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Abstract

We test a new approach to calculate the mean velocity and velocity dispersion
for a sample of nearby stars when their radial velocities are not available. The most
commonly used method (here called the projection method, PM) was introduced in a
paper by Dehnen & Binney (1998). That method is here compared, theoretically and
numerically, with an application of the Maximum Likelihood (ML) method. The two
methods are tested on synthetically generated samples as well as on real samples from
the Hipparcos Catalogue. In general it turns out that ML is not significantly more
accurate than PM, except that ML allows to take into account observational errors and
therefore gives more correct dispersions when the uncertainty in the proper motions
is significant. Applying PM and ML to samples from the Geneva–Copenhagen survey
(Nordström et al. 2004), we find that both methods give very similar results as when
the published three-dimensional velocities are used.
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1 INTRODUCTION

1 Introduction

A paper by Dehnen & Binney (1998) explains a simple method to derive local stellar kinemat-
ics (mean velocity and velocity dispersion) for a group of stars, when the tangential velocities
are known, but not the radial velocities. Since from the Hipparcos Catalogue we can derive
the tangential velocity from the parallax and proper motion but not the full 3-dimensional
space velocity, this method is clearly very useful. The method has become popular and stan-
dard for this purpose and we will refer to it as the projection method (PM). But as derived
by Dehnen & Binney, this method is not founded on any particular estimation principle such
as the least-squares method, maximum likelihood or Bayesian estimation. We will see later
that by using this method we sometimes get an unphysical dispersion matrix. In this project
the projection method is compared, theoretically and numerically, with an application of
the Maximum Likelihood method (ML). Both methods are tested on synthetically generated
samples as well as on real samples from the Hipparcos Catalogue.

The motions of stars relative to the Sun can give us useful information about the origin
and history of the stars and also about the structure and evolution of the Galaxy. Throughout
this report we use heliocentric galactic coordinates (x, y, z) as defined in Fig. 1. The velocity
components are denoted (u, v, w), (U, V,W ) or (vx, vy, vz).

In order to see why the knowledge about local stellar kinematics is important, we mention
six areas of application:

1. Heating mechanisms in the galactic disk: The kinematics of stars in the disk in the solar
neighbourhood show several interesting systematics, such as the increase of velocity
dispersion with age (disk heating; Fig. 2), and that old stars lag behind the young
stars in the galactic rotation (asymmetric drift). Disc heating is mainly attributed to
the diffusion of stars by massive compact objects like molecular clouds (Hänninen &
Flynn 2002) and dynamical interaction with the bar or transient spiral arms (Sellwood
2011). The age-velocity dispersion relation is often given as:

σ ∝ τα, (1.1)

where σ is the velocity dispersion (along one axis, or the total dispersion) and τ is the
age. α is the heating exponent, which may be different for different heating mecha-
nisms. Different mechanisms may also give different exponents along the three axes.
Investigation of this relation therefore can give insight into the importance of different
heating mechanisms (Hänninen & Flynn 2002).

Figure 1: Heliocentric galactic coordinates: x is pointing towards the Galactic center, y in
the direction of rotation of the disk and z is normal to the plane of the disk (Lindegren 2010).
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1 INTRODUCTION

Figure 2: Increase of velocity dispersion with age (Brook et al. 2004). The triangles with
error bars show the velocity dispersions in U , V and W versus age for the solar neighbourhood
according to Quillen & Garnett (2001). The plus signs and crosses are the results of disk
galaxy simulations including merger events at look-back times of ∼ 9 Gyr.

Figure 3: The vertical distribution of A stars in the solar neighbourhood (Holmberg & Flynn
2000). The histogram shows the observed distribution and the curves are the predictions of
models with mass density ρ(0) = 0.103 M� pc−3 (dotted line) and ρ(0) = 0.093 M� pc−3

(dashed line).
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Figure 4: If we plot the velocities of stars relative to the sun in the solar neighbourhood, we
can derive the velocity ellipsoid (here shown projected in the (u, v) plane). In this plot the
origin represents the velocity of the Sun. To test if the velocity ellipsoid is not aligned with
the principal axes of the coordinate system (vertex deviation), we consider correlations such
as between u and v as shown in the diagram. It turns out that the average 〈u(v − 〈v〉〉 is
non-zero for many stellar types, which could be explained by a non-axisymmetric potential.

2. Mapping the local mass density: By differentiating the vertical Jeans equation with
respect to the height above the galactic plane, z, and using Poisson’s equation, we get
the following expression:

4πGρ(z) = −σ2
z

∂2 lnn(z)

∂z2
− 2(A2 −B2), (1.2)

(Binney & Tremaine 2008), where σz is the velocity dispersion of stars in the direction
perpendicular to the galactic plane, n(z) is the number density of stars at z, G is the
gravitational constant, ρ(z) is the mass density and A and B are Oort’s constants. This
allows to calculate the local mass density ρ(0) from the local kinematics (σz, A,B) and
the distribution of stars (Fig. 3). Using this method it has been shown that, although
there is a large amount of dark matter in the halo, the disk is dominated by the visible
matter (Holmberg & Flynn 2000; Creze et al. 1989).

3. The shape of the Milky Way potential: The velocity distribution of stars in the solar
neighbourhood is approximately an ellipsoid with its major axis (vertex) pointing to-
wards the galactic center. The angle between the major axis and the direction towards
the galactic center is called the vertex deviation (see Fig. 4). If the Galaxy was axisym-
metric, and in a steady state with stars that are distributed randomly in their orbits,
we would expect no vertex deviation thanks to the symmetry of the system. So if the
vertex deviation differs from zero, it shows that at least one of these conditions does
not hold. Vertex deviations of 10–30 degrees (the largest values for the bluest stars)
are typically measured (e.g., Bienaymé 1999). Explanations for this fact were given as
early as in the 1930’s by B. Lindblad and J. Oort (Strömgren 1987). Theorists relate
the vertex deviation to the presence of spiral arms.
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Figure 5: The dependence of the mean U , V and W velocities on the total variance S2 =
σ2
U + σ2

V + σ2
W (Dehnen & Binney 1998). For V the dotted line is the fitted linear relation,

and for U and W the lines are the mean values for stars bluer than B−V = 0. The velocity
of the Local Standard of Rest (LSR) relative to the sun is obtained by extrapolating to the
case of zero velocity dispersion.

Figure 6: Stellar streams and groups in the solar neighbourhood (Montes et al. 2001). The
two diagrams show the (U, V) and (W, V) planes for the velocities of stars that are believed
to belong to different stellar kinematic groups, identified by different symbols.
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4. Determination of the Local Standard of Rest (LSR) and the motion of the sun: We
can infer the solar motion relative to the stars from measuring either radial velocities
or proper motions of stars. The LSR is defined as the velocity vector for a star, in the
solar neighborhood, that has a circular orbit around the galactic center. In practice it
is defined by the mean motion of a population with zero random velocities. (Note that
this concept assumes an axisymmetric potential.)

We can infer the sun’s velocity relative to such a population by extrapolating the
observations to the case of zero velocity dispersion (Fig. 5). If we also know the
(circular) motion of the LSR, we have complete knowledge of the Sun’s galactocentric
motion, and its orbit can then be derived, given the galactic potential.

It is interesting to study the sun’s motion around the galactic center and perpendicular
to the plane. For example, as we pass through the densest part of the plane, gravita-
tional forces from the surrounding giant gas and dust clouds, or stars that accidentally
come close to the solar system, may dislodge comets from their paths in the Oort cloud.
The comets plunge into the inner part of the solar system, some of them colliding with
the Earth. We pass through the galactic plane every 35 to 40 million years, increasing
the chances of a comet collision severalfold (Wickramasinghe & Napier 2008). This
might be related to mass extinctions, such as that of the dinosaurs 65 million years
ago.

5. Stellar streams and groups: From stellar kinematics we also can determine the stellar
streams and groups (Fig. 6). A stellar group usually refers to a group of stars which
moves at the same velocity in the solar neighborhood although they may have different
origins. They might be part of a dissolved cluster, or they can be part of a tidal
stream after a merger process (Navarro et al. 2004). However, it is also suggested that
some (or all) of the stellar kinematic groups in the solar neighbourhood can be created
by dynamical resonances of the galactic bar (Dehnen 2000; Fux 2001) or spiral arms
(De Simone et al. 2004). Analysis of the stellar groups can thus be used to constrain
non-axisymmetric models of the Galaxy (Antoja et al. 2009).

6. Kinematic populations: Three different populations of stars in the solar neighbourhood
have been identified: thin disk stars with a small velocity dispersion, thick disk stars
with a relatively large velocity dispersion and halo stars with a very large velocity
dispersion (Fig. 7). The populations also have different mean velocities in the direction
of galactic rotation (asymmetric drift). In each population the stellar velocities are
smoothly distributed apart from streams and groups which form separate clumps in
the space velocity. Knowing the kinematics of these different populations allows us to
compute the probability that a star belongs to a certain population (e.g., Bensby et al.
2003), see Fig. 8.

The six areas mentioned above show that it is important to know the stellar kinematics
(velocity and velocity dispersion). This thesis is about how to calculate them.
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Figure 7: Schematic edge-on view of the Milky Way Galaxy, illustrating the different pop-
ulations. (Figure from the lecture notes of Prof. Dale E. Gary, New Jersey’s Science &
Technology University.)

T. Bensby et al.: Elemental abundance trends in the Galactic thin and thick disks 529

Table 1. Characteristic velocity dispersions (σU , σV , and σW ) in the
thin disk, thick disk, and stellar halo, used in Eq. (1). X is the observed
fraction of stars for the populations in the solar neighbourhood and
Vasym is the asymmetric drift. The values fall within the intervals that
are characteristic for the thin and thick disks, see Sect. 1.

X σU σV σW Vasym
[km s−1]

Thin disk (D) 0.94 35 20 16 −15
Thick disk (TD) 0.06 67 38 35 −46
Halo (H) 0.0015 160 90 90 −220

described in Sect. 5. In Sect. 6 we describe the atomic data,
the log g f -values in particular, that have been used in the abun-
dance determination. Section 7 explores the errors, both ran-
dom and systematic, that are present in the abundance determi-
nation, and the most probable error sources. The determination
of stellar ages is described in Sect. 8, and then, in Sect. 9, we
present our resulting abundances relative to Fe andMg in terms
of diagrams where [X/Y]1 is plotted versus [Y/H] (where Y is
either Fe or Mg). In Sect. 10 our abundance results are fur-
ther discussed in the context of Galactic chemical evolution.
Constraints are set on the different formation scenarios for the
thick disk and we discuss the most likely scenario. Section 11
summarizes our findings.

2. The stellar sample

There is no obvious predetermined way to define a sample
of purely thick disk stars (or thin disk stars!) in the solar
neighbourhood. There are essentially two ways of finding local
thick or thin disk stars; the pure kinematical approach (that we
adopted), or by looking at a combination of kinematics, metal-
licities, and stellar ages (e.g. Fuhrmann 1998). Both methods
will produce, for example, thick disk samples that are “con-
taminated” with thin disk stars. In this study we have tried to
minimize this type of contamination by selecting thin and thick
disk stars that kinematically are “extreme members” of their
respective population.

The selection of thick and thin disk stars is done by assum-
ing that the Galactic space velocities (ULSR, VLSR, and WLSR,
see Appendix A) of the stellar populations in the thin disk, the
thick disk, and the halo have Gaussian distributions,

f (U, V, W) = k · exp

−
U2
LSR

2σ2U
− (VLSR − Vasym)

2

2σ2V
−
W2
LSR

2σ2W


 , (1)

where

k =
1

(2π)3/2σUσVσW
(2)

normalizes the expression, σU , σV , and σW are the character-
istic velocity dispersions, and Vasym is the asymmetric drift.
Table 1 lists the values we adopted for the three populations
(J. Holmberg 2000, private comm.).

1 Abundances expressed within brackets are as usual relative to so-
lar values where, for element X, [X/H] = log(NX/NH)#−log(NX/NH)".

Fig. 3. Toomre diagram for our stellar sample. Dotted lines indicate
constant peculiar space velocities, vpec = (U2

LSR + V
2
LSR + W

2
LSR)

1/2,
in steps of 50 km s−1. Stars that we discuss in Sect. 9.4 have been
identified with their Hipparcos numbers. Thin disk stars are marked
by empty circles and thick disk stars by filled (black: TD/D> 10, grey:
1<TD/D< 10) circles.

For a given star, when computing the relative likelihoods of
belonging to either the thick or the thin disk, one has to take in
to account that the local number densities of thick and thin disk
stars are different. In the solar neighbourhood 94% of stars be-
long to the thin disk whereas only 6% belong to the thick disk
(according to Robin et al. 1996 or Buser et al. 1999). To really
get the probability (which we will call D, TD, and H, for the
thin disk, thick disk, and stellar halo, respectively) that a given
star belongs to a specific population we therefore have to multi-
ply the probabilities from Eq. (1) by the observed fractions (X)
of each population in the solar neighbourhood. By then divid-
ing the thick disk probability (TD) with the thin disk (D) and
halo (H) probabilities, respectively, we get two relative prob-
abilities for the thick-disk-to-thin-disk (TD/D) and thick-disk-
to-halo (TD/H) membership, i.e.

TD/D =
XTD
XD
· fTD
fD
, TD/H =

XTD
XH
· fTD
fH
· (3)

For 10 166 stars (binaries excluded) in the solar neighbour-
hood, Feltzing et al. (2001) derived photometric metallicities 2
(note that they could only derive good ages for ∼6000 of
these stars). As a basis for their determinations they used the
Hipparcos catalogue (ESA 1997) and Strömgren photometry
from Hauck & Mermilliod (1998). Magnitudes and colours
were corrected for interstellar reddening by the model by
Hakkila et al. (1997) and for Lutz-Kelker bias by the mean
bias correction term from Koen (1992). Effective temperatures
were derived using the calibration by Alonso et al. (1996) and
2 Metallicities derived from photometry are denoted by “[Me/H]”.

Spectroscopic “metallicities” are denoted by “[Fe/H]” and measure
the iron content of the stars.

Figure 8: Toomre diagram for a local stellar sample (Bensby et al. 2003). ULSR, VLSR,
WLSR are velocities relative to the Local Standard of Rest. Dotted lines indicate constant
peculiar space velocities, v = (U2

LSR + V 2
LSR + W 2

LSR)1/2, in steps of 50 km s−1. Stars are
shown with their Hipparcos numbers. Thin disk stars are marked by empty circles and thick
disk stars by filled (black and gray) circles.
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2 PREVIOUS WORK

Figure 9: Illustration of the kinematic parameter v̄ (mean velocity) and D (velocity dis-
persion). The components of D define the axes of the velocity ellipsoid (their lengths and
orientations).

2 Previous work

2.1 Definitions

For a homogeneous population of stars the phase space density f(r,v, t) describes the density
of stars as a function of position (r), velocity (v) and time t. By the local kinematics we
mean the distribution function here (r = 0) and now (t = 0), that is f(v) ≡ f(0,v, 0).
It is usually assumed that f(v) is a smooth function, and the most common assumption
is the Schwarzschild approximation, that f(v) is a three-dimensional Gaussian distribution
(velocity ellipsoid), or a combination of a few Gaussian distributions. The velocity ellipsoid
is completely described by the mean velocity v and dispersion tensor D (Fig. 9). These
quantities are defined as:

v̄ = 〈v〉 (2.1)

D = 〈(v − v̄)⊗ (v − v̄)〉, (2.2)

where v is the heliocentric velocity of a star and the angular brackets 〈·〉 denote averages or
expected values.1 Given vi, i = 1, 2, ..., n from a sample of stars we can estimate v̄ and D
as:

v̄ =
1

n

n∑
i=1

vi, (2.3)

D =
1

n

n∑
i=1

(vi − v̄)(vi − v̄)T (2.4)

2.2 The Projection Method (PM)

2.2.1 Description of the method

From the Hipparcos Catalogue we can get the parallaxes and proper motions of the stars
near the sun. But the Hipparcos astrometry mission was not complemented by a program to

1a⊗ b is the outer product of vectors a and b, which gives a tensor of rank 2. In the x, y, z coordinates
this is the matrix:

a⊗ b = abT =

ax
ay
az

 · (bx by bz
)

=

axbx axby axbz
aybx ayby aybz
azbx azby azbz

 .
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! = T v

v
vr

tangent plane 
of the sky

Figure 10: Decomposing the velocity vector v in the radial (vr) and tangential (τ ) compo-
nents. T is the tangential projection matrix.

measure the radial velocities of the same stars, so we do not know the space velocities of all
the stars but only their tangential velocities. In order to calculate the full three-dimensional
kinematics we need to use statistics for a sample of stars. Dehnen & Binney (1998) gives
the following method to get the mean velocity v̄ and velocity dispersion D from tangential
velocities.

For each star (i), we do not know the full three-dimensional vector vi, but only its
projection τ i on the tangent plane in the sky (Fig. 10). The two vectors are related by:

τ i = T ivi , (2.5)

where T i is the tangential projection matrix given by

T i = I − ui ⊗ ui, (2.6)

where I is the identity matrix and ui is the unit vector normal to the tangential plane (i.e.,
unit vector towards the star). T i is a singular matrix for any i, so it is not possible to solve
vi from Equation (2.5). Knowing the tangential velocities for a number of stars scattered
on the sky is however enough to compute 〈v〉 as follows: T i depends only on the position
of the star, and if we assume that the velocity distribution is constant within the volume
under study, it is statistically independent of vi. So taking the average over the stars in the
sample gives:

〈τ i〉 = 〈T ivi〉 = 〈T i〉〈vi〉. (2.7)

We could separate 〈T ivi〉 because of the the statistical independence of T i and vi. The
mean velocity can now be obtained as:

v̄ = 〈vi〉 = [〈T i〉]−1〈τ i〉, (2.8)

since 〈T i〉 turns out to be non-singular if stars are reasonably scattered on the sky.
We can also obtain a symmetric 3×3 matrix D for the velocity dispersion, if we consider

the tangential component of each star’s peculiar velocity

∆τ i = τ i − T iv̄, (2.9)

which can be computed from the Hipparcos data when we know v̄. By looking at the scatter
of ∆τ in different directions we can have the full 3 × 3 matrix for the velocity dispersion.
The detailed calculation of D from ∆τ is described in Dehnen & Binney (1998).

8
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Table 1: Positions and velocities for a sample of five stars used to demonstrate that the
projection method may give an unphysical dispersion matrix. (l, b) are the galactic longitudes
and latitudes, and vx, vy, vz the velocity components along the galactic axes.

i l b vx vy vz
– [rad] [rad] [km s−1] [km s−1] [km s−1]

1 −0.3409 −0.0609 −43.456 14.209 13.515
2 −2.0634 0.5882 29.433 10.741 3.335
3 −1.3504 −0.0443 2.379 29.042 17.864
4 0.2081 0.3700 −2.289 4.561 2.985
5 −0.6366 0.5388 22.934 33.692 3.087

2.2.2 Deficiencies of the Projection Method

As mentioned before the projection method has been widely used for this purpose. In
addition to the original work by Dehnen & Binney (1998), the same method (or variants of
it) has been used, e.g., by Mignard (2000), Brosche et al. (2001), van Leeuwen (2007), and
Aumer & Binney (2009). Despite of the wide usage of the method, it has deficiencies which
could make the method less reliable. Firstly the uncertainty in the data is not considered,
meaning that even if we take the case when the true velocity dispersion is zero, because of
the observational errors, the velocity dispersion calculated with this method will not be zero.
So we probably overestimate the values for the velocity dispersion.

Secondly, when using the projection method it is possible to get a dispersion matrix D
which is not positive-definite.2 This is unphysical, because it would mean that the squared
velocity dispersion is negative in some direction. The velocity along unit vector u is vu =
uTv. Then:

v2u = uTvvTu⇒ 〈v2u〉 = uT 〈vvT 〉u = uTDu, (2.10)

which is positive for all directions u if and only if D is positive-definite.

2.2.3 An example when the Projection Method fails

We now give a simple example where the projection method gives a dispersion matrix which
is not positive-definite. The fewer number of stars we pick for our sample the more likely this
will happen. Since there are 9 parameters in 〈v〉 and D and each star gives two components
of the tangential velocity, the smallest sample for which we can compute the parameters is
n = 5 stars. If we can find an example with five stars that gives a negative D we have shown
that the method is, in principle, mathematically invalid. In Table 1 the positions and true
velocities of a sample of five stars are shown. The dispersion matrix estimated from full the
3-dimensional vectors is:

D3D =
1

n

n∑
i=1

(vi − v̄)(vi − v̄)T =

655.010 72.796 −91.224
72.796 122.961 22.364
−91.224 22.364 39.728

 . (2.11)

By its construction, this matrix is positive definite.

2Mathematically, that D is positive-definite means that uTDu > 0 for all u 6= 0. For example, the
identity matrix I is positive-definite, since uT Iu = uTu = ‖u‖2 > 0 if u 6= 0.
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Using the projection method we get the following dispersion matrix:

DPM =

192.224 228.333 −56.623
228.333 144.605 58.493
−56.623 58.493 −36.904

 . (2.12)

This matrix is clearly not positive definite since it has a negative element on its diagonal.
In Sect. 3.6 we will try the Maximum Likelihood method on the same sample.

2.3 Other methods

There have been some other attempts to calculate the three-dimensional kinematics by using
Hipparcos data (tangential velocity from parallax and proper motion, etc). For example Hogg
et al. (2005) developed a general algorithm which works with missing data (in this case the
radial velocity). It also calculates the covariance of the measurement uncertainties on the
tangential velocity components. They applied their algorithm to a kinematically unbiased
sample of 11 865 stars from Hipparcos Catalogue all chosen to have parallaxes measured at
signal to noise ratio π/σπ > 10. They modeled each color-selected bin of stars as a mixture
of two three-dimensional Gaussian ellipsoids. One Gaussian is for the halo which is fixed
at the known mean velocity −220 km s−1 in the y direction and an isotropic dispersion of
100 km s−1. The other Gaussian is an ellipsoid describing the disk population with a mean
velocity vdisk (three parameters) and dispersion tensor V disk (six parameters). The fraction
of halo stars is αhalo. They also used artificial data sets with the same error properties
as Hipparcos to show that the analysis is unbiased. They consider the tangential velocity
as the low dimension observations wi that are noisy projections of higher dimensions true
velocities vi drawn independently and identically distributed from a probability density
function p(v). A model for p(v) is fitted using projected velocities wi, their covariances Si,
and the projection matrices Ri. In order to optimize the p(v) (with 10 parameters vdisk,
V disk, αhalo for each sample), they see higher dimensional quantities as hidden variables and
use an algorithm called EM (expectation-maximization; Dempster et al. 1977) to iteratively
maximize the likelihood function. The algorithm starts with the starting parameters given by
the user and the iterations generate a sequence of the wanted parameters that monotonically
increase the likelihood of a fixed data set under the model. If the derivative ofwi with respect
to the Hipparcos entries ci is represented by a matrix Qi:

dwi = Qidci, (2.13)

then the measurement uncertainty covariance Si for wi is given as:

Si = QiCiQ
T
i , (2.14)

where Ci is the single-star covariance matrix from the Hipparcos Catalogue. This is accurate
in small parallax errors and the whole procedure ignores star-to-star covariance since it is
not reported in the Hipparcos Catalogue. For the velocity of the sun relative to LSR they
find:

v� =

10.1± 0.5
4.0± 0.8
6.7± 0.2

 km s−1 (2.15)

where Dehnen & Binney (1998) obtained:

v� =

10.00± 0.36
5.25± 0.62
7.17± 0.38

 km s−1 (2.16)
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The authors show that their method is insensitive to the assumption of Gaussian veloc-
ity distribution. However they claim that the incorrect assumption of Gaussianity enters
differently in Dehnen & Binney (1998), which may account for the differences in result.

Our project differs from Hogg et al. (2005) in several respects. For example, we treat
the error in parallax differently and also the methods to optimize the likelihood function are
different. Hogg et al. (2005) also consider their stars to be from two different populations
where we consider only one.

Another paper by Branham (2004) makes a quadric surface fit to the velocity components
by means of total least square (TLS). It reduces the data by calculating an ellipsoid which
represent a global minimum of the reduction criterion. The reduction technique allows for
error in parallax and implements a more rigorous reduction model than statistical moments.
The method suffers from severe drawbacks however, and it is not recommended for the general
use. Instead Branham (2004) is using a more complicated technique called semidefinite
programming, which does not allow for the error in parallax but works to calculate the
velocity ellipsoid. The description of the method is however rather obscure and difficult to
follow, and it appears that the method has not been used in the literature.

11
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3 A Maximum Likelihood (ML) approach

3.1 What is Maximum Likelihood?

Maximum Likelihood (ML) is a statistical method to fit a probabilistic model to data and
estimate the model parameters θ. The likelihood function is defined as follows: Given
data x and a probabilistic model f(x|θ) (that is, x has the probability density function
f(x|θ) depending on the parameters θ) the likelihood function is L(θ|x) = f(x|θ). The
log-likelihood is l(θ|x) = ln[L(x|θ)]. The maximum likelihood estimate (MLE) θ̂ is the
point in parameter space where the likelihood function (or the log-likelihood) has its global
maximum: L(θ̂|x) ≥ L(θ|x) ⇔ l(θ̂|x) ≥ l(θ|x) for given data x and any θ. Since θ̂ is a
function of the data, the MLE is a statistic (Fig. 11). Normally, it can be obtained by solving
the likelihood equations:

∂l(θ|x)

∂θj
= 0, j = 1 . . .m (3.1)

where m = dimθ is the number of model parameters.

Figure 11: This diagram shows the relation between the probability density function (pdf) of
data x, and the likelihood function of a parameter θ. Given the observed data xi, the model
with parameter θ = θ1 is more likely than the same model with parameter θ = θ2.

3.2 Model assumptions

We assume that the distribution of velocity in all directions and also the distribution of
observational errors are Gaussian. That is, the velocity of a star follows a 3-dimensional
normal distribution, v ∼N(v̄,D). Given the position and true parallax p of the star we can
calculate its true proper motion in longitude and latitude, (µl, µb). Adding errors to these we
get the observed proper motions µ̃l ∼ N(µl, σµ), µ̃b ∼ N(µb, σµ) and the observed parallax
p̃ ∼ N(p, σp). The observational uncertainties σµ and σp are assumed to be known. The ML
formulation requires that the probability density function of the observed data (m̃ul, µ̃b, p)
is written as a function of the model parameters.
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3.3 Exact expression for the likelihood

For a problem involving n stars, the parameters of the model are:

• v̄ = the mean velocity of the stellar population (a 3-vector, or 3× 1 matrix);

• D = the dispersion tensor of the stellar population (a symmetric 3 × 3 matrix, so it
contains 6 non-redundant elements);

• p = the true parallaxes of the stars (an n-vector, or n× 1 matrix).

It is necessary to introduce the true parallaxes pi as formal model parameters, although the
strategy is that they will be eliminated on a star-by-star basis, leaving us with a problem with
only nine model parameters, viz. the (non-redundant) components of v̄ and D. We denote
by the vector θ the complete set of model parameters (i.e., the unknowns to be estimated).
For n stars the total number of model parameters is n + 9. The observables are, for each
star i = 1 . . . n, the observed components of proper motion, µ̃li and µ̃bi, and the observed
parallax p̃i. The total number of observables is 3n. These have observational uncertainties
that are given by the 3 × 3 covariance matrix Ci. Sometimes it is useful to denote by the
vector x the complete set of observables (or data).

Given the observations, the likelihood function L(θ) ≡ L(v̄,D,p) numerically equals the
probability density function (pdf) fx(x|θ) of the observables (x), given the model parameters

(θ). The objective is to find the Maximum Likelihood (ML) estimate of θ, denoted θ̂, i.e.,
the (hopefully unique) set of parameter values that maximizes L(θ) or, equivalently, the
log-likelihood `(θ) = lnL(θ).

We have the total log-likelihood function

`(v̄,D,p) =
∑
i

[ln fµ̃,i(µ̃i|pi) + ln gi(p̃i − pi)] , (3.2)

where gi is the centered normal pdf with standard deviation σp,i = [Ci]
1/2
33 , i.e., the uncer-

tainty of the parallax pi. It is clear that the parameter pi only affects the ith term in the
sum above. Therefore, when maximizing with respect to pi we only need to consider that
one term. For simplicity we drop, for the moment, subscript i so that the term to consider
(for one star) can be written

`(v̄,D, p) = ln fµ̃(µ̃|p) + ln g(p̃− p) , (3.3)

where g is the normal pdf with standard deviation σp. Note that fµ̃(µ̃|p) of course depends
on v̄ and D as well, although it is only the dependence on p that matters here. In order to
make the Maximum Likelihood estimation we need an explicit expression for the pdf fµ̃(µ̃|p)
of the observed proper motion µ̃ when the true parallax p is known. It is assumed to be a
two-dimensional normal distribution with expected value

E [µ̃] = Mv̄ . (3.4)

Here, M is the 2× 3 matrix

M =
p

K

[
− sin l cos l 0

− cos l sin b − sin l cos b cos b

]
(3.5)

projecting any vector (in this case v̄) to its components in the directions of increasing galactic
coordinates l and b, and the factor p/K converts the velocity to proper motion. K = 4.7405
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3 A MAXIMUM LIKELIHOOD (ML) APPROACH

is the numerical constant relating mas yr−1 to km s−1 kpc−1. The covariance of µ̃ is assumed
to be the sum of the covariance due to the velocity dispersion and the covariance due to the
observational errors, i.e.:

Cov [µ̃] ≡ Cµ̃ = MDMT +

[
σ2
µl ρσµlσµb

ρσµlσµb σ2
µb

]
; (3.6)

where σµl and σµb are the observational uncertainties in µl and µb, and ρ their correlation
coefficient. The pdf is then

fµ̃(µ̃|p) = (2π)−1 |Cµ̃|−1/2 exp

[
−1

2
(µ̃−Mv̄)

′
C−1µ̃ (µ̃−Mv̄)

]
. (3.7)

3.4 Eliminating the parallaxes

As we see in above equations, we have too many parameters which makes it very difficult
to maximize the likelihood function in Eq. (3.2). So we want to eliminate p by finding the
maximum of Eq. (3.3) with respect to p for each star. Because of the very complicated
expression for fµ̃(µ̃|p) it is not likely that this can be done exactly, by analytical means,
but we can find an approximate solution valid in the limit of small relative parallax error,
σp/p� 1. To obtain this, we take the partial derivative of (3.3) with respect to p and set it
equal to 0. Using that g(x) = (2πσ2

p)−1/2 exp(−x2/2σ2
p) we find

0 =
∂`

∂p
=
∂ ln fµ̃(µ̃|p)

∂p
+

1

σ2
p

(p̃− p) , (3.8)

from which

p = p̃+ σ2
p

∂ ln fµ̃(µ̃|p)
∂p

. (3.9)

So far no approximation has been made. However, the derivative on the right hand side is to
be evaluated for the true parallax, which means that we have not really solved the problem.
However, if σp � p we can approximate the derivative by its value at p̃, rather than p. This
is safe to do under the assumption of small relative parallax error, since it means that p̃
is always positive. (It would not have been possible to evaluate fµ̃ for zero or negative p.)
Thus we have the approximation

p ' p̃+ σ2
p

(
∂ ln fµ̃(µ̃|p)

∂p

)
p=p̃

, (3.10)

which is obviously correct to first order in σ2
p. Let us introduce the function

F (p) ≡ ∂ ln fµ̃(µ̃|p)
∂p

(3.11)

so that the result can be written
p ' p̃+ σ2

p F (p̃) . (3.12)

Since our objective was to eliminate p from the expression for the log-likelihood function,
let us now introduce the approximate result (3.12) into the log-likelihood term (3.3). Using
the first-order Taylor expansion

ln fµ̃(µ̃|p) ' ln fµ̃(µ̃|p̃) + (p− p̃)F (p̃) (3.13)
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the total likelihood function becomes:

`(v̄,D) ' ln fµ̃(µ̃|p)− (p̃− p)2

2σ2
p

− 1

2
ln(2πσ2

p) (3.14)

Replacing from Eq. (3.12) we get:

`(v̄,D) ' ln fµ̃(µ̃|p̃) + σ2
pF (p̃)2 −

σ4
pF (p̃)2

2σ2
p

. (3.15)

Here we have neglected the additive constant − 1
2 ln(2πσ2

p), since it does not depend on the
model parameters and therefore is irrelevant for the ML problem. So the likelihood equation
for one star finally becomes:

`(v̄,D) ' ln fµ̃(µ̃|p̃) +
1

2
σ2
p F (p̃)2 . (3.16)

Recalling that this was just the log-likelihood term for one star, the total log-likelihood
function, after maximization with respect to p, is therefore:

`(v̄,D) '
∑
i

[
ln fµ̃,i(µ̃i|v̄,D, p̃i) +

1

2
σ2
p,i Fi(p̃i)

2

]
. (3.17)

3.5 Numerical solution method

Since the derivatives of Eq. (3.17) becomes very complicated and almost impossible to solve,
we had to use numerical methods instead. So a MATLAB program was written to make
the ML estimate of our model parameters, v̄ and D. In order to maximize Eq. (3.17) we
use the simplex method called fminsearch in MATLAB. This is a numerical minimization
algorithm in which we do not need to have the derivatives. The simplex algorithm is well
explained in Numerical Recipes (Press et al. 2007).

As soon as we have enough stars in the sample the fminsearch algorithm works fine but
we have two situations in which the algorithm does not work properly. The first case happens
when we have very small parallaxes or very large tangential velocities for some stars. The
second case is when we have a small sample of stars. In both situations it can happen that
the estimated dispersion becomes zero in some direction. That is because sometimes the
measurement errors are enough to explain the dispersion and then fminsearch will try to
make the contribution from D in that direction equal to zero. The result is a semi-definite
dispersion matrix, which fminsearch cannot handle.3

In order to compute a solution even in these cases, we introduced a regularization pa-
rameter α > 0. The regularized log-likelihood is:

`(v̄,D) '
∑
i

[
ln fµ̃,i(µ̃i|v̄,D, p̃i) +

1

2
σ2
p,i Fi(p̃i)

2

]
− α ln

Smax

Smin
, (3.18)

where Smax and Smin are the extreme singular values of the singular value decomposition4

of D. Smax/Smin is the square of the ratio of the longest and shortest axes of the velocity

3It is not clear if it is the mathematical problem itself that is degenerate, or if it is only the numerical
optimization that fails. It would have been interesting to try a different optimization algorithm, if time had
permitted.

4Singular value decomposition (SVD) is a factorization of a real or complex matrix, with many applications
in data analysis. The SVD of D is D = UΣUT, where U is an orthogonal matrix and Σ is a diagonal
matrix of singular values. Smax and Smin are the maximum and minimum diagonal elements of Σ. For a
dispersion matrix, the singular values equal the variances along the principal axes of the dispersion ellipsoid.
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ellipsoid (Fig. 12). If α is large fminsearch will try to make Smax = Smin, and we get an
isotropic velocity dispersion in the limit of large α. In order to use as little regularization
as necessary, we try Eq. (3.18) with α = 0 and, if diverging, increase α by steps of 0.5 until
fminsearch converges. The result is a dispersion matrix that is always positive-definite, but
when α > 0 it is more isotropic than it should be (Table 2).

Figure 12: Regularization tends to make estimated velocity ellipsoid more isotropic by reduc-
ing the ratio Smax/Smin, which is the square of the ratio of the longest to the shortest axis.

Table 2: An example with 100 stars illustrating how the estimated velocity dispersion depends
on the value of α. In this case α = 0 would actually be used (no regularization). The solutions
for α > 0 were only made to show that the velocity dispersion becomes more isotropic when
regularization is used.

parameters: ū v̄ w̄ σu σv σw

true values 10.000 15.000 7.000 22.000 14.000 10.000
α = 0.0 10.090 14.775 7.083 21.712 13.636 9.783
α = 0.5 10.033 14.808 7.090 21.610 13.638 9.902
α = 1.0 10.032 14.806 7.091 21.429 13.619 10.041
α = 1.5 10.031 14.805 7.093 21.251 13.604 10.182
α = 2.0 10.029 14.804 7.094 21.076 13.591 10.324
α = 10.0 10.015 14.824 7.143 18.587 13.845 12.819

Also to calculate the derivative in Eq. (3.11) we need to do it numerically in MATLAB.
The following approximation is used:

∂ ln fµ̃(µ̃|p)
∂p

' fµ̃(µ̃|p+ σp)− fµ̃(µ̃|p− σp)
2σp

(3.19)

This is done in the MATLAB function dpdf.

3.6 A test example

We apply the ML method to the same test example as in Sect. 2.2.3. With the projection
method we got the unphysical dispersion matrix in Eq. (2.12). With the ML method we get
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a positive-definite matrix, but unfortunately we need regularization to prevent divergence.
In this example we needed to set α = 2 to get the numerical algorithm to converge. The
resulting dispersion matrix is:

DML =

83.061 31.615 0.017
31.615 80.574 0.016
0.017 0.016 50.178

 (3.20)

Comparing with DPM from Sect. 2.2.3, it is not obvious that the ML result is better in this
case, even if the matrix is positive-definite.

4 A comparison of PM and ML results

Here we test both methods, using much larger synthetic samples with known mean velocity
and dispersion matrix.

4.1 Generation of data

The generation of synthetic data follows the probabilistic model outlined in Sect. 3.2. Ob-
servational uncertainties were set to σµ = 1, 3, 10 and 30 mas yr−1 for the proper motions,
and to σp = 1 mas for the parallaxes.

4.1.1 Generating positions

We started by simulating the random positions for 2000 stars with a uniform density within
a radius of R = 100 pc from the sun. First we generated random coordinates x, y, z with a
uniform density in [−R,R] for each axis. Then we calculated the distance r =

√
x2 + y2 + z2

from the sun and rejected the point if r > R. This was repeated until we had 2000 accepted
points. From the rectangular coordinates the galactic longitude l and galactic latitude b are
obtained as follows:

l = atan2(y, x) (4.1)

b = atan2(z,
√
x2 + y2) (4.2)

Then for any position in sky (l, b) we define three orthogonal unit vectors,

u =

 cos b cos l

cos b sin l

sin b

 l =

 − sin l

cos l

0

 b =

 − sin b cos l

− sin b sin l

cos b

 (4.3)

(Fig. 13), where u is the direction towards the star, and l and b are unit vectors in the
tangential plane in the sky, +l in the direction of increasing longitude, and +b in the direction
of increasing latitude. [u, l, b] is called the normal galactic triad at the point (l, b).

4.1.2 Generating the velocity vector

We randomized the velocity of each star using a normal distribution with the mean parameter
v̄ = (10, 15, 7)T km s−1 and dispersion matrix D = diag(222, 142, 102) km2 s−2.
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Figure 13: Definition of the normal galactic triad [u, l, b] for the arbitrary point (l, b) on
the sky (Lindegren 2010). GC is the direction towards the galactic center, l is the galactic
longitude and b the galactic latitude.

4.1.3 Generating the true parallax and true proper motion

The true parallax is calculated as:

p =
1000 mas

r
(4.4)

and the true proper motion in longitude and latitude as:

µl =
p

K
l · v µb =

p

K
b · v (4.5)

where K = 4.7405 km s−1 kpc−1 (mas yr−1)−1.

4.1.4 Generating the observed parallax and proper motion

In order to get the observed proper motions and parallax we need to add the errors in proper
motion and parallax to the true values. Errors were drawn from normal distributions with
zero mean value and standard deviation equal to the observational uncertainties σµ and σp.

4.1.5 Simulated data sets

The simulated data set depends on many different parameters so it is not possible to inves-
tigate the PM and ML methods for all possible combination of the parameters. We decided
to keep most of the parameters fixed (v̄, D, R and σp), and only study how the methods
perform as a function of the number of stars in the sample (n) and the uncertainty of the
proper motions (σµ). We used n = 30, 100, 300 and 1000, and σµ = 1, 3, 10 and 30 mas yr−1,
which gives 16 different combinations. For each combination we generated 100 samples by
using different seeds for the random generator. This means that the 100 samples are different
both in the generated true positions and velocities, and in the observational errors. Then we
applied the PM and ML methods to all 1600 samples and calculated mean values and RMS
variations of the estimated parameters. The results are shown in Tables 3–4 and further
analyzed below.
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4.2 Results using PM

Using the projection method to calculate velocity and velocity dispersion for the simulated
data gives the results in Table 3 and Figs. 15 and 16 (left columns). From the table and
diagrams we note two things:

1. The larger the uncertainty in proper motion is, the larger the dispersions become (they
are more biased). The effect is negligible when σµ = 1 or 3 mas yr−1, but for σµ = 10 or
30 mas yr−1 the increase in the dispersions is very significant. This can be understood
since an error of 10 mas yr−1 corresponds to a linear velocity of about 5 km s−1 at a
distance of 100 pc (the maximum distance in the sample).

2. For the smallest samples (n = 30) the resulting dispersion matrix is unphysical in about
1% of the cases (see column 3 in Table 3). For the larger samples it never happened.

Otherwise, the PM method gives good results in nearly all cases.

4.3 Results using ML

Using the Maximum Likelihood method to calculate velocity and velocity dispersion for the
simulated data gives the results in Table 4 and Figs. 15 and 16 (right columns). From the
table and diagrams we note:

1. The ML method is able to give unbiased dispersions even for the largest σµ. This
shows that the method corrects for the uncertainty in the proper motion data, which
was not the case for the PM method.

2. For the smallest samples (n = 30) and smallest σµ, the ML method sometimes required
regularization. In most of the cases when regularization was applied, it was sufficient
to use α = 0.5, which did not change the axis ratio very much. Only in very few cases
was α > 3 needed, which gave a nearly isotropic dispersion.

Except for the cases when regularization was needed, the ML method gives good results.

4.4 Comparison

Comparing the PM and ML results, they are in general quite similar. The ML method is
not significantly more accurate than the PM method, except in the cases when when σµ is
large. The ML method is able to take into account the observational errors and therefore
gives more correct dispersions (smaller bias) in those cases. However, ML sometimes has
divergence problem.

As already mentioned, the minimum number of stars that we can calculate the mean
velocity and velocity dispersion for is n = 5 (since we have 9 parameters and 2 proper
motion components per star, we must have 2n > 9). As we can see in Fig 14, the more stars
we have (more data), the more accurate values we get for our parameters. This is true for
both methods.
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Figure 14: Results illustrating how the uncertainty in dispersion depends on the number of
stars (n) in the sample. The left diagrams are for the PM method, the right diagrams for
the ML method. The diagrams show the uncertainty in σu, σv and σw versus log(2n− 9) for
σµ = 1 and 30 mas yr−1. The larger the sample is, the more accurate values we get for our
parameters in both methods. The solid line has the theoretically expected slope, −1/2.
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Figure 15: Plots illustrating velocity dispersion versus the number of stars, for different
values of σµ. Diagrams in the left column are for the projection method (PM), the right
column is for the Maximum Likelihood method (ML).
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Figure 16: Plots illustrating velocity dispersion versus uncertainty in proper motion, for
different number of stars. Diagrams in the left column are for the projection method (PM),
the right column is for the Maximum Likelihood method (ML).
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5 Application to real data

In the previous sections we tested the PM and ML methods on simulated data. This is very
useful because we know what the true values are, so we can investigate bias, and we can
simulate many samples to get reliable statistics. In this section we apply the methods to
real stellar samples.

The Geneva–Copenhagen survey of nearby F and G dwarfs (Nordström et al. 2004) is the
largest and most complete study of a magnitude-limited, kinematically unbiased sample of
stars in the solar neighbourhood. It contains the the space velocities, Strömgren photometry,
metallicities, rotation velocities and ages for more than 16 000 stars. The catalogue gives
complete (u, v, w) space velocities based on Hipparcos data and radial velocities. We have
used data from this survey to test the PM and ML methods.

Because the Geneva–Copenhagen survey gives complete space velocities, it is possible to
estimate the mean velocity and velocity dispersion directly from Eqs. (2.3)–(2.4). We use
these as the ‘true’ values for comparison with the PM and ML results.

Some stars could not be used because they did not have all the data necessary for this
study. We also eliminated stars with a large relative parallax error (p/σp) < 10) or a large
peculiar tangential velocity (|∆τ | > 200 km s−1). The remaining stars were divided into
10 bins of approximately equal size, sorted by their Strömgren color index b − y. We then
estimated v̄ and D for the 10 samples, using three different methods:

GC: using the full space velocities (u, v, w) as given in the survey catalogue,
PM: using the PM method based on the tangential velocities only,
ML: using the ML method based on the tangential velocities only.

The results are shown in Table 5 and Fig. 17.
As we can see, the PM and ML methods give almost the same results for all samples.

Also, the results of both methods agree very well with the ‘true’ values (GC). The bottom
line in Table 5 shows in how many of the 10 samples the PM or ML method gave the better
result, i.e., a value closer to the GC value. Counting all 9 parameters and 10 samples, the
PM was better in 39 out of 90 cases (43%), and ML was better in 51 cases (57%). Thus ML
is perhaps marginally better than PM, but the difference is hardly significant.

6 Conclusions

We have tried a more rigorous Maximum Likelihood (ML) approach to calculate mean veloc-
ity and velocity dispersion for a group of nearby stars. In contrast to the projection method
(PM) by Dehnen & Binney (1998) the new method takes into account uncertainties in the
data, and therefore gives more accurate results in some cases where the observational errors
are important.

When applied to very small samples (n = 30 or smaller) the PM sometimes gives un-
physical results, which is avoided with the ML method. On the other hand, ML may require
regularization for such small samples, which tends to give an almost isotropic dispersion
matrix.

Another problem with ML is that it is difficult to apply this method. It is very compli-
cated analytically, more complicated to program and also takes much more computer time
to get the solution compared to PM.
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Table 5: Results of the PM and ML applied to samples from the Geneva–Copenhagen survey
(Nordström et al. 2004). The stars are divided into color bins according to the limits in
b − y in the first column. n is the number of stars in the bin. The third column shows the
estimation method used (GC means using the full space velocities).

b− y n Method ū v̄ w̄ σu σv σw ρuv ρuw ρvw

0.205− 0.272 683
GC −11.858 −11.939 −6.751 23.718 14.064 10.523 0.260 −0.033 −0.035
PM −11.789 −12.360 −6.308 22.522 13.487 10.407 0.389 0.017 −0.097
ML −11.580 −12.012 −6.496 22.654 13.236 9.928 0.361 −0.010 −0.102

0.272− 0.296 719
GC −12.120 −12.890 −7.132 25.371 16.334 12.275 0.247 0.034 −0.012
PM −12.206 −12.841 −7.031 24.380 17.255 11.508 0.339 0.103 0.065
ML −12.215 −12.647 −7.036 24.472 16.226 11.187 0.305 0.100 −0.055

0.296− 0.313 704
GC −9.241 −13.124 −8.304 27.728 16.831 13.878 0.271 −0.027 −0.019
PM −8.988 −13.525 −7.018 27.934 17.066 13.964 0.253 −0.094 −0.061
ML −9.492 −13.194 −7.011 28.418 16.575 12.532 0.227 −0.083 0.000

0.313− 0.331 702
GC −9.107 −15.494 −7.379 30.623 17.827 13.999 0.104 −0.004 0.045
PM −9.463 −16.506 −6.664 29.986 18.532 14.284 0.111 0.024 −0.020
ML −9.523 −16.249 −7.227 30.039 17.928 13.789 0.096 0.039 −0.008

0.331− 0.348 768
GC −10.135 −15.746 −8.559 32.489 19.300 17.090 0.092 −0.151 0.009
PM −10.648 −16.478 −9.569 30.600 17.754 15.595 0.071 −0.060 0.224
ML −10.396 −15.981 −9.381 30.101 16.841 15.117 0.064 −0.061 0.145

0.348− 0.370 777
GC −7.414 −20.488 −7.073 36.753 27.695 18.590 0.142 −0.068 −0.032
PM −7.979 −19.887 −6.765 38.220 26.288 15.787 0.023 −0.125 0.242
ML −7.014 −19.370 −6.856 32.981 24.694 15.770 −0.031 0.020 0.216

0.370− 0.391 820
GC −9.677 −23.517 −7.246 40.572 28.745 21.096 0.140 −0.018 −0.082
PM −8.312 −24.032 −7.579 39.549 31.045 24.188 −0.052 −0.107 −0.087
ML −8.151 −23.242 −7.626 38.827 25.979 22.304 −0.006 −0.064 −0.041

0.391− 0.416 835
GC −11.387 −26.934 −6.958 42.065 27.055 22.001 0.144 0.002 −0.075
PM −12.929 −27.096 −7.493 40.925 24.298 22.842 0.251 0.050 −0.093
ML −12.449 −26.904 −6.991 40.013 23.276 23.160 0.213 0.040 −0.070

0.416− 0.454 865
GC −13.105 −26.997 −7.188 37.805 26.820 20.640 0.156 −0.079 0.041
PM −13.067 −27.322 −7.065 39.524 27.460 19.579 0.085 −0.123 0.063
ML −13.088 −27.283 −7.024 38.634 26.581 19.987 0.087 −0.084 0.000

0.454− 0.981 923
GC −14.276 −25.999 −8.550 41.626 31.182 21.655 0.165 −0.011 0.086
PM −13.320 −27.132 −8.524 42.997 31.057 21.292 0.103 −0.073 0.068
ML −13.741 −26.293 −8.823 42.781 29.997 19.592 0.143 −0.104 −0.022

PM better 4 2 4 5 7 6 4 2 5
ML better 6 8 6 5 3 4 6 8 5

25



6 CONCLUSIONS

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

b−y

lo
g
σ
u
[k
m
/
s]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
1

1.1

1.2

1.3

1.4

1.5

1.6

b−y

lo
g
σ
v
[k
m
/
s]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.9

1

1.1

1.2

1.3

1.4

1.5

b−y

lo
g
σ
w
[k
m
/
s]

Figure 17: Velocity dispersion versus color index b− y for stars in the Geneva–Copenhagen
survey. Dispersions calculated directly from GC data are shown as blue squares, PM results
as green rhombi, and ML results as red circles.
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A MATLAB CODES

Appendix

A MATLAB codes

This Appendix lists the MATLAB codes used in this thesis. Figures 18 and 19 show how
they are related.

Figure 18: Diagram illustrating the relation between codes to calculate the parameters using
the simulated data.

Figure 19: Diagram illustrating the relation between codes to calculate parameters using real
data (Geneva–Copenhagen survey).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% mainMC - main program to make Monte Carlo simulations

% for testing PM and ML methods.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

global alpha

global loglik neglmin it

neglmin = 1e300;

it = 0;

% max distance [pc]

rmax = 100;

% true parameters [km/s] and correlation coefficients

vTrue = [ 10; 15; 7 ];

sTrue = [ 22; 14; 10 ];

rTrue(1) = 0;

rTrue(2) = 0;

rTrue(3) = 0;

% observational errors [mas/yr]

sigmaPar = 1;

sigmaMu = 1;

% number of stars per random sample

Nstars = 1000;

% number of Monte Carlo experiments

Nexp = 1;

% set seedOffset to Nexp to generate next set of Nexp experiments

seedOffset = 0;

% regularization parameter - normally, use alpha = 0

% if matrix becomes singular, try alpha = 1 (or possibly a higher value)

alpha = 0;

sigmas = [ sigmaPar, sigmaMu, sigmaMu ];

rhos = [ 0, 0, 0 ];

for Iexp = 1:Nexp
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seed = seedOffset + Iexp;

% generate sample

fprintf(’\nNstars, Nexp, Iexp = %d %d %d\n’, Nstars, Nexp, Iexp);

[ sample ] = simulateSample(Nstars, rmax, vTrue, sTrue, sigmas, seed);

dlmwrite(’sample.txt’, sample, ’precision’, 10, ’newline’, ’pc’);

sample = dlmread(’sample.txt’);

fprintf(...

’true values: %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %6.3f %6.3f %6.3f\n’,...

vTrue(1:3), sTrue(1:3), rhos);

%%

% apply projection method

[ Vpm, Dpm ] = applyPM(sample);

dpm = zeros(6,1);

dpm(1) = sqrt(Dpm(1,1));

dpm(2) = sqrt(Dpm(2,2));

dpm(3) = sqrt(Dpm(3,3));

dpm(4) = Dpm(1,2)/(dpm(1)*dpm(2));

dpm(5) = Dpm(1,3)/(dpm(1)*dpm(3));

dpm(6) = Dpm(2,3)/(dpm(2)*dpm(3));

fprintf(...

’PM: %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %6.3f %6.3f %6.3f\n’,...

Vpm(1:3), dpm(1:6));

%%

% apply Maximum Likelihood method, using velocities from PM as starting

% values

alpha = 0;

exitflag = 0;

while (exitflag ~= 1)

V0 = Vpm;

D0 = zeros(3,3);

for i = 1 : 3

D0(i,i) = max(Dpm(i,i),10);

end

[ Vml, Dml, exitflag ] = applyML(sample, V0, D0);

if (exitflag ~= 1)

alpha = alpha + 0.5;

fprintf(’trying alpha = %f\n’,alpha);

end

end

dml = zeros(6,1);

dml(1) = sqrt(Dml(1,1));

dml(2) = sqrt(Dml(2,2));

dml(3) = sqrt(Dml(3,3));

dml(4) = Dml(1,2)/(dml(1)*dml(2));
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dml(5) = Dml(1,3)/(dml(1)*dml(3));

dml(6) = Dml(2,3)/(dml(2)*dml(3));

fprintf(...

’ML: %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %6.3f %6.3f %6.3f %6.2f\n’,...

Vml(1:3), dml(1:6), alpha);

% write line of data to results table

table = [ Nstars, rmax, vTrue(1:3)’, sTrue(1:3)’, sigmaPar, sigmaMu, ...

seed, Vpm(1:3)’, dpm(1:6)’, Vml(1:3)’, dml(1:6)’ ];

dlmwrite(’results.txt’, table, ’precision’, 10, ’newline’, ’pc’,...

’-append’);

%%

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% simulateSample - function called by mainMC that simulates a sample of n

% stars with given parameters:

% n = number of stars to simulate

% rmax = max distance from sun [pc]

% vTrue = true mean velocity [km/s]

% sTrue = true velocity dispersions in x, y, z [km/s]

% sigmas(1:3) = observational errors in (par, mul, mub) [mas, mas/yr]

% seed = seed for random number generator

% Returns an array sample() with one line per star and 9 columns,

% similar content as the first 9 columns generated by hipgal

% (hip, lDeg, bDeg, p, mul, mub, sPar, sMul, sMub).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ sample ] = simulateSample(n, rmax, vTrue, sTrue, sigmas, seed)

% Set constants

K = 4.7405;

sigmaPar = sigmas(1);

sigmaMul = sigmas(2);

sigmaMub = sigmas(3);

% Assign array for output

sample = zeros(n,9);

% initialize random generator

RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,seed));

% simulate n stars

for i = 1 : n

% generate (x,y,z) random within radius of rmax

r = 2*rmax;

while (r > rmax)

x = rmax * (2*rand() - 1);

y = rmax * (2*rand() - 1);

z = rmax * (2*rand() - 1);

r = sqrt(x^2 + y^2 + z^2);

end

% parallax

p = 1000/r;

% galactic longitude and latitude

l = atan2(y, x);

b = atan2(z, sqrt(x^2+y^2));
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% true space velocity

V = [ normrnd(vTrue(1),sTrue(1)) ; normrnd(vTrue(2),sTrue(2)) ; ...

normrnd(vTrue(3),sTrue(3)) ];

% unit vectors towards star and along l and b

U = [ cos(b)*cos(l) ; cos(b)*sin(l) ; sin(b) ];

L = [ -sin(l) ; cos(l) ; 0 ];

B = [ -sin(b)*cos(l) ; -sin(b)*sin(l) ; cos(b) ];

% true proper motions

mulTrue = L’ * V * p / K;

mubTrue = B’ * V * p / K;

% Adding observational errors

pObs = normrnd(p, sigmaPar);

mulObs = normrnd(mulTrue, sigmaMul);

mubObs = normrnd(mubTrue, sigmaMub);

sample(i,1) = i;

sample(i,2) = l * 180 / pi;

sample(i,3) = b * 180 / pi;

sample(i,4) = pObs;

sample(i,5) = mulObs;

sample(i,6) = mubObs;

sample(i,7) = sigmaPar;

sample(i,8) = sigmaMul;

sample(i,9) = sigmaMub;

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% applyPM - function called by mainMC/mainGC that applies the Projection

% Method on the simulated/real data (MC/GC).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [V, D, vPec] = applyPM(sample)

% conversion factor

K = 4.7405;

% create variables for the objects in sample

[ n ncol ] = size(sample);

l = sample(:,2) * pi / 180;

b = sample(:,3) * pi / 180;

pobs = sample(:,4);

muelobs = sample(:,5);

muebobs = sample(:,6);

%Calculating U, L and B for all stars, as well as their tangential

%velocities and their T-matrices

Tmean = zeros(3);

taumean = zeros(3,1);

for i=1:n

U = [cos(b(i)) * cos(l(i)); cos(b(i)) * sin(l(i)); sin(b(i))];

L = [-sin(l(i)); cos(l(i)); 0];

B = [-sin(b(i)) * cos(l(i)); -sin(b(i)) * sin(l(i)); cos(b(i))];

T = eye(3,3) - U * U’;

tau = K / pobs(i) * (L*muelobs(i) + B*muebobs(i));

Tmean = Tmean + T;

taumean = taumean + tau;

end

% calculating mean values

Tmean = Tmean / n;

taumean = taumean / n;

V = Tmean \ taumean;

% Calculates A

map = [ 1,1; 1,2; 1,3; 2,2; 2,3; 3,3 ];

Bm = zeros(3);

A = zeros(6);

vPec = zeros(n,1);

for i = 1:n

U = [cos(b(i)) * cos(l(i)); cos(b(i)) * sin(l(i)); sin(b(i))];

L = [-sin(l(i)); cos(l(i)); 0];

B = [-sin(b(i)) * cos(l(i)); -sin(b(i)) * sin(l(i)); cos(b(i))];
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T = eye(3,3) - U * U’;

tau = K / pobs(i) * (L*muelobs(i) + B*muebobs(i));

Deltatau = tau - T * V;

Bm = Bm + Deltatau * Deltatau’;

vPec(i) = sqrt(Deltatau’ * Deltatau);

for k = 1:6

A(k,1) = A(k,1) + T(map(k,1),1) * T(map(k,2),1);

A(k,2) = A(k,2) + T(map(k,1),1) * T(map(k,2),2) + T(map(k,1),2)...

* T(map(k,2),1);

A(k,3) = A(k,3) + T(map(k,1),1) * T(map(k,2),3) + T(map(k,1),3)...

* T(map(k,2),1);

A(k,4) = A(k,4) + T(map(k,1),2) * T(map(k,2),2);

A(k,5) = A(k,5) + T(map(k,1),2) * T(map(k,2),3) + T(map(k,1),3)...

* T(map(k,2),2);

A(k,6) = A(k,6) + T(map(k,1),3) * T(map(k,2),3);

end

end

A = A / n;

Bm = Bm / n;

bm = [Bm(1,1); Bm(1,2); Bm(1,3); Bm(2,2); Bm(2,3); Bm(3,3)];

d = A \ bm;

D = zeros(3,3);

for k = 1 : 6

D(map(k,1),map(k,2)) = d(k);

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% applyML - function called by mainMC/mainGC that applies the Maximum

% Likelihood Method (estimates V and D, using V0, D0 as starting values)

% on the simulated/real data (MC/GC).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ V, D, exitflag ] = applyML(sample, V0, D0)

global k n l b p muel mueb sigmamuel sigmamueb sigmap rho

% conversion factor

k = 4.7405;

% create variables for the objects in sample

[ n ncol ] = size(sample);

l = sample(:,2) * pi / 180;

b = sample(:,3) * pi / 180;

p = sample(:,4);

muel = sample(:,5);

mueb = sample(:,6);

sigmap = sample(:,7);

sigmamuel = sample(:,8);

sigmamueb = sample(:,9);

rho = zeros(n,1);

Roff = 1;

X0 = [ V0(1), V0(2), V0(3), 0.5*log(D0(1,1)), 0.5*log(D0(2,2)),...

0.5*log(D0(3,3)), Roff, Roff, Roff ];

options = optimset(’MaxFunEvals’, 5000, ’MaxIter’, 3000, ...

’TolFun’,1e-6, ’TolX’,1e-3, ’FunValCheck’,’on’);

try

[X, fmin, exitflag, output] = fminsearch(@totalL, X0, options);

catch exception

exitflag = -1;

V = V0;

D = D0;

return

end

V = [ X(1); X(2); X(3) ];

R = [exp(X(4)) X(7) X(8) ; 0 exp(X(5)) X(9) ; 0 0 exp(X(6))];

D = R’ * R;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% totalL - function called by applyML that sum all the

% log-likelihood.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function negloglik = totalL(X)

global k n l b p muel mueb sigmamuel sigmamueb sigmap rho

global alpha

vmean = [X(1); X(2); X(3)];

R = [exp(X(4)) X(7) X(8) ; 0 exp(X(5)) X(9) ; 0 0 exp(X(6))];

D = R’ * R;

loglik = 0;

for i = 1 : n

loglik = loglik + F(p(i),vmean,D,i) + ...

0.5 * ( sigmap(i) * dfdp(p(i),sigmap(i),vmean,D,i) )^2;

end

% regularization, using alpha parameter (only done if alpha > 0):

%if (alpha > 0)

s = svd(D);

cond = s(1)/s(3);

loglik = loglik - alpha * log(cond);

%end

if (cond < 1000)

negloglik = -loglik;

else

negloglik = NaN;

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% F - function called by totalL that calculates the log-likelihood.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function loglik = F(ptry, vmean, D, i)

global k n l b p muel mueb sigmamuel sigmamueb sigmap rho

sl = sin(l(i));

cl = cos(l(i));

sb = sin(b(i));

cb = cos(b(i));

M = (ptry/k) * [ -sl , cl , 0 ; -cl*sb , -sl*sb , cb ];

mueobs = [ muel(i) ; mueb(i) ];

deltamue = mueobs - M * vmean;

sml = sigmamuel(i);

smb = sigmamueb(i);

r = rho(i);

cmue = M * D * M’ + [ sml^2 , r*sml*smb ; r*sml*smb , smb^2 ];

loglik = -0.5 * ( log(det(cmue)) + deltamue’ * (cmue\deltamue) );

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% dfdp - function called by totalL that calculates the derivative of

% log-likelihood calculated in function F.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function derivative = dfdp(ptry,dp,vmean,D,i)

derivative = (F(ptry + dp,vmean,D,i) - F(ptry - dp,vmean,D,i)) / (2 * dp);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% mainGC - main program to analyze Geneva-Copenhagen samples

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

global alpha

alpha = 0;

file = ’GC/bin3.txt’;

sample = dlmread(file);

par = sample(:,4);

sigma_par = sample(:,7);

% find the good stars with par > 10*sigma_par:

good = find(par > 10*sigma_par);

good_sample = sample(good,:);

sample = good_sample;

[ n col ] = size(sample);

% apply projection method:

[Vpm, Dpm, vPec] = applyPM(sample);

good = find(vPec < 200);

good_sample = sample(good,:);

[ n col ] = size(good_sample);

% apply projection method:

[Vpm, Dpm, vPec] = applyPM(good_sample);

fprintf(’file = %s, n = %d\n’, file, n);

dpm = zeros(6,1);

dpm(1) = sqrt(Dpm(1,1));
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dpm(2) = sqrt(Dpm(2,2));

dpm(3) = sqrt(Dpm(3,3));

dpm(4) = Dpm(1,2)/(dpm(1)*dpm(2));

dpm(5) = Dpm(1,3)/(dpm(1)*dpm(3));

dpm(6) = Dpm(2,3)/(dpm(2)*dpm(3));

fprintf(’PM: %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %6.3f %6.3f %6.3f\n’, ...

Vpm(1:3), dpm(1:6));

% apply Maximum Likelihood method, using PM as starting values:

V0 = Vpm;

D0 = zeros(3,3);

for i = 1 : 3

D0(i,i) = max(Dpm(i,i),10);

end

[Vml, Dml] = applyML(good_sample, V0, D0);

dml = zeros(6,1);

dml(1) = sqrt(Dml(1,1));

dml(2) = sqrt(Dml(2,2));

dml(3) = sqrt(Dml(3,3));

dml(4) = Dml(1,2)/(dml(1)*dml(2));

dml(5) = Dml(1,3)/(dml(1)*dml(3));

dml(6) = Dml(2,3)/(dml(2)*dml(3));

fprintf(’ML: %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %6.3f %6.3f %6.3f\n’, ...

Vml(1:3), dml(1:6));
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% applyGC - function called by mainGC that calculates the mean velocity and

% dispersion for each real sample bin.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ V, sTrue ] = applyGC(sample)

l = length(sample);

SUM = sum(sample);

meanU = SUM(11)/l;

meanV = SUM(12)/l;

meanW = SUM(13)/l;

V = [meanU, meanV, meanW];

D = zeros(3,3);

for i = 1:l

A = [sample(i,11); sample(i,12); sample(i,13)] - [meanU; meanV; meanW];

D = D + A * A’;

end

D = D/l;

sTrue(1) = sqrt(D(1,1));

sTrue(2) = sqrt(D(2,2));

sTrue(3) = sqrt(D(3,3));

sTrue(4) = D(1,2) / sqrt(D(1,1)*D(2,2));

sTrue(5) = D(1,3) / sqrt(D(1,1)*D(3,3));

sTrue(6) = D(2,3) / sqrt(D(2,2)*D(3,3));
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