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Abstract

Rainfall frequently triggers shallow landslides in mountainous areas

worldwide. Landslide susceptibility maps express the probability of

occurrence of landslides based on terrain conditions; they are useful for

disaster prevention and land use planning. This report is about val-

idating a qualitative approach to map global landslide susceptibility,

based on the weighted linear combination (WLC) of slope gradient,

soil type, soil texture, elevation, land cover and drainage density. The

parameters are derived from digital global databases. The accuracy

assessment was based on a detailed landslide inventory of a 160-km2

area in Japan, using the receiver-operating characteristic (ROC) plot

area under the curve (AUC). The AUC permitted to compare analysis

approaches and different parameter combinations. The AUC for the

WLC model was 0.47, below a random classification. Two approaches

improved the model accuracy, using the weights of evidence (WOE)

approach raised the accuracy to 0.64, and using a higher resolution

DEM raised the accuracy to 0.66. On the other hand, a quantitat-

ive approach based on logistic regression (LR) and using the software

package Spatial Data Modeller (SDM) produced models with AUC

between 0.67 and 0.71. The highest accuracy for a model including

lithology, slope gradient, profile curvature, plan curvature and elev-

ation. The reason for the higher accuracy of the LR models is that

the occurrence of landslides depends on local conditions, expressed by

the quantitative relations, while the qualitative weights of the WLC

model were developed for a global model using different criteria.

Keywords: Landslide susceptibility, weights of evidence, logistic re-

gression, ROC plot AUC, validation
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Chapter 1

Introduction

1.1 Background

Landslide is defined as “movement of a mass of rock, debris or earth down a

slope” (Cruden, 1991). Landslides are natural phenomena related to mass wasting

processes that model the earth surface. Conversely to other movements, like

soil creep, some landslides occur suddenly and move fast, and sometimes cause

great damage. The identification of areas where landslides are likely to occur is

important for the reduction of potential damage. This report is about mapping

shallow landslide prone areas, using qualitative and quantitative models, and

validating the results.

Occurrence of shallow landslides depends on local terrain conditions, such as

slope-forming materials, topography, groundwater, and land cover; in addition to

triggering events, like intense rainfall or earthquakes, that modify those character-

istics and produce changes that cause slope instability (Soeters and van Westen,

1996).

Assessment of landslide hazard is difficult due to the lack of historical data

of triggering events; instead, landslide susceptibility assessments are common

(van Westen et al., 2003). Landslide susceptibility maps express the likelihood of

occurrence of landslides (spatial probability), estimated from local terrain con-

ditions. The temporal probability of occurrence of landslides, which depends on

the recurrence and intensity of triggering factors, is not considered (Soeters and

van Westen, 1996).
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1.1 Background

Medium-scale (1:25,000-1:50,000) landslide susceptibility maps are useful in

preliminary impact assessment and delimitation of areas for detailed surveys,

and for regional physical planning, and development (transportation corridors,

urbanization, large engineering projects). The main users are planners, decision

makers, engineers, development enterprises, insurance companies, community,

and scientists.

Qualitative (also known as knowledge-driven) methods and quantitative (or

data-driven), methods permit the assessment of landslide susceptibility. Qualit-

ative methods are based on opinions of experts, are subjective and it is difficult

to apply them in separate areas. Quantitative methods are based on the re-

lationships between the occurrence of landslides and terrain conditions, derived

from the analysis of landslide inventories, and they are straightforward. However,

landslide inventories are usually not available or difficult to obtain (Soeters and

van Westen, 1996).

Assessment of the accuracy of landslide susceptibility models, the capacity to

differentiate landslide-free areas from landslide-prone areas, is fundamental for

decision-makers during hazard management. Accuracy depends mainly on accur-

acy of the models, accuracy of the input data, experience of the earth scientist

(modeller) and size of the study area (Soeters and van Westen, 1996).

The purpose of this research is to validate a qualitative method based on the

weighted linear combination of terrain parameters (slope, soil type, soil texture,

elevation, land cover, and drainage density) derived from digital global databases

(Hong et al., 2007); and compare it to a quantitative method based on logistic

regression of parameters related to the occurrence of shallow landslides.

The principal advantages of the qualitative approach proposed by Hong et al.

(2007) are that it can be applied in areas where there are no landslide observa-

tions, and that the model data are available as digital global databases. These

allow the construction of landslide susceptibility maps for any area. However,

according to Hong et al. (2007), it is necessary to validate the model with local

landslide inventories.

Furthermore, the occurrence of landslides depends on local conditions (van

Westen et al., 2003), and a model to map global landslide susceptibility needs to

be adjusted to local conditions.
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1.2 Objectives

The accuracy assessment is based on the comparison of the model with a

detailed distribution of shallow landslides from a 160-km2-target area in Japan.

It is assumed that the landslide distribution map is the ground truth.

The results will provide information on the accuracy of the qualitative mod-

elling approach and how it can be improved with techniques used in quantitative

landslide susceptibility mapping, and using higher resolution data.

1.2 Objectives

Validate a landslide susceptibility mapping approach that is based on expert

knowledge and uses satellite remote sensing data. Compare the qualitative land-

slide susceptibility mapping method with a quantitative method and evaluate the

results. The research should answer the following questions:

• How accurate is the global landslide susceptibility mapping (qualitative)

method proposed by Hong et al. (2007)?

• How can the qualitative model accuracy be improved?

1.3 Methods

Produce a landslide susceptibility map using the qualitative approach and validate

it with a detailed landslide distribution map.

Modify the qualitative method by selecting parameters and their weights

based on the weights of evidence approach, a statistical analysis of landslide dis-

tribution and related parameters. Validate the resulting landslide susceptibility

map.

Make a landslide susceptibility map based on logistic regression, a quantitative

approach, using landslide observations; and validate the resulting model.

Finally, compare the qualitative and quantitative models.

4



1.4 Thesis structure

1.4 Thesis structure

The thesis consists of two parts. Part I describes background and theory; the

chapters are Introduction, Landslides, Landslide susceptibility mapping, GIS

landslide susceptibility modelling, Validation of susceptibility models and Tar-

get area.

Part II describes landslide susceptibility modelling and validation in the tar-

get area. The chapters are Weighted linear combination, Weights of evidence,

Logistic regression, Discussion, Conclusions, Logistic regression coefficients as an

appendix, and References.
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Chapter 2

Landslides

2.1 Occurrence

Landslide is a general term for a wide variety of movements of slope materials due

to gravity. Landslides not only occur in mountainous regions, but also occur in

gentle slope terrain. Landslide type and occurrence depend on local geomorpho-

logy, hydrology, geology, vegetation, land use, and the characteristics of triggering

events (Soeters and van Westen, 1996)

The trigger is an external stimulus that modifies the slope stability conditions,

increasing the material stress or reducing its strength, and causes the landslide.

Intense rainfall, earthquakes, volcanic eruptions, storm waves and rapid erosion

are natural triggers; activities, such as excavation or irrigation can be human

triggers (Wieczorek, 1996).

According to Cruden and Varnes (1996) landslide classification is based on the

types of movement and material. A landslide can be described with two nouns,

first the material (rock, debris, earth) and then the movement (fall, topple, slide,

spread and flow). Fig. 2.1 shows a schematic representation of general landslides.

2.2 Shallow landslides

Shallow landslide, also known as slope failure, is a movement that involves earth

or debris from superficial deposits (mainly soil and colluvium) and does not affect

6



2.2 Shallow landslides

Figure 2.1: Schematic representation of landslides. Source U S Geological Survey

(2004)
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2.3 Impact of landslides

the bedrock. Shallow refers to the depth of the displaced mass.

Shallow landslides occur frequently in mountainous terrain worldwide triggered

by earthquakes, or intense rainfall. Their occurrence greatly depends on slope to-

pography and the presence of weathered rock mass or superficial deposits. They

occur suddenly and usually move fast; and can cause great damage. Fig. 2.2

shows shallow landslides in southwester Colombia that occurred in June 1994

during the rainy season, triggered by an earthquake.

Figure 2.2: Shallow landslides in southwester Colombia triggered by an earth-

quake during a rainy season in 1994. Source Shuster and Highland (2001)

2.3 Impact of landslides

Impact of landslides on society can be huge, because of great economic and social

loss. Effects can revert development and cause many casualties. Crozier and

Glade (2005) listed a selection of landslide events that caused more than 1,000

casualties; 22 events worldwide, between 1919 and 1999, caused over 513,000

casualties.

8



2.4 Impact assessment

Terms related to the effects of landslides on human activity and the environ-

ment are used here according to the definitions by Committee on the Review of

the National Landslide Hazards Mitigation Strategy (2004).

• Landslide hazard is the potential for occurrence of a damaging landslide

within a given area. Damage refers to loss of life or injury, damage of

property, social and economic disruption, or environmental degradation.

• Landslide vulnerability is the extent of potential loss of a given element

within the area affected by landslide hazard, expressed on a scale from 0

(no loss) to 1 (total loss). It depends on physical, social, economical and

environmental conditions.

• Landslide risk is the probability of damaging consequences within a landslide-

prone area. It is the product of hazard and vulnerability.

• Landslide risk evaluation is the application of analysis and assessments

to determine risk management alternatives, which may include the decision

that the risk is acceptable or tolerable.

• Landslide hazard zonation is the division of the terrain in homogeneous

areas and ranking them according to their degree of actual or potential

hazard or susceptibility to landslides.

2.4 Impact assessment

The increasing need of territory for development demands the assessment of po-

tential landslide impacts. Furthermore, global warming is likely to increase the

occurrence of rainfall related triggers; therefore it is important to assess the po-

tential impacts from landslides.

Maps are appropriate tools for communicating the potential impact of land-

slides. There are three types of landslide maps useful to planners and general

public, 1) landslide inventories, 2) landslide susceptibility maps, and 3) landslide

hazard maps (Highland and Bobrowsky, 2008).
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2.4 Impact assessment

• Landslide inventory maps depict areas where landslides have occurred.

The maps can simply denote areas of past landslides or include detailed

information such as components of individual landslides (scarp and accu-

mulation zones), type of movement, activity, geological age, rate of move-

ment, and other characteristics. Inventory maps help identifying areas for

detailed studies, and are fundamental for producing other potential impact

maps (Highland and Bobrowsky, 2008).

• Landslide susceptibility maps denote areas ranked according to the

tendency to the occurrence of landslides; based on local conditions (geo-

logy, topography, groundwater, vegetation). The temporal probability of

occurrence of landslides, which depends on triggering events (rainfall, earth-

quakes), is not considered (Soeters and van Westen, 1996). Susceptibility

maps only expresses the spatial probability of occurrence of landslides, how-

ever, they provide information on areas where landslides have not occurred

yet.

• Landslide hazard maps delineate areas of past, and recent landslides and

the probability of occurrence of potential landslides. For a given area, haz-

ard maps contain detailed information on type of landslides, extent of fail-

ure, and maximum extent of ground movement (Highland and Bobrowsky,

2008).

Landslide hazard implies the assessment of spatial and temporal probabilities and

the definition of type, magnitude, size and velocity of landslides (Wu et al., 1996).

It requires the analysis of probability of triggering factors. Furthermore, landslide

hazard is difficult to assess because the occurrence of landslides is complex and

terrain conditions vary with space and time. Therefore, landslide susceptibility

maps are commonly used to express relative stability of slopes. Fig. 2.3 shows

an example of a regional landslide susceptibility map.

Landslide susceptibility maps provide information for delimitation of landslide-

prone areas and the definition of development restriction areas. They are also

important in physical planning, for reduction of costs of construction and main-

tenance of engineering structures (Soeters and van Westen, 1996).
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2.4 Impact assessment

Figure 2.3: Regional landslide susceptibility map of a 415 km2 area in United

States. Susceptibility was estimated as a probability function of the presence of

glacial clays, slope gradient and glacial lake levels. Source Jager and Wieczorek

(2001)
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2.4 Impact assessment

In the literature, the terms hazard and vulnerability are often used incorrectly

as synonymous terms (Committee on the Review of the National Landslide Haz-

ards Mitigation Strategy, 2004). In this thesis, when making reference of other

reports, hazard may refer to hazard or susceptibility.
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Chapter 3

Landslide Susceptibility Mapping

This chapter consists of fundamentals of susceptibility mapping, a general clas-

sification and the description of three approaches that are applied in the target

area.

3.1 Principles

Three fundamental principles are applied in landslide susceptibility modelling

(Varnes, 1984).

1. The past and present are the keys to the future. This means that future

landslides will occur in similar geologic, geomorphic, and hydrologic condi-

tions that present and past landslides occurred. This assumption permits

to estimate future occurrences based on historical data.

2. The main conditions that caused landslides can be identified; such as surfi-

cial material conditions, topography, effect of groundwater, and triggering

mechanisms. This principle permits to make predictions in larger areas

based on site observations.

3. Degrees of hazard can be estimated. Hazard (or susceptibility) can be de-

rived from the relative contribution of the conditions that cause landslides,

and it can be expressed qualitatively or quantitatively as a map.
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3.2 Susceptibility analysis approaches

Primary aspects in landslide susceptibility modelling are the separation of

landslide scars (or scarps) from the deposits, for mapping and analysis. Because

both processes occur under different conditions (slope gradient, soil character-

istics, elevation). It is also necessary to separate the landslide types during the

analysis, because different types of landslides occur under different conditions and

mechanisms (shallow landslides, rock falls, deep seated landslides) (Chung and

Fabbri, 2005).

Landslide susceptibility assessment approach depends on the scale of the tar-

get. The spatial scale of the target influences on the data availability and the

model complexity. In site investigations (detailed analysis of individual land-

slides) many data are available and it is possible to develop complex models.

While for large areas, it is difficult and expensive to obtain detailed data. There-

fore, more generalized models are applied (Glade and Crozier, 2005).

In landslide hazard analysis, the scales are national (<1:1,000,000); regional

scale (1:100,000-1:500,000) for thousands of square kilometres; medium scale

(1:25,000-1:50,000) for few hundreds of square kilometres; and large scale (1:5,000-

1:10,000) for tens of square kilometres (Soeters and van Westen, 1996). This thesis

focuses on medium scale susceptibility analysis.

3.2 Susceptibility analysis approaches

Glade and Crozier (2005) reviewed the techniques to produce landslide suscept-

ibility and hazard maps, and recommended approaches based on analysis scale

(Fig.3.1). Techniques are classified in qualitative and quantitative methods.

3.2.1 Qualitative methods

Qualitative methods are based on expert knowledge and experience. They are

subjective and difficult to apply to different areas. However, they can be accurate

if the person or group who make the analysis know well the processes and the

area (Glade and Crozier, 2005).

Landslide inventories and heuristic methods are qualitative methods. Land-

slide inventories are spatial databases, often used for modelling and for validation.
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3.2 Susceptibility analysis approaches

Scale Qualitative methods Quantitative methods
Inventory Heuristic 

analysis
Statistical 
analysis

Probabilistic 
prediction 
analysis

Deterministic 
analysis

>1:10,000 Yes Yes Yes Yes Yes
1:25,000-
1:50,000

Yes Yes Yes Yes Probable

1:100,000-
1:500,000

Yes Yes Probable Probable No

<1:1,000,000 Yes Yes No No No

Figure 3.1: Recommended approaches for landslide susceptibility analysis. Mod-

ified from Glade and Crozier (2005)

Heuristic approaches can be geomorphic analysis or qualitative map combination

(Soeters and van Westen, 1996).

Geomorphic analysis consists in mapping hazard in the field. Qualitative

map combination consists in selecting parameters related to the occurrence of

landslides, assigning weights to parameters classes, combining maps and classi-

fying results to express qualitative degrees of hazard. Topographic, geological,

hydrological, geomorphic or geotechnical parameters are often used to estimate

susceptibility or hazard (Soeters and van Westen, 1996).

3.2.2 Quantitative methods

Quantitative approaches are based on objective criteria, producing the same res-

ults for similar data sets, and it is possible to reproduce them in other areas.

Statistical, probabilistic, and deterministic approaches are quantitative methods

(Glade and Crozier, 2005).

Statistical approaches are based on the analysis of landslide distribution and

maps of factors related to their occurrence, such as lithology, slope gradient, land

cover, profile and plan curvature, elevation, slope aspect, etc. Bivariate analyses
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3.3 Weighted linear combination

are common to estimate landslide parameter weights based on landslide density

(Soeters and van Westen, 1996).

In multivariate analysis, parameter maps are combined and compared to the

presence and absence of landslides. Then the resulting matrix is analysed using

multiple regression or discriminant analysis, to classify landslide free areas as

hazardous or safe according to their scores (Soeters and van Westen, 1996).

Probabilistic methods for hazard assessments are based on Bayesian prob-

ability and fuzzy logic. Results are probabilistic prediction models (Glade and

Crozier, 2005).

Deterministic methods use topographic factors and hydrological conditions

with generalized geotechnical information on soil properties to carry out stability

analysis. The infinite slope approach is a common model to estimate factor of

safety. However, in large areas data are usually difficult to collect (Glade and

Crozier, 2005).

3.3 Weighted linear combination

Weighted linear combination (WLC) is based on the qualitative map combination

approach (heuristic analysis). However, two types of parameters weights are

used, primary-level weights for parameter classes, that can based on practical

data like landslide density; and secondary-level weights for model parameters

based on expert opinion. Parameters weights are combined to estimate landslide

susceptibility and classify areas in relative susceptibility categories (Ayalew et al.,

2004; Hong et al., 2007).

Susceptibility S(i, j) in each pixel (i, j) can be expressed as the combination

of the product of primary and secondary level weights:

S(i, j) =
n∑

k=1

wkyk(i, j) (3.1)

and

n∑
k=1

yk = 1 (3.2)
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3.4 Weights of evidence

where w is the primary-level weight of parameter k, and y is the secondary-level

weight of parameter k (Hong et al., 2007).

3.4 Weights of evidence

Weights of Evidence (WOE) is a quantitative statistical approach based on the

Bayesian probability model, where conditional probability is based on evidence.

WOE is an objective approach for the definition and selection of parameter

weights in prediction modelling, and has been extensively used in mineral po-

tential modelling (Bonham-Carter, 1994). It is also appropriate for landslide sus-

ceptibility modelling (Lee and Choi, 2004; Robinson and Larkins, 2007; Soeters

and van Westen, 1996; van Westen et al., 2003).

Positive and negative weights, denoted as W+ and W− respectively, express

the importance of parameter classes and are used to estimate susceptibility. A

positive W+ indicates that the parameter class is favourable for the occurrence

of landslides. A negative W− means that the absence of the class reduces the

landslide susceptibility. Similarly, a negative W+ means that the class is not

favourable for the occurrence of landslides, and a positive W− means that the

absence of the parameter class increases landslide susceptibility. Weights around

zero indicate that there is no relation between the occurrence of landslides and

the factor class.

The calculation of weights is based on an area cross-tabulation of landslide

area and the parameter class, as shown in Table 3.1 (Bonham-Carter, 1994) as

follows:

Table 3.1: Area cross-tabulation
Parameter class

Landslide area Present Absent Total

Present T11 T12 T1.

Absent T21 T22 T2.

Total T.1 T.2 T..
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3.4 Weights of evidence

W+ = ln[
T11

T21

T1.

T2.

] = ln[
T11T2.
T21T1.

] (3.3)

W− = ln[
T12

T22

T1.

T2.

] = ln[
T12T2.
T22T1.

] (3.4)

The contrast is the addition of the W+ and W− weights of the class. The

contrast is helpful for reclassification of parameters in more significant classes

(Bonham-Carter, 1994). A positive contrast means that the class is favourable

for the occurrence of landslides, while a class with a negative contrast is not

favourable for the occurrence of landslides.

Using the weights, landslide susceptibility is calculated as the posterior prob-

ability (Bonham-Carter, 1994) as follows:

Estimation of prior probability p(l), based on landslide density

p(l) =
landslide− area
total − area

(3.5)

Calculation of natural logarithm of odds, or logits, logit(l). Odds is the ratio

of the probability that a landslide will occur to the probability that landslides

will not occur.

logit(l) = ln[
p(l)

1− p(l)
] (3.6)

Estimation of the posterior logit(l|f), that is the logit(l) plus the factor

weights, W+
f

logit(l|f) = logit(l) +W+
f (3.7)

Calculation of posterior odds O(l|f), odds given the presence of factor f

O(l|f) = exp(logit(l|f)) (3.8)

Estimation of posterior probability p(l|f), the probability given the presence

of factor f

p(l|f) =
O(l|f)

(1 +O(l|f))
(3.9)
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3.5 Logistic regression

The calculated posterior probability represents the susceptibility expressed by

the model parameters.

3.4.1 Overall conditional independence test

WOE assumes that probabilities from the parameter maps are conditional inde-

pendent. This means that the probability of each parameter is not affected by

the presence of the other parameters. However, there is always some degree of

dependence between the parameter maps (Bonham-Carter, 1994). For example,

a land cover type might present only within a certain altitude range. Lack of

conditional independence (CI) affects the posterior probability results, producing

higher posterior probabilities.

The overall evaluation of CI consists in comparing the number of predicted

events and number of observed events (observations used to estimate the posterior

probability model). If the number of predicted observations is 10-15% larger than

the observed events, E(l)calc, results are biased because of conditional dependence.

The calculated number of events is obtained by adding the product of the area

in units cells, n(a), times the posterior probability, p(l), for all pixels on the map

E(l)calc =
m∑
k=1

pkn(a)k (3.10)

where pk is the posterior probability for pixel k, and k is the number of pixels of

pixels in the map (Bonham-Carter, 1994).

3.5 Logistic regression

Logistic regression (LR) is a multivariate statistical technique appropriate for

estimating the probability of a dichotomous dependent variable, such as the oc-

currence or absence of landslides, from its relations with independent variables,

like slope gradient, lithology, land cover, etc. The result is probability values

between 0 and 1. The probability values can be assimilated as landslide suscept-

ibility.
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3.5 Logistic regression

LR has been applied to mineral potential prediction (Agterberg et al., 1993)

and landslide susceptibility assessment (Ayalew et al., 2005; Brenning, 2005; Dai

and Lee, 2002; Robinson and Larkins, 2007).

Advantages of LR are that it can be applied when the variables show condi-

tional dependence, contrary to WOE method; and it can be used when variables

have many classes or are continuous. LR posterior probabilities are lower than

posterior probabilities estimated using the WOE method (Agterberg et al., 1993).

LR is based on the logistic function, f(z)

f(z) =
1

1 + e−z
(3.11)

where

z = α0 + β1X1 + β2X2 + . . .+ βkXk (3.12)

LR consists in the calculation of constant or intercept, α0, and the coefficients

β1, β2, . . .βk. Variables X1, X2, Xk, correspond to the independent variables, or

landslide related factors here.
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Chapter 4

GIS Landslide Susceptibility

Modelling

This chapter is about the application of a geographical information system (GIS)

for landslide susceptibility mapping, and a software package for prediction mod-

elling that can be used for susceptibility mapping.

4.1 Geographic information systems and mod-

elling

A GIS is ”a powerful set of tools for collecting, storing, retrieving at will, trans-

forming and displaying spatial data from the real world for a particular set of

purposes” (Burrough and MacDonnel, 1998).

GIS modelling is the process of combining databases of different spatial vari-

ables using a function to obtain an output map. Depending on the function

type, GIS models are theoretical, empirical or hybrid. Theoretical models have

relationships based on theoretical understanding or physical or chemical prin-

ciples; empirical models are based on statistical or heuristic relationships; and

hybrid models employ semi-empirical relationships, theoretical relationships with

empirical functions (Bonham-Carter, 1994).
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4.2 Susceptibility modelling

4.2 Susceptibility modelling

Before the application of GIS, most landslide hazard (or susceptibility) assess-

ments were based on geomorphic and geologic analysis from interpretation of

aerial photographs and field observations; that is using qualitative approaches.

Landslide hazard (or susceptibility) was expressed as relative qualitative classes.

The use of GIS in landslide hazard began in the late 1970s with simple qual-

itative models and it had evolved to quantitative models and expert systems

(Soeters and van Westen, 1996). Now almost all landslide susceptibility model-

ling employ GIS. The spatial nature of the landslide process and the amount of

data require the use of GIS for its analysis. However, principles for GIS-based

susceptibility modelling are the same as those employed in general susceptibility

models described in Section 3.1.

GIS-based hazard analysis can be applied from national scale to large-scale

analysis. All methods for medium-scale analysis described in Section 3.2 can be

implemented in GIS. However, in landslides inventories, GIS is basically used to

store and display data. There are many examples of qualitative and quantitative

applications. Qualitative approaches are presented by van Westen et al. (2003)

and Ayalew et al. (2004). In other qualitative analysis, GIS is used to analyse

the difference of landslides triggered by rainfall and earthquakes (Yamagishi and

Iwahashi, 2007).

Quantitative approaches include bivariate statistical analysis (Fernandez et al.,

2003; Suzen and Doyuran, 2004); multivariate statistical analysis (Carrara et al.,

1995; Clerici et al., 2002; Dai and Lee, 2002; Guzzetti et al., 1999; Mark and

Ellen, 1995); probabilistic methods (Brenning, 2005; Chung and Fabbri, 1999;

Remondo et al., 2003) and relative new approaches, such as neural networks (Lu

and Rosenbaum, 2003), and decision tree modelling (Saito et al., 2009).

On the other hand, large-scale quantitative analyses are less common (Iida,

1999; Laouafa and Darve, 2002).
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4.3 Visualization of susceptibility

4.3 Visualization of susceptibility

Results from susceptibility approaches are generally continuous numerical val-

ues. However, for visualization they are usually divided in classes to express

relative degrees of susceptibility. Categorization also permits comparing different

susceptibility maps.

Arbitrary classifications are still common; however, the main classification

approaches are ranking, natural breaks, equal interval classes, equal area classes,

and mean value and standard deviation intervals (Bonham-Carter, 1994; Chung

and Fabbri, 1999, 2003; Fabbri and Chung, 2008).

Classification determines the spatial distribution of susceptibility; classifying a

susceptibility map using two methods produces two different susceptibility maps.

Recommended approaches are ranking based on equal area classes (Chung and

Fabbri, 2003) and classification based on mean value and standard deviation

intervals (Ayalew et al., 2004).

4.4 Advantages and disadvantages

Main advantages of using GIS in susceptibility analysis are that GIS permits

systematic prediction modelling, applying different techniques or factor combin-

ations, and evaluation of models. GIS facilitates data sharing. Scripts facilitate

performing calculations And batch command options and analysis data logs also

permit to make repeated calculations easily (Chung and Fabbri, 1999, 2005; Re-

mondo et al., 2003; Soeters and van Westen, 1996; van Westen et al., 2003).

Furthermore, availability of global and national digital databases (elevation,

soils, geology, remote sensed imagery, etc.) facilitates the application of GIS-

based approaches. In some cases, the production of landslide databases is based

on detection of landslides on remote sensed data using GIS (Ayalew et al., 2004;

Saito et al., 2009).

Disadvantages of GIS-based approaches are that producing digital databases

is time-consuming, and some parameters are not possible to express as maps (like

proximity to old landslides) and only the parameters that are easy to map are

included in the analysis; and statistical analysis usually requires using external
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4.5 Spatial Data Modeller

packages (Guzzetti et al., 1999; Soeters and van Westen, 1996; van Westen et al.,

2003).

4.5 Spatial Data Modeller

Spatial Data Modeller (SDM) is a set of software tools for prediction modelling

using categorical and numerical (interval, ordinal, or ratio) maps. Implemented

modelling approaches are weights of evidence, logistic regression, fuzzy logic and

neural networks (Sawatzky et al., 2009).

SDM works as an extension for ArcGIS 9.3 and requires Spatial Analyst

extension. SDM is public domain and it is available in the Internet at http:

//www.ige.unicamp.br/sdm/default_e.htm.

Applications of SDM include probabilistic spatial prediction modelling for

mineral potential mapping (Nykanen and Ojala, 2007; Raines et al., 2007) for

groundwater contamination vulnerability assessment (Arthur et al., 2007; Masetti

et al., 2007) for aggregate quarry sitting (Robinson and Larkins, 2007); and for

landslide analysis (Nelson et al., 2007; Poli and Sterlacchini, 2007).

SDM is used here to make susceptibility maps based on logistic regression.
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Chapter 5

Validation of Susceptibility

Models

5.1 Definition and importance

Model validation is comparing the results with real world data to assess the model

accuracy. Validation of landslide susceptibility models gives information about

the confidence of the model to the user. Validation also permits to compare

different models or model parameter variables (Begueria, 2006).

In landslide susceptibility assessment, accuracy is the capacity of the map to

differentiate landslide-free from landslide-prone areas. Accuracy and objectivity

depend on model accuracy, input data, experience of earth scientist and size of

the study area (Soeters and van Westen, 1996).

On the other hand, model evaluation is the assessment of its adequacy to the

needs of the final user. In landslide susceptibility modelling, it is mainly used to

define hazard classes for practical purposes, such as to prioritize areas with the

highest susceptibility for further investigations (Begueria, 2006).

5.2 Cross-area tabulation derived statistics

In landslide susceptibility assessment there are two types of prediction errors; 1)

landslides may occur in areas that are predicted to be stable, and 2) landslides
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5.2 Cross-area tabulation derived statistics

may actually not occur in areas that are predicted to be unstable (Soeters and

van Westen, 1996). The first type of errors is a false positive (type I error) and

the second type is a false negative (type II error).

Validation of landslide susceptibility maps is commonly based on statistics

from cross-area tabulation, also known as the confusion matrix or contingency

table (Bonham-Carter, 1994). Based on a threshold, continuous susceptibility

values are categorized in a binary map (susceptible and not susceptible classes)

and then compared with a binary landslide distribution map (presence or absence

of landslides).

Cross-tabulation consists in the calculation of overlap areas between the two

binary maps. The possible combinations are as follows: landslide areas are clas-

sified as susceptible areas (true positive observations); landslide-free areas are

classified as no susceptible areas (true negative observations); landslide areas are

classified as no susceptible areas (false negative observations); and landslide-free

areas are classified as susceptible areas (false positive observations) as shown in

Table 5.1.

Table 5.1: Confusion matrix. a, true positive observations; d, true negative

observations; b, false negative observations (error type II); and c, false positive

observations (error type I) Source Begueria (2006)

Observed

Predicted X1 X0

X ′1 a b

X ′0 c d

Success and prediction and rates are the most common approaches (Brenning,

2005; Chung and Fabbri, 1999, 2003; Robinson and Larkins, 2007; van Westen

et al., 2003). The success rate or model efficiency is the proportion of correctly

classified observations. It is calculated comparing the model to the modelling

dataset. The prediction rate is calculated comparing the model to a dataset

different from the modelling dataset, a validation dataset.

Efficiency =
(a+ d)

(a+ b+ c+ d)
(5.1)
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5.3 The receiver-operating characteristic (ROC) plot

However, Begueria (2006) noted that the model efficiency greatly depends on

prevalence, the relation between false positives (type I errors) and false negat-

ives (II errors). Begueria recommends using statistics not affected by prevalence,

proportion of positive and negative cases. They are sensitivity, the proportion

of positives observations correctly identified; specificity, the proportion of negat-

ives observations correctly identified; false negative rate, false positive rate, and

likelihood ratio. Sensitivity and specificity are estimated as follow:

Sensitivity =
a

(a+ c)
(5.2)

Specificity =
d

(b+ d)
(5.3)

5.3 The receiver-operating characteristic (ROC)

plot

ROC plot is a graph of sensitivity versus specificity, statistics not affected by

prevalence. It is calculated by estimating the parameters for many thresholds.

The area under the ROC plot (AUC) is a statistic accuracy of the model and it

is independent of the prediction threshold. AUC is 0.5 when there is no variation

with threshold definition and 1 when the model makes a perfect prediction. AUC

below 0.5 indicates that performance is lower than classification by chance. The

higher the AUC, the higher the model accuracy (Fawcett, 2006).

Fig. 5.1 shows the ROC of two models, the AUC of model A is 0.5 and the

AUC of model B is 0.71.

AUC is calculated by adding the areas of the polygons between the thresholds

(Begueria, 2006).

AUC =
n+1∑
i=1

1

2

√
(xi − xi+1)

2 (yi + yi+1) (5.4)

where xi is specificity and yi is sensitivity at threshold i and xn+1 = 0, yn+1= 1.
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5.4 Database partition

Figure 5.1: ROC plot. Line A is line of no discrimination (AUC is 0.5). Line B

represents the accuracy of model B with the values of specificity and sensitivity

calculated for different thresholds, and the AUC is 0.71

5.4 Database partition

In quantitative landslide susceptibility prediction modelling, it is not possible to

compare the model with future landslides. Therefore, it is necessary to divide the

landslide database in a modelling dataset and a validation dataset (Chung and

Fabbri, 2003).

In landslide hazard assessment, database partitions are based on time, space

and random techniques. Time partition is using databases from different time

periods; the older one for modelling and the later for validation. Space partition

is dividing the study area in two sub areas, and using one for prediction and

the other for validation. Random partition consists in dividing randomly the

landslides in two groups, one for prediction and the other for validation. It is

pretended that the landslides from the validation dataset have not occurred yet

(Chung and Fabbri, 2003).

Partition approach depends on the data available. When databases from dif-

ferent time periods are available, time partition is the best approach (Fabbri and

28



5.4 Database partition

Chung, 2008). Otherwise it is better to use random partition. Space partition is

not appropriate, because sub areas usually present different conditions regarding

geology, geomorphology, and hydrology.

Random partition is the most common approach (Brenning, 2005; Chung and

Fabbri, 2003; Fabbri and Chung, 2008; Remondo et al., 2003). On the other hand,

the partition dataset size affects the results; larger prediction datasets produce

better results, and some authors recommend a half and half partition (Brenning,

2005; Fabbri and Chung, 2008).
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Chapter 6

Target Area

Landslide susceptibility modelling and validation was carried out in a target area

in southwester Japan, defined here as Hamada area.

6.1 Location

The 157-km2-target area is located in Hamada city, Shimane prefecture, south

west Japan (Fig. 6.1). The area corresponds to two 1:25,000-scale topographic

quadrangles, 523117 (Misumi) and 523210 (Kitsuka).

6.2 Geological and geomorphological setting

The western part is a coastal area of plains and hills, with elevations generally

lower than 150 m. However, there are isolated hills (monadnocks) with elevations

between 260 and 400 m. The eastern part is a higher mountainous terrain with

elevations of up to 700 m. In general, elevation increases gradually from sea level

in the west to about 700 m in the central to eastern part of the target area.

According to Wada et al. (1984), in the region there are low-relief topographic

surfaces (peneplains) produced by erosion processes, with different weathering

characteristics that may control the occurrence of landslides. They are Takasu

plain (between 70 and 100 m), Iwamikogen plain (200-300 m) and Takauchi plain

(350-420 m).
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6.3 Rainfall triggering event

Figure 6.1: Location of target area. World map source Blue Marble (2002); Japan

map source International Steering Committee for Global Mapping (2009)

Lithologies in the target area are mainly Paleozoic to Mesozoic pelitic and

psammitic schists; Paleogene diorites and granitic rocks; and Paleogene rhyolitic

to dacitic pyroclastic and volcanic rocks. Quaternary deposits form terraces and

alluvial plains within valleys (Fig. 6.2).

The schists form the low and hilly terrain in the western and southeaster

parts of the target area. Dioritic and granitic intrusions form high peaks and

monadnocks in the central area. Volcanic and pyroclastic rocks constitute a

higher mountainous terrain with steep slopes in the northeaster area.

6.3 Rainfall triggering event

Intense rainfall between July 20th and 23rd, 1983, triggered many shallow land-

slides in western Shimane prefecture. The highest recorded total rainfall was

742 mm (Misumi area) and maximum hourly intensity was 90 mm/h. Shallow

landslides, debris flows, and flooding led to 91 deaths, and the overall economic
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6.4 Landslide occurrences

Figure 6.2: Generalized lithology based on 1:200,000-scale Digital Geologic Map

of Japan downloaded from Geological Survey . Source Geological Survey Japan

(2009)

loss was 360,000 million yen (Research Group of San-in Heavy Rainfall Disaster,

1984), about 2,700 million Euro.

The maximum hourly precipitation (90 mm/h) corresponds to a 150-year

recurrence, and the maximum daily precipitation (372 mm/day) corresponds to

over a 200-year recurrence. Shallow landslides occurred from 100 mm of total

rainfall and from 40 mm/h rainfall intensity (Wada et al., 1984). The event is

known as the 1983 San’in heavy rainfall disaster.

6.4 Landslide occurrences

According to Research Group of San-in Heavy Rainfall Disaster (1984), most

landslides were shallow, the failure materials were colluvium and residual soil,

and the slope failures were related to topographic and geologic conditions and

rainfall intensity. The highest frequency of slope failures occurred on 30◦ to 40◦

slopes, and the largest landslides occurred in granitic rock regions. With the
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6.5 Landslide inventory

increase of water content, many landslides developed into debris flows.

According to Okuda and Okimura (1984), the highest frequency of shallow

landslides occurred on slopes with gradients between 15◦ to 25◦ slopes, and debris

flows on slopes with gradients between 10◦ and 20◦. Wada et al. (1984) pointed

out that landslides were also related to geomorphology and weathering zones of

topographic levels.

6.5 Landslide inventory

Pimiento and Yokota (2006) produced a 10 m grid inventory map from stereo-

scopic interpretation of 1:8,000-scale black-and-white aerial photographs. The

inventory map consists of the landslide source areas. 2,411 landslides were in-

ventoried in the target area.

Figure 6.3: Landslide inventory map over a hillshade model. Based on the (10-m

grid) landslide distribution map, the predominant size of the source areas was

1,400 m2 (Pimiento and Yokota, 2006). Elevation model derived from 10 m DEM

(Geographical Survey Institute Japan, 2009)

Fig. 6.4 shows a detail of the landslide map over 1 km mesh orthophotos from

the Ministry of Land, Infrastructure, Transport and Tourism of Japan.
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6.6 Shallow landslide related parameters

Figure 6.4: Detail of landslide map overlaid on 1 km mesh orthopothos from

Ministry of Land, Infrastructure, Transport and Tourism (2009)

6.6 Shallow landslide related parameters

For landslide susceptibility modelling, the landslide mechanism in the target area

is analysed and then the factors related to their occurrence are selected.

It is clear from previous reports (Research Group of San-in Heavy Rainfall

Disaster, 1984; Wada et al., 1984) that the shallow landslides were triggered

by intense rainfall. A common cause for the occurrence of shallow landslides

triggered by intense rainfall is the increase of pore-water pressure in soil (reducing

its strength), produced by rainfall infiltration and soil saturation. Triggering

thresholds depend on rainfall intensity and local geological and geomorphological

conditions (Wieczorek, 1996).

According to Turner (1996), parameters influencing the occurrence of shallow

landslides in colluvium and residuum are soil properties, geomorphology, veget-

ative cover and triggering events. However, in regional scale analysis detailed soil

properties data are not available, and it is necessary to use substitute variables.

Since soil characteristics depend on bedrock, discontinuities, topography and
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6.6 Shallow landslide related parameters

climate; lithology can be a surrogate variable of soil properties. Geomorphology

may be expressed by elevation, slope gradient, slope aspect, and slope curvature,

among others; and land use is generally a function of slope gradient and elevation.

The presence of colluvial deposits greatly influences the occurrence of shallow

landslides. Colluvium is abundant in hollows, head of first order drainages where

contour lines are concave facing away from the ridge crest (Turner, 1996).

Also, run-off and groundwater flow in soil depend on plan and profile curvatures.

In depressions, pore-water pressure increases with rainfall infiltration; therefore,

plan and profile curvature should influence the occurrence of rainfall triggered

shallow landslides (Ayalew et al., 2004).

Considering the characteristics of the slope failures from the 1983 San’in heavy

rainfall disaster in the target area, and the parameters related to the general oc-

currence of shallow landslides, significant parameters for susceptibility modelling

of rainfall triggered shallow landslides in the target area could be lithology, slope

gradient, profile curvature, plan curvature and elevation.
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Modelling and Validation
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Chapter 7

Weighted Linear Combination

This chapter describes the landslide susceptibility model based on parameter

weights defined by expert knowledge, the databases used to produce the model,

processing of the databases, the susceptibility map, and finally, the model valid-

ation using practical data.

7.1 Definition

Hong et al. (2007) produced a global landslide susceptibility map with 30 m

spatial resolution using the WLC approach, and physical parameters related to

the occurrence of shallow landslides. The parameters are obtained from global

remote sensed databases and ancillary data.

The general steps to produce the landslide susceptibility map are: selection

of parameters; classification of parameters and assignment of weights according

to contribution to shallow landslide susceptibility; and estimating susceptibility

using a weighted linear combination.

The selection of parameters is based on literature and empirical assumptions.

Parameters considered are slope gradient, soil type, soil texture, elevation, land

cover, and drainage density. The definition of parameter weights is based on other

works and the comparison of results from different parameter combinations and

the landslide susceptibility map of the United States (Hong et al., 2007).

The landslide susceptibility criteria are higher slope gradient, higher suscept-

ibility; coarser and looser soil, higher susceptibility; higher relative elevation,
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7.2 Modelling database

higher susceptibility and decreasing susceptibility for higher drainage density.

Definition of parameter (primary) weights is based on these criteria.

The model databases have resolutions between 30 meters and 0.25 degrees

and consist of elevation from Shuttle Radar Topography Mission (SRTM) and

GTOPO30; land cover from Moderate Resolution Imaging Spectroradiometer

(MODIS), soil type from Digital Soil Map of the World (DSMW); and soil texture

data from International Satellite Land Surface Climatology Project (ISLSCP)

Initiative II Data Collection (Hong et al., 2007). All the data are available in the

Internet.

Landslide susceptibility calculated for the land areas is normalized from zero

to one and classified in six categories, no susceptible, very low, low, moderate,

high, and very high susceptibility.

7.2 Modelling database

This section describes the database to derive the parameters for the WLC ap-

proach in the target area.

7.2.1 Elevation data

Shuttle Radar Topography Mission version 2 is a global elevation database pro-

duced by NASA. The SRTM3 data has spatial resolution of 3 arc-seconds, equival-

ent to a horizontal resolution of 90-meter in equator areas. However, the original

SRTM data contains (data) voids caused by shadowing, and data or radar prob-

lems. Therefore I used here SRTM 90m version 4.1 from the Consortium for

Spatial Information (CGIAR-CSI).

SRTM 90m version 4.1 is a void-filled database using auxiliary elevation data

(DEMs) and interpolating results (Jarvis et al., 2008). The database is available

for download in Internet at http://srtm.csi.cgiar.org.

7.2.2 MODIS land cover data

Land Cover Type 1 (MODIS 12) is a global land cover database of 17 land

cover classes according to International Geosphere-Biosphere Programme (IGBP)
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7.3 Processing of model database

global vegetation database. I used a MCD12Q1 V005 dataset, in raster tiles

with 500 m spatial resolution and 1-year temporal granularity (Land Processes

Distributed Active Archive Center, 2009).

7.2.3 Digital Soil Map of the World

The soil type data is from the Digital Soil Map of the World (DSMW) produced

by the Food and Agriculture Organization of the United Nations (FAO), Version

3.6, and completed in January 2003 (FAO, 2009). The map consists of FAO soil

mapping units with texture and slope information. The vector data has shapefile

format and is available in the Internet for download at: http://www.fao.org/

geonetwork/srv/en/metadata.show?id=14116&currTab=distribution

7.2.4 Soil texture data

The soil texture database is one of the 18 raster data soil characteristics from

the International Satellite Land Surface Climatology Project (ISLSCP) Initiat-

ive II Data Collection (Global Soil Data Task, 2000). The data represents the

characteristics of soil at depth between 0 and 150 cm.

The soil texture consists of 12 classes based on the United States Department

of Agriculture (USDA), from sand (1) to clay (12); water class is 0, and permanent

ice is 13. The dataset with horizontal spatial resolution of 1 degree has ASCII

grid file format, and is available for downloaded from: http://islscp2.sesda.

com/ISLSCP2_1/html_pages/groups/hyd/islscp2_soils_1deg.html.

However, according to Hong et al. (2007), data are available with resolution

of 0.25 degrees.

7.3 Processing of model database

General processing consisted in data import, definition of spatial reference, selec-

tion of area corresponding to the target area, projection to Universal Transverse

Mercator (UTM) 53N zone with Tokyo datum; reclassification to landslide sus-

ceptibility (Hong et al., 2007); and resampling to 10 m grid, the cell size of the

landslide database.
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7.3 Processing of model database

7.3.1 Elevation data SRTM3

The original Geotiff format image is in decimal degrees and datum WGS84; it is

a tile of 5 degrees of longitude by 5 degrees of latitude. It was projected to Tokyo

UTM 53N Zone; then resampled to 10 m grid and clipped to the target area.

Elevation values were between -2 (near the coast) and 690; maximum elevation

agrees with a printed topographic map. Negative values were replaced with 1,

and elevation was normalized between 0 and 1 to express susceptibility. Higher

elevation representing higher susceptibility. Fig. 7.1 shows the elevation map in

the target area.

Figure 7.1: Elevation based on 90 m DEM draped over a hillshade model. Source

Jarvis et al. (2008)

7.3.1.1 Slope gradient

Slope gradient map was produced from the elevation dataset described in the

previous section (90-m resolution DEM) using ArcGIS slope function; that is

based on the method by Zevenbergen and Thorne, as described by Burrough and

MacDonnel (1998).
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7.3 Processing of model database

The resulting 0 to 65 degrees slope gradient raster was rounded to integer

values (Fig. 7.2). Then it was normalized to susceptibility values; flat slopes,

zero susceptibility; steepest slope, susceptibility one.

Figure 7.2: Slope gradient derived from 90 m DEM

7.3.1.2 Drainage density

Drainage density map was produced from elevation data (90-m resolution DEM)

using Arc Hydro Tools, a free ArcGIS extension for hydrological modelling (ESRI,

2009).

Processing the DEM generated a polygon catchment layer and a line drainage

layer. Drainage density for catchment areas was calculated from length and area

attributes of the vector layers, and converted to raster.

Density values extremely high (>3 km/km2) were reclassified to 3 km/km2;

in catchment areas with unnatural shape and very small area. Areas with no-

data values cells, along the target area boundaries, were replaced with the lowest

drainage density (0.035 km/km2). Then the raster was normalized to express
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7.3 Processing of model database

susceptibility; lower density, higher susceptibility. Fig. 7.3 shows the drainage

density map derived from 90 m DEM.

Figure 7.3: Drainage density derived from 90 m DEM

7.3.2 Land cover

For the target area, the dataset used is in MODIS Sinusoidal Tiling System

(horizontal 28; vertical 5) and the projection is sphere-based Sinusoidal. The file

name is MCD12Q1.A2005001.h28v05.005.2008310180817.hdf.

Processing consisted in selecting band 1 (corresponding to the IGBP land

cover classification), and changing the image header format to BSQ; using MultiS-

pec, an image data analysis software (MultiSpec, 2009); then changing file exten-

sion to BSQ.

In ArcGIS, the image projection was defined as Sphere-based Sinusoidal; then

it was projected to Tokyo UTM 53N Zone, and resampled to 10m grid and clipped

to the target area.

Land cover susceptibility consists of 11 categories with landslide susceptibility

between 0 and 1 (Hong et al., 2007). Table 7.1 shows MODIS values and sus-
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7.3 Processing of model database

ceptibility. However, only the land cover classes marked with (*) were present in

the target area (Fig. 7.4). Reclassification of the land cover map produced the

land cover susceptibility factor map.

Table 7.1: Land cover susceptibility according to Hong et al. (2007)

Category Susceptibility MODIS Land cover

0 0.0 0, 15 Water bodies, permanent snow and ice

1 0.1 1, 2, 11 Evergreen forests, permanent wetland *

2 0.2 3, 4 Deciduous needle-leaf *, broad-leaf forests

3 0.3 5 Mixed forests *

4 0.4 6,7 Open, closed shrub lands

5 0.5 8, 9 Woody savannah *, savannah

6 0.6 10 Grass land

7 0.7 12 Croplands

8 0.8 14 Cropland/natural vegetation mosaic *

9 0.9 16 Barren or sparsely vegetated land *

10 1.0 13, 17 Developed land, road corridors, coastal area

7.3.3 Digital Soil Map of the World

The geographic data format is shapefile and attribute data are in spreadsheet

files. Processing consisted in defining the spatial reference as WGS84 in ArcGIS;

editing spreadsheet tables to produce database files for joining with geographic

data; then clipping the target area and adding a susceptibility field according to

susceptibility criteria.

In the target area, the soil map of the study consisted of two classes only,

Table 7.2 and Fig. 7.5. Susceptibility was defined based on dominant soil texture

classes (coarse, medium and fine). Susceptibility for soil type with fine texture

was lower than for medium texture soil type.

Soil type map was rasterized based on soil type, then projected to Tokyo UTM

53N Zone and resampled to 10 m grid, and reclassified soil type to susceptibility

values of Table 7.2.
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7.3 Processing of model database

Figure 7.4: Land cover from MODIS

Table 7.2: Soil type and susceptibility according to Hong et al. (2007).

Value Soil type Texture Susceptibility

1 Ao86-3b Fine 0.33

2 Be88-2/3b Medium/fine 0.66
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7.3 Processing of model database

Figure 7.5: Soil type. Source FAO (2009)

7.3.4 Soil texture dataset

Dataset soil texture classes and raster values are: 0 water; 1 sand; 2 loamy sand;

3 sandy loam; 4 loam; 5 silt loam; 6 silt; 7 sandy clay loam; 8 clay loam; 9 silty

clay loam; 10 sandy clay; 11 silty clay; 12 clay; and 13 permanent ice. These

correspond to three texture categories, coarse (1 - 3 classes) with susceptibility

1; medium (4 - 8) with susceptibility of 0.66, and fine (8 - 12) with susceptibility

of 0.33.

The ASCII file was converted to 1-degree raster map and the spatial reference

defined as WGS84. The target area was inside one cell with texture value of 8,

which corresponds to clay loam. Instead of projecting and clipping the target

area, a constant raster was created.

The raster, with the same cell size and extent as the landslide distribution map

10 m grid and the spatial reference as Tokyo UTM 53N Zone, had a constant value

for the susceptibility of clay loam class. In the susceptibility scale, fine texture

(loam clay) corresponds to low susceptibility class, and it was assigned value of

0.33.
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7.4 Map combination

7.4 Map combination

After producing the landslide related parameter maps and the weights for their

classes, this section describes the combination of the maps to estimate landslide

susceptibility in the target area using the WLC approach. Besides the parameter

class weight (primary weight), each parameter has a weight to express the contri-

bution to the occurrence of landslides (secondary weight). Parameters and their

secondary weights are as shown in Table 7.3.

Table 7.3: WLC parameter weights (or secondary weights) according to Hong

et al. (2007).

Parameter Weight

Slope gradient 0.3

Soil type 0.2

Soil texture 0.2

Elevation 0.1

Land cover 0.1

Drainage density 0.1

Total susceptibility value in each cell was the sum of the rasters (correspond-

ing to primary weights) multiplied by their secondary weights, as expressed in

Eq. 3.1. Hong et al. (2007) normalized total susceptibility from zero to one

and reclassified the index in six categories based on abrupt changes in the his-

togram. Classes are 0-permanent snow or ice; 1-water bodies, 1-very low; 2-low;

3-moderate; 4-high; and 5-very high susceptibility.

Here, the resulting susceptibility map had values between 0.173 and 0.581,

the mean was 0.334, and the standard deviation was 0.0515. Susceptibility was

reclassified in ranks based on mean and standard deviation intervals to express

relative susceptibility to the occurrence of shallow landslides (Fig. 7.6).

Susceptibility classes were very low, low, moderate, high, and very high. The

moderate class is centred around the mean value. Table 7.4 shows the classifica-

tion.

The categorized susceptibility map was compared to the landslide inventory

map, to calculate the area of landslides in each class. Table 7.4 shows area of
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7.4 Map combination

Figure 7.6: Shallow landslide susceptibility based on WLC

Table 7.4: Susceptibility classes

Class Susceptibility Category Class area (km2) Landslide area (km2)

1 0.173-0.257 Very low 9.43 0.14

2 0.257-0.308 Low 41.23 1.02

3 0.308-0.360 Moderate 54.69 1.37

4 0.360-0.411 High 39.35 0.80

5 0.411-0.581 Very high 11.49 0.11
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7.5 Model validation

failure based on number of cells.

Comparing the WLC model (Fig. 7.6) with the distribution of slope failures

in the target area (Fig. 6.3), high and very high susceptibility classes are mainly

in the eastern part of the target area. However, in the landslide inventory map,

the highest failure concentration occurred in the western part of the target area.

7.5 Model validation

Validation consisted in ranking susceptibility, combining susceptibility classes

with the landslide map and calculation of ROC plot and AUC. The susceptibility

map was reclassified, based on the mean the standard deviation intervals, in 25

classes, from higher to lower susceptibility values. The tables resulting from the

combination operation had the following information: area of susceptibility class

and area of landslides within each susceptibility class.

Tables were joined and imported into a spreadsheet. Cumulative landslide

area for each successive susceptibility class was estimated to calculate specificity

using Eq. 5.3 and sensitivity using Eq. 5.2 and plot the ROC. AUC was calculated

using Eq. 5.4.

The AUC of the model was 0.47. The result means that for the target area,

the efficiency or prediction power of the model proposed by Hong et al. (2007) is

lower than classification by chance. This indicates that it is not a good model to

predict the occurrence of shallow landslides in the target area.
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7.5 Model validation

Figure 7.7: ROC plot of WLC model. AUC 0.47
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Chapter 8

Weights of Evidence

This chapter is about applying the Weights of Evidence approach for the estim-

ation of landslide susceptibility in the target area, using the same parameters

used in the WLC model. The aim is to improve the accuracy of the WLC model

by two approaches, using parameter weights calculated from practical data and

replacing the elevation dataset with a higher resolution DEM.

Model validation requires the partition of the landslide database for the mod-

elling and validation stages.

The general steps of the WOE approach were calculation of weights for para-

meter classes using the modelling landslide dataset, reclassification of parameters

based on weights if necessary, combination of parameter weights and estimation

of susceptibility, ranking susceptibility, comparison of susceptibility map with

validation landslide dataset, and assessment of the model accuracy.

8.1 Landslide database partition

Based on the random partition approach, the landslide distribution database

(Pimiento and Yokota, 2006) was divided in two sets. One for modelling and

the other for validation. Furthermore, based on the data type, two different

partitions were carried out; one based on landslide area (pixels) and the other

based on point data.

For the raster based approach, a random raster with the same extent and

cell size as the landslide inventory map was created. Then it was overlaid to
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8.1 Landslide database partition

the landslide map to assign a probability value to each pixel. The landslide map

was reclassified in two categories, pixels with values equal or lower than 0.5 were

selected as the modelling dataset, and pixels with values greater than 0.5 were

defined as validation dataset. The total number of pixels was 34,337. Table 8.1

and Fig. 8.1 show the classification.

Table 8.1: Area-based landslide database partition

Probability Class Dataset Pixel count

0.00001-0.5 1 Modelling 17,202

0.5-0.99999 2 Validation 17,135

Figure 8.1: Area-based landslide database partition. Individual pixels in part of

the target area

For the second partition, the landslide database was transformed to polygon

data and it was randomly divided in a modelling (1,205 landslides) and validation

(1,206 landslides) sets, using the Sampling Design Tool for ArcGIS (Center for

Coastal Monitoring and Assessment, 2009).
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8.2 Parameter class weights 90 m DEM dataset

Then, the polygon data were transformed to point data using ET Geowizards

(ETGeoWizards, 2009), with the function label inside. The function calculates

the centroid of the polygon, but if the centroid falls outside the polygon, the point

is placed somewhere inside the polygon. A landslide was represented as a point

of the centre of failure area, Fig. 8.2.

Figure 8.2: Point-based landslide database partition. Individual landslides in

part of the target area

The area based partition datasets were mainly used for WOE modelling and

validation. The point based partition datasets were used to compare results from

using a smaller modelling dataset.

8.2 Parameter class weights 90 m DEM dataset

WOE requires the classification of continuous parameters. DEM was reclassified

into 50-m interval classes, slope gradient data were categorized in 5-degree inter-

vals and drainage density data were categorized in six classes based on mean and

1-standard deviation interval method.
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8.2 Parameter class weights 90 m DEM dataset

Land cover and soil type were used with same classification (different from

susceptibility) as in the WLC model. Soil texture map consisted of only one class,

therefore it was not analysed. With a parameter with only one class, it is not

possible to make a cross-area tabulation for the calculation of weights. However,

the omission does not change the susceptibility, because susceptibility is relative.

Parameter maps were compared to the modelling landslide dataset (using the

Sample function of ArcGIS). Results were tables of overlapping areas between

landslide cells (landslide area) and parameter classes.

The total number of landslide cells was 34,337. Two cells fell outside the

drainage density map and were classified as no-data; therefore only 34,335 cells

were used in the analysis.

Table data were summarized to calculate the number of landslide cells within

each class of the parameter maps.

Positive (W+) and negative (W−) weights for classes were calculated with Eq.

3.3 and Eq. 3.4. Using the weights and contrast, parameters were reclassified,

and the weights were recalculated.

Slope gradient cells with values > 35◦ were classified in one class. W+ were

negative for slope gradient classes < 10◦ and > 25◦. W+ were positive for classes

> 10◦ and < 25◦. This means that slope gradients > 10◦ and < 25◦ were favour-

able for the occurrence of landslides. Table 8.2 shows parameter categorization,

positive and negative weights and contrast.

Table 8.2: 90 m DEM derived slope gradient classification and WOE weights

Slope gradient W+ W− Contrast

0 - 5 -0.358 0.055 -0.413

5 - 10 -0.034 0.013 -0.047

10 - 15 0.101 -0.034 0.135

15 - 20 0.180 -0.046 0.226

20 - 25 0.178 -0.018 0.196

25 - 30 -0.347 0.009 -0.356

30 - 35 -1.417 0.009 -1.426

35 - 65 -2.543 0.004 -2.547
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8.2 Parameter class weights 90 m DEM dataset

For fine texture soil, W+ was positive, while for medium/fine texture W+ was

negative. This indicates that medium/fine texture soil has lower susceptibility to

landslides than fine texture soil, contrary to the criterion by Hong et al. (2007)

(Table 8.3).

Table 8.3: Soil type classification and weights

Soil type W+ W− Contrast

Fine 0.0875 -1.730 1.817

Medium/fine -1.7300 0.087 -1.817

Elevation classes between 600 and 700 m were grouped in one class. W+

were negative for elevation classes lower than 100 and higher than 350 m. While

elevation classes between 100 and 350 m had positive W+, indicating higher

landslide susceptibility (Table 8.4).

Table 8.4: 90 m DEM elevation classification and WOE weights

Elevation W+ W− Contrast

0-50 -0.707 0.054 -0.761

50-100 -0.143 0.016 -0.159

100-150 0.394 -0.055 0.449

150-200 0.241 -0.041 0.282

200-250 0.196 -0.024 0.219

250-300 0.325 -0.046 0.371

300-350 0.329 -0.039 0.368

350-400 -0.457 0.040 -0.497

400-450 -0.787 0.057 -0.844

450-500 -0.550 0.019 -0.570

500-550 -0.115 0.002 -0.117

550-600 -0.418 0.002 -0.420

600-700 -1.123 0.002 -1.124

Land cover classes, except for the Mixed forest, had negative W+, indicating

that they were not favourable for the occurrence of landslides. While Mixed forest
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8.2 Parameter class weights 90 m DEM dataset

Table 8.5: Land cover classification and WOE weights

Land cover W+ W− Contrast

Permanent wetland -1.098 0.008 -1.107

Deciduous needleleaf forests -1.545 0.006 -1.551

Mixed forests 0.033 -0.949 0.982

Woody savannah -0.737 0.008 -0.745

Cropland/natural vegetation mosaic -0.478 0.003 -0.481

Barren or sparsely vegetated land -1.353 0.007 -1.360

had a low positive W+ and higher negative W−, indicating higher susceptibility,

Table 8.5.

Higher drainage density and low-density classes had negative W+. Therefore,

their relation to the occurrence of landslides was not clear, Table 8.6.

Table 8.6: 90 m DEM derived drainage density classification and WOE weights

Drainage density W+ W− Contrast

Very high -0.218 0.015 -0.233

High 0.074 -0.015 0.089

Moderate -0.015 0.016 -0.031

Low 0.064 -0.014 0.078

Very low 0.150 -0.007 0.157

Extremely low -0.399 0.009 -0.408

8.2.1 Reclassification based on weights and contrast

As discussed in Section 3.4, the contrast helps to reclassify parameters in more

significant classes. A positive contrast indicates the class is favourable for the

occurrence of landslides, while a class with negative contrast is not.

Parameter maps were reclassified based on the WOE contrast value, except

for soil type. Then, new weights were calculated using the modelling dataset,

Table 8.7.
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8.2 Parameter class weights 90 m DEM dataset

Table 8.7: Parameter reclassification and WOE weights

Slope gradient W+ W− Contrast

> 10◦ and < 25◦ 0.1431 -0.1773 0.3205

< 10◦ and > 25◦ -0.1773 0.1431 -0.3205

Soil type

Fine 0.0875 -1.730 1.817

Medium/fine -1.7300 0.087 -1.817

Elevation W+ W− Contrast

100 - 350 m 0.2963 -0.4679 0.7642

< 100 and > 350 m -0.4679 0.2963 -0.7642

Land cover

Mixed forest 0.0332 -0.9492 0.9824

Other classes -0.9492 0.0332 -0.9824

Drainage density

Very high - moderate 0.0376 -0.0124 0.0500

Low - very low -0.0124 0.0376 -0.0500
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8.3 Parameter weights 50 m DEM dataset

In order to evaluate the significance of the elevation data used in the model by

Hong et al. (2007), the 90 m DEM was replaced with a 50 m DEM from the

Geographical Survey Institute of Japan (Geographical Survey Institute Japan,

1997).

8.3.1 Processing of 50 m DEM

Processing consisted in the transformation of elevation data to shapefile point

data format using the software SMAPCNV (PASCO Co., 1997); inverse weighted

distance interpolation; projection to UTM 53N Zone; and resampling using the

same cell size as the landslide database.

Elevation values in target area were between 0 and 700 m. Elevation was re-

classified in 50-m intervals classes. Only main land elevation data were considered

for the analysis, small islands were not included (Fig. 8.3).

Figure 8.3: Elevation based on 50 m DEM. Source Geographical Survey Institute

Japan (1997)
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8.3 Parameter weights 50 m DEM dataset

Slope gradient and drainage density were derived from the 50 m DEM, using

the same approach used for the 90 m DEM data, Section 7.3.1.1 and Section

7.3.1.2. Resulting slope values, between 0◦ and 60◦, were reclassified in 5-degree

intervals (Fig 8.4).

Figure 8.4: Slope gradient derived from 50 m DEM

Drainage density values were between 60 and 47,140 m/km2. Values greater

than 3,000 m/km2 were grouped in one class. No data cells were assigned the

minimum density (60.4 m/km2). Finally, drainage density was classified in five

categories, based on mean and 1 standard deviation values, as very high, high,

moderate, low and very low (Fig 8.5).

The soil type and land cover data were clipped to the extension of the 50 m

DEM.

8.3.2 Parameter weights

Weights were calculated for the initial categorization of the parameters derived

from 50 m DEM. However, many slope and elevation classes did not have land-
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8.4 Landslide susceptibility modelling

Figure 8.5: Drainage density derived from 50 m DEM

slides, therefore they were reclassified based on contrast values and new weights

were calculated. Tables 8.8, 8.9, and 8.10 show the classifications and weights.

The relations between susceptibility and slope gradient and elevation were

similar to those from the previous dataset. Slope gradients between 15◦ and

35◦, and elevations between 100 and 350 m were favourable for the occurrence of

landslides. Relation between drainage density and susceptibility was not clear.

Weights for soil type and land cover changed in relation to the 90 m DEM

data scenarios, because the extent of the target area varied slightly, Tables 8.11

and 8.12.

8.4 Landslide susceptibility modelling

Modelling consisted in estimating susceptibility with weights calculated for three

sets of parameters (called here as 90 m DEM dataset, reclassified 90 m DEM

dataset, and 50 m DEM dataset) and 11 parameter combinations, to evaluate

the significance of parameters, Table 8.13 shows parameter combinations. This
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8.4 Landslide susceptibility modelling

Table 8.8: 50 m DEM derived slope gradient classification and WOE weights

Slope gradient W+ W− Contrast

0 - 5 -1.1509 0.0695 -1.2204

5 - 10 -0.4968 0.0755 -0.5722

10 - 15 -0.1445 0.0350 -0.1795

15 - 20 0.1982 -0.0580 0.2562

20 - 25 0.3591 -0.0832 0.4423

25 - 30 0.3774 -0.0474 0.4248

30 - 35 0.2076 -0.0112 0.2188

35 - 40 -0.0858 0.0017 -0.0875

40 - 65 -0.6385 0.0047 -0.6432

Table 8.9: 50 m DEM derived elevation classification and WOE weights

Elevation W+ W− Contrast

0-50 -0.8161 0.0726 -0.8886

50-100 -0.0728 0.0085 -0.0814

100-150 0.3563 -0.0511 0.4074

150-200 0.3262 -0.0557 0.3819

200-250 0.2095 -0.0255 0.2351

250-300 0.3229 -0.0444 0.3673

300-350 0.2816 -0.0319 0.3136

350-400 -0.5432 0.0463 -0.5895

400-450 -0.7032 0.0480 -0.7512

450-500 -0.4389 0.0149 -0.4538

500-550 -0.2111 0.0034 -0.2145

550-600 -0.3455 0.0017 -0.3472

600-700 -1.2330 0.0017 -1.2347
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8.4 Landslide susceptibility modelling

Table 8.10: 50 m derived drainage density classification and WOE weights

Drainage density W+ W− Contrast

Very high -0.4447 0.0429 -0.4876

High -0.2281 0.0305 -0.2585

Moderate 0.2062 -0.2679 0.4741

Low -0.1844 0.0375 -0.2219

Very low -0.3255 0.0201 -0.3456

Table 8.11: Soil type WOE weights for 50 m DEM analysis

Soil type W+ W− Contrast

Fine 0.0861 -1.718 1.804

Medium/fine -1.7175 0.086 -1.804

Table 8.12: Land cover WOE weights for 50 m DEM analysis

Land cover W+ W− Contrast

Permanent wetland -1.4134 0.0132 -1.4265

Deciduous needleleaf forests -1.6081 0.0061 -1.6142

Mixed forests 0.0408 -1.0774 1.1183

Woody Savannah -0.7282 0.0081 -0.7362

Cropland/natural vegetation mosaic -0.7315 0.0050 -0.7365

Barren or sparsely vegetated land -1.3574 0.0073 -1.3646
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8.4 Landslide susceptibility modelling

resulted in 33 models.

Table 8.13: WOE parameter combinations

Combination Parameters

A Slope gradient, soil type, elevation, land cover, drainage density

B Slope gradient, soil type, elevation, and land cover

C Slope gradient, soil type, and land cover

D Slope gradient, elevation, and land cover

E Slope gradient, elevation, land cover and drainage density

F Slope gradient, and elevation

G Slope gradient, and land cover

H Slope gradient and drainage density

I Slope gradient and soil type

J Slope gradient

K Elevation

Estimation of landslide susceptibility consisted in the reclassification of the

parameters maps with the W+ weights and the calculation of the posterior prob-

ability, as described in Section 3.4.

This is the calculation of susceptibility for model WOEA1, the model with

parameter combination A and the first dataset, 90 m DEM dataset. Susceptibility

was calculated as follows:

Calculation of prior probability, p(l), using Eq. 3.5, with areas in km2,

p(l) =
1.72

157.06
= 0.011 (8.1)

Estimation of logit(l) with Eq. 3.6

logit(l) = ln[
0.011

(1− 0.011)
] = −4.4988 (8.2)

For each cell in the target area, calculation of posterior logit, logit(l|f), was

the addition of rasters maps corresponding to the class weights for each parameter

plus logit(l); using Eq. 3.7.

logit(l|f) = −4.4988 +W+
f (8.3)

62



8.4 Landslide susceptibility modelling

Posterior logit logit(l|f) was convert to posterior odds, O(l|f) using Eq. 3.8

O(l|f) = exp(logit(l|f)) (8.4)

Finally, posterior probability p(l|f) was calculated using Eq. 3.9

p(l|f) =
O(l|f)

(1 +O(l|f))
(8.5)

The calculated posterior probability represents the landslide susceptibility

based on the weights of the model parameters. Likelihood of occurrence of land-

slides is higher in cells with higher susceptibility. Similarly, low susceptibility

cells indicate low probability to the occurrence of shallow landslides (Fig. 8.6).

Figure 8.6: Landslide susceptibility model WOEA1. Posterior probability ex-

presses landslide susceptibility from the model parameters

Susceptibility for all the parameter combinations and the three datasets was

calculated as described above.
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8.5 Model validation

8.5 Model validation

The same procedure used to validate the WLC model was used to validate the

WOE models. Susceptibility maps were classified in ranks based on mean value

and 1/4 standard deviation intervals, and then compared to the landslide valid-

ation dataset. Reclassified maps did not have the same number of intervals.

Combination of susceptibility ranks and modelling dataset produced a table

of landslide area within each rank. The ROC plot and AUC were calculated

according to method described in Section 5.3 ROC plot and AUC.

Fig. 8.7 shows the ROC plot for the WOEA1 model, with the parameter

combination A and the first dataset, 90 m DEM dataset. The AUC was 0.64.

Figure 8.7: ROC plot of WOEA1 model. AUC 0.64

Table 8.14 shows the AUC calculated for the models, columns correspond to

datasets and rows correspond to parameter combinations as describe earlier. The

table permits to compare model accuracy for different parameter combinations

using the three datasets.

Models using parameters derived from the 50 m DEM had better prediction

power that models using data derived from 90 m DEM. Nevertheless, the dif-
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8.6 Landslide database partition assessment

ference was not big for some combinations. Models with reclassified parameters

derived from the 90 m DEM had lower accuracies, contrary to what expected.

Table 8.14: AUC values for WOE models
Parameter combination 90-m-DEM Reclassified 90-m-DEM 50-m-DEM

A 0.64 0.39 0.66

B 0.63 0.39 0.65

C 0.59 0.43 0.63

D 0.62 0.41 0.64

E 0.62 0.41 0.65

F 0.62 0.41 0.64

G 0.56 0.45 0.61

H 0.56 0.46 0.62

I 0.58 0.43 0.63

J 0.55 0.46 0.61

K 0.60 0.41 0.60

8.6 Landslide database partition assessment

Two approaches were used to assess the landslide database partition. The WOEA1

model was compared to the modelling dataset to evaluate the model performance

instead of prediction performance. The ROC plot AUC calculated for the val-

idation was 0.64, the same area as the AUC calculated from comparing to the

validation dataset. This indicates that the random partition based on landslide

area produced representative datasets.

The second assessment consisted in evaluating the effect of the size of the

landslide modelling dataset in WOE modelling. Instead of using the raster-based

validation dataset of 17,202 cells (or samples), the point-based validation dataset

of 1,205 points was used.

The 50 m DEM data parameters were used for modelling. Parameter weights

calculated using the validation dataset are in Tables 8.15, 8.16, 8.17, 8.18, and

8.19. Relations between susceptibility and parameter classes were similar to those

estimated using the large raster-based dataset.
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8.6 Landslide database partition assessment

Slope gradient classes between 15◦ and 40◦ had positive W+, while other

classes had negative W+. Fine texture soil type had positive W+ and me-

dium/fine texture soil type had negative W+. Mixed forest land cover class had

positive W+, while other classes had negative W+; however, elevation classes

between 50 and 300 m and above 550 had positive W+; while for the raster-based

dataset estimation, all elevations classes above 300 m had negative W+.

Here also, the relation between drainage density and susceptibility was not

clear.

Table 8.15: Point-based partition slope gradient classification and WOE weights

Slope gradient W+ W− Contrast

0 - 5 -0.9288 0.0612 -0.9900

5 - 10 -0.2754 0.0469 -0.3223

10 - 15 -0.0528 0.0135 -0.0663

15 - 20 0.1644 -0.0471 0.2115

20 - 25 0.2271 -0.0485 0.2756

25 - 30 0.1882 -0.0212 0.2095

30 - 35 0.2298 -0.0126 0.2424

35 - 40 0.1571 -0.0036 0.1607

40 - 65 -0.3843 0.0031 -0.3875

Landslide susceptibility (model WOE45) was calculated with previous para-

meters and W+ weights. Then it was validated using the validation dataset.

The ROC plot AUC for the model was 0.64; slightly lower than the AUC for

the model using the same parameter combination (model WOEA3) and the large

sampling dataset based on landslide area, that was 0.66. Nevertheless, the point

based datasets represented well the characteristics of the landslides.

In general, the model produced using the smaller point-based modelling data-

set produced acceptable accuracy, because the calculated weights expressed the

parameter relations with the occurrence of shallow landslides.
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8.6 Landslide database partition assessment

Table 8.16: Point-based partition elevation classification and WOE weights

Elevation W+ W− Contrast

0-50 -0.4813 0.0499 -0.5312

50-100 0.0653 -0.0083 0.0736

100-150 0.4907 -0.0769 0.5676

150-200 0.3990 -0.0717 0.4707

200-250 0.0972 -0.0111 0.1084

250-300 0.2316 -0.0303 0.2619

300-350 -0.1687 0.0149 -0.1836

350-400 -0.6600 0.0530 -0.7130

400-450 -0.6590 0.0456 -0.7047

450-500 -0.4204 0.0144 -0.4347

500-550 -0.5754 0.0079 -0.5832

550-600 0.1330 -0.0008 0.1339

600-700 0.0469 -0.0001 0.0470

Table 8.17: Point-based partition drainage density classification and WOE

weights

Drainage density W+ W− Contrast

Very high -0.3285 0.0335 -0.3620

High -0.3920 0.0479 -0.4399

Moderate 0.1986 -0.2568 0.4554

Low -0.1167 0.0246 -0.1414

Very low -0.3116 0.0193 -0.3309

Table 8.18: Point-based partition soil type classification and WOE weights

Soil type W+ W− Contrast

Fine 0.0745 -1.2456 1.3191

Medium/fine -1.2446 0.0745 -1.3191
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Table 8.19: Point-based partition land cover classification and WOE weights

Land cover W+ W− Contrast

Permanent wetland -0.9444 0.0106 -0.9549

Deciduous needleleaf forests -0.8131 0.0042 -0.8173

Mixed forests 0.0339 -0.7987 0.8326

Woody Savannah -0.5185 0.0063 -0.5248

Cropland/natural vegetation mosaic -0.3576 0.0029 -0.3605

Barren or sparsely vegetated land -2.4527 0.0089 -2.4616

8.7 Overall conditional independence test

Conditional independence test was calculated for models with higher performance

and different approaches, using Eq. 3.10. Table 8.20 shows the results. Model

WOEA3 (parameter combination A and dataset 50 m DEM) presented the highest

surplus. However, exceeding predicted events were below 15%, which means that

conditional dependence was acceptable.

Table 8.20: Observed and predicted events

Model Observed Calculated Exceeding (%) AUC

WOEA1 17,133 17,959 4.8 0.64

WOEA3 17,133 19,077 11.3 0.66

WOE45 1,206 1,308 8.4 0.64
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Chapter 9

Logistic Regression

This chapter is about producing a susceptibility model based on the characterist-

ics of shallow landslides in the target area. Landslide susceptibility was estimated

with the logistic regression approach using SDM, an extension for ArcGIS, Section

4.5.

The model parameters are generalized lithology, slope gradient, profile curvature,

plan curvature, and elevation. Parameter selection was based on the mechanics

of shallow landslides, as described earlier (Section 6.6).

The 10 m landslide inventory was used for modelling and validation. Para-

meters were derived from a 10 m DEM and 1:200,000 scale geological map.

9.1 Landslide and parameters databases

9.1.1 Landslide database

The landslide database is the 10 m grid landslide distribution map. However, the

analysis requires training data as point data; therefore the point-based landslide

database described in section 8.1 was used. Furthermore, SDM requires maximum

1,000 sample points for modelling. Therefore, the point database was reduced

from 1,205 to 993 points, by random selection using Sampling Design Tool (Center

for Coastal Monitoring and Assessment, 2009).

The validation database was produced in the same way. The point sample
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9.2 Processing of parameters databases

dataset was reduced by randomly selecting 85% of the 1,206 points. The valida-

tion dataset consisted of 992 points.

9.1.2 10 m DEM

Elevation data was the 10 m DEM from the Geographical Survey Institute of Ja-

pan (GSI). DEM was produced produced from 1:25,000 topographic maps (Geo-

graphical Survey Institute Japan, 2009). For the target area, the elevation data

is available for download in the Japanese version website since February 2009 at

http://fgd.gsi.go.jp/download/.

The target area is in six 1:25,000 quadrangles; 5231-16; 5231-17; 5231-26;

5231-27; 5232-10, and 5232-20. The spatial reference is Japanese Geodetic Datum

2000 datum (JGD2000).

9.1.3 1:200,000 scale geological map of Japan

Geological map of Japan (scale 1:200,000) is an online geological database (Geo-

MapDB) from the Geological Survey of Japan (GSJ) (Geological Survey Japan,

2009). The target area is in two 1:200,000 quadrangles, Hamada and Mishima

quadrangles. Quadrangles were downloaded from http://iggis1.muse.aist.

go.jp/ja/top.htm as shapefiles. Spatial references of data are Japan Geodetic

Datum 2000 (JGD2000) and UTM projection with JGD2000 datum.

The lithology distribution described in Section 6.2 was used for modelling.

9.2 Processing of parameters databases

Logistic regression analysis using SDM requires data projected in meters. There-

fore the analyses were carried out with data projected in UTM 53N Zone with

Tokyo datum.

Since the landslide map spatial reference was UTM, the elevation data and

geological map data were processed. The general processing consisted in spatial

reference transformation, clipping the study area and conversion to raster with

same cell size as the landslide map, and categorization of continuous data.
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9.2 Processing of parameters databases

9.2.1 10 m DEM

Processing consisted in transformation from XML format to BIL image using

FGDDEMConv software tool (Akagi, 2009). The tool also permitted to make a

mosaic of the files. Then, in ArcGIS (9.3) the image file was converted to integer

raster. The spatial reference was defined as JGD2000, and the study area was

clipped from the mosaic.

In the study area, elevations were between 0 and 712 m; the map was checked

by comparing it with a paper topographic map of the area published by GSI, that

was produced by photogrammetry. Elevation was reclassify in 50 m intervals,

except for the class 600 to 712 m, Fig. 9.1.

Figure 9.1: Elevation based on 10 m DEM. Source Geographical Survey Institute

Japan (2009)

9.2.1.1 Slope gradient

Slope gradient, derived form the 10 m DEM as described previously (Section

7.3.1.1), was between 0◦ to 69◦ (Fig. 9.2). It was reclassified in 5 degree intervals,

from 0◦ to 40◦ and the last except for gradients > 40◦.
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9.2 Processing of parameters databases

Figure 9.2: Slope gradient map derived from 10 m DEM

9.2.1.2 Profile and plan curvature

Curvature is a morphometric characteristic less known than slope or aspect.

Therefore it is shortly described. Profile curvature is the terrain curvature in

the slope direction. Plan curvature is the terrain curvature along a plane perpen-

dicular to slope direction.

Profile and plan curvature were derived from the 10 m DEM using functions

based on the methods by Zevenbergen and Thorne, as described by Burrough

and MacDonnel (1998).

In ArcGIS, calculated negative profile curvature indicates an upwardly convex

surface (hill). Positive profile curvature indicates an upwardly concave surface

(depression). Positive plan curvature indicates a convex surface relative to elev-

ation contour (nose). And negative plan curvature indicates a concave surface

relative to contour (valley).

Profile curvature values varied between -22 and 26.7. Plan curvature values

were between -24.77 and 20. Profile and plan curvature were reclassified by

interactive visual inspection of data overlaid on elevation contour map, and based
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9.2 Processing of parameters databases

on natural break values, in five qualitative classes. Classes were strongly concave,

weakly concave, flat, weakly convex, and strongly convex. Table 9.1 and Fig.

9.3 show profile curvature classification and map. Table 9.2 and Fig. 9.4 show

classification and map of plan curvature.

Table 9.1: Profile curvature classification
Value Class Gridcode

-22 - -2.5 Strongly convex 1

-2.5 - -0.6 Weakly convex 2

-0.6 - 1.1 Flat 3

1.1 - - 3.4 Weakly concave 4

3.4 - 26.7 Strongly concave 5

Figure 9.3: Profile curvature derived from 10 m DEM

9.2.2 Geological map of Japan

Downloaded data had shapefile format, and the spatial reference was JGD2000.

Processing consisted in projecting to UTM 53N Zone with Tokyo datum, clip-

73



9.2 Processing of parameters databases

Table 9.2: Plan curvature classification
Value Class Gridcode

-24.8 - -3.5 Strongly concave 1

-3.5 - -1.1 Weakly concave 2

-1.1 - - 0.5 Flat 3

0.5 - - 2.4 Weakly convex 4

2.4 - - 20.0 Strongly convex 5

Figure 9.4: Plan curvature derived from 10 m DEM
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9.3 Landslide susceptibility modelling

ping the target area from each quadrangle, merging clipped areas, reclassifying

lithologies, and dissolving units.

The geological map contained keys of lithology units based on the 1:200,000

scale geological map of Japan. A separate spreadsheet file contained the unit

names in Japanese.

Lithology was reclassified according to lithofacies (rock type) without consid-

ering the age in: Quaternary deposits, volcanic and pyroclastic rocks, diorites

and granitic rocks, and pelitic and psammitic schists. The lithology distribution

of the target area is shown in Fig. 6.2. Table 9.3 shows classification and areas.

Generalized lithology map was converted to raster with same extent and cell

size as elevation data, however lithology dataset had different extent; therefore,

no data cells were assigned value -99 (a SDM requirement to identify missing

information).

Table 9.3: Generalized lithology

Lithology Area (km2) Percentage

Quaternary deposits 1.43 0.91

Volcanic and pyroclastic rocks 50.43 32.04

Diorites and granitic rocks 43.37 27.55

Pelitic and psammitic schists 61.41 39.02

No-data 0.76 0.48

Total area 157.40 100.00

9.3 Landslide susceptibility modelling

After the definition of the model parameters, parameters were reclassified based

on WOE approach using SDM, to maximize the association with shallow land-

slides. Then estimation of parameter weights, calculation of susceptibility for

different parameter combinations, and validation of results.
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9.3 Landslide susceptibility modelling

9.3.1 Reclassification of parameters

Weights for parameter classes were calculated using the WOE tool from SDM

with the point based modelling dataset. Calculation was based on categorical

evidence type; descending or ascending type (used for proximity related evidence)

were not appropriate. Weights and contrast indicate association with distribution

of landslides, and are used as a guide for the categorization of parameters.

The SDM tool calculates the W+ and W− weights, contrast, their standard

deviations, and the studentized contrast. Studentized contrast is the ratio of

the contrast and the standard deviation of the contrast. A studentized contrast

lower than 2.0 means an unacceptable contrast. It is a way to measure sampling

confidence. Therefore, classes with a studentized contrast lower than 2.0 need to

be reclassified.

Generalized lithology was reclassified by excluding Quaternary deposits. Vol-

canic and plutonic rocks had negative W+ and contrast, while schists had positive

W+ and contrast, Table 9.4. These indicate that schists were more favourable

for the occurrence of landslides than the other lithologies.

Table 9.4: Lithology reclassification and WOE weights

Generalized lithology W+ W− Contrast

Volcanic and pyroclastic rocks -0.7142 0.2198 -0.9340

Diorites and granitic rocks -0.1965 0.0669 -0.2634

Pelitic and psammitic schists 0.4353 -0.4415 0.8769

Slope gradient was reclassified in 5 degree intervals from 0◦ to 35◦ and the

last class as >35◦, Table 9.5. Similarly to the weights and contrast of lithology

classes, classes of gradients below 20◦ were less favourable for the occurrence of

landslides than classes with gradient >20◦.

Profile curvature was reclassified by grouping the flat, weakly concave and

strongly concave classes, Table 9.6. Strongly convex and weakly convex slopes

had positive W+; they were more favourable for the occurrence of landslides that

flat to concave slopes.
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9.3 Landslide susceptibility modelling

Table 9.5: 10 m DEM derived slope gradient classification and WOE weights

Slope gradient W+ W− Contrast

0 - 5 -2.0084 0.0608 -2.0692

5 - 10 -1.0579 0.0625 -1.1204

10 - 15 -0.6406 0.0638 -0.7044

15 - 20 -0.2337 0.0347 -0.2684

20 - 25 0.1395 -0.0307 0.1702

25 - 30 0.3094 -0.0722 0.3816

30 - 35 0.5600 -0.1133 0.6733

35 - 69 0.2077 -0.0323 0.2400

Table 9.6: Profile curvature reclassification and WOE weights

Curvature W+ W− Contrast

Strongly convex 0.3987 -0.0409 0.4396

Weakly convex 0.1901 -0.0798 0.2699

Flat - concave -0.1532 0.2399 -0.3931

Plan curvature was reclassified by grouping the flat to convex slopes, Table 9.7.

Concave slopes had positive W+; they were more favourable for the occurrence

of landslides than flat to convex slopes.

Table 9.7: Plan curvature reclassification and WOE weights

Curvature W+ W− Contrast

Strongly concave 0.5158 -0.0274 0.5432

Weakly concave 0.2291 -0.0519 0.2810

Flat - convex -0.0895 0.2902 -0.3797

Elevation was reclassified as shown in Table 9.8. The weights and contrast

indicate that classes with elevation between 100 and 300 (with positive W+) were

favourable for the occurrence of landslides, while the other class were not.
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9.3 Landslide susceptibility modelling

Table 9.8: 10 m DEM derived elevation reclassification and WOE weights

Elevation W+ W− Contrast

0-100 -0.3156 0.0757 -0.3913

100-150 0.4863 -0.0750 0.5613

150-200 0.4437 -0.0829 0.5267

200-250 0.1954 -0.0239 0.2193

250-300 0.2019 -0.0260 0.2279

300-400 -0.3692 0.0703 -0.4394

400-450 -0.5665 0.0404 -0.6069

450-712 -0.3780 0.0226 -0.4005

9.3.2 Models

The logistic regression tool from SDM uses a unique condition table and it is

limited to 6,000 unique conditions. The tool calculates the posterior probability

and creates tables of the parameter coefficients.

Susceptibility was estimated for different parameter combinations. Table 9.9

shows the parameters combinations, lithology refers to generalized lithology. The

training dataset consisted of point database. Fig. 9.5 shows landslide susceptibil-

ity calculated using LR1 with parameter classification and coefficients according

to Table A.1. The other models were with parameter reclassification based on

WOE, Tables A.2, A.3, A.4, A.5, and A.6.

Table 9.9: Logistic regression model parameter combinations

Model Parameters

LR1 Lithology, slope gradient, profile curvature, plan curvature, elevation

Parameters reclassified based on WOE

LR2 Lithology, slope gradient, profile curvature, plan curvature, elevation

LR3 Slope gradient, profile curvature, plan curvature, elevation

LR4 Lithology, slope gradient, elevation

LR5 Lithology, slope gradient, profile curvature, elevation

LR6 Lithology, slope gradient, plan curvature, elevation
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9.3 Landslide susceptibility modelling

Figure 9.5: Landslide susceptibility calculated using LR1. The susceptibility

pattern is similar to the slope failure distribution in Fig. 6.3

The coefficients express the relative importance of the parameter classes. A

positive coefficient indicates that the class contributes to susceptibility, while a

negative coefficient class reduces landslide susceptibility. Coefficients near zero

indicate little relation to susceptibility and coefficients equal to zero indicate the

class is not influencing the susceptibility. In Appendix A, Tables A.1, A.2, A.3,

A.4, A.5, and A.6 show the coefficients calculated for the models.

For the LR1 model, lithology classes had positive and high values, except for

Quaternary deposits where no landslides occurred, and schists the highest value.

Therefore, schists had a high susceptibility for the occurrence of landslides. Other

parameter classes contributing to susceptibility were slope gradients between 20◦

and 35◦, convex profile curvature, concave plan curvature, and elevations between

100 and 300 m. However, classes with coefficients equal to zero correspond to

classes with studentized contrast lower than two, and were not considered by the

analysis.

Models LR2, LR3, LR4, LR5 and LR6 had the last parameter class with coef-

ficient equal to zero. However, their studentized contrast were acceptable in the

79



9.4 Model validation

weight calculation. Schists should be significant for the susceptibility estimation,

while the other classes, slope gradient 35◦ - 69◦, profile curvature flat - concave,

plan curvature flat - convex, and elevation 450 - 712, are classes with little relation

to the occurrence of landslides.

Bonham-Carter, who worked on the development of SDM, in a personal com-

munication answered to a question regarding the coefficients with value of zero

for the last classes. Bonham-Carter said that when the logistic regression tool of

SDM is used with categorical data, each class is made into a new independent

binary variable, and since the last class is determined by the state of the other

classes (the presence of the other classes implies the absence of the last class),

its coefficient turns out to be zero. The zero coefficients add nothing to posterior

probabilities, and they can be ignored. In this way the logistic regression tool

avoids conditional independence bias (Bonham-Carter, 2009).

Nevertheless, in general, model parameters had coefficients that expressed

a direct relation to susceptibility; slope gradients between 25◦ and 35◦; convex

profile curvature; concave plan curvature; and elevations between 100 and 300 m.

Volcanic and plutonic rocks had negative coefficients, which would mean lower

susceptibilities than that for schists.

9.4 Model validation

All models were validated. The general steps were reclassification of susceptibility

maps, combination with the validation dataset, and calculation of ROC plot AUC.

Reclassification was based on dividing the susceptibility values in ten equal area

zones. Ranking based on equal area zones and mean and standard deviation

values produced the same results when calculating the ROC plot AUC.

The estimation of the ROC plot AUC was as described in Section 5.3. Fig.

9.6 shows the ROC plot of LR1 model. The AUC was 0.71. Table 9.10 shows

ROC plot AUC for the models.

The model with the highest AUC was LR1, with all parameters before re-

classification. The model with the same parameter combination (LR2), but with

parameters reclassification based on weights had a slightly smaller AUC.

80



9.4 Model validation

Figure 9.6: ROC plot of LR1 model. AUC 0.71

Table 9.10: AUC for logistic regression models

Model ROC plot AUC

LR1 0.711

LR2 0.710

LR3 0.672

LR4 0.703

LR5 0.705

LR6 0.705

81



9.4 Model validation

The model with the lowest prediction power is the one without including

generalized lithology (LR3). This means that occurrence of shallow landslides

in the target area depended on lithology. Replacing profile curvature with plan

curvature produced the same accuracy (LR5 and LR6), and not including curvature

produced a slightly lower accuracy (LR4).

Comparing the accuracy of all models, the LR models had higher accuracies

than the WLC and WOE models.
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Chapter 10

Discussion

Susceptibility to the occurrence of shallow landslides in the target area was es-

timated using WLC, WOE and LR approaches, and different parameter combin-

ations. The models were validated and compared using the ROC plot AUC.

For validation, the database was randomly divided in modelling and validation

datasets. However, using a time based partition should be ideal. Nevertheless, the

random partition assessment indicated that the partition produced representative

datasets. Furthermore, a point based database, consisting of the centroids of

landslide source areas, represented adequately the landslide characteristics.

The accuracy of the WLC model proposed by Hong et al. (2007) was 0.47. The

accuracy depends mainly on the model parameters, the definition of primary and

secondary weights, and the spatial resolution of the datasets. Slope gradient is a

fundamental parameter; however, the parameter weight does not express suscept-

ibility for the occurrence of shallow landslides. Shallow landslides depend also on

the availability of soil and colluvium, and in areas with slope gradient > 35◦ soil

and colluvium become less abundant (Crozier and Glade, 2005; Wieczorek, 1996).

Therefore, very steep slopes do not necessarily have the highest susceptibility.

In the WLC model by Hong et al. (2007) the weight of soil characteristics is

very high. Soil type is based on soil texture, but soil texture is also an other

parameter. Therefore, texture is expressed by two parameters, and the combined

secondary level weight (0.3) is the same as for slope gradient. However, the res-

olutions of soil type and texture dataset are very low compared to the landslides
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in the target. The average size of the landslides in the target is 1,400 m2 (Pimi-

ento and Yokota, 2006). The low resolution of the datasets also produce abrupt

changes in the estimated susceptibility. Like the soil type limit in the south-easter

part of the target model, Fig. 7.6.

Drainage density was not a reliable model parameter. Estimated drainage

density in the target area (Fig. 7.3) was very high in some catchment areas with

unnatural shape. While other areas had nodata value cells. These conditions

may also reduce the accuracy of the model.

Kirschbaum et al. (2009), assessing a system for global landslide monitor-

ing based on the susceptibility model by Hong et al. (2007) and satellite-derived

rainfall data, concluded that the system must be improved before its applica-

tion. That the susceptibility model weighting is not correct, and contributions of

slope gradient and soil conditions to landslide susceptibility should be considered

regionally. Also, that the model requires higher resolution data and regional

landslides inventories for calibration and validation.

Data driven weights express better the relationships between parameters and

the occurrence landslides than the weights defined by Hong et al. (2007). This

is because the occurrence of landslides depends on local conditions (van Westen

et al., 2003).

The WLC weights and contrast showed that schists had higher susceptibility

than plutonic and volcanic rocks; indicating that occurrence of landslides depends

on lithology, as reported by Research Group of San-in Heavy Rainfall Disaster

(1984) and Wada et al. (1984).

Slope gradients between 20◦ and 35◦ had also high susceptibilities; Research

Group of San-in Heavy Rainfall Disaster (1984) and Okuda and Okimura (1984)

reported high susceptibilities for 30◦ to 40◦ and 15◦ to 25◦ slopes respectively. In

other shallow landslide analyses, slope gradients > 35◦ also have low susceptibil-

ities (Ahmad and McCalpin, 1999; Dai and Lee, 2002), as mentioned above.

Convex profile curvature and concave plan curvature had higher susceptibil-

ities than other classes. In profile convex slopes the presence of residual soil may

be higher; in plan concave slopes colluvium is more abundant (Turner, 1996) and

concentration of run-off increases groundwater level promoting the occurrence of

shallow landslides (Ayalew et al., 2004).
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Elevation classes (between 100 and 300) with higher susceptibility indicate

that occurrence of landslides depends on geomorphology and topography, as re-

ported by Research Group of San-in Heavy Rainfall Disaster (1984) and Wada

et al. (1984).

Drainage density class weights showed little relation to landslide susceptibility,

as mentioned before. High density and low density classes had negative W+

(Table 8.6).

In general, and contrary to the opinion of Bonham-Carter (1994), model para-

meter reclassification based on weights and contrast reduced the accuracy of WLC

and WOE models. In LR models the difference was not significant.

The LR models had higher accuracies than the WLC and WOE models mainly

for two reasons, the model parameters were defined considering the mechanics of

the shallow landslides in the target area, and the higher spatial resolution of

the DEM used. LR is a suitable multivariate statistical approach for estimating

susceptibility. SDM is also a suitable tool for LR based modelling. However,

SDM presented some limitations. Landslides (training data) are represented as

points (maximum 1,000) and for large landslides the scarp centroid might not

be enough to represent the scarp conditions. LR is based on a unique condition

table of maximum 6,000 conditions. This limits the number of input parameters.

More complex models require using external software for statistical analysis.

Quantitative modelling in the target area was based on the principles from

Section 3.1 and the following assumptions. The estimated landslide susceptibility

is for the occurrence of rainfall triggered shallow landslides. The rainfall distribu-

tion of the event that produced the landslides of the inventory was uniform, and

future rainfall events also will have a uniform rainfall distribution. The validation

landslides occurred after the modelling landslides. Terrain conditions that control

the susceptibility, such as topography, availability of soil and colluvium, mechanic

properties of soil, and hydrology, are static. However, the occurrence of landslides

and erosion processes modify these conditions between triggering events. And,

the model datasets, like elevation, land cover, and soil characteristics, correspond

to the terrain conditions before the occurrence of the landslides.

Higher accuracy susceptibility models are required. For that it is necessary

to use higher resolution elevation data, such as LIDAR data. For modelling it is
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desired to have pre-event elevation dataset and use post-event elevation datasets

for validation. An important limitation for quantitative modelling is availabil-

ity of landslide inventories; therefore, the development of automatic detection of

landslides is fundamental. Higher accuracy models should be produced by consid-

ering other parameters and other modelling approaches. Parameters that express

the availability of soil and colluvium should significantly increase the accuracy of

shallow landslide susceptibility models.
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Chapter 11

Conclusions

In the target area, the accuracy of the qualitative susceptibility model was low

(0.47). The main reasons for the low accuracy of the WLC model are the selection

of parameters, the parameter weighting, and the low spatial resolution of the

datasets. Landslide susceptibility in the target area depends on parameters and

weights different from those of the WLC model. Two approaches raised the WLC

model accuracy. Using parameter weights estimated from practical data produced

a model with accuracy of 0.64, and replacing the 90 m DEM with a 50 m DEM

produced a model with accuracy of 0.66.

The WOE parameter weights, estimated from the landslide distribution, ex-

pressed the relation between the parameters and susceptibility to the occurrence

of landslides. In the target area, schists had higher susceptibility than plutonic

and volcanic rocks. Slope gradients between 20◦ and 35◦ had higher susceptibil-

ity than other slope gradient classes. Convex profile curvature and concave plan

curvature had higher susceptibilities than other classes. The susceptibility of el-

evation classes depended on local geomorphology. On the other hand, drainage

density classes showed little relation to the occurrence of landslides. WOE base

model had higher accuracy than the WLC model.

A quantitative susceptibility model based on LR had the highest accuracy

(0.71). The definition of parameters was based on the characteristics of the land-

slides in the target area and the parameter weights were estimated from practical

data. Shallow landslides triggered by rainfall greatly depend on topography, and

higher resolution elevation produce higher accuracy models.
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For medium-scale landslide susceptibility mapping, quantitative models pro-

duced better results than a qualitative model developed for global landslide sus-

ceptibility.

The parameter reclassification based on the WOE weight and contrast reduced

the accuracy of WLC and WOE models, contrary to what expected. However,

for the LR based models the accuracy decrease was not significant.

Validation of susceptibility models was fundamental to compare approaches

and parameter combinations. The ROC plot AUC was a simple and objective

approach for model validation. And random based database partition produced

representative modelling and validation datasets.

Nevertheless, it is necessary to develop higher accuracy models. Using other

approaches, higher spatial elevation data and other model parameters may pro-

duce better results.
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Appendix A

Logistic Regression Coefficients

Table A.1: Logistic regression coefficients for model LR1

Factor Coefficient
Constant Value -16.927

Lithology
Quaternary deposits 0.000
Volcanic and pyroclastic rocks 8.247
Diorites and granitic rocks 8.688
Pelitic and psammitic schists 9.310

Slope gradient
0 - 5 -1.949
5 - 10 -1.130
10 - 15 -0.756
15 - 20 -0.354
20 - 25 0.018
25 - 30 0.181
30 - 35 0.420
35 - 40 0.120
35 - 69 0.000

Profile curvature
Strongly convex 0.702
Weakly convex 0.594
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Flat 0.312
Weakly concave 0.000
Strongly concave -0.557

Plan curvature
Strongly concave 0.931
Weakly concave 0.567
Flat 0.250
Weakly convex 0.000
Strongly convex 0.000

Elevation
0 - 50 -0.222
50 - 100 0.000
100 - 150 0.399
150 - 200 0.566
200 - 250 0.359
250 - 300 0.378
300 - 350 0.000
350 - 400 -0.322
400 - 450 0.067
450 - 500 0.042
500 - 550 0.000
550 - 600 0.000
600 - 712 0.000
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Table A.2: Logistic regression coefficients for model LR2
Factor Coefficient
Constant Value -6.826

Lithology
Volcanic and pyroclastic rocks -1.253
Diorites and granitic rocks -0.702
Pelitic and psammitic schists 0.000

Slope gradient
0 - 5 -1.873
5 - 10 -1.151
10 - 15 -0.807
15 - 20 -0.427
20 - 25 -0.069
25 - 30 0.083
30 - 35 0.322
35 - 69 0.000

Profile curvature
Strongly convex 0.450
Weakly convex 0.365
Flat - concave 0.000

Plan curvature
Strongly concave 0.667
Weakly concave 0.365
Flat - convex 0.000

Elevation
0 - 100 -0.655
100 - 150 0.032
150 - 200 0.237
200 - 250 0.042
250 - 300 0.066
300 - 400 -0.210
400 - 450 -0.143
450 - 712 0.000
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Table A.3: Logistic regression coefficients for model LR3
Factor Coefficient
Constant Value -8.049

Slope gradient
0 - 5 -1.964
5 - 10 -1.165
10 - 15 -0.792
15 - 20 -0.385
20 - 25 -0.002
25 - 30 0.170
30 - 35 0.409
35 - 69 0.000

Profile curvature
Strongly convex 0.550
Weakly convex 0.409
Flat - concave 0.000

Plan curvature
Strongly concave 0.747
Weakly concave 0.403
Flat - convex 0.000

Elevation
0 - 100 0.371
100 - 150 0.967
150 - 200 0.989
200 - 250 0.708
250 - 300 0.707
300 - 400 0.157
400 - 450 -0.074
450 - 712 0.000
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Table A.4: Logistic regression coefficients for model LR4
Factor Coefficient
Constant Value -6.511

Lithology
Volcanic and pyroclastic rocks -1.290
Diorites and granitic rocks -0.755
Pelitic and psammitic schists 0.000

Slope gradient
0 - 5 -1.967
5 - 10 -1.190
10 - 15 -0.822
15 - 20 -0.429
20 - 25 -0.069
25 - 30 0.083
30 - 35 0.318
35 - 69 0.000

Elevation
0 - 100 -0.700
100 - 150 0.000
150 - 200 0.214
200 - 250 -0.001
250 - 300 0.032
300 - 400 -0.239
400 - 450 -0.160
450 - 712 0.000
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Table A.5: Logistic regression coefficients for model LR5
Factor Coefficient
Constant Value -6.660

Lithology
Volcanic and pyroclastic rocks -1.271
Diorites and granitic rocks -0.734
Pelitic and psammitic schists 0.000

Slope gradient
0 - 5 -1.932
5 - 10 -1.160
10 - 15 -0.799
15 - 20 -0.410
20 - 25 -0.054
25 - 30 0.093
30 - 35 0.326
35 - 69 0.000

Profile curvature
Strongly convex 0.313
Weakly convex 0.256
Flat - concave 0.000

Elevation
0 - 100 -0.670
100 - 150 0.022
150 - 200 0.229
200 - 250 0.026
250 - 300 0.054
300 - 400 -0.221
400 - 450 -0.148
450 - 712 0.000
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Table A.6: Logistic regression coefficients for model LR6
Factor Coefficient
Constant Value -6.580

Lithology
Volcanic and pyroclastic rocks -1.282
Diorites and granitic rocks -0.737
Pelitic and psammitic schists 0.000

Slope gradient
0 - 5 -1.936
5 - 10 -1.194
10 - 15 -0.837
15 - 20 -0.448
20 - 25 -0.086
25 - 30 0.072
30 - 35 0.312
35 - 69 0.000

Plan curvature
Strongly concave 0.508
Weakly concave 0.238
Flat - convex 0.000

Elevation
0 - 100 -0.698
100 - 150 0.001
150 - 200 0.216
200 - 250 0.004
250 - 300 0.035
300 - 400 -0.236
400 - 450 -0.159
450 - 712 0.000
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