
IMAGE BASED WHEEL

DETECTION USING RANDOM

FOREST CLASSIFICATION

KARIN HULTSTRÖM

Master’s thesis
2013:E7

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

The aim of this master thesis is to detect and recognise wheels in images by
means of image analysis. This could later on serve as a foundation for a safer
vehicle counting and classi�cation method than those currently in use that re-
quires personnel to cross the lanes on installation.

The general layout of the classi�cation system consists of �ve stages: multi-scale
transformation, window extractor, pre-processing, classi�cation and cluster ana-
lysis. In order to obtain the training and testing data for evaluation and
construction of the system, images that illustrate moving cars on a road are
acquired. From these, several positive and negative windows are extracted
that visualizes wheels and non-wheels. For the classi�cation stage, the learn-
ing algorithm used is Random Forest. Moreover, with the Random Forest as
the foundation, two di�erent concepts were introduced to further improve the
predictions. These are referred to as bootstrap con�guration and cascading
classi�cation.

The results are evaluated be means of Receiver Operating Characteristics and
contingency tables. In this master thesis, the �nal system produces a satisfying
result based on the false positive rate and true positive rate. For future de-
velopment, the amount of examples in the training data could be increased in
order to gain more knowledge in the teaching of the classi�er. Furthermore,
an optimization of the program could lead to faster execution time, which is a
requirement if this system is to operate in real-time. To conclude, the system
produces a satisfying result for wheel detection that can be used as a foundation
when constructing a general system for vehicle counting and classi�cation.

i

Acknowledgement

This master thesis was done in collaboration between Cognimatics and the
Mathematical Imaging Group at The Faculty of Engineering at Lund Univer-
sity (Lunds Tekniska Högskola, LTH). Therefore, I would like to thank Rikard
Berthilsson, CEO at Cognimatics, for giving me the opportunity of doing my
master thesis with them and all the good advices I have received during this
process.

Furthermore, I would like to thank my supervisors Professor Karl Åström and
Postdoctoral Fellow Håkan Ardö at LTH, for their support and guidance through-
out my entire master thesis. Finally, I would like to thank my family and friends
for their constant support.

iii

Contents

1 Introduction 1

1.1 Related work . 2
1.2 Structure of the report . 3

2 Object Detection 5

2.1 The standard architecture . 5
2.2 Binary classi�cation . 7

2.2.1 Database description . 7
2.3 Evaluation of results . 8

2.3.1 Receiver Operating Characteristic 8

3 Background Theory 13

3.1 Feature extraction . 13
3.1.1 Local Binary Pattern . 14

3.2 Decision trees . 16
3.2.1 Deterministic split predicates 17
3.2.2 Greedy induction method 17

3.3 Bootstrap Aggregating . 20
3.3.1 Bootstrap sample . 20
3.3.2 Majority voting . 21

3.4 Random Forest . 22
3.4.1 One classi�cation tree . 22
3.4.2 Constructing the Forest and the representing model . . . 24

3.5 Improving the classi�cation . 27
3.5.1 Bootstrap con�guration 27
3.5.2 Cascading classi�er . 28

4 System Construction 31

4.1 Generating the input images . 32
4.2 Multi-scale transformation . 34
4.3 Window extractor . 34

v

4.3.1 Positive and negative windows 36
4.4 Pre-processing . 38
4.5 Classi�cation . 39

4.5.1 Generating a database . 39
4.5.2 Learning and improvement 41

4.6 Cluster analysis . 43

5 Results 45

5.1 Asymmetric database . 45
5.2 Cascade classi�cation . 47
5.3 Bootstrap con�guration . 51
5.4 Comparison of improvement methods 53
5.5 Result from one input image . 56
5.6 Result from the cluster analysis stage 60

6 Conclusion 63

6.1 Future work . 65

vi

Chapter 1

Introduction

Counting the number of vehicles driving on a road is a task that could be evolved
from its current methods by using image analysis. The Swedish Transport

Administration (Trafikverket) is responsible for the construction, opera-
tion and maintenance of all state owned roads and railways in Sweden. One of
their many assignments is to register the tra�c �ow on certain roads. When
the intended tra�c registration is only for a limited period, they use a tra�c
analyser calledMetor 2000, with rubber hose sensors [1]. Otherwise, they use
more sophisticated sensors submerged in the ground.

The method used by the rubber hose sensors is quite simple. The sensors are
laid out across the road with a combined analyser connected to one of the ends
of each rubber hose sensor. When a vehicle passes over one of these sensors, an
air-impulse is created and moves through the hose until it reaches the analyser,
which register the time of the impulse. By using several rubber hoses after one
another the direction and speed of the vehicles can later on be calculated when
the analyser is connected to a computer with the necessary software.

The device can also distinguish the vehicles in 15 prede�ned vehicle classes. This
is done by studying, based on the centre of each wheel, every distance between
two subsequent wheels belonging to a vehicle. By comparing these generated
distances with a known table, a vehicle can be assigned to a corresponding
vehicle class. Therefore, it is important to know the location of each wheel in
order to classify a vehicle.

There are many bene�ts from using this method, for instance, it is only the time
that are registered by the analyser, the examination of the material is done later
by a software program. Therefore, it is always possible to update the software to
the latest versions which contributes to �exible and more secure data analysis.
Also, the rubber hose is a strong and inexpensive material and the simplicity of

1

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

the method makes it all a�ordable.

Although, given all these bene�ts, there are some disadvantages with this method
that is the underlying reason for why this system could be evolved with some
other technique. Mainly, it concerns the interruption of the tra�c when placing
out the rubber hoses and the safety of the personnel. If the examined road is
highly crowded with tra�c, an interruption may cause long tra�c jams. Fur-
thermore, there is always some sort of risk when personnel are working in tra�c,
even though the tra�c may be diverted elsewhere.

A solution to these complications could be to place a camera on the side of the
road, �lming the tra�c from the side and later on analysing the �lm by means
of image analysis. This would mean that there is no need to interfere with the
tra�c and the above stated disadvantages could be eliminated. Furthermore,
the bene�t of updating the software to the latest versions would still be feasible.
Therefore, the aim for this master thesis is to generate a system for detection
and recognition of wheels that further on can be used as a foundation for vehicle
counting and classi�cation systems.

1.1 Related work

Many related works has been written within the area of vehicle detection due
to its wide application area. Besides using vehicle detection for counting and
classi�cation systems, as this master thesis is based on, it can be useful in evalu-
ating tra�c parameters [26], driver assistance systems [2, 15, 21] or surveillance
systems [25].

There are many di�erent techniques used when detecting vehicles, not always
by means of image analysis. As an example there is inductive loop detector
[14, 5] and RF signal strength information [22]. Nevertheless, many of the
related work are founded on image-based techniques for instance: background
subtraction [25, 18], edge detection [31], corner detection [23] or other feature
detection [35].

In the article [28], by Sun, Bebis and Miller, they use Support Vector Machines
as the learning algorithm for vehicle detection. However, in this master thesis,
the learning algorithm Random Forest will be used, as described in Section 3.4.
Furthermore, Gabor �lters are used for feature extraction while this work use
normalized intensity and Local Binary Pattern, see Section 3.1.

Setchell and Dagless presents in their article [27], a method of utilizing the al-
ready existing video cameras in the road networks for vehicle detection. By
a combination of these retrieved images and computer vision, they create a

2

CHAPTER 1. INTRODUCTION 1.2. STRUCTURE OF THE REPORT

model-based technique for estimating the vehicles position, orientation and size
in the real world. Therefore, their work is based on recognizing vehicles by
searching correspondence space. However, in this master thesis the object de-
tection and recognition is made directly from the images. Due to the side view
positioning of the camera, only the wheels of the vehicle needs to be identi�ed
instead of the entire vehicle.

In a similar manner to this work, Achler and Trivedi also considered side view
images in their article [2] in order to locate the position of the vehicle. Though,
the detection is made from an already moving vehicle and should function as a
driving aid to avoid objects. Furthermore, they adopt another technique than
the one used in this work, by processing the images using a di�erence of Gaussian
�lterbank.

1.2 Structure of the report

Chapter 2 gives an introduction to the area of object detection in image analysis.
It begins by introducing the layout of the system that is constructed in this
master thesis. Thereafter, it describes what binary classi�cation means. Fur-
thermore, some of the challenges of object detection are mentioned. On account
of this, a de�nition is made of how a database could be constructed. Finally,
the methods used for evaluation of the results in Chapter 5 are described.

Chapter 3 consist of the background theory required for the understanding and
construction of the system. First, the di�erent feature extractions are de�ned.
Thereafter, decision trees and bootstrap aggregating are described. Both of
these serve as a foundation for the learning algorithm used in this master thesis,
Random Forest, which is described afterwards in this chapter. At the end of the
chapter, two di�erent methods used for improving the predictions are mentioned.

Chapter 4 describes the construction of the system generated in this work in
more detail. The sections are based on the system layout description from
Chapter 2. Therefore, the chapter starts with explaining how the input images
are generated. From there, it moves on through the di�erent stages until it
reaches the last stage of the system, which is cluster analysis.

Chapter 5 corresponds to the results obtained when the system is evaluated
through di�erent improvement methods. Moreover, a comparison is made of
these results and the main properties of the methods are summarized. Finally,
a speci�c input image is studied which visualizes the results even further.

3

1.2. STRUCTURE OF THE REPORT CHAPTER 1. INTRODUCTION

Chapter 6 contains the conclusions that can be drawn from this master thesis.
Furthermore, it suggests some improvements than can be made on the system
in order to obtain even better results in future work.

4

Chapter 2

Object Detection

One of the main building blocks for computer vision and image analysis is to
detect objects in an image and assign them to their corresponding class label.
This is referred to as object detection and recognition. The application of this
method reaches through many �elds, for instance tracking [24], face detection
[20] and video surveillance [16]. In order to attain an appropriate layout of
how object detection and recognition should work, similarities are drawn to the
human mind. A person who is looking at its surroundings can identify di�erent
objects regardless if there are many other distractions in the view and even if
some parts of the object is out of sight. Furthermore, if the object are of a
di�erent size, shape or is rotated, the human mind can usually still identify
remarkably easy what kind of object it is.

The main stages of how this works in a brain can be summarized by; an image is
evaluated through comparison of previous recognized objects and an appropriate
classi�cation is returned. These stages can be used as key insights to how the
framework of object detection and recognition could be constructed. However,
it is a demanding process to teach a computer to detect and identify an object
which therefore typically requires a few more stages.

2.1 The standard architecture

The standard architecture for detection and recognition of a speci�ed object
is illustrated in Figure 2.1. All of these stages are described in more detail
in Chapter 4. The main idea is to send in a complete image as input to the
system, thereafter a multi-scale transformation is made. This alters the image
by rescaling it several times by a prede�ned factor. Each scaled image is sent

5

2.1. THE STANDARD ARCHITECTURE CHAPTER 2. OBJECT DETECTION

further on to the next stage, the window extractor. This stage is provided with
a small square that scans each scaled image. At every possible position in the
scaled image, it extracts a window of the same size as the square. As a result,
an enormous amount of equally sized windows are created for further evaluation
in the system. The next stage concerns the pre-processing that is made on each
window. The main purpose of the stage is to make a feature extraction from
every window. This can be considered as an informative description of each
window. Thereafter, the result is converted to match the requirements as an
input variable to the next stage.

Multi-Scale
Transformation

Window
Extractor

Pre-Processing

Input Image

Classifier

Scaled Images

Windows to
be processed

Cluster Analysis
Classified Image

W(1)

W(n)

Figure 2.1: Visualization of the standard architecture.

At this moment, the image has reached the classi�er which performs the main
analysis of the object detection and recognition. By means of a given classi-
�cation method, each window is assigned a class label. Thus, identifying if a
window contains the speci�ed object or not. Usually, an image contains an
enormous amount of non-object windows in comparison to the desired object
windows.

Afterwards, the system enters the �nal stage corresponding to the cluster analysis.
Here, the extracted windows classi�ed as the object are re-entered to their
corresponding scaled image. Due to the previous window extraction, several
windows may match the same object. Therefore, if several windows overlap
with a certain degree, these are clustered together and thus represent the same
object. When the �nal stage is completed, the image is returned and if the
classi�er has found one or several objects, these are also marked out.

6

CHAPTER 2. OBJECT DETECTION 2.2. BINARY CLASSIFICATION

2.2 Binary classi�cation

If a classi�er only have two possible categories for classi�cation assignment,
corresponding to if the extracted window has the same properties as the searched
object or not, then this is referred to as a binary classi�cation problem. Thus,
the aim for a binary classi�er is to �nd a decision function that separates the true
objects from the non-objects as good as possible. There are a numerous di�erent
methods for training a classi�er to achieve this goal, for instance support vector
machines [11, 32] or decision trees [12, 33]. What they all have in common is
that they require a database of both true objects and non-objects to learn from.

2.2.1 Database description

The aim of a database is to collect a set of images that re�ects the properties
of both the speci�ed object and other non-objects for the classi�er to train
on. The challenge is that the searched object does not always look exactly the
same in every image. These di�culties, due to visual variations of the searched
object and its surroundings, are usually divided into two parts: intrinsic and
external variability .

The intrinsic variations concern the object itself, for instance there might be
large variations between di�erent objects of the same class or variations of a
particular object. The external variability describes di�erences in the object as a
result of its environment. There are several examples of this, such as, di�erences
in illumination, scale or occlusion. The training set needs to contain as many of
these cases as possible in order to gain a functional classi�er. Furthermore, the
non-objects should describe as many cases as manageable that do not resemble
the object.

Images representing the object are referred to as positive windows. In a similar
manner, images representing the non-objects are denoted as negative windows.
Moreover, these two categorise are assigned a binary value to simplify the
class label representation. Thus, an image is either referred to class label one,
positive window, or zero, negative window. In the creation of the database,
when there is no classi�er to use, these assignments are done manually. By
means of the pre-processing stage, each positive and negative window receives
a feature vector, see Section 3.1. In a combination of the binary class label and
the feature vector, the complete database can be de�ned as follows.

7

2.3. EVALUATION OF RESULTS CHAPTER 2. OBJECT DETECTION

De�nition 2.1. A database X , for training a classi�er is represented by

X = {xi, yi}N ,

where xi are the features extracted from window number i, represented as a

feature vector and yi ∈ {0, 1} are the corresponding binary valued class label.

N > 0, is the number of windows in the database.

When the assembly of the database is complete, the classi�er can use it during
its learning process for retrieving an e�cient decision function.

2.3 Evaluation of results

The results in this master thesis are evaluated using Receiver Operating Charac-
teristic Analysis (ROC). This is a method used for analysing the performance
of a classi�er by means of graphical studies. The full complexity of this method
is described in [30] and [17]; nevertheless, those de�nitions that will be used in
the results in Chapter 5, are summarized in the next Section 2.3.1.

2.3.1 Receiver Operating Characteristic

Receiver Operating Characteristic is used when the classi�cation problem is
binary. As previously mentioned, it means that each example has two possible
classes to choose between. When a positive window is sent in to the classi�er
it could either get correctly classi�ed as a positive window or misclassi�ed as
a negative window. These two cases are called true positive (TP) and false

negative (FN). Similar de�nitions are applied to a negative window. That is, if a
negative window obtain a correct classi�cation it is called a true negative (TN);
otherwise, if it gets misclassi�ed as a positive window it is called a false positive
(FP). All these cases can be collected in a tabular known as a contingency table
or a confusion matrix, see Table 2.1.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive TP FN P
Negative FP TN N
Total P' N'

Table 2.1: A contingency table with the di�erent cases entered.

8

CHAPTER 2. OBJECT DETECTION 2.3. EVALUATION OF RESULTS

In order to create an ROC graph, a pair of statistical measures of the classi-
�ers performance needs to be calculated using the previous de�nitions summa-
rized in Table 2.1. These statistics are the true positive rate (TPR) and the
false positive rate (FPR). TPR is also known as hit rate or sensitivity, and
describes the classi�ers ability to identify positive windows. Mathematically, it
is the fraction of true positive out of all the examples which actual class are pos-
itive. Analogously, FPR is the portion of false positive out of all the examples
that belong to the negative actual class. Another name for FPR is false alarm

rate. The equations for TPR and FPR can be written as follows,

TPR =
TP

TP + FN
=

TP

P
, (2.1)

FPR =
FP

FP + TN
=

FP

N
. (2.2)

The false positive rate is closely connected to the speci�city, also known as
true negative rate (TNR), simply by the equation:

TNR = 1− FPR = 1− FP

N
=

TN

N
. (2.3)

TNR outlines the ability of the classi�er to identify negative windows; therefore
FPR displays how many negative images that have been misclassi�ed.

In a similar manner, the false negative rate (FNR) is closely related to the true
positive rate by the following equation:

FNR = 1− TPR = 1− TP

P
=

FN

P
. (2.4)

The ROC method uses the equations 2.1 and 2.2 to create a two-dimensional
graph, with the false positive rate on the x-axis and the true positive rate on the
y-axis. On account of this, when a classi�cation round has ended, a contingency
table is generated and a point corresponding to this speci�c table is marked out
in the ROC graph. This point symbolises therefore the balance between the
successful classi�cation of positive windows and the misclassi�cation of negative
windows.

By evaluating every possible threshold that separates the classi�cation into two
classes, a continuous line can be illustrated in the ROC graph. However, for
this master thesis only some speci�c classi�cation cases are evaluated. As a
consequence, the ROC graph will only contain discrete valued points.

9

2.3. EVALUATION OF RESULTS CHAPTER 2. OBJECT DETECTION

If the classi�er would use random guessing for its decision making, then the
points in the ROC graph will end up somewhere on a diagonal line known as
line of no-discrimination, see Figure 2.2. This line reaches from the upper right
corner down to the origin. Any point below this line would then be worse than
just a simple random guess.

Consider for instance point A in the graph that is located below the line of
no-discrimination. It corresponds to a false positive rate of 50% and a true
positive rate of 20%. This means that in 8 out of 10 cases, when it should be
classi�ed as positive it becomes misclassi�ed as negative. However, if a classi�er
with these properties inverts its result, then it would be located above the line.
In the graph, the point A has been inverted and the result is illustrated by
point B. This corresponds to a classi�er that performs a prediction better than
a random guess.

Nevertheless, any point located above the line of no-discrimination could for
this reason be interpreted to be better than a random guess. However, when
there are several points located above this line, for instance point B and point
C, some other properties needs to be considered when evaluating which classi�er
that result in the best performance.

(FPR = 1, TPR = 1)

(FPR = 0, TPR = 0)

(FPR = 0, TPR = 1)

A

B

C

Lin
e of n

o-d
isc

rim
inatio

n

Figure 2.2: Receiver Operating Characteristic graph with examined points
marked out.

10

CHAPTER 2. OBJECT DETECTION 2.3. EVALUATION OF RESULTS

There are three critical points in an ROC graph that are especially important
for the understanding. In the Figure 2.2 these can be found at the corners which
have a corresponding information box that contains their coordinates.

1. The �rst point is associated with extreme classi�cation. This is when all
windows are identi�ed as negative regardless of their actual class. There-
fore, the variables TP and FP are both zero and in the graph this corre-
sponds to the point (FPR=0,TPR=0).

2. The second point is also an extreme classi�cation, although this time all
the windows are described as positive. In this case, the variables TN and
FN are set to zero and as a result giving the point (FPR=1, TPR=1).

3. The third critical point corresponds to having an ideal classi�er. That is
when all the positive and negative windows are identi�ed to their actual
class. In the graph this is represented by the point (FPR=0, TPR=1),
which simply mean that there are no false positive and according to
equation 2.3 there is also no false negative. This corresponds to both
100% sensitivity and 100% speci�city.

Considering this last critical point, if two di�erent classi�ers each produce a
discrete-value point in the ROC graph, then the classi�er which point is closest
to the upper-left corner in the graph is the preferred one to choose. Thus, an
ROC graph creates an illustrative method to analyse how the performance of a
classi�er may vary when the conditions changes.

11

2.3. EVALUATION OF RESULTS CHAPTER 2. OBJECT DETECTION

12

Chapter 3

Background Theory

In order to follow the construction of the system that is made in Chapter 4, it is
important to completely understand the background theory that is used. Thus,
this chapter will describe those de�nitions that are used later on. It will mainly
concern the theory behind the classi�cation stage, however some other theory
will also be mentioned.

3.1 Feature extraction

A commonly used method for processing images before they are sent to the
classi�er is to make a feature extraction. There are a lot of di�erent features
that can be used depending on what type of attribute that is important for the
classi�er to notice. For instance, the features can be used to describe di�erent
shapes of the image, such as edge detection [9] or corner detection [10].

In this master thesis, there are two di�erent features that the classi�ers use.
The �rst feature uses more or less the raw pixel intensities of the images in
order to see if the images itself could be enough information for the classi�er.
Though, the images are �rst normalized over their intensities in order to remove
the lighting variations, mentioned in Section 2.2.1. Afterwards, the result for
each image is collected in a vector known as a feature vector .

The second feature uses a bit more knowledge of how the pixel domain is
structured by studying the neighbourhood relationship between the pixels. This
is known as Local Binary Pattern (LBP) and is presented in the next Section 3.1.1.
This result is added to the previously constructed feature vector for each image.

13

3.1. FEATURE EXTRACTION CHAPTER 3. BACKGROUND THEORY

3.1.1 Local Binary Pattern

The Local Binary Pattern method is a pattern recognition that uses the relative
grey levels from the examined pixel to its neighbouring pixels. Because it uses
relative measurements, this feature is not a�ected by variation in brightness
between images. Thus, the image does not have to be normalized before pro-
ceeding. LBP has been proven to be useful for face recognition [4] and back-
ground subtraction [18] which is why it is used in this master thesis.

According to [3], at each pixel position the LBP method starts by extracting the
neighbouring pixels. These are found by positioning the examined pixel in the
centre of a circle, which is created by a prede�ned radius R, and then selecting
N equally spaced pixels on the edge of the circle. However, since the correlation
is greater between pixels that are close to each other than far away, the radius
should not be chosen too large. The neighbouring pixels are later labelled, in a
clockwise manner, starting from zero.

Three di�erent examples of how the pixels are situated depending on the circle
radius and the amount of equally spaced pixels are illustrated in Figure 3.1.
Also, the label of each pixel are visualized.

0 00

Figure 3.1: An illustration of how the LBP feature can be constructed in dif-
ferent ways by changing the radius and the number of equally spaced pixels on
the edge of the circle.

The centre pixel is used as a threshold for the surrounding pixels intensities.
If neighbouring pixels intensities are higher or equal than the centre pixels
intensity, then their value is �xed to 0. Otherwise, if the intensity is lower,
the value is set to 1. Combining these relative values from the neighbouring
pixels produces a binary number that can be converted into a decimal number.

Depending on how many pixels there are in the neighbourhood, the number of
labels that can be obtained varies. If the radius is one, then the neighbourhood
consist of 8 pixels and thereby producing an 8-digit binary number. This

14

CHAPTER 3. BACKGROUND THEORY 3.1. FEATURE EXTRACTION

corresponds to a total of 256 di�erent labels that can be obtained depending
on the relative grey levels between the centre pixel and the surrounding pixels.
These results are summarizes in the following general de�nition based from [19].

De�nition 3.1. For a pixel (x,y) the Local Binary Pattern (LBP) can be

derived by:

LBPR
N (x, y) =

N−1∑
i=0

s(ni − nc)2
i. (3.1)

s(t) =

{
0, t ≥ 0

1, otherwise

Where nc correspond to the grey level of the centre pixel and ni to the grey levels

of N equally spaced pixels on a circular radius R.

In Figure 3.2 the procedure of collecting a LBP value for a circle of radius one
is visualized. Here the number of equally spaced pixels on the edge of the circle
is eight.

=
Step 1

Collect

Intensities

Step 2

Threshold

Step 3

Multiplication

Step 4

LBP Value

1 + 2 + 32 + 64 + 128 = 227

31 16 8

173547

49 45 32

1 1 1

10

0 0 1

31 16 8

173547

49 45 32

1 1 1

10

0 0 1

32 64 128

116

8 4 2

1×32 1× 1281× 64

0×16 1×1

1×20×40×8

Figure 3.2: A visualization of the di�erent procedure step of the LBP method.

15

3.2. DECISION TREES CHAPTER 3. BACKGROUND THEORY

3.2 Decision trees

A commonly used building block for prediction in machine learning algorithms is
decision trees. There are two main types of decision trees, which is classi�cation
tree and regression tree. Both of them take observed data and draws conclusions
based on di�erent conditions until a decision is reached. The di�erence lies
in how the predicted outcome is represented. For the classi�cation tree, the
outcome is mapped into prede�ned classes. As an example, given a person's
age a classi�cation tree can be used to predict what car type a driver usually
has. The regression tree, on the other hand, produces an outcome that can be
considered as a real number. For instance, a regression tree can predict the
price for a certain product given its characteristics. Both types are combined
under the term Classi�cation And Regression Tree (CART).

According to [12], decision trees are particularly appealing because of their
intuitive and simple representation. Provided that the examined data is not too
large, they are also quite easy to visualize. Furthermore, they can be constructed
relatively fast and thus acquiring a high execution speed, compared to other
models. The disadvantage lies in the performance that might not always be the
best compared to other methods, even though it is more compact.

If the name �decision tree� is studied, each term by its own, then this provides
an indication of how the method works. The term �tree� originates from the
methods similar construction to a natural tree. However, unlike a natural tree,
the structure of a decision tree is turned upside down. This leads to, the root
is found at the top of a decision tree instead of at the bottom. The technical
term for this starting point of the tree is root node.

Branch

Intermediate node

Branch Branch

Leaf node Leaf node

Root node

Intermediate node

Branch Branch

Leaf node Leaf node

Branch

Figure 3.3: Traditional tree structure.

From the root node, the tree splits into two or more branches which cre-
ate the next level of the tree. The end of each branch is referred to as an

16

CHAPTER 3. BACKGROUND THEORY 3.2. DECISION TREES

intermediate node. Each intermediate node is also able to split into multiple
branches, creating a new level of the tree with corresponding intermediate nodes.
If an intermediate node does not split any further, then the branch terminates
in a leaf node instead. A visualization of a traditional tree structure with its
de�ned variables can be seen in Figure 3.3.

The term �decision� is associated with the result that should be chosen given
a particular input that has been sent through the decision tree. This means
that, starting at the root node, the evaluated input is confronted with either a
question or some sort of a test called a split attribute. The outgoing branches
from the root node correspond to di�erent conditions that are associated with
that speci�c question or test.

There are a numerous di�erent decision trees that can be created depending on
how many splits that each node makes. One decision tree that is of particular
interest is the one that at each node limits the number of splits to two. This is
referred to as a binary decision tree. The previous Figure 3.3 is also an example
of a binary decision tree.

3.2.1 Deterministic split predicates

It is most common to use deterministic split predicates, that means given the
current test and the knowledge about the input data, the di�erent conditions
attached to the branches can be determined to be true or false. For each split
attribute there is exactly one condition that is true, the rest is false. By selecting
the condition that is true, the input navigates to the next intermediate node,
where another split attribute is considered. This procedure is repeated in a
recursive manner until a leaf node is reached which corresponds to the decision
or action that should be made considered that speci�c input.

3.2.2 Greedy induction method

The aim of decision tree classi�cation is to have as few as possible split attributes.
This would correspond to a faster method because each split separates the dif-
ferent class labels as much as possible from each other. This is why the choosing
of the split attributes is so important for the e�ciency of the method.

Decision trees use mainly the greedy induction method, which can be described
as a recursive partitioning. By obtaining a partitioning of the data known as
the training set, it forms a model that generalizes the relationship between the
input data and the prediction. At each stage in the tree, it decides upon a split
attribute and by means of this found classi�cation rule, separates the data into

17

3.2. DECISION TREES CHAPTER 3. BACKGROUND THEORY

smaller parts. Thereafter, it repeats in a recursively manner the same process
for all the newly established sets.

The more split attributes that needs to be considered, the less reliable the
prediction becomes due to the tree will eventually learn noise in a phenomena
known as over�tting. The process ends when a termination condition is ful�lled,
making it a leaf node. This leaf receives its predicted label by the majority class
label of the training set. However, detecting the stage where the process should
stop before it starts over�tting is challenging [12].

A simple example of the greedy induction method is made in Figure 3.4. The
training data is marked out in the graph as squares and circles. These corre-
spond to a decision that has been made whether to buy an apartment or not,
based on the price and the distance to work. A circle corresponds to buying
and a square corresponds to not buying the apartment, given the circumstances.
These set of data can at this moment be used to generate the �rst split attribute.
This should separate the data into subsets that contains as similar data as pos-
sible. Therefore, the �rst split attribute correspond to a price higher or lower
than 1, 000, 000 sek, which is the dotted line in the graph.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
6

0

1

2

3

4

5

6

7

8

Price (sek)

D
is

ta
nc

e
to

 w
or

k
(k

m
)

Should one buy an apartment?

Yes
No

Figure 3.4: Training set used by the greedy induction method.

For the second split attribute, the data corresponding to a price lower than
1, 000, 000 sek are evaluated. By introducing a split attribute at the distance of 5
km from work, the solid line in the graph, the circles and squares are completely

18

CHAPTER 3. BACKGROUND THEORY 3.2. DECISION TREES

separated from each other. Thereafter, it is only the data corresponding to a
price higher than 1, 000, 000 sek that needs to be divided further. On account
of this, a dashed line at the distance of 3 km from work will separate these data
completely.

At this moment, four homogenous areas have been constructed using three split
attributes. The two lowest areas correspond to the case of buying the apartment
conditional upon the distance and price. In a similar manner, the two upper
areas correspond to not buying the apartment. Thus, a decision tree can be
constructed, see Figure 3.5. This can be used for future predictions of when to
buy an apartment based on these conditions.

Distance to work

< 1,000,000 sek >= 1,000,000 sek

< 5 km >= 5 km

Yes No

< 3 km >= 3 km

NoYes

Price

Distance to work

Figure 3.5: A simple illustration of a decision tree that predicts when one should
buy an apartment given the price and the distance to work.

As illustrated, the training set is the foundation to how the resulting decision
tree will operate. This implies that decision trees are extremely sensitive to
variations of this set. A mere change by including or excluding some data
might lead to a completely di�erent decision tree and thus a di�erent model.
This is due to the changing of the split attributes and therefore the �nal class
label is a�ected. As a consequence, decision trees are considered to be unstable
if this is not taken into consideration when generating the decision tree.

19

3.3. BOOTSTRAP AGGREGATING CHAPTER 3. BACKGROUND THEORY

3.3 Bootstrap Aggregating

Leo Breiman proposes in [7] a solution to unstable decision trees that was of a
concern in Section 3.2.2. He claims that the variations caused by single training
set can be overcome using a procedure that is referred to as bootstrap aggregating
or simply bagging. The concept combines two techniques, bootstrap sample and
majority voting.

3.3.1 Bootstrap sample

The procedure starts by replacing the single training set by an equally large
randomly collected set using the statistical method known as bootstrap sample.
Here, the multiple tuples generated by bootstrap sample are selected indepen-
dently based upon the method of uniformly sampling with replacement. This
means that after a tuple has been selected from the entire trainings set, it is
added once again to the training set. Thus, every tuple is given the opportunity
to be selected into the same set of bootstrap sample multiple times with equal
probability.

On account of the bootstrap sample having the same size as the training set,
there is one particular interesting property that occurs. Assume that the train-
ing set is relatively large N and the sampling process to create the bootstrap
sample is repeated equally many times, thus making it the same large size. Each
tuple from the training set has a probability of 1/N to be selected according to
the uniform probability distribution of the set. The absolute complement for
this occurs when a tuple is not selected, which corresponds to the probability
(1 − 1/N). Because the bootstrap sample should be of size N , the probability
that a tuple will not be chosen during the entire process is equal to

(1− 1/N)N . (3.2)

When N is large, this probability approaches

e−1 = 0.368, (3.3)

according to [34]. This means that, on an average, 63.2% of the tuples from the
original training set will end up in the bootstrap sample. However, in order to
reach the prede�ned size N , the bootstrap sample will consist of a combination
of 63.2% unique tuple and 36.8% duplicates. Together they represent the new
training set used for building the model. Consequently, there are 36.8% of the
original tuples that are left out of the newly created training set. These are thus

20

CHAPTER 3. BACKGROUND THEORY 3.3. BOOTSTRAP AGGREGATING

able to work as independent sample for performance evaluation on the acquired
model and are referred to as out-of-bag data.

3.3.2 Majority voting

By the use of only one bootstrap sample to create a model, this could either be
too simple or too speci�c in order to work well enough for di�erent observations.
One solution to this problem is to create multiple bootstrap sample and multiple
models in a combined ensemble.

Given the knowledge of how to create a model by means of bootstrap sample,
several di�erent models can be generated from the same training set. This
is where the second technique in the bagging method takes place, the majority
voting. Usually, at least 50 di�erent bootstrap samples are used to create equally
many models [13]. All of these will produce its own output prediction given a
certain input data. The �nal prediction from the bagging method is evaluated
by considering which prediction receives the most votes from the models, thus
the name majority voting.

This resembles the procedure when a jury combine their expertise to make a
�nal judgement in a speci�c case. Depending on how large of majority, the
certainty of the decision varies. For example, if 90 out of 100 models predict
that the sun will shine tomorrow, then the algorithm will follow that decision
and present a quite high probability for that result. Though, if only 51 out of
100 models predict sunshine, then the bootstrap aggregation method will still
present the result as sunshine however, with a smaller certainty.

Because bagging uses multiple models that all are based on a randomly collected
set, due to bootstrap sample, from the same training data, the original properties
of the main concept to be studied are preserved. Furthermore, the statistical
variance is also decreased due to the fact that each bootstrap sample is di�erent
and they in a combination compensates for each model's distinctiveness.

As previously mentioned, any bootstrap sample has on average 63.2% unique
examples and the remaining 36.8% examples are duplicates. This might lead
to that a tuple from the training set is overrepresented in a speci�c bootstrap
sample or that it does not belong in some of the bootstrap sample at all. As a
result of this, a model generated by a bootstrap sample could, if evaluated on
its own, lead to a reduced learning accuracy. However, bagging uses majority
voting where the predicted result always is constructed by evaluating all the
votes from every model. Therefore, any e�ect of over�tting or reduced learning
accuracy caused by a single model is resolved. Given these points, bagging is
usually a more accurate method to use then only to consider a single model.

21

3.4. RANDOM FOREST CHAPTER 3. BACKGROUND THEORY

3.4 Random Forest

The Random Forest (RF) algorithm is an extension of bootstrap aggregating
from Section 3.3 in combination with random variable selection, which will be
described in Section 3.4.1. In a similar manner to bootstrap aggregating, the
aim is to generate an ensemble method for classi�cation. That means to build
a classi�cation method by combining multiple models in order to obtain better
predictive performance compared to a single model. However, unlike bagging,
the Random Forest algorithm introduces even more randomization principles in
the creation of the resulting model.

The algorithm was developed by Leo Breiman, the founder of bootstrap aggre-
gating, and Adele Cutler in 2001 [8]. According to Breiman, there are two
reasons why Random Forest is expanded on the previous method of bootstrap
aggregating instead of other methods. Firstly, used in a combination with ran-
dom variable selection, the accuracy of bootstrap aggregating is enhanced. Sec-
ondly, the error rate and other estimation of the prediction performance can be
valuated as the algorithm proceeds.

The algorithm uses CART:s (Classi�cation And Regression Trees) as a key
building block for its partitioning of input data. The amount of decision trees
that it uses di�ers, however it is most common to build from 100 to 500 trees
according to [33]. Because of this, the algorithm has received the symbolic term
�forest� in its name.

3.4.1 One classi�cation tree

In order to understand how the construction of each tree is made (see [6]),
assume that the number of objects in the original training set isN . Furthermore,
assume that the number of features in the feature vector is M . Thereafter,
specify a number m that should be much smaller than the actual number of
features M , that is m � M . This number should be held constant during the
entire forest development.

The �rst step that the algorithm takes is to create a bootstrap sample of equal
size N as the original training set. As described in Section 3.3.1, these selec-
tions are done with replacement. This bootstrap sample is then utilized as the
foundation for growing the classi�cation tree.

The second step introduces the method of random variable selection. As the
name indicates, it randomly selects a subset of features from the feature vector.
This method is often used when the length of the feature vector exceeds the
number of objects in the investigated dataset, that otherwise might be di�cult

22

CHAPTER 3. BACKGROUND THEORY 3.4. RANDOM FOREST

to handle. For this tree construction, there is a total amount of M features
in the feature vector. From those, the number of randomly chosen features is
according to the prede�ned size m, which is kept constant during the entire
forest construction. In a contrast to bootstrap sample, the collection of features
is made without replacement.

This randomization technique is useful because the combination that produces
the best result is not obvious to �nd, especially not when the number of ways
to precede is overwhelming. Nevertheless, only considering a subset should not
be looked upon as a guessing technique to �nd the best result. Actually, more
information is able to impact the result of the constructed model in a contrast
to other applications that uses the entire feature vector. This is due to features
that normally should have been excluded by dominant features are now able
to contribute. On the contrary, if there are only a few useful features among
many non-informative features, this technique might lower the accuracy of the
�nal prediction. Furthermore, by only considering a subset instead of the entire
feature vector, the faster the training will be.

The third step involves the construction of the node for the �rst CART par-
tition of the data. The aim is to use the m previously collected features from
the feature vector in order to determine the best possible split for that node.
Only these features are considered when choosing the split, not the entire fea-
ture vector. This signi�cantly decreases the computational requirement. The
algorithm then returns to step two for each subsequent split until the decision
tree reaches the largest possible extent and is fully grown. The algorithm does
not prune the tree, because all the trees combined in the �nal result will limit
the risk for over�tting.

Since the algorithm uses bootstrap sample, not all of the objects from the origi-
nal training set are included in the newly created training set. There are approx-
imately 36.8% of the objects that are left out of the sample and consequently not
used in constructing that classi�cation tree. In Section 3.3.1 these are referred
to as out-of-bag data. This means that the out-of-bag data are independent of
the bootstrap sample and can thus be used as a test set to examine the result
of the classi�cation tree. On account of this, the corresponding out-of-bag data
is sent through its decision tree when the construction of the tree is complete.
The class assigned to each out-of-bag sample along with the m corresponding
feature values are stored for later analyses.

In Figure 3.6 the partitioning into a bootstrap sample and the out-of-bag sample
is illustrated. After the bootstrap sample has generated a decision tree based
on its collected sample set, the out-of-bag sample can be sent down the tree.

23

3.4. RANDOM FOREST CHAPTER 3. BACKGROUND THEORY

Dataset

Bootstrap
Sample

Out-of-bag
Sample

1/32/3

Figure 3.6: When the bootstrap sample has constructed a decision tree, the
samples that are left out of the training of the tree are sent down the decision
tree in order to create an independent estimate of the predictions.

Moreover, after each tree is fully constructed, the entire input data is sent in to
the classi�cation tree. The reason is to calculate the proximity between every
pair of input objects for this speci�c decision tree. This can be explained as to
which degree di�erent observations tend to be classi�ed alike. If two objects are
in the same leaf node when the classi�cation stage is over, then their proximity
is set to one. Otherwise, it is assigned with a zero.

3.4.2 Constructing the Forest and the representing model

The stages described in the previous Section 3.4.1 is repeated a large number of
times in order to create multiple trees for the �nal Random Forest model. At this
point, the total proximity for the model can be derived. It starts by summarizing
the proximity value across all the trees for each pair of input objects. Then the
answers are normalized by dividing them with the total number of trees in the
Random Forest model. This leads to a value for each pair between 0 and 1. A
zero represents that they are never in the same leaf node in any of the decision
trees. In a similar manner, a one corresponds that the two objects are always
in the same leaf node in every decision tree. Hence, the higher the value of
proximity, the more alike those observations are in how the decision trees places
them. It is di�cult to draw any conclusions only by studying the proximities
alone. However, other information can be extracted by using the proximity in
its calculations, for instance clustering and missing value imputation, see [6] for
further information.

24

CHAPTER 3. BACKGROUND THEORY 3.4. RANDOM FOREST

The classi�cation made of the out-of-bag samples by each tree can now be
evaluated, as the entire forest is complete. These samples will prove to be of
use for evaluating an estimate of error to give an indication of the performance
of the resulting model when it is applied to new observations. For each tree,
approximately 1/3 of the samples from the original training set are left out and
placed in the out-of-bag set, see Section 3.3.1. This corresponds to that each
sample in the original training set has, in average, been classi�ed by one-third
of the trees. For each sample, the number of times it becomes assigned to each
class is counted. Then by considering the class that received the most number
of votes, if this is not the true label for that sample, then this vote, averaged
over all cases, is the out-of-bag error estimate.

25

3.4. RANDOM FOREST CHAPTER 3. BACKGROUND THEORY

Random Forest as an algorithm

Assume there are N observations in the original training set. Furthermore,
assume that there are M features in the feature vector and that the number
m << M , is held constant during the entire forest growing.

1. Take a bootstrap sample of size N from the original training set to obtain
a new dataset.

2. Take a random sample of size m << M , without replacement, from the
feature vector.

3. Use the randomly sampled features m to construct the best partition of
the dataset.

4. Return to step 2 for each subsequent partition until the decision tree is
grown to the largest extent possible. Do not prune.

5. Drop the out-of-bag data down the decision tree. For each observation,
store their assigned class label along with their m feature values.

6. Drop the original training set down the decision tree and calculate the
proximity between each pair of objects. Store the results.

7. Repeat the steps 1 − 6 a large number of times until the Random Forest
model is completely assembled.

8. Calculate the total proximity for the Random Forest model.

9. For each sample from the original training set, go through all the decision
trees in the model. If the sample belongs to the out-of-bag data of the
tree, store the class assignment of the sample for that tree. When every
tree has been considered, count the number of times that observation is
classi�ed in one category and the number of times classi�ed in the other
category.

10. Assign each sample from the original training set to a category by a
majority vote over the set of trees.

26

CHAPTER 3. BACKGROUND THEORY 3.5. IMPROVING THE CLASSIFICATION

3.5 Improving the classi�cation

As mentioned in Section 2.1, when searching through a complete image for
squares that corresponds to positive windows, these are highly outnumbered by
the amount of negative windows found in the same complete image. Assume that
many of these negative windows are signi�cantly di�erent from the positives.
As a result, when a complete image is processed by means of a classi�er, only
a fraction of the negative windows would be confused as positive and labelled
thereafter. However, because the proportion of negative windows is so vastly in
numbers compared to the positives, even a false positive rate of 10% would still
correspond to an enormously amount of windows being misclassi�ed.

In an attempt to solve this issue, two di�erent concepts are introduced. The �rst
is referred to as a bootstrap con�guration and the second is cascading classi�ers.
The main procedures for these two concepts are quite similar. They both operate
with improving the classi�cation by trimming the training set before a new
classi�er use it for learning.

3.5.1 Bootstrap con�guration

This method is introduced in the article [29] by Sung and Poggio. It shares a
similar technique as bootstrap aggregating (bagging) from Section 3.3. However
some modi�cations have been made compared to that algorithm. Unlike bag-
ging, the bootstrap con�guration iteratively improves the same classi�er instead
of generating several classi�ers to function as a combination.

As previously stated, the aim is to reduce the number of misclassi�cations of
the negative predictions. Due to computational limitations and restrictions in
the memory of the computer, the training set cannot contain all possible cases
of the negative examples. However, the training set can be modi�ed to contain
the cases that are of most use for the learning process when obtaining a decision
function. This knowledge is the foundation of bootstrap con�guration.

At the beginning, the bootstrap con�guration builds a classi�er using the com-
monly known methods. That is, to retrieve a training set and then use this for
its learning process. However, in order to improve this classi�er to be able to
classify more di�cult negative examples, a more speci�ed training set is there-
after assembled. By means of this collected training set, the learning process
starts over again. As a result, a more improved classi�er is generated, which
the �rst classi�er becomes exchanged by. Iterating this steps several times will
lead to a more advanced classi�er in the end, which is specialised in decreasing
the misclassi�cation of the negative examples.

27

3.5. IMPROVING THE CLASSIFICATION CHAPTER 3. BACKGROUND THEORY

3.5.2 Cascading classi�er

The method of cascading classi�er is described in the article [20] by Viola and
Jones for their object detection framework. The aim of the method is to combine
several classi�ers in a cascade where only the windows predicted as positive by
the previous classi�ers is used as input data to the next classi�er. On account of
this, windows found further down in the cascade are more di�cult to separate
from each other and therefore more advanced classi�ers needs to be constructed
to achieve low false positive rates. The classi�ers utilized in the cascade can
be generated using a variation of techniques, although for this master thesis,
they are built using the previously described Random Forest algorithm, see
Section 3.4.

The general layout of cascading classi�er is represented in Figure 3.7. As seen,
all the examined windows are sent through a �rst classi�er. This data usually
consist of a large quantity of easy negative predictions and the aim of the �rst
classi�er is to �nd these. Therefore, the �rst classi�er is usually of a simpler
kind that reduces the amount of data that the second classi�er needs to process.

The second classi�er, being a bit more advanced than the �rst classi�er, com-
putes its own prediction given its input and draws conclusions of which windows
that are positive and should be sent further down the cascade. In a similar man-
ner to the �rst classi�er, it removes windows from the data which is predicted as
negative. The process continues in this order until it reaches the last classi�er
and produces its overall result. Thus, a window is predicted as positive by the
cascading classi�er if and only if each classi�er assigns it as positive. As a result
of the cascading method, the classi�cation performance is increased while the
computational time is reduced for every subsequent classi�er.

Depending on what result is desirable and what is actually manageable to make,
the number of classi�ers in the cascade varies. However, it is important to note
that the cascade can be terminated after any classi�er as long as the classi�ers
in front have been used. Though, an early termination may not lead to the best
result of the prediction compared to what a complete cascading classi�er might
produce.

28

CHAPTER 3. BACKGROUND THEORY 3.5. IMPROVING THE CLASSIFICATION

Multi-Scale
Transformation

Window
Extractor

Pre-Processing
Input Image

ClassifierCluster Analysis
Classified Image

Classifier 1

Input From
Pre-Processing Stage

Positive
Prediction

Classifier 2

Positive
Prediction

Classifier 3

Negative
Prediction

Positive
Prediction

Negative
Prediction

Negative
Prediction

Figure 3.7: Illustration of a cascade classi�cation layout.

29

3.5. IMPROVING THE CLASSIFICATION CHAPTER 3. BACKGROUND THEORY

30

Chapter 4

System Construction

The purpose of the classi�cation system for this master thesis is to detect and
recognise wheels from input images. The general layout of the classi�cation sys-
tem is illustrated once more in Figure 4.1. Here, the �ve most important stages
are marked out: multi-scale transformation, window extractor, pre-processing,
classi�er and cluster analysis. In the following sections these stages are described
in more detail together with some other concepts needed for the construction of
the system.

Multi-Scale
Transformation

Window
Extractor

Pre-Processing

Input Image

Classifier

Scaled Images

Windows to
be processed

Cluster Analysis
Classified Image

W(1)

W(n)

Figure 4.1: The general layout of the classi�cation system.

31

4.1. GENERATING THE INPUT IMAGES CHAPTER 4. SYSTEM CONSTRUCTION

4.1 Generating the input images

For this master thesis, a recording has been provided by Roadinfo in order to
create the input images. They have placed a video camera at the side of a road-
way which records the vehicles from the side when they move along the road,
see Figure 4.2. There are four lanes in total, two in each direction, and it is only
the two lanes closest to the camera that are considered in this work. From the
cameras viewpoint, these two lanes move in an easterly direction. The other two
lanes have too much obstacle in the way in order to work as a su�ciently good
data. The road has a speed limit of 70 km/h and has no sidewalk. Therefore,
there are no pedestrians, cyclists or other road users that disturbs the record-
ing. The movie has been recorded without interruption during daylight and is
almost 1 hour and 10 minutes long. There has been no rainfall or other weather
disturbances; however the sunlight varies a bit during the recording.

Figure 4.2: An image from the recording.

With 30 frames per second, the entire movie consist of roughly 126, 000 images.
In order to compress it to a more manageable set, only every �fth frame has
been considered as illustrated in Figure 4.3. This narrows it down to 25, 200

images. Despite this, there has been no loss of information regarding a vehicle
being represented successively in images, because the road being recorded is
longer than it takes for a vehicle to disappear out of sight within 5 frames. As
an example, if a car is driving in the lane closest to the camera with a speed of
70 km/h, then this corresponds to 19.4 m/s. Due to the cameras �eld of view,
this lane is approximately 6.5 m long in the direction of the car. Therefore, at
this speed it will be visible for around 0.33 seconds. With the camera recording
30 frames per second, it will give roughly 10 images of the car in total, and
hence 2− 3 images are considered, depending on where the evaluation starts. A
car that moves with a lower speed or in the lane further away from the camera
will of course be visible in even more images.

32

CHAPTER 4. SYSTEM CONSTRUCTION 4.1. GENERATING THE INPUT IMAGES

Figure 4.3: Every �fth frame from the recording is extracted.

At this moment, there is no prede�ned information of where the wheels are
located in the image or if an image actually contains a wheel. This is crucial
information that needs to be collected in order to utilize some of these images
in the construction of the classi�er. Also, it is important for those images
used for testing the �nal classi�er, so the classi�ers prediction can be veri�ed.
Therefore, the next phase is to manually study each image in order to retrieve
this information.

When a wheel is found in an image, it is marked out by a square and its location
stored. Moreover, it is labelled with which vehicle type it belongs to; car, van,
bus, truck, trailer or other motor vehicles. In order to attain a more uniform
object to identify, only wheels from cars have been considered in this master
thesis. Understandably, there is not a car in every frame recorded by the camera;
therefore the number of images has been greatly reduced, resulting in a more
adequate amount of images. Moreover, if a wheel is not fully visible because it
is covered by another vehicle or it is located at the edge of the image, then this
wheel is discarded. Consequently, the entire collection of input images consists
of 828 images with a total of 1234 unique wheels. Thus, each image will contain
one or several wheels from a car. Furthermore, every location of a wheel is
stored for future evaluations in the system. Some of the input images will be
used for the training process of the classi�er and the rest will be utilized for
testing the �nal classi�er.

33

4.2. MULTI-SCALE TRANSFORMATION CHAPTER 4. SYSTEM CONSTRUCTION

4.2 Multi-scale transformation

One key building block of a functional classi�er is to transform the desired
objects in the image so that they are as similar as possible. In these input
images, the objects of interest are the wheels. However, depending on if a wheel
belongs to a car in the front of the image or further back, the size of the wheel
will be di�erent. Thus, the �rst stage that every input image passes through in
the system is the multi-scale transformation.

This generates one original and four rescaled transformations of the same im-
age. All the input images have the original size of 480× 640 pixels. In every
step, this image is rescaled by a factor of 0.8 constructing a slightly more re-
duced image each time. As a result, the rescaled images will reach from the size
384× 512 pixels down to 198× 263 pixels. Consequently, the size of the wheel
will be di�erent in every image. Thus, there will be at least one scale level where
the wheel corresponds su�ciently near to a prede�ned universal wheel size. This
will prove to be of use in stages further down the classi�cation system. Never-
theless, another e�ect of the rescaling is the alteration of the wheel's location.
However, by utilizing the previously stored original location of the wheel, these
new locations are evaluated according to which scale level it is found in and the
results are stored.

The �nal procedure in this stage transforms the colour scheme of the image.
The input image is originally in colour. However, it can be even more di�cult
to detect objects in those sorts of images due to larger variations. Thus, the
original image and its rescaled versions are transformed into greyscale before
entering the next stage.

4.3 Window extractor

At this moment, the multi-scale transformation has generated �ve images that
should be evaluated further in order to detect and classify wheels in the images.
However, these images represent a car on the road with occasionally one or
several other vehicles. Thus, the wheels only correspond to a fraction of the
image. Therefore, some further preparations need to be done to the images.

It is of interest for the classi�cation part to �nd as good sub-image as possi-
ble that mainly consist of the wheel and not so much surroundings. Though,
when an image is sent in to the system for prediction, the wheels locations are
unknown. This should not be mistaken for the already stored locations that
are utilized for evaluation of the classi�ers prediction. As a solution to the
problem, an enormous amount of windows are extracted that covers the entire

34

CHAPTER 4. SYSTEM CONSTRUCTION 4.3. WINDOW EXTRACTOR

image, some of these will be a decent cut-out of a wheel. These windows need
to be of the same size as the windows the classi�er was trained on in order for
the prediction to work. In this master thesis 32 × 32 pixels was chosen as the
universal wheel size.

Before the stage of the window extractor begins, a property of the images is
utilized in order to decrease the computational time and lowering the amount
of windows extracted for prediction. As mentioned in Section 4.1, it is only the
two lanes closest to the video camera that are used in this master thesis. Based
on the fact that the camera is never moved during the recording, the positions
of the lanes in the image are constant. Thus, it is not a requirement to search
through the entire image in order to �nd a wheel. Actually, more than half
of the image visualizes the background, the two further lanes and the barrier
separating the opposite directed lanes. In Figure 4.4, the stored values of some
of the wheels locations are applied to illustrate where it is most likely to �nd a
wheel in the image. As a result, the input images are only investigated in the
area corresponding to the region between the two red lines in the same �gure.

Figure 4.4: The points in the graph correspond to di�erent wheels locations in
the images.

Thereafter, the window extractor stage proceeds as follows. For each image
corresponding to a certain scale level, a square of 32× 32 pixels scans that
image, starting at the previous designated height at the pixel furthest to the
left. Then it moves from left to right, row by row until it reaches the end of
the search region. The extracted window is of equal size regardless of which
scale level that is considered. As a consequence of this, a window from a scaled
image cover a di�erent amount of area than a window in the original scale does.

35

4.3. WINDOW EXTRACTOR CHAPTER 4. SYSTEM CONSTRUCTION

Thus, a window extracted from the smallest scale corresponds to a square of size
78×78 pixels in the original scale image. On account of this, it is possible to �nd
a window in the image that completely covers the searched wheel, regardless of
its size.

4.3.1 Positive and negative windows

For each of these windows, a corresponding class label describing if it is a wheel
or not, is stored for future veri�cation of the classi�ers prediction. This is a usual
procedure in the construction and evaluation of a classi�er. As the number of
possible class assignment is limited to two, this method is known as a binary
classi�cation problem and this has previously been described in Section 2.2.

From De�nition 2.1 it is known that an object in a binary classi�cation problem
receives a binary valued class label. That means it either becomes assigned
with one or zero. On account of this, if a window is labelled with one, then it is
referred to as a positive window. In a similar manner, if a window is assigned
zero, then it is known as a negative window.

It is important to thoroughly de�ne what class label a certain window should be
assigned to, so there will be no misunderstandings. In order to construct these
de�nitions, the previous registration of the location of a wheel in an image is
utilized in combination with information about the window, such as its size and
position. These values make it possible to calculate if there is any intersection
in the image between the window and a wheel. Depending on the result, it gives
rise to the de�nitions for positive and negative windows. In this master thesis
a positive window is assigned the following de�nition.

De�nition 4.1. Assume there are N wheels in an input image.

Let Pwindow be the set of pixels in a window of size 32× 32 pixels.

Let P i
wheel be the set of pixels covering wheel i, where i = 1, . . . , N .

Thus,

Pwindow

⋂
P i
wheel

is the set of overlapping pixels between Pwindow and P i
wheel.

If |P | is de�ned as the number of pixels in P and

|Pwindow

⋂
P i
wheel|

|Pwindow|+ |P i
wheel| − |Pwindow

⋂
P i
wheel|

≥ 80% for any i, (4.1)

then Pwindow is called a positive window.

36

CHAPTER 4. SYSTEM CONSTRUCTION 4.3. WINDOW EXTRACTOR

This means that if the intersection between the window and any wheel in the
image is great enough, then this window should be classi�ed as a positive win-
dow. The window is always constant in size; however the wheel changes size at
each scale level. The aim of this de�nition is to �nd a window that as close as
possible covers the entire wheel without too much of its surroundings. Thus,
this de�nition limits which windows that may be assigned a positive window
label.

Because the window extractor collects windows by moving one pixel at a time,
each area in the image will consist of many windows with similar attributes.
Consequently, one wheel in an image will be represented by several windows,
some with a greater overlap than others. A negative window is de�ned in a
similar way.

De�nition 4.2. Assume there are N wheels in an input image.

Let Pwindow be the set of pixels in a window of size 32× 32 pixels.

Let P i
wheel be the set of pixels covering wheel i, where i = 1, . . . , N .

Thus,

Pwindow

⋂
P i
wheel

is the set of overlapping pixels between Pwindow and P i
wheel.

If |P | is de�ned as the number of pixels in P and

|Pwindow

⋂
P i
wheel|

|Pwindow|+ |P i
wheel| − |Pwindow

⋂
P i
wheel|

≤ 60% ∀i, (4.2)

then Pwindow is called a negative window.

As a result, everything in the image that is not a wheel is de�ned as a negative
window. This could be; the road, a part of a car or another vehicle. That is,
if the intersection between the window and every wheel in the image is small
enough, then it is a negative window. Consequently, the negative windows
involve some di�cult cases that resemble the positive windows. However, they
do not describe the �nal object as much as desired and is because of that not
assigned to the positive class.

There is an enormous amount of negative windows that can be created from
each image. In the case of only one car in the image and nothing else, many of
the negative windows will represent the road. These images will produce similar
characteristics and does not bring any new knowledge to the classi�er about the
di�erences between a negative and positive window.

37

4.4. PRE-PROCESSING CHAPTER 4. SYSTEM CONSTRUCTION

Even in the case of many vehicles on the road, many windows will still produce
similar attributes, just as described for the positive windows. Thus, it can be
considered unpro�table for computational time to manage this large amount of
negative windows when many of them do not bring any new information.

As a method used for decreasing the amount of negative windows to a more
manageable set, the window extractor moves three pixels at a time before col-
lecting the next window. Although, when the collected window comes across an
intersection, regardless of its size, the distance for its next position movement
is decreased to one pixel again until there is no more overlap, and then it is
increased again. This is done with the purpose of not losing the amount of
positive windows while reducing the amount of similar negative windows.

The gap between the di�erent percentages in the de�nitions is selected to in-
crease the boundary between when a window should be regarded as positive or
negative. Otherwise, a negative and positive window could look quite similar
which makes it harder when creating the classi�er.

4.4 Pre-processing

The next stage in the system concerns the pre-processing of the windows before
they are sent in to the classi�er. It starts by feature extraction of each window.
The features used in this master thesis are those described in Section 3.1, that
is normal intensity and Local Binary Pattern. For the normal intensity, this
is extracted by dividing each pixel in the window by the mean value of the
intensity in the same window. With the sole exception when the mean value is
zero, then the division is unde�ned. The normalization is of interest because it
removes unwanted properties created for instance by di�erent illuminations.

At every pixel location in the window, its calculated normal intensity is con-
sidered a feature value. In other words, each feature value describes what the
normalized intensity is at that location in the window. These values are then
stored in a feature vector describing that particular window.

The next feature is Local Binary Pattern. Unlike the normal intensity, the
Local Binary Pattern cannot directly be evaluated from the window. This is
due to its requirement of collecting the neighbouring pixels grey levels. The
pixels situated in the outer part of the window do not have neighbouring pixels
in each direction. A solution to this is to collect a slightly larger window thus
acquiring all the pixels needed for the calculations.

In a similar manner to the previous feature, at each pixel location in the window
there will be a Local Binary Pattern value calculated describing the window at

38

CHAPTER 4. SYSTEM CONSTRUCTION 4.5. CLASSIFICATION

that speci�c location. These results are also entered in the feature vector after
the earlier entered feature values. Since the size of the window is 32× 32 pixels,
the feature vector will have a length of 2048 if both features are used.

4.5 Classi�cation

There are two main parts required for constructing a functional classi�er. The
�rst is to create an appropriate database containing both the searched object
and other non-object images. The second part is based on utilizing a learn-
ing algorithm that analyses the data and recognizes patterns. In this master
thesis the Random Forest algorithm from Section 3.4 has been used as a base
to generate a classi�er. Thereafter, two di�erent approaches have been exam-
ined in order to improve the predictions; bootstrap con�guration and cascading
classi�ers.

4.5.1 Generating a database

Based on the original input images before any exclusions or pre-processing is
made, some of the wheels found in these images are illustrated in Figure 4.5
and Figure 4.6. They visualizes the two main components of di�culty in object
recognition, the intrinsic and external variability. These were described in Sec-
tion 2.2.1 and are the reasons why object recognition is so di�cult to achieve.
Thus, when creating the training set which the classi�er should learn from, it
is vital to cover as many variations of the object and non-object as possible.
For this work, half of the input images generated in Section 4.1 have been made
available during the construction of the database, this correspond to 414 images.
As a consequence, these input images cannot be used for testing the classi�er
because it would produce a deceptive result. However, there are still equally
many images preserved to use in the testing stage.

Figure 4.5: Two di�erent examples of intrinsic variability; variations of the same
wheel and variations between di�erent wheels.

39

4.5. CLASSIFICATION CHAPTER 4. SYSTEM CONSTRUCTION

Figure 4.6: Three di�erent examples of external variability: scale, intensity and
occlusion.

Starting from the 414 collected images with a total of 620 unique wheels, a
database can be assembled so it serves as a learning data for the classi�er.
The procedure is a combination of the previously described stages; multi-scale
transformation, window extractor and pre-processing as visualized in Figure 4.7.

Each image is multiplied in the multi-scale transformation and the window
extractor generates an enormous amount of windows from each of those and
labels these to be positive and negative according to De�nition 4.1 and De�ni-
tion 4.2. On account of this, the window extractor �nds approximately 30, 000

positive windows and 45, 000, 000 negative windows. However, due to the com-
puter's memory limitations, not all of these windows can be used in the database
simultaneously. Hence, a prede�ned number is used to decide the amount of pos-
itive and negative windows that should be included in the training set. After
a random sample is made of the windows to collect the desired amount, these
continue to the pre-processing stage. There, the feature extraction is made on
each window and the �nal database for training can be represented according
to De�nition 2.1.

Multi-Scale
Transformation

Window
Extractor

Pre-Processing

Many Input Images

Positive Windows Negative Windows

Database

Figure 4.7: Visualization of how a database is generated.

40

CHAPTER 4. SYSTEM CONSTRUCTION 4.5. CLASSIFICATION

4.5.2 Learning and improvement

A classi�er can at this point be constructed by utilizing the available database
which contains the training set. The learning algorithm used during this building
is previously described Random Forest from Section 3.4. One of the input
variables that need to be de�ned when using this algorithm is the number of trees
used for constructing the forest. In this master thesis, this value is assigned to
100 for two reasons. Firstly, it decreases the computational time in comparison
to a model constructed with more decision trees. Secondly, for those classi�ers
tested in this work, the model usually becomes stable after 100 trees. Thus,
generating additional trees would increase the computational time more than it
would give any further knowledge.

Once this �rst classi�er has been assembled, it might not produce as low false
positive rate as desired for a �nal classi�er. Thus, this classi�er operates as a
foundation for further classi�cation improvement using two di�erent methods;
bootstrap con�guration and cascading classi�cation. Both of these methods
were described in Section 3.5. However, obtaining a database for each of these
methods is a rather complicated task and is therefore explained in the following
sections.

Generating a database to a cascading classi�er

A cascading classi�er consists of several classi�ers in a row where each classi�er
should be more advanced than the previous. Therefore, they all need di�erent
databases to learn from. Moreover, the further down the cascade, the more
di�cult database it should learn from. The �rst classi�er in the cascade is
allowed to be of a simpler nature, provided it reduces the amount of data. On
account of this, the �rst classi�er is the already assembled classi�er from the
previous Section.

The input data to the second classi�er is depending on what data the �rst
classi�er assigns to the positive class label. As a more advanced classi�er, it
should be able to draw further conclusions on this already processed data. In
order to achieve this, the database for the second classi�er should be collected in
an expanded way in comparison to previous procedures. It is not important for
this classi�er to train on those examples that the �rst classi�er already discards
as negative windows.

The standard procedure is to collect a database according to previous theory
in Section 4.5.1 and to let the �rst classi�er make a prediction and present the
result in a contingency table, known from Section 2.3.1. Every window pre-
dicted as negative is excluded from the second classi�ers database, regardless

41

4.5. CLASSIFICATION CHAPTER 4. SYSTEM CONSTRUCTION

if the prediction was correctly made or not. As a result, some actual positive
windows might be lost after the �rst classi�cation round. The database consist
therefore of only those windows the �rst classi�er assigns to the positive class
label. However, some of these are in fact negative windows of a more di�-
cult classi�cation and it is these examples the second classi�er should learn to
recognize.

As always, the database should consist of both positive and negative windows.
By using the knowledge from the contingency table produced from the �rst
classi�er, the database of the second classi�er can be correctly assembled. Those
windows assigned to the true positive class (TP) are correct classi�cations made
by the �rst classi�er. These should still operate as examples of the searched
object, which are the positive windows. The negative examples are those the
�rst classi�er misclassi�ed as positive, corresponding to the false positive class
(FP). The database is now completely obtained for the second classi�er to learn
from.

The procedure of constructing a database is similar for any subsequent classi�er.
They use those parts of the generated database that pass through all the previ-
ous classi�ers. Therefore, for each classi�er further down the cascade they will
have more di�cult data to train on than the previous. As a consequence, they
can classify more di�cult windows than the previous classi�ers can. This gives
lower false positive rate and as a result, the Receiver Operating Characteristic
curve will be moved to the left.

Generating a database to a bootstrap con�guration

Bootstrap con�guration involves the same classi�er that gradually becomes more
improved in its predictions by learning from more speci�ed databases each time.
The aim is to incrementally enhance the amount of false positive (FP) in the
database for each new training round and thus be able to reduce the misclassi-
�cation of negative windows.

The method of collecting a database for bootstrap con�guration can be di-
vided into three main steps. Firstly, a database is constructed according to
Section 4.5.1. This should consist of a small portion of negative windows in
comparison to the amount of positive. Secondly, a classi�er is trained of these
windows using the assigned learning algorithm, Random Forest. Thirdly, a new
database, only consisting of negative windows, is collected and sent through
this classi�er. As the purpose is to decrease the misclassi�cation of negative
windows as positive, only the cases assigned as positive after the classi�cation
is evaluated further. However, on account of the database completely consist of
negative windows; the true positive class (TP) will be empty. This means, the

42

CHAPTER 4. SYSTEM CONSTRUCTION 4.6. CLUSTER ANALYSIS

only class label evaluated further corresponds to the false positive (FP) that is
when a negative window is assigned a positive label. A new enhanced database
is obtained by combining the false positive windows from the classi�cation, with
the negative windows in the current database; though, the positive windows re-
main the same. Thereafter, the procedure returns to the second step where a
new classi�er is trained.

4.6 Cluster analysis

The �nal stage of the classi�cation system corresponds to the cluster analysis.
When an input image has passed through the previous stages, there will usually
be many windows assigned a positive label although there is not that many
wheels in the image. This is due to the window extractor, which produces many
windows that overlap. As a consequence of this, when a window is classi�ed as
a wheel, there is a very high probability that the windows nearby will produce
the same outcome. Thus, many windows might correspond to the same wheel.

The aim of this stage is to combine two windows to a single window if they have
a su�ciently large intersection. By iterating this procedure multiple times, the
amount of windows labelled as positive will decrease and give a more represen-
tative result of the �nal classi�cation.

This stage also provides the system with a �nal opportunity to exclude mis-
classi�ed predictions. The amount of windows combined together as one should
give an indication of how possible it is to �nd a wheel there. If only a few win-
dows have been clustered together, this might depend on misclassi�ed windows
and should for that reason not be presented in the �nal result. Consequently, if
there has been a clustering where only three or less windows have been combined,
these clustered windows are excluded. This means that windows that never be-
came clustered at all also are discarded. Given these points, the clustering has
been made on each scale level in order to exclude misclassi�ed windows before
the result is transformed into the original scale level where a �nal clustering is
made.

The clustering procedure begins by calculating the intersection between two
nearby windows. If this is greater than a prede�ned value, then a new repre-
sentative window is created and is used as a substitute for the two discarded
windows. The location of this window is calculated as the mean value of the
previous windows and it receives the same size as these as well.

Depending on how large the intersection must be in order for a clustering to
take place, the amount of clustered windows di�ers. However, for a clustering
method to be useful it should decrease the amount of windows without too much

43

4.6. CLUSTER ANALYSIS CHAPTER 4. SYSTEM CONSTRUCTION

loss in the accuracy of the wheel's position. If for instance the intersection is
assigned with a low value, this would correspond to windows that are located on
larger distances are clustered together. As a worst case scenario, a true positive
window might be combined with a false positive window on a distance far away
from the actual position of the wheel. On the other hand, if the intersection is
assigned a too high value, this might lead to no clustering at all. As a result,
the amount of windows is not decreased. After these di�erent aspects have been
taken into consideration, an intersection of 40% has been used in this work for
clustering.

Afterwards, the clustered windows from each scale are transformed into the
original scale image. Here, another procedure of clustering is made and win-
dows are discarded if previously described conditions are not ful�lled. The �nal
predictions are presented as output from the classi�cation system.

44

Chapter 5

Results

In order to achieve a greater variation of windows during the evaluation of the
results, the classi�cation systems in Section 5.1 to Section 5.4 are tested on
a randomly sampled set of windows. On account of this, the cluster analysis
stage is excluded during these sections and the result correspond to the output
from the classi�cation stage. However, in Section 5.5 the result of the complete
classi�cation system is presented in more detail when one input image is send in.
Furthermore, in Section 5.6, several images are combined to give an indication of
how the �nal system with all its stages performs. The results are evaluated using
Receiver Operating Characteristics such as the ROC graph and the contingency
table. Both of these methods are described in Section 2.3.

5.1 Asymmetric database

The performance of a classi�er changes depending on how large the database
is and how many variations it contains. This is illustrated in Figure 5.1. Here,
two classi�ers have been trained on di�erent database sizes. The classi�er to
the left is trained on 1, 000 positive windows and 1, 000 negative windows. The
classi�er to the right is trained on ten-times as big database. The testing set
evaluated contains 100 positive and 100 negative windows. As can be seen, the
left classi�er receives a true positive rate of 96% and a false positive rate of
6%. However, the classi�er to the right has the possibility to train on more
windows. Thus, it gains more knowledge on the di�erence between a positive
and a negative window. As a result, this classi�er produces a better result
both for the true positive rate, with 99%, and the false positive rate, with 4%,
compared to the other classi�er.

45

5.1. ASYMMETRIC DATABASE CHAPTER 5. RESULTS

99
True

Positive

4
False

Positive

100
Positive

Windows

100
Negative
Windows

Classifier 2
- Trained on

10,000 pos. + 10,000 neg.

97
Negative

Predictions

96
True

Positive

6
False

Positive

100
Positive

Windows

100
Negative
Windows

Classifier 1
- Trained on

1,000 pos. + 1,000 neg.

98
Negative

Predictions

Figure 5.1: An example of classi�ers trained on di�erent database sizes.

Nevertheless, it can sometimes be a good idea to deliberately change the pro-
portions of positive windows in relation to the negative windows to reach some
desired characteristics of the classi�er. For instance, if the database has an
asymmetric appearance with mainly positive windows to train on, then the
classi�er has a higher tendency to assign a window to the positive class label.
As a consequence, the true positive rate receives a high value, which is desirable,
because many of the positive windows obtain a correct classi�cation. However,
more negative windows than usually becomes misclassi�ed as a result of the
asymmetric database. This leads to an increased false positive rate compared
to an even training set, even though some negative windows obtains a correct
classi�cation. The purpose of utilizing an asymmetric training set is the ability
to leave the amount of windows from one of the classes fairly unchanged while
decreasing the amount of the other class. Two examples of asymmetric training
sets is illustrated in Figure 5.2. The classi�er to the left has a database con-
sisting mainly of positive windows and the classi�er to the right has a database
consisting mainly of negative windows.

80
True

Positive

1
False

Positive

100
Positive

Windows

100
Negative
Windows

Classifier 4
- Trained on

1,000 pos. + 10,000 neg.

119
Negative

Predictions

100
True

Positive

17
False

Positive

100
Positive

Windows

100
Negative
Windows

Classifier 3
- Trained on

10,000 pos. + 1,000 neg.

83
Negative

Predictions

Figure 5.2: An example of classi�ers trained on asymmetric databases.

46

CHAPTER 5. RESULTS 5.2. CASCADE CLASSIFICATION

5.2 Cascade classi�cation

Five classi�ers are combined in the cascade classi�cation evaluated in this master
thesis. The �rst classi�er has an even database and is used to discard many
of the easiest negative predictions. The testing set consist of 10, 000 positive
windows and 100, 000 negative windows. These windows have been randomly
sampled from all the possible windows generated by the 414 remaining input
images not used in the training of the classi�ers, see Section 4.5.1.

The result after the �rst classi�er is presented in Table 5.1. It has obtained a true
positive rate of 95.88%. Therefore, the amount of positive windows lost at this
stage is reasonably low with 4.12% of the total positive windows. Furthermore,
the false positive rate is already at 4.323%, which corresponds to the main part
of the negative windows having received a correct classi�cation. Consequently,
the amount of negative windows is drastically diminished while the amount of
positive windows still remains high after the �rst classi�cation.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,588 412 10, 000

Negative 4,323 95, 677 100, 000

Total 13, 911 96, 089

Table 5.1: A contingency table for cascade classi�cation stage 1.

For the second classi�er, it is important to lower the misclassi�ed negative win-
dows, that still is quite large with 4, 323 windows, while not losing too many
of the positive windows. Thus, the knowledge of an asymmetric database from
Section 5.1 is applied. However, in order for the second classi�er to be able
to distinguish the di�cult negative predictions from the positives, the database
needs to be further adapted.

As described in Section 4.5.2, the collection of the second database needs to
take the predictions of the �rst classi�er into consideration. Thus, the second
database starts with almost thirteen-times as many negative windows as posi-
tive, before it becomes reduced by the �rst classi�er. Thereafter, the amount of
positive windows is almost double as many as the negative and an asymmetric
database can be assembled.

The predictions corresponding to the true positive (TP) and false positive (FP)
classes in the contingency table 5.1 of the �rst classi�er, becomes then classi�ed
by the second classi�er. The result is presented in Table 5.2. The false positive
rate should now re�ect the amount of false positive after the second classi�er,
based on the total amount of negative windows sent in to the cascade at the

47

5.2. CASCADE CLASSIFICATION CHAPTER 5. RESULTS

beginning. A similar explanation can be provided for the true positive rate.
Once more the amount of negative windows is signi�cantly decreased, resulting
in a false positive rate of 0.786%. Moreover, the amount of positive windows is
kept high corresponding to a true positive rate of 93.77%.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,377 211 9, 588

Negative 786 3, 537 4, 323

Total 10, 163 3, 748

Table 5.2: A contingency table for cascade classi�cation stage 2.

The third classi�er proceeds in a similar manner as the second classi�er with
an asymmetric database. Though, the amount of negative windows assembled
in the beginning needs to be considerably much larger due to the low false
positive rate from the second classi�er. As previously, the result is collected
in a contingency table, see Table 5.3. At this point, the true positive rate is
90.05%, which can be considered a fairly good estimate. Also, more than half of
the negative windows, that has passed through from the previous classi�cation
step, are at this stage classi�ed correctly, making the false positive rate reach
0.351%.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,005 372 9, 377

Negative 351 435 786

Total 9, 356 807

Table 5.3: A contingency table for cascade classi�cation stage 3.

For the fourth classi�er, the proportion of the asymmetric database is altered.
Here, the amount of negative windows is increased from 50% of the positive ex-
amples to 70%. This will give the classi�er the opportunity to train more on the
di�cult negative windows while still emphasizing the importance of identifying
the positive windows correctly.

From Table 5.4, it starts to be more visible how di�cult the classi�cation is
at this stage. The proportion of false negative (FN) is increased in comparison
to previous stages. This is due to the similarities between the positive and
negative windows at this stage that the classi�er has been trained on. Many of
the positive windows are therefore misclassi�ed as negative and the true positive
rate is therefore at 80.73%. As a result, approximately 1/5 of the original
positive windows sent in to the cascade classi�cation are at this moment absent

48

CHAPTER 5. RESULTS 5.2. CASCADE CLASSIFICATION

due to misclassi�cations either here or in the previous stages. Nevertheless, the
false positive rate is at a remarkably low level at 0.066%. Hence, the loss in
positive windows might be acceptable in order to reach this low false positive
rate.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 8,073 932 9, 005

Negative 66 285 351

Total 8, 139 1, 217

Table 5.4: A contingency table for cascade classi�cation stage 4.

The �nal stage in the cascade corresponds to the most di�cult positive and
negative windows to separate. Therefore, a highly advanced classi�er is required.
As usual, when collecting the database, the previous classi�ers predictions are
taken into consideration. On account of this, the database needs to contain
an enormous amount of negative windows in the beginning, before downsizing.
At the end, the database utilizes the same proportion of negative and positive
windows as the previous classi�er.

The result is presented in the contingency table 5.5. At this point, it is very
obvious how much more di�cult the separation has become. Almost every sixth
positive window sent in for prediction from the fourth classi�er is misclassi�ed.
As a result, the true positive rate ends up at 68.38%. Though, the false positive
rate continues to decrease and the �nal value is 0.028%.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 6,838 1, 235 8, 073

Negative 28 38 66

Total 6, 866 1, 273

Table 5.5: A contingency table for cascade classi�cation stage 5.

When the database that the �fth classi�er utilizes are visually examined, the
results from Table 5.5 can be justi�ed. There it can be seen that a majority of
the negative windows does in some amount contain a car wheel. This is due to
the previous description of how a negative window is de�ned in Section 4.3.1.
Consequently, when a feature extraction is done in the pre-processing stage
of the system, the negative and positive windows receives similar features. It
then becomes di�cult for the classi�er to identify if a window actually should
correspond to the negative or positive class label, because to some extent it
contains a wheel.

49

5.2. CASCADE CLASSIFICATION CHAPTER 5. RESULTS

In order to avoid future problem similar to this, the negative training windows
should correspond to a much lower intersection or even not contain wheels at all.
However, by training the classi�er with purer negative and positive windows, it
has no examples of what to classify those windows that only contain a fraction
of a wheel. Therefore, it is entirely up to the classi�er to assign those windows
to the class label it �nds suitable.

When the false positive windows from Table 5.5 are investigated, this discussed
property, of the negative class containing car wheels in some amount, is strik-
ing. Actually, it is only 5 windows of the entire 28 that does not contain a car
wheel in some extent. These �ve examples are illustrated in Figure 5.3. Two
of these are pure negative windows. However, the remaining three visualizes a
wheel from another vehicle group that present great similarities to car wheels
and thus receives a positive prediction.

Figure 5.3: Out of 100, 000 randomly sampled negative windows, only 28 false
positive windows pass the cascade classi�cation, where 23 of those are actually
near hits on car wheels. The �ve remaining false positive windows are illustrated
in the �gure above. Out of these, there are three windows that belong to another
vehicle type and could therefore also be considered a near hit of a wheel. As a
result, there is merely two false positive windows of the total 100, 000 negative
windows that are truly misclassi�ed in the cascade classi�cation.

50

CHAPTER 5. RESULTS 5.3. BOOTSTRAP CONFIGURATION

5.3 Bootstrap con�guration

The method of bootstrap con�guration has also been evaluated using the same
testing windows as for cascading classi�cation. Starting from one classi�er,
this has been improved four times. As the method consist of learning from
the same positive windows after each improvement while updating the number
of negative windows, the original database has ten-times as many positive as
negative windows.

The result after the �rst classi�cation stage with the original classi�er is pre-
sented in the contingency table 5.6. The consequence of utilizing an asymmetric
database of these proportions is clearly visible in the table. Almost every pos-
itive window obtains a correct classi�cation while a fairly large group of the
negative windows becomes misclassi�ed. This can be compared to the previous
description of Figure 5.2 from section 5.1.

The true positive rate is situated almost at the desired 100% with its 99.83%.
On the other hand, the false positive rate is 17.446%. This means that al-
most every �fth negative window is misclassi�ed. However, this is merely the
starting classi�cation that should discard the easiest negative predictions, which
according to the results can be considered as ful�lled.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,983 17 10, 000

Negative 17,446 82, 554 100, 000

Total 27, 429 82, 571

Table 5.6: A contingency table for bootstrap con�guration, original classi�er.

To improve the result, the database is adapted so that the negative windows
are doubled before it is used for learning again. These newly added negative
windows correspond to those windows that are di�cult to classify. After training
the classi�er with this database, its result is entered in Table 5.7.

This time, the amount of lost positive windows is reasonably low in comparison
with how many negative windows that are correctly classi�ed. The true positive
rate still corresponds to a high value at 98.95%. Moreover, the false positive
rate is lowered to 4.533% from the previous 17.446%.

51

5.3. BOOTSTRAP CONFIGURATION CHAPTER 5. RESULTS

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,895 105 10, 000

Negative 4,533 95, 467 100, 000

Total 14, 428 95, 572

Table 5.7: A contingency table for bootstrap con�guration, original classi�er
improved once.

A second improvement is made by adding equally many di�cult negative win-
dows to the database as in the previous step. The amount of negative windows
is now 1/3 of the positive windows. Once more, the values are presented in a
contingency table, see Table 5.8. The prediction rates still correspond to sat-
isfying results, with a true positive rate of 97.96% and a false positive rate at
1.54%. After two iterations, the classi�er has gone from misclassifying almost
every 5:th negative window to only misclassifying every 65:th negative window.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,796 204 10, 000

Negative 1,540 98, 460 100, 000

Total 11, 336 98, 664

Table 5.8: A contingency table for bootstrap con�guration, original classi�er
improved twice.

For the third improvement, the database consists of 40% negative windows
compared to the positive windows. This is achieved by expanding the database
with even more di�cult negative predictions. Here, the results are entered in
Table 5.9. The true positive rate is still considerably near the desired value with
its rate of 96.09%. The main part of the negative windows is also assigned to
the correct class label. As a result, the false positive rate is merely 0.679%.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,609 391 10, 000

Negative 679 99, 321 100, 000

Total 10, 288 99, 712

Table 5.9: A contingency table for bootstrap con�guration, original classi�er
improved three times.

52

CHAPTER 5. RESULTS 5.4. COMPARISON OF IMPROVEMENT METHODS

The classi�er is improved one last time before the �nal result is evaluated.
At this moment, there are twice as many positive windows as negative in the
database. Thus, the negative windows mainly correspond to windows that each
improved classi�er has had a problem of predicting correct. The predictions are
entered in the contingency table 5.10. From there, the true positive rate can
be calculated and it corresponds to 94.14%. The false positive rate ends up at
0.309%. To conclude, the false positive rate of the classi�er is kept quite high
while the false positive rate is reasonably low.

PREDICTED CLASS

Positive Negative Total

ACTUAL CLASS
Positive 9,414 586 10, 000

Negative 309 99, 691 100, 000

Total 9, 723 100, 277

Table 5.10: A contingency table for bootstrap con�guration, original classi�er
improved four times.

This classi�er could be improved furthermore. However, it would involve a great
amount of negative windows that needs to be collected in the beginning in order
for the database to receive a reasonably amount of new negative windows to learn
from. Due to shortage of free disk space and computation resource constraints,
this size of a database has not been assembled for this work. Though, if the size
of the original database is lowered, then the number of improvements might be
increased. This is because every improvement would then not require an equally
large contribution of negative examples as studied in the steps above. However,
by starting from a larger database of positive examples, more variations are
learned thus, the higher the true positive rate will be. Nevertheless, the original
classi�er and its four improvements can give a tendency of how the bootstrap
con�guration method works.

5.4 Comparison of improvement methods

One way of visualizing the true positive rate in comparison to the false positive
rate is done by a Receiver Operating Characteristic graph. In Figure 5.4, the
values from the two previous Sections 5.2 and 5.3, describing the di�erent im-
provement methods are illustrated. In order to achieve an easier examination of
the result, the false positive rate is in a logarithmic scale while the true positive
rate remains the same.

In the �gure, the boundaries of the ROC graph is visualized by the green
lines. The di�erent classi�ers from the cascading classi�cation are marked out

53

5.4. COMPARISON OF IMPROVEMENT METHODS CHAPTER 5. RESULTS

by the blue circles with lines drawn between each subsequent classi�er. The
�rst classi�er in the cascade corresponds to the blue circle furthest to the right.
The improvements made by the bootstrap con�guration, including the original
classi�er, are the red triangles. Here, each subsequent improvement is connected
with a line starting from the original classi�er furthest to the right.

As can be seen, the bootstrap con�guration method always stays above the cas-
cading classi�ers. This is probably the result of the classi�ers in the bootstrap
con�guration having trained on a larger database, with more asymmetry, than
the classi�ers in the cascade.

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate (log
10

)

T
ru

e
po

si
tiv

e
ra

te

Cascade Classifier
Bootstrap Configuration

Figure 5.4: Receiver Operating Characteristic graph of the bootstrap con�gu-
ration and cascading classi�cation results.

Both methods use the same principle in generating the �rst classi�er, the only
di�erence lies in the structure of these �rst databases. The cascade classi�ca-
tion starts its �rst classi�er with an even database in this work. As a result,
it receives a satisfying result both in the predictions of positive and negative
windows for future classi�ers to build on. On the other hand, the bootstrap
con�guration begins with a highly asymmetric database with ten-times as many
positive windows as negative. Therefore, it is located closer to the horizontal
green boundary line, representing the desired true positive rate. However, it
also obtains more misclassi�cations of the negative windows and therefore it is
located further to the right compared to the �rst classi�er of the cascade

The second classi�er in the cascade classi�cation has a database with twice as
many positive as negative windows. This is the same asymmetry as the database

54

CHAPTER 5. RESULTS 5.4. COMPARISON OF IMPROVEMENT METHODS

to the �nal improvement stage in the bootstrap con�guration, corresponding
to the red triangle furthest to the left in the graph. Though, this database
is ten-times as large as the database of the cascading classi�er. Therefore,
the bootstrap con�guration produces a lower false positive rate with 0.309%,
compared to the cascade classi�er with its 0.786%. Furthermore, it achieves
a slightly better true positive rate of 94.14% compared to the cascade, which
results in 93.77%.

Given the graph and these points, the main characteristics from the two im-
provement methods are quite similar and can be summarized as followed.

• In the �rst stages, it is easier to reduce the false positive rate without too
much loss in the true positive rate. This is because there are many easy
negative predictions in the beginning compared to the later stages.

• The bootstrap con�guration method for this work is trained on an asym-
metric database that always has twice as many positive windows as nega-
tive or more. Therefore, they are located closer to the desired true positive
rate than the cascading classi�ers, which are created with less asymmetry
in their databases.

• The original classi�er from the bootstrap con�guration illustrates the ten-
dency a classi�er has to assign windows according to the class most trained
on. The advantages it gains for preserving the amount of one class, the
more disadvantages it receives by an increase of misclassi�cation of the
other class.

• On account of a careful selection of negative windows to be added to the
database, the false positive rate is decreased for each newly generated
classi�er.

• When more di�cult negative predictions are reached, the true positive
rate is more a�ected then earlier. Thus, in order to reduce the false posi-
tive rate further, the larger the loss is in the true positive rate.

An ideal classi�er corresponds to the point in the ROC graph where the false
positive rate is equal to zero and the true positive rate is one, as described in
Section 2.3.1. Given the results presented in Figure 5.4, the classi�er in this
work that is located closest to this point is the bootstrap con�guration after the
fourth improvement. Then the Euclidean distance between this classi�er and
the ideal classi�cation point is 0.0587. However, depending on what properties
that is most important for the classi�er, the choice of which classi�er to use
may vary. If the aim is to obtain a general classi�er that produces a satisfying
result both from the false positive rate as well as the true positive rate, then

55

5.5. RESULT FROM ONE INPUT IMAGE CHAPTER 5. RESULTS

the bootstrap con�guration classi�er mentioned should be used. Nevertheless,
if it is more important to decrease the amount of false positive rate, then the
cascade classi�cation with all its classi�ers should be used.

5.5 Result from one input image

As an illustration of the result when the cluster analysis is used, an input image
containing two cars is sent through the classi�cation system. The image has four
unique wheels, all fully visible, as can be seen in Figure 5.5. After the window
extractor stage, the amount of positive windows is 150 and the negative windows
are 135, 033. Thus, there are several windows corresponding to the same wheel.
Therefore, there is a large margin of error which makes it possible to lose several
windows in the prediction without actually losing any vital information. For this
reason, the cascading classi�cation is utilized because it performs the lowest false
positive rate while still receiving an acceptable true positive rate.

Figure 5.5: The input image sent in to the classi�cation system.

The output values of the true positive and the false positive after each classi�-
cation stage is illustrated in Figure 5.6. As previously described, these output
values are used as input values to the subsequent classi�cation stage. The �rst
classi�er in the cascade reduces the amount of negative windows from 135, 033

to 10, 916. This massive decrease is due to the image containing many easy
negative predictions. Furthermore, the loss of positive windows on account of
misclassi�cation is at this stage reasonably low. The second classi�er also per-
forms an enormous decrease in the amount of negative predictions while there
is only one window loss of the positives.

56

CHAPTER 5. RESULTS 5.5. RESULT FROM ONE INPUT IMAGE

The third classi�er performs a smaller identi�cation of negative predictions com-
pared to the fourth classi�er. This is a result of the asymmetric databases that
these classi�ers were trained on. As described in Section 5.2, the proportion
of the fourth classi�ers database is altered compared to the third classi�er. It
decreases the asymmetry by adjusting the amount of negative windows in the
database from 50% of the positive windows to 70%. Therefore, the fourth clas-
si�er has more knowledge of the negative windows properties than the third
classi�er has.

When the �nal classi�er is reached in the cascade, the predictions correspond
to 118 true positive and 80 false positive. On account of this, the true positive
rate is 78.67% and the false positive rate is 0.059%.

Classifier 1
124 121
Negative

Predictions

150
Positive Windows

135 033
Negative Windows

146
True Positive

10 916
False Positive

Classifier 2

145
True Positive

2 056
False Positive

Classifier 3

143
True Positive

1 276
False Positive

Classifier 4

133
True Positive

256
False Positive

Classifier 5

118
True Positive

80
False Positive

8 861
Negative

Predictions

782
Negative

Predictions

1 030
Negative

Predictions

191
Negative

Predictions

Figure 5.6: It illustrates the output classes after each classi�cation stage in the
cascade when one input image is sent through.

57

5.5. RESULT FROM ONE INPUT IMAGE CHAPTER 5. RESULTS

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

Figure 5.7: When the image has passed through the entire cascade classi�cation,
the positive predictions are marked out in their corresponding scaled image.
Windows marked out with green are true positive windows and the red are false
positive windows.

58

CHAPTER 5. RESULTS 5.5. RESULT FROM ONE INPUT IMAGE

Wheel 1 Wheel 2 Wheel 3 Wheel 4

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

Figure 5.8: Given a certain wheel and scale image, the corresponding predictions
made by the cascade classi�cation are marked out.

Each of the true positive and false positive windows from the �nal classi�cation
stage are marked out in their corresponding scaled image and illustrated in
Figure 5.7. Windows marked out with green are true positive windows and the
red are false positive windows. As can be seen, the algorithm only �nds wheels
and never divert from that with other window representations. On account of
this, the false positive windows do in fact surround a car wheel in some extent
although not with the desired proportions.

In Figure 5.8, each wheel with its corresponding window prediction are visual-
ized in all the scales. Here, it is easier to compare the di�erence between a true
positive and a false positive. If for instance wheel 1 is examined, the classi�-
cation system �nds a wheel in the �rst and third scale. However, in the �rst
scale the entire wheel is not contained within the window, therefore it should be
considered a false prediction according to the de�nitions. In the third scale, the
entire wheel is covered by the window which results in a true positive prediction.

59

5.6. RESULT FROM THE CLUSTER ANALYSIS STAGE CHAPTER 5. RESULTS

The last stage in the classi�cation system is to make the cluster analysis. At this
moment, the windows are clustered together. Those combinations that corre-
spond to three or fewer windows are excluded from the output, see Section 4.6.
Hence, some of the false positive windows are discarded. An example of this
can be found in the �fth scale image from Figure 5.7. Here, only one window
has been found and thus the clustering will consist of only one window, which
therefore will be excluded. The �nal result is presented in Figure 5.9. Here,
only four windows remains, one over each wheel. In conclusion, a satisfying de-
tection and recognition has been made on this image be means of the cascading
classi�cation.

Figure 5.9: The �nal classi�cation result from one image.

5.6 Result from the cluster analysis stage

As illustrated in the previous Section 5.5, after the examined image has passed
through the complete classi�cation system, all of the four wheels were located.
Thus, four wheels were classi�ed out of four possible, which correspond to a true
positive rate of 100%. This could be compared to the classi�cation stage in the
system, which produced a true positive rate of 78.67%. The di�erence lies in
how these values are derived. The classi�cation stage calculates its true positive
rate based on all extracted positive windows corresponding to a car wheel in the
image. On the other hand, the cluster analysis stage is only interested in the
actual amount of wheels in the image. Furthermore, there were no false positive
windows left in the �nal classi�cation result of this speci�c image, which corre-
sponds to a perfect false positive rate. Once more, this could be compared to

60

CHAPTER 5. RESULTS 5.6. RESULT FROM THE CLUSTER ANALYSIS STAGE

the previous false positive rate after the classi�cation stage, which were 0.059%.
Given these points, the cluster analysis stage seem to improve both the true
positive rate and false positive rate, compared to using the classi�cation stage
alone and is therefore examined further.

At this moment, due to computational constraints and time consumption of
the program, it is a rather overwhelming task to evaluate a satisfying amount
of images that would be necessary to examine the cluster analysis correctly.
Nevertheless, ten di�erent images are illustrated in Figure 5.10 that can give
an indication of the performance of the classi�cation system when the cluster
analysis is invovled. Green windows correspond to true positive windows and
red windows correspond to false positive windows.

If the images are visually examined before starting the classi�cation system, it is
easy to see how many wheels there are and what the desired amount of detected
wheels should be. For this reason, the true positive rate is fairly easy to derive.
On the other hand, the false positive rate is more di�cult to calculate because
there is no obvious amount of false positive windows in the images. Under these
circumstances, the false positive rate is based on the known amount of extracted
negative windows from all the images combined.

As can be seen in Figure 5.10, there are 25 car wheels in total that are fully
visible and are of interest for detection and recognition in the classi�cation
system. The system classify 23 of these correctly, therefore the true positive
rate (TPR) is 92%. On account of this, two wheels in total were misclassi�ed
giving a false negative rate (FNR) of 8%, according to Equation 2.4 on page 9.
There are 12 windows in the images that are misclassi�ed as a wheel. The total
number of extracted false positive windows is 1, 328, 400. Therefore, the false
positive rate (FPR) is 0.0009%.

In conclusion, the cluster analysis stage, based on these examined images, gen-
erates an improved true positive rate and false positive rate compared to the
previous values from Section 5.4, which corresponds to the values obtained after
the classi�cation stage in the system. However, the amount of examined images
needs to be increased in order for the cluster analysis stage to be completely
evaluated. These presented results only give an indication of how the cluster
analysis stage can improve the result.

61

5.6. RESULT FROM THE CLUSTER ANALYSIS STAGE CHAPTER 5. RESULTS

Figure 5.10: The classi�cation result after the cluster analysis stage. The green
windows correspond to true positive windows and the red windows correspond
to false positive windows.

62

Chapter 6

Conclusion

In this master thesis, a classi�cation system has been generated to detect and
recognize wheels in images based on Random Forest classi�cation. This could
work as a foundation for a vehicle counting and classi�cation system in the
future, with image based techniques.

The classi�cation system is based on �ve stages; multi-scale transformation, win-
dow extractor, pre-processing, classi�cation and cluster analysis. These stages
can be summarized as followed.

1. Multi-scale transformation

It transforms the input image into grey scale. Thereafter it rescales the
image four times by a prede�ned factor in order to create variations of the
size of the wheels in the image.

2. Window extractor

Because the location of a wheel in an image is unknown, this stage is
used for extracting an enormous amount of windows of size 32x32 pixels
from each scaled image. However, by using knowledge of the image scene,
the entire images do not need to be examined, which results in a higher
execution speed.

3. Pre-processing
For each window a feature extraction is made, which results in a feature
vector used as input to the classi�er. The feature examined in this work
corresponds to normalized intensity and Local Binary Pattern.

4. Classification
This is the main stage of the classi�cation system. The learning method
used for generating the classi�ers is Random Forest, which is constructed
by several decision trees in a combination. In order to reduce the amount

63

CHAPTER 6. CONCLUSION

of misclassi�cations of negative windows, this classi�er becomes improved
using one of the two methods: bootstrap con�guration and cascade clas-
si�cation. Both of these methods are based on Random Forest as a learn-
ing method. However, they adapt the database in order to decrease the
amount of misclassi�cations.

5. Cluster analysis
The �nal stage of the classi�cation system is to combine those predicted
windows that match the same wheels. Moreover, it removes those predic-
tions that are sparsely located, based on that they probably correspond
to false predictions.

In this master thesis, the evaluation of the result is divided into two parts
depending on where in the classi�cation system the results are examined.

The �rst part contains the result after the classi�cation stage of the system,
stage 1− 4 above, and is evaluated by means of Receiver Operating Character-
istics. As previously mentioned, the two improvement methods are in this work
generated with di�erent databases. Therefore, if the aim is to use a classi�cation
stage that results in the best general result, then the bootstrap con�guration
method should be used. It produces a true positive rate of 94.14% and a false
positive rate of 0.309%. Despite this, if the aim is to reduce the number of
misclassi�cations of negative windows as much as possible while receiving a sat-
isfying true positive rate, then the cascade classi�cation should be used instead.
On account of this method, the true positive rate is 68.38% and the false positive
rate is 0.028%.

The second part examines the result from the entire classi�cation system, stage
1− 5 above, including the cluster analysis, when the cascade classi�cation was
used. At this stage, all of the extracted windows from each examined image
need to be evaluated in the system. Due to computational constraints and time
consumption of the program, only ten input images with their corresponding
extracted windows are evaluated. Therefore, the presented result can only give
an indication of how the cluster analysis a�ects the �nal classi�cation system.
Given these points, the true positive rate is derived to be 92% and the false
positive rate is 0.0009%. In order to obtain a more certain result, the evaluation
needs to contain a larger amount of images.

64

CHAPTER 6. CONCLUSION 6.1. FUTURE WORK

6.1 Future work

In order to achieve an even higher true positive rate while reducing the false posi-
tive rate even further, the database for teaching the classi�er could be improved.
At this moment, some of the negative windows have quite similar characteristics
as a positive window. If the de�nitions for a negative and a positive window
are reviewed, then this could be avoided by excluding those similar negative
windows from the database. As a second improvement, if the amount of exam-
ples in the database is increased then the classi�er would gain more knowledge
during its training.

If this master thesis should operate as a foundation for a general system for
vehicle counting and classi�cation, then the wheels from other vehicle types
that were excluded during this work should be included. As a result, another
classi�er could be generated that is able to detect and recognize these as well.
Furthermore, an optimization of the program could lead to faster execution
time, which is a requirement if this system is to operate in real-time. This could
also be of importance for a further evaluation of the cluster analysis.

To conclude, an interesting continuation of this master thesis is to introduce
some sort of tracking technique to recognize the same wheel in di�erent images.
This could be of an assistant to evaluate which wheels that belongs to the same
vehicle. Based on this knowledge together with the location of each wheel, the
vehicles can be assigned to their corresponding vehicle class when the distances
between subsequent wheel pairs are calculated.

65

6.1. FUTURE WORK CHAPTER 6. CONCLUSION

66

Bibliography

[1] Vägtra�k- och hastighetsdata. Accessed: 30/11/2012. http:

//www.trafikverket.se/Foretag/Trafikera-och-transportera/

Trafikera-vag/Verktyg-e-tjanster-och-vagdata/

Vagtrafik--och-hastighetsdata/.

[2] Ofer Achler and Mohan M. Trivedi. Vehicle wheel detector using 2d �lter
banks. In IEEE Intelligent Vehicles Symposium, pages 25�30, June 2004.

[3] Timo Ahonen, Abdenour Hadid, Matti Pietikäinen, and Guoying Zhao.
Computer Vision Using Local Binary Patterns, volume 40 of Computational

Imaging and Vision Ser. Springer, June 2011.

[4] Timo Ahonen and Matti Pietikäinen. Face description with local binary
patterns: Application to face recognition. In IEEE Transactions on Pattern

Analysis and Machine Intelligence, volume 28 (12), pages 2037 � 2041.
IEEE Comput. Soc, December 2006.

[5] S. Sheik Mohammed Ali, Niranjan Joshi, Boby George, and Lelitha Vana-
jakshi. Application of random forest algorithm to classify vehicles detected
by a multiple inductive loop system. In 15th International IEEE Con-

ference on Intelligent Transportation Systems, pages 491�495, September
2012.

[6] Richard A. Berk. Statistical Learning from a Regression Perspective.
Springer series in statistics. Springer New York, 2008.

[7] Leo Breiman. Bagging predictors. Machine Learning, 24 (2):123�140, Au-
gust 1996.

[8] Leo Breiman. Random forests. Machine Learning, 45 (1):5�32, 2001.

[9] John Canny. A computational approach to edge detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 8 (6):679 � 698,
November 1986.

67

http://www.trafikverket.se/Foretag/Trafikera-och-transportera/Trafikera-vag/Verktyg-e-tjanster-och-vagdata/Vagtrafik--och-hastighetsdata/
http://www.trafikverket.se/Foretag/Trafikera-och-transportera/Trafikera-vag/Verktyg-e-tjanster-och-vagdata/Vagtrafik--och-hastighetsdata/
http://www.trafikverket.se/Foretag/Trafikera-och-transportera/Trafikera-vag/Verktyg-e-tjanster-och-vagdata/Vagtrafik--och-hastighetsdata/
http://www.trafikverket.se/Foretag/Trafikera-och-transportera/Trafikera-vag/Verktyg-e-tjanster-och-vagdata/Vagtrafik--och-hastighetsdata/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Jie Chen, Li hua Dou, Juan Zhang, and Li hui Zou. The comparison of two
typical corner detection algorithms. In Second International Symposium on

Intelligent Information Technology Application, volume 2, pages 211 � 215,
December 2008.

[11] Andreas Christmann and Ingo Steinwart. Support Vector Machines. Infor-
mation Science and Statistics. Springer, 2008.

[12] Alin Dobra. Decision tree classi�cation. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, Springer reference, pages 765�
769. Springer US, 2009.

[13] Wei Fan and Kun Zhang. Bagging. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, Springer reference, pages 206�
210. Springer US, 2009.

[14] Janusz Gajda, Ryszard Sroka, Marek Stencel, Andrzej Wajda, and Tadeusz
Zeglen. A vehicle classi�cation based on inductive loop detectors. In IEEE

Instrumentation and Measurement Technology Conference, volume 1, pages
460�464, May 2001.

[15] Dariu Gavrila and Stefan Munder. Multi-cue pedestrian detection and
tracking from a moving vehicle. International Journal of Computer Vision,
73 (1):41�59, May 2007.

[16] Zhang Genshan, Han Guodong, Geng Kai, and Wu Qiuhong. Video anal-
ysis system of intelligent surveillance based on bayesian. In International

Conference on Computer Science and Network Technology, volume 2, pages
1008 � 1011, December 2011.

[17] David J. Hand and Wojtek J. Krzanowski. ROC Curves for Continuous

Data. Monographs on Statistics and Applied Probability 111. CRC Press,
2009.

[18] Marko Heikkilä and Matti Pietikäinen. A texture-based method for mod-
eling the background and detecting moving objects. In IEEE Transactions

on Pattern Analysis and Machine Intelligence, volume 28 (4), pages 657 �
662, April 2006.

[19] Marko Heikkilä, Matti Pietikäinen, and Cordelia Schmid. Description of
interest regions with local binary patterns. In Pattern Recognition, volume
42 (3), pages 425 � 436. Elsevier B.V, 2009.

[20] Michael J. Jones and Paul Viola. Robust real-time face detection. Inter-

national Journal of Computer Vision, 57 (2):137�154, May 2004.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Zhou Junjing, Duan Jianmin, and Yu Hongxiao. Machine-vision based
preceding vehicle detection algorithm: A review. In 10th World Congress

on Intelligent Control and Automation, pages 4617�4622, July 2012.

[22] Nehal Kassem, Ahmed E. Kosba, and Moustafa Youssef. Rf-based vehi-
cle detection and speed estimation. In IEEE 75th Vehicular Technology

Conference, pages 1�5, May 2012.

[23] Jinhui Lan and Meng Zhang. A new vehicle detection algorithm for real-
time image processing system. In International Conference on Computer

Application and System Modeling, volume 10, pages 1�4, October 2010.

[24] Ruixin Niu, Pramod K. Varchney, and Min Xu. Detection and tracking
of moving objects in image sequences with varying illumination. In In-

ternational Conference on Image Processing, volume 4, pages 2595�2598,
October 2004.

[25] Xinting Pan, Yunlong Guo, and Aidong Men. Tra�c surveillance system
for vehicle �ow detection. In Second International Conference on Computer

Modeling and Simulation, volume 1, pages 314 � 318, January 2010.

[26] Sompoch Puntavungkour. Vehicle detection from three line scanner im-
age. In IEEE Intelligent Transportation Systems, volume 1, pages 785�788,
October 2003.

[27] C. Setchell and E.L. Dagless. Vision-based road-tra�c monitoring sen-
sor. IEE Proceedings - Vision, Image and Signal Processing, 148 (1):78�84,
February 2001.

[28] Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection
using gabor �lters and support vector machines. In International Confer-

ence on Digital Signal Processing, volume 2, pages 1019�1022, 2002.

[29] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view-based
human face detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 20 (1):39�51, January 1998.

[30] Pang-Ning Tan. Receiver operating characteristic. In Ling Liu and
M. Tamer Özsu, editors, Encyclopedia of Database Systems, Springer ref-
erence, pages 2349�2352. Springer US, 2009.

[31] Luo-Wei Tsai, Jun-Wei Hsieh, and Kuo-Chin Fan. Vehicle detection using
normalized color and edge map. IEEE Transactions on Image Processing,
16 (3):850�864, March 2007.

[32] Lipo Wang. Support Vector Machines: Theory and Applications, volume
177 of Studies in fuzziness and soft computing. Springer, 2005.

69

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Graham Williams. Data Mining with Rattle and R: The Art of Excavating

Data for Knowledge Discovery. Use R. Springer New York, 1 edition, 2011.

[34] Hwanjo Yu. Bootstrap. In Ling Liu and M. Tamer Özsu, editors, Ency-
clopedia of Database Systems, Springer reference, page 264. Springer US,
2009.

[35] Wei Zheng and Luhong Liang. Fast car detection using image strip features.
In IEEE Conference on Computer Vision and Pattern Recognition, pages
2703�2710, June 2009.

70

Master’s Theses in Mathematical Sciences 2013:E7

ISSN 1404-6342

LUTFMA-3240-2013

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Related work
	Structure of the report

	Object Detection
	The standard architecture
	Binary classification
	Database description

	Evaluation of results
	Receiver Operating Characteristic

	Background Theory
	Feature extraction
	Local Binary Pattern

	Decision trees
	Deterministic split predicates
	Greedy induction method

	Bootstrap Aggregating
	Bootstrap sample
	Majority voting

	Random Forest
	One classification tree
	Constructing the Forest and the representing model

	Improving the classification
	Bootstrap configuration
	Cascading classifier

	System Construction
	Generating the input images
	Multi-scale transformation
	Window extractor
	Positive and negative windows

	Pre-processing
	Classification
	Generating a database
	Learning and improvement

	Cluster analysis

	Results
	Asymmetric database
	Cascade classification
	Bootstrap configuration
	Comparison of improvement methods
	Result from one input image
	Result from the cluster analysis stage

	Conclusion
	Future work

