ANGLE(1)

c_alpha = [-2.5897, -2.2480];

2The notation may differ in different versions of Matlab but a blank m-file should be chosen.
3Note that the on/off switches are just a recommendation to the filter, e.g. if the vehicle is not moving

then the filter is automatically turned off. Furthermore, while the times are absolute, the simulations
will not always start at t = 0 but rather when the first valid GPS sample is encountered.

74

A HOW TO RUN SIMULATIONS

c_beta = [0, 0];

% simulink parameters:

% "runTime"

% on/off switches, empty/non-existent = ON entire simulation

% default: Kalman filter is ON entire simulation

runTime = [0, 40, 1; 40, 100, 0; 100, -1, 1];

% "measurements"

% measurements, empty/non-existent = No available GPS data

% default: all available GPS will be used

% "TOL"

% allowed difference for each x- and y-coordinate between GPS

% and INS

% default: 1e19 (i.e. all GPS coordinates are accepted)

TOL = 25;

% additional measurements (if available, no default values)

third_gyro = extract_third_gyro_data(fopen(’strf90_24.txt’));

sec_gps_log = extract_sec_gps(load(’COM8_121115_103553_cleaned.txt’));

target_id = ’TV-Masten 56501’;

A.2 Fictional Test Cases

To create a fictional test case is slightly more complicated as all sensor signals first must
be generated, the coordinates for the route must be calculated and all sensor errors must
be specified. The necessary steps involved are described below.

A.2.1 Define a Test Case

1. Create a new test case file by File->New->Script in Matlab and save it as
test_case_fictional_demo.m for instance. The file must contain test_case_

before the actual name or else the file will not be found. The file must contain at
least the following variables or the program will crash.

% simulation flags

simul

velocity

% simulation sample times

odometer_sample_rate

75

Improving the INS for the CV90 Platform using Sensor Fusion

gyro_sample_rate

sample_rate

end_t

% carrier linear movement profiles

c_x_acc

c_y_acc

c_z_acc

% carrier angular movement profiles

c_alpha_acc

c_beta_acc

c_gamma_acc

% turret/weapon angular movement profiles

t_alpha_acc

s_beta_acc

init

% gyro specifications

M_0

lp_gain

tau_c

yaw_noise_gain

pitch_noise_gain

roll_noise_gain

% odometer specifications

refresh_rate

sigma_v

noise_gain

% GPS specifications

sample_real

gps_sample_rate

gps_refresh_rate

lim_r_r

offset

res

sigma

rand_gain

76

A HOW TO RUN SIMULATIONS

A more extensive treatment of each variable can be found below.

’simul’

Boolean flag that indicates that this is a fictional test case. Must be set to
true.

’velocity’

Boolean flag that indicates if the specified movement profiles are accelerations
or velocities. If true then it is assumed the profiles are velocities else they
are accelerations. Often it is recommended to set this flag to true.

’odometer_sample_rate’

Sample rate of the odometer sensor model. Should be set to 0.001.

’gyro_sample_rate’

Sample rate of the gyro sensor model. Any value is allowed, but a too large
value, e.g. 1, might result in poor performance of the sensor while a too small
value, e.g. 0.001, will result in large amounts of data which might be too
resource intensive. A recommended value is 0.01.

’sample_rate’

Sample rate of the simulation. Should be set to the same value as
’gyro_sample_rate’.

’end_t’

Simulation end time, i.e. the duration of the simulation as the start time is
automatically set to 0.

’c_x_acc’

Linear velocity of CV90 along the x-axis, either specified directly or integrated
once depending on the value of ’velocity’. The variable should be a matrix
with N rows and 2 columns, where the first column is time and the second
column consist of the specified values. The number of rows, the time sample
points, are determined by the sample rate of the odometer, i.e.
size(c_x_acc,1) == length(0:odometer_sample_rate:end_t)-1.

’c_y_acc’

Linear velocity of CV90 along the y-axis. Should be set to zero as the carrier
only move along its own x-axis. For dimension arguments, see ’c_x_acc’.

’c_z_acc’

Linear velocity of CV90 along the z-axis. Should be set to zero as the carrier
only move along its own x-axis. For dimension arguments, see ’c_x_acc’.

’c_alpha_acc’

Angular velocity of CV90 around the z-axis, either specified directly or integ-
rated once depending on the value of ’velocity’. The variable should be a
matrix with N rows and 2 columns, where the first column is time and the
second column consist of the specified values. The number of rows, the time
sample points, are determined by the sample rate of the gyroscope, i.e.
size(c_alpha_acc,1) == length(0:gyro_sample_rate:end_t)-1.

77

Improving the INS for the CV90 Platform using Sensor Fusion

’c_beta_acc’

Angular velocity of CV90 around the y-axis. For dimension arguments, see
’c_alpha_acc’.

’c_gamma_acc

Angular velocity of CV90 around the x-axis. Should usually be set to zero as
the gyroscope cannot measure the velocity around this axis. For dimension
arguments, see ’c_alpha_acc’.

’t_alpha_acc

Angular velocity of turret around the z-axis. For dimension arguments, see
’c_alpha_acc’.

’s_beta_acc

Angular velocity of weapon around the y-axis. For dimension arguments, see
’c_alpha_acc’.

’init’

Script that generates the specified signals. If the script is not called after the
movement profiles are defined but before the sensor data is used the program
will crash.

’M_0’

Initial values for the integrator in the gyroscope sensor model for each axis.
Given as a vector on the format [α̇, β̇, γ̇].

’tau_c’

Time constant affecting the bias stability error. Should be set to 600 s.

’yaw_noise_gain’

Boolean flag vector that indicates which of the errors: bias stability, bias
repeatability and random walk, respectively, should corrupt the measurement
in the yaw axis.

’pitch_noise_gain’

Boolean flag vector that indicates which of the errors: bias stability, bias
repeatability and random walk, respectively, should corrupt the measurement
in the pitch axis.

’roll_noise_gain’

Boolean flag vector that indicates which of the errors: bias stability, bias
repeatability and random walk, respectively, should corrupt the measurement
in the roll axis.

’refresh_rate’

Real sample rate of the odometer sensor model.

’sigma_v’

Standard deviation for the odometer measurement.

’noise_gain’

Boolean flag to indicate if the odometer signal is corrupted. If true then

78

A HOW TO RUN SIMULATIONS

the odometer readings are affected by an error with the standard deviation
specified above, else not.

’sample_real’

Sample rate of the simulation. Should be set to the same value as
’sample_rate’.

’gps_sample_rate’

How often the satellite is asked for new coordinates.

’gps_refresh_rate’

Real sample rate of the GPS sensor model.

’lim_r_r’

The variance in refresh rate. A recommended value is 0.05.

’offset’

Constant error, i.e. the offset, affecting the GPS position given as a vector on
the format [x, y, z].

’res’

Resolution of the GPS position for each axis. Given as a vector on the format
[x, y, z].

’sigma’

Standard deviations for the GPS measurements given as a vector on the for-
mat [σx, σy, σz].

’rand_gain’

Boolean flag to indicate if the GPS signal is corrupted. If true then the GPS
coordinates are affected of the errors specified above, else not.

2. The most basic type of test case is now defined. There exist a number of optional
parameters, see Sec. A.3, that get initialized to default values. Depending on the
situation they can also be included in the test case.

A.2.2 An Example

The following is taken from the test case circle_and_turret_and_weapon.m.

% OBLIGATORY

% simulation flags:

% "simul"

% must be set to ’true’ for a fictional test case

% default: false (i.e. MATLAB expects real data to be available)

simul = true;

% "velocity"

% if ’true’ velocity profiles will be used to calculate the

% velocity of the vehicle, if ’false’ acceleration profiles

79

Improving the INS for the CV90 Platform using Sensor Fusion

% will be used

velocity = true;

% simulation parameters:

% "odometer_sample_rate", "gyro_sample_rate", "sample_rate", "end_t"

% the different sample rates for the sensor models and the

% simulation end time (the start time is assumed to be t = 0 s)

odometer_sample_rate = 0.001;

gyro_sample_rate = 0.01;

sample_rate = gyro_sample_rate;

end_t = 600;

% carrier movement profiles:

% specify the acceleration of the carrier (velocity == false) or the

% velocity of the carrier (velocity == true)

% for each sample there must be an associated velocity/acceleration

% linear movement (acceleration or velocity):

% "c_x_acc", "c_y_acc", "c_z_acc"

CLA = length(0:odometer_sample_rate:end_t-odometer_sample_rate);

temp = [(70/3.6)*ones(1, CLA), zeros(1, 0)];

c_x_acc = [0:odometer_sample_rate:end_t-odometer_sample_rate; temp]’;

c_y_acc = [0:odometer_sample_rate:end_t-odometer_sample_rate; ...

zeros(1, CLA)]’;

c_z_acc = [0:odometer_sample_rate:end_t-odometer_sample_rate; ...

zeros(1, CLA)]’;

% angular movement (acceleration or velocity):

% "c_alpha_acc", "c_beta_acc", "c_gamma_acc"

CAA = length(0:sample_rate:end_t-sample_rate);

N = CAA;

temp = [(pi/75)*ones(1, N), zeros(1, CAA-N)];

c_alpha_acc = [0:sample_rate:end_t-sample_rate; temp]’;

temp = [0*sin(1/100 * (0:sample_rate:end_t-sample_rate)), ...

zeros(1, CAA-N)];

c_beta_acc = [0:sample_rate:end_t-sample_rate; temp]’;

temp = [zeros(1,CAA), zeros(1, CAA-N)];

c_gamma_acc = [0:sample_rate:end_t-sample_rate; temp]’;

% gyro movement profiles:

80

A HOW TO RUN SIMULATIONS

% specify the acceleration of the gyro (velocity == false) or the

% velocity of the gyro (velocity == true)

% for each sample there must be an associated velocity/acceleration

% turret angular movement:

% "t_alpha_acc"

temp = [2*pi/10*cos(1/10*(0:sample_rate:end_t-sample_rate)), ...

zeros(1, CAA-N)];

t_alpha_acc = [0:gyro_sample_rate:end_t-gyro_sample_rate; temp]’;

% sensor angular movement

% "s_beta_acc"

temp = [0.1/10*cos(1/10*(0:sample_rate:end_t-sample_rate)), ...

zeros(1, CAA-N)];

s_beta_acc = [0:gyro_sample_rate:end_t-gyro_sample_rate; temp]’;

% generate signals, this script MUST be called before the sensor

% models are set up and used

init

% sensor model parameters:

% set up gyro errors

% set up the odometer and interpolate using ZOH

% set up GPS

% gyro:

% "M_0", "lp_gain", "tau_c", "yaw_noise_gain",

% "pitch_noise_gain", "roll_noise_gain"

%

% the initial values for the gyro sensor model in each axis

M_0 = [t_alpha_vel_real(1); s_beta_vel_real(1); 0];

% if the low-pass filter should be turned on, 1, or off, 0, for the

% different gyro axes (yaw, pitch, roll)

lp_gain = [1, 1, 1];

% time constant

tau_c = 600;

% if the signal should be corrupted, rand_gain = 1, or not,

% rand_gain = 0 for each of the three errors (bias stability,

% bias repeatability, random walk) affecting the different

% gyro axes (yaw, pitch, roll)

81

Improving the INS for the CV90 Platform using Sensor Fusion

yaw_noise_gain = [1, 1, 1];

pitch_noise_gain = [1, 1, 1];

roll_noise_gain = [1, 1, 1];

% odo:

% "refresh_rate", "sigma_v", "noise_gain"

%

% real sample rate for the odometer sensor model.

% if less than one, linear interpolating will be used

refresh_rate = 1;

% standard deviation for each measurement

sigma_v = 0.01;

% if the signal should be corrupted, rand_gain = 1, or not,

% rand_gain = 0

noise_gain = 1;

% GPS:

% "sample_real", "gps_sample_rate", "gps_refresh_rate",

% "lim_r_r", "offset", "res", "sigma", rand_gain"

%

% time vector used in simulink

sample_real = sample_rate;

% how often the satellite is asked for new coordinates

gps_sample_rate = 0.2;

% the real sample rate for the gps

gps_refresh_rate = 1;

% how much the refresh rate varies during the simulation

lim_r_r = 0.05;

% constant error, i.e. the offset on the gps-signal (x,y,z)

offset = [1, 1, 1];

% the resolution of the gps (x,y,z)

res = [0.1, 0.1, 0.1];

% standard deviation for each measurement

sigma = [0.1, 0.1, 0.1];

82

A HOW TO RUN SIMULATIONS

% if the signal is corrupted, rand_gain = 1, or not, rand_gain = 0

rand_gain = 1;

% OPTIONAL

% "name"

% the title of the simulation

% default: ’Untitled’

name = ’Circle with turret/weapon movement’;

% "type_of_gyro"

% if ’2’ a two-axis gyro will be used in the simulation,

% if not ’2’ a three-axis gyro will be used

% default: 2

type_of_gyro = 2;

% "start"

% start position of carrier (x,y,z)

% default: [0, 0, 0]

start = [0, 0, 0];

% start angles (c = carrier, t = turret, s = sensor):

% "c_alpha", "c_beta", "c_gamma", "t_alpha", "s_beta"

% default: c_alpha = 0, c_beta = 0, c_gamma = 0

% t_alpha = SIDE_ANGLE(1), s_beta = ELEVATION_ANGLE(1)

c_alpha = pi/4;

c_beta = 0;

t_alpha = -pi/4;

s_beta = pi/180;

% simulink parameters:

% "runTime"

% on/off switches, empty/non-existent = ON entire simulation

% default: Kalman filter is ON entire simulation

% (runTime = [1,-1,1])

runTime = [0, 100, 1; 100, -1, 0];

% "measurements"

% measurements, empty/non-existent = No available GPS data

% default: all available GPS will be used

83

Improving the INS for the CV90 Platform using Sensor Fusion

A.3 Optional Run-time Parameters

In addition to the variables that must be defined in order for the program to run there
exist a number of other variables that can be used to control the simulation, such as
initial values for the carrier angles, available measurements and so forth.

’name’

Describing title for the current simulation.
Default: NAV90 log ID. If no valid log exist the default value is ’Untitled’.

’type_of_gyro’

The number of axes for the gyroscope in use. Variable is only considered if simul
== true.
Default: 2.

’start’

Start position for the carrier in the ground frame.
Default: If GPS data is available the start position is specified by the first GPS
measurement, else [0, 0, 0].

’c_alpha’

Initial yaw angle of the carrier. The size should be at most the size of test_case.
If only one value is provided while the the test is based on two NAV90 logs the
program will prompt for a new initial heading when the simulation restarts after
the log switch. If no new heading is provided the latest one computed will be used.
Default: NAV90 heading at t = 0 or, if GPS available, at the time of the first GPS
sample.

’c_beta’

Initial pitch angle of the carrier. The size should be at most the size of test_case.
If only one value is provided while the the test is based on two NAV90 logs the
simulation will restart using the latest angle computed.
Default: NAV90 pitch at t = 0 or, if GPS available, at the time of the first GPS
sample.

’c_gamma’

Initial roll angle of the carrier. The size should be at most the size of test_case.
If only one value is provided while the the test is based on two NAV90 logs the
simulation will restart using the latest angle computed.
Default: 0.

’t_alpha’

Initial turret angle, used only in an animation of the carrier movement.
Default: Side angle at t = 0.

’s_beta’

Initial weapon angle, used only in an animation of the carrier movement.
Default: Elevation angle at t = 0.

84

A HOW TO RUN SIMULATIONS

’runTime’

Kalman filter switches indicating if the filter should be either on, true, or off,
false. The format is [from_time, to_time, on_off]. Use −1 to specify the
simulation end time. Once −1 is encountered in the matrix, the following switches
will be ignored.
Default: [1, -1, 1].

’measurements’

Matrix containing the available GPS data, if any. By removing values in the begin-
ning, middle or the end of measurements, scenarios such as a lost GPS connection
could be simulated. While possible, it is not, however, recommended to remove
values from this matrix direcly but rather use the Kalman filter switches to turn
the filter on/off. No GPS will be available if measurements = [], with the result
that the Kalman filter is turned off for the duration of the simulation. The format
is [gps_time, gps_x, gps_y, gps_z, gps_heading, gps_status].
Default: The matrix contains all available data.

’TOL’

Tolerance to determine which GPS coordinates are trustworthy for use in the Kal-
man filter. As the vehicle is assumed to follow the laws of physics, a GPS position
too far from the last know position is not feasible. The condition that must be
fulfilled for a GPS measurement to be valid is abs(x_GPS - x_INS) < TOL &&

abs(y_GPS - y_INS) < TOL.
Default: 1019.

’coordinate_system’

String indicating how the positive z-axis should be defined, either ’up’ or ’down’.
The NAV90 logs are not consistent in how they define the coordinate system why
this variable may be used in some cases.
Default: ’down’.

’sec_gps_log’

Measurements from a secondary GPS receiver used to evaluate the performance of
NAV90. The log should be given on the format [gps_utc_time, gps_x, gps_y].
Default: Undefined variable.

’target_id’

The display name for a given laser ranging target. The name must be a string
found in description output from the function extract_waypoints.m.
Default: ’’.

’do_animation’

Boolean flag that indicates if generated sensor data also should be animated. The
function that calculates uncorrupted coordinates for a fictional test case also has
the functionality to animate the result, which might be unnecessary for a simple
simulation, why the flag can be used to disable this feature. If true the input data

85

Improving the INS for the CV90 Platform using Sensor Fusion

is animated, else not.
Default: false.

’axes’

Vector containing axis properties on the format [x_min, x_max, y_min, y_max,

z_min, z_max]. The variable act as an additional input parameter to the function
animate_simulation.m. If not specified the axes will resize automatically which
might be undesirable.
Default: Undefined variable, i.e. automatic scaling.

A.4 Plot Results

There are a couple of different plot options available. Each are described in more detail
below.

plot_coordinates.m

Plots the route specified in the test case file calculated by dead reckoning. If the
Kalman filter is on during the simulation the function also plots any valid GPS
measurements from NAV90 as well as markers that indicate which coordinates were
used by the filter in the computations. If there is secondary GPS data available,
this route is also added to the plot. If the test case is composed of two or more
NAV90 logs it is indicated in the plot at which coordinates the log switch occurred.
The function will try to plot target statistics from laser ranging but this will only
succeed if the given NAV90 logs contain PFP values.

plot_position_absolute_error.m

Plots the absolute error, ε =
√

(xGPS − xINS)2 + (yGPS − yINS)2, for each GPS
coordinate and the equivalent INS coordinate. Any GPS position that is deemed
valid by the specified TOL will be used in the comparison. If no GPS data is available
the plot will be empty.

plot_position_north_east_error.m

Plots the northing error, εy = yGPS − yINS , as well as the easting error, εx =
xGPS−xINS , for each GPS coordinate and the equivalent INS coordinate. Any GPS
position that is deemed valid by the specified TOL will be used in the comparison.
If no GPS data is available the plot will be empty.

There also exist the following two functions plot_heading_ins_vs_ublox_GPS and
plot_position_error_ins_vs_ublox_GPS, in addition to the plot options mentioned
above, which compare the INS heading and position, respectively, to measurements from
an external GPS. These functions will only work if such measurements are specified in
the test case on the format

sec_gps_log = extract_sec_gps(load(’COM8_121115_103553_cleaned.txt’));

86

A HOW TO RUN SIMULATIONS

where the loaded file name should refer to a GPS log file. The functionality is highly
dependant on the log file format and thus the functions will not plot anything if the
formatting is wrong, or if the log file does not contain the necessary information. As the
main goal with this thesis was to compare INS performance to NAV90, and GPS90, no
further comments about the functions are included.

A.5 Simulation Output

The simulation model produces a number of outputs where some, e.g. time_ind, are
only intended for use by private functions. A rundown is presented below.

’coord_lin_ss’

Matrix containing the simulated x, y and z coordinates. The first column con-
tain the x coordinates at times specified by simulation_time, the second column
contain the y coordinates while the third column contain the z coordinates.

’angles_lin_ss’

Matrix containing the simulated yaw and pitch angles. The first column contain the
carrier headings at times specified by simulation_time while the second column
contain the carrier pitch angles.

’real_coord’

GPS coordinates from measurements that are deemed valid by TOL. Only x and y
coordinates are considered in the current implementation.

’kalmanOn’

Matrix containing the boolean flags [isMoving, change, gpsValid, onOff] used
by the Kalman filter. Is processed to determine at which time instances the filter
was turned on.

’last_states’

Matrix containing the simulated last four states of the full state space model at
times specified by simulation_time.

’time_ind’

Matrix containing the current count, i.e. what GPS measurement is currently in
use, and the current time. The format is [time, count, time, count]. Columns
three and four are 6= 0 as soon as a valid GPS sample is available while columns one
and two only are 6= 0 if a filter correction have taken place. Functionality overlap
with kalmanOn.

’simulation_time’

Time vector used in the simulation.

’simulation_count’

Vector containing the count for which measurement is currently in use by the
Kalman filter. Is used to restart simulations.

87

Improving the INS for the CV90 Platform using Sensor Fusion

A.6 Possible Sources of Errors

There are always ways to misuse a program, intentionally or otherwise. Below is a list
of possible errors and what may have caused them. If the simulation suite is used in the
manner described earlier, there should not be a problem.

Matlab crashes
This usually occurs if the some of the Simulink models have been compiled on
a machine with a different computer architecture, e.g. the files are compiled on a
64-bit machine and then run on a 32-bit machine. Removing all old compilation
files in the folder Simulation_Models should solve the problem.

A function cannot be found
If the first simulation during a session is not initiated from runSimulation.m the
path of the simulation suite might not have been added to the general Matlab path
which will result in a an error saying that any chosen function cannot be found. The
solution is to always start a fresh simulation session using the runSimulation.m

function, which automatically will take care of the path problem. It should be
noted, however, that the path obviously can be set manually.

A test case cannot be loaded
This probably is a result from the formatting of the specified log files or if the files
cannot be found, see above. The most comman cause is if the given NAV90 log
contains too much, or too little, information as this will cause the extract function
to fail. Check the log file so that the format is correct. If this does not solve the
problem, try to remove any old mat-files on disk describing the chosen test case.

The plot functions do not plot additional GPS measurements
If the plot functions are used on a test case with no measurements from an external
GPS they will not work. Furthermore, it is not possible to compare the INS heading
and/or position to a different GPS than GPS90 if the given NAV90 log does not
contain a column with the UTC time.

The laser ranging plot does not work
A bug was found with the NAV90 log file ripper program with the result that
NAV90 logs do not always contain information about PFP, which is used for laser
ranging. If laser ranging did take place during a test but does not show up in the
plot window after a simulation this bug might be the cause. Another cause could
be that the given target id string does not exist in the current implementation of
the program.

88

B ANIMATE RAW SENSOR DATA

B Animate Raw Sensor Data

V isualization is a big part of understanding how a complex system functions,
which is why much work was dedicated to create a good graphical representation

of available measurements. Using either real sensor data from CV90 or generated sensor
data, the nonlinear system model is used to calculate, based on a start position, how the
vehicle behaves. The position of the carrier, in the ground frame, is animatated in an ite-
rative process as a series of three-dimensional plots by the script animate_simulation.m.

If a proper test case is loaded and previously have been animated, the alternative
function play_movie.m may be used which does not redo the calculations.

B.1 I/O

The input/output of the function plot_simulation.m are described below. All input
variables except do_animation, which should be set to true, and axes are already
defined4 if a test case is used that follows the previously established guidelines. The
function call is

[h, angles, coord, M] = plot_simulation(carrier_tra_vel, ...

carrier_ang_vel, s_beta_vel_real, t_alpha_vel_real, t, ...

sample_rate, do_animation, c_alpha, c_beta, t_alpha ...

s_beta, start, coordinate_system, axes);

The different input parameters are summerized below, for further explanation see Sec.
A.2.1 and Sec. A.3.

’carrier_tra_vel’

Linear velocity of the carrier.

’carrier_ang_vel’

Angular velocity of the carrier.

’s_beta_vel_real’

Speed of the weapon elevation.

’t_alpha_vel_real’

Speed of the turret rotation.

’t’

Simulation time.

’sample_rate’

Time step.

4Some of the variables, e.g. t, are implicitly defined based on either the specified NAV90 log or the
simulation end time.

89

Improving the INS for the CV90 Platform using Sensor Fusion

’do_animation’

Boolean flag.

’c_alpha’

Initial carrier heading.

’c_beta’

Initial carrier pitch angle.

’t_alpha’

Initial turret rotation.

’s_beta’

Initial weapon elevation.

’start’

Start position.

’coordinate_system’

Direction of positive z-axis.

’axes’

Plot window axes.

The function output is

’h’

Figure handle to plot window used in the animation.

’angles’

Matrix containing the calculated yaw, pitch, roll, turret rotation and weapon ang-
les at times specified by t. The first column contain the carrier headings, the
second column the carrier pitch angles, the third column the carrier roll angles,
the fourth column the turret rotation angles while the fifth column contain the
weapon elevation angles.

’coord’

Matrix containing the calculated x, y and z coordinates at times specified by t. The
first column contain the x coordinates, the second column contain the y coordinates
while the third column contain the z coordinates.

’M’

Matlab cell array structure containing all the frames from the animation. Used
by the function play_movie.m.

90

References

[1] Petteri Aimonen. Basic Concept of Kalman Filtering. Accessed 3-December-2012.
2012. url: www.en.wikipedia.org/wiki/File:Basic_concept_of_Kalman_
filtering.svg.

[2] BAE Systems. GPS/INS för Banstyrning. 02794855/01. 2001.

[3] Per-Erik Bergman. Rotation and Translation in 2D Euclidian Space. Accessed 3-
December-2012. 2010. url: www.jayway.com/wordpress/wp-content/uploads/
2009/12/RotateTranslate.png.

[4] Per-Erik Bergman. Translation and Rotation in 2D Euclidian Space. Accessed 3-
December-2012. 2010. url: www.jayway.com/wordpress/wp-content/uploads/
2009/12/TranslateRotate.png.

[5] John J. Craig. Introduction to Robotics: Mechanics and Control. Second Edition.
Prentice Hall, 1989. isbn: 0201095289.

[6] Tore Hägglund. Reglerteknik AK, Föreläsningar. Spring Semester 2008. Institutio-
nen för Reglerteknik, Lunds Tekniska Högskola, 2008.

[7] Rolf Johansson. Predictive and Adaptive Control. Fall Semester 2010. Department
of Automatic Control, Lund University, 2010.

[8] Försvarets Materialverk. Stridsfordon 90, Historik. Accessed 27-November-2012.
2012. url: www.fmv.se/sv/Projekt/Stridsfordon-90/Historik/.

[9] D. McFadden. Diagram of a Fiber Optic Gyroscope. Accessed 3-December-2012.
2012. url: www.en.wikipedia.org/wiki/File:Fibre-optic-interferometer.
svg.

[10] Christer Nyberg. Mekanik, Fortsättningskurs. First Edition. Liber, 2006. isbn:
9147084022.

[11] Erik Nyg̊ard. Comparison between GPS90, NAV90 and an INS prototype based on
Gyroscope Data. BAE Systems AB. 2012.

[12] Erik Nyg̊ard. Overview of the NAV90 System. BAE Systems AB. 2012.

[13] Lars Pihlström. CV90 with 3D Camouflage, Front View. BAE Systems AB. 2012.

[14] Lars Pihlström. CV90 with 3D Camouflage, Front-side View. BAE Systems AB.
2012.

[15] Saab Avionics AB. Specification, Fiber Optic Gyro (F.O.G.), Part No: 8088 000-
102. R-8088902-102. 2001.

[16] Anja Schönhardt. An Overview of the Geometry of Yaw, Pitch and Roll Angles.
Accessed 3-December-2012. 2012. url: www.doas-bremen.de/images/idoas/
idoas_angles.png.

91

www.en.wikipedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg
www.en.wikipedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg
www.jayway.com/wordpress/wp-content/uploads/2009/12/RotateTranslate.png
www.jayway.com/wordpress/wp-content/uploads/2009/12/RotateTranslate.png
www.jayway.com/wordpress/wp-content/uploads/2009/12/TranslateRotate.png
www.jayway.com/wordpress/wp-content/uploads/2009/12/TranslateRotate.png
www.fmv.se/sv/Projekt/Stridsfordon-90/Historik/
www.en.wikipedia.org/wiki/File:Fibre-optic-interferometer.svg
www.en.wikipedia.org/wiki/File:Fibre-optic-interferometer.svg
www.doas-bremen.de/images/idoas/idoas_angles.png
www.doas-bremen.de/images/idoas/idoas_angles.png

Improving the INS for the CV90 Platform using Sensor Fusion

[17] Jorge Stolfi. Cartesian Coordinate System. Accessed 3-December-2012. 2012. url:
www.en.wikipedia.org/wiki/File:Coord_system_CA_0.svg.

[18] The Analytic Sciences Corporation The Technical Staff. Applied Optimal Estima-
tion. First Edition. The M.I.T. Press, 1974. isbn: 0262570483.

[19] D. H. Titterton and J. L. Weston. Strapdown Inertial Navigation Technology. First
Edition. Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers,
1997. isbn: 1563476932.

[20] Wikipedia. Combat Vehicle 90. Accessed 27-November-2012. 2012. url: www.en.
wikipedia.org/wiki/Combat_Vehicle_90.

[21] Karl-Erik Årzen. Real-Time Control Systems. Department of Automatic Control,
Lund University, 2009.

92

www.en.wikipedia.org/wiki/File:Coord_system_CA_0.svg
www.en.wikipedia.org/wiki/Combat_Vehicle_90
www.en.wikipedia.org/wiki/Combat_Vehicle_90

	Title page
	Abstract

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	The CV90 Platform
	Theoretical Background
	Cartesian Coordinate Systems
	Euclidean Coordinate Transformations

	Available Sensors
	Compass
	Angle Sensors Turret/Weapon
	Odometer
	Two-axis Gyroscope
	GPS receiver
	NAV90

	A Mathematical Model of CV90
	Linearization
	Discretizing the Linearized State Space Equations

	Simulink Models
	Signal Generator
	Gyroscope Model
	Gyroscope Errors
	Testing the gyroscope Model

	Odometer Model
	Odometer Errors
	Testing the Odometer Model

	GPS Model
	GPS Errors
	Testing the GPS Model

	Data Acquisition from the Real Vehicle
	Relevant Data
	Data Extraction

	The Kalman Filter
	Implementation
	Noise Specifications

	Test Cases for the Real Vehicle
	Previous Test
	Skövde, 2012-10-10
	Test 8 (8)
	Test 9 (9) and Test 10 (10)

	Skövde, 2012-10-26
	Test 2 (14)

	Skövde, 2012-11-15
	Test 1 (19, 20)
	Test 2 (21, 22)
	Test 4 (24)
	Test 5 (25, 26)
	Test 6 (27, 28)

	Problems that were Encountered
	Conclusions and Recommendations
	How to Run Simulations
	Real Test Cases
	About NAV90 Logs
	Define a Test Case
	An Example

	Fictional Test Cases
	Define a Test Case
	An Example

	Optional Run-time Parameters
	Plot Results
	Simulation Output
	Possible Sources of Errors

	Animate Raw Sensor Data
	I/O

	References

	5912_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

