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Abstract 

This thesis is devoted to the analysis of the I-V properties of axial InP pn-junction 

nanowires made for solar cell application. A novel method has been used to measure the I-V 

characteristics very accurately and reproducibly, using scanning tunneling microscopy (STM). 

The STM is used to first image the nanowires from top and then form a low resistive point 

contact between the STM tip and an individual nanowire, which is still on its growth substrate, in 

ultrahigh vacuum conditions. This setup is well suited to investigate the I-V characteristics of 

individual nanowires with high accuracy and statistical relevance. 

In particular, the I-V curves are first analyzed to evaluate when a low resistive point 

contact has been established. Then, I-V characteristics of nanowires before and after sample 

cleaning are obtained in order to compare the effect of the surface oxide layer on the nanowire 

electric properties. The InP pn-junction nanowires show rectifying behavior with typical ideality 

factors between 2.5 and 2.6. When the surface oxide is removed from the nanowires by 

annealing under atomic hydrogen background, the ideality factor slightly improves and the 

conductivity of the individual nanowires increases dramatically for both reverse and forward 

bias. 
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1. Introduction 

 

1.1 Motivation. 

Solar energy is the most plentiful renewable energy source, which also is available 

everywhere on the earth. The solar energy that reaches the earth is about 5000 times the current 

energy demand [1]. Considering the increasing oil prices and the effects of carbon dioxide on 

climate, solar energy is the most important energy source, which is clean and renewable. 

Consequently, many efforts have been devoted to the development of new material and devices 

that can convert solar energy into any other form of energy. One of the most popular approaches 

is to use  photovoltaic cells, which have the potential to harvest the solar energy and  convert into 

electricity [2]. 

Semiconductor materials have been under investigation for photovolotaic devices since 

1950 [2]. In the evaluation of efficiency, the development in PV technology is divided into three 

generations [3]. For over two decades 1
st
 generation  crystalline silicon solar cells have been used 

for photovoltaic and maximum efficiency recorded is 24% [4]. Later on, the developments in PV 

solar cells belong to 2
nd

 generation, which consists of thin-film based technology. The 

production cost of thin-film technology is much less than crystalline silicon technology, but the 

efficiency of crystalline PV is not yet reached. Typical thin-film based solar cells have only an 

efficiency of 10 to 16% [5]. Third generation solar cells, including tandem cells and multi-

junction semiconductor solar cells have obtained highest efficiency, but at much higher cost. III-

V compound semiconductor materials are normally used due to their high material quality and 

optimized band gaps. A 40% efficiency has been recorded for GaInP/GaInAs/Ge three junction 

solar cells [6].  

Moreover, to increase the efficiency and reduce the cost and size the nanowires play an 

important role in solar cell research. The controled synthesis approaches used to fabricate 

nanowires have also improved the efficiency of the PV solar cell. The use of semiconductor 
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nanowires for PV applications has many advantages over thin film solar cell and conventional 

crystalline solar cell technologies for several reasons. In particular, it allows a long absorption 

path along the length of the wire, efficient carrier extraction, strong light trapping, and 

modification of material properties [7]. III-V semiconductor NWs are currently being explored 

as key building block for optical and electronic devices. The solar cell based on these NWs has 

shown great potential superior to the bulk structure, because they are flexible in combination of 

material, and they can be integrated on a silicon platform to reduce the cost and material 

consumption. Many different semiconductor materials have been synthesized to fabricate 

nanowire photovoltaics, such as silicon, germanium, zinc oxide, zinc sulfide, cadmium telluride, 

cadmium selenide, copper oxide, titanium oxide, gallium nitride, indium gallium nitride, gallium 

arsenide and indium phosphide [8]. 

Despite the advantages of the nanowire solar cell, there are still several fundamental 

challenges for future research activities. The most important are surface and interface 

recombination, stability and choice of semiconductor materials, control of growth and doping, 

and nanowire array uniformity. Much development has been done in these areas, but more work 

is needed to understand the surface and interface of semiconductor materials [8, 9]. Very 

recently, researchers at Lund university have significantly improved the efficiency of single-

junction NW solar devices to 13.8%  by increasing the NW volume fraction, developing surface 

passivation, evaluating doping levels and optimizing processes [10].  

The small lateral dimension of the nanowires enables high performance material. 

However, it is still a major challenge to measure the electrical properties of the individual NWs. 

The conventional field-effect transistor setup has been widely used to investigate the electrical 

properties of nanowires, where the nanowires are deposited on an insulated substrate. The 

nanowires are identified by optical microscopy or scanning electron microscopy (SEM), and then 

contacted with metallic electrodes using electron beam lithography. But in this method the 

measured I-V characteristics of nanowires are significantly affected by the contacts between 

semiconductor nanowires and the metal electrodes [11]. Therefore we have used a noval method 

to measure the I-V characteristics of individual nanowires still standing upright on their growth 

substrate, using STM without any additional microscopy tool or sample processing. The STM is 

first used for finding the nanowires and forming of point contact directly between the probe tip 
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and the nanowire grown on the substrate in ultrahigh vacuum condition. The ultrahigh vacuum 

condition provides a clean and well controlled enviorment which results in a low resistive point 

contact. Also a speciality of the STM setup is the possibility to interrupt the feedback loop 

between the STM and its control unit and allow it to contact with the external circuit. 

1.2 Thesis Outline 

 The main section of this thesis is devided into five chapters including the introduction, 

technique, results and discussion part. The motivation of this thesis is discussed in the first 

chapter named introduction. 

 The second chapter “Scientific and Technological Background” deals with the 

Fundamentals of photovoltaics, nanowires and electrical characterization of solar cells. 

 The third chapter contains the theory about the experimental technique used in this 

thesis. The experimental setup and procedure is also part of this chapter. 

 In  the fourth chapter the main results of the experiment are described and discussed. 

The conclusion of this work is discussed in  chapter five. 
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2. Scientific and Technological Background 

 

2.1. Fundamentals of photovoltaic operation 

Photovoltaic (PV) technology enables us to convert sunlight directly into electricity. The 

term “photo” means light and “voltaic” relates to the production of electricity [12]. A 

photovoltaic cell, also called “Solar cell” is a pn-junction made of semiconductor material with 

large surface area, producing electricity when sunlight falls on it [13] 

In order to understand the operation of the PV cell, one has to firstly understand the basic 

principle of the pn-junction. 

2.1.1 Doping 

 The phenomenon in which impurity atoms are introduced into semiconductor material is 

called doping. The electrical conductive properties of the material can be controlled by these 

impurity atoms. Traditionally, group IV elements have been used as a semiconductor material for 

a long time, but within the last decade compound materials, usually from groups III and V have 

been introduced as semiconductor material. Such materials have the advantage of a direct band 

gap and higher charge mobility. The doping of these compound semiconductors is discussed 

later. Let us first consider a typical group IV semiconductor material like Silicon or Germanium. 

These elements have four electrons in the valence shell. There are two types of doping, n-type 

doping and p-type doping. N-type doping involves substituting a silicon or germanium atom by 

group V element impurity such as phosphorus, arsenic or antimony. If one impurity atom is 

added in silicon, the four valence electrons of silicon make covalent bonds with the nearest 

neighbor electrons of the impurity atom, leaving one extra electron. This extra electron 

contributes to increase the conductivity of the semiconductor material. 

 If the substituting impurity atom is a group III element, three of the silicon electrons 

make a covalent bond with the nearest neighbor, leaving one hole behind. The movement of a 

hole in one direction corresponds to the movement of an electron in the other direction and also 
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affects the conductivity of the material. These types of materials are called p-type 

semiconductors [14]. 

 The group V impurity atom is also called donor, because it can donate one electron to the 

conduction band of the semiconductor, when a small amount of energy is given to it. The 

electron in the conduction band can move through the whole material, leaving behind a fixed 

positively charged ion and generate a current. Similarly, the impurity of group III element 

accepts an electron from the valence band, leaving behind a hole in the valence band and so is 

called an acceptor atom. In this case the hole can move through the material without generating 

an electron in the conduction band. In the presence of an applied electric field these free charge 

carriers will move and generate electric current. The energy band diagrams of donor and 

acceptor are shown in Fig 1(a,b) [15].  

 

Figure 1 : The Fermi energy level, conduction band edge, and valence band edge are represented by 

EF , Ec and EV. (a) the donor energy state and (b) the acceptor energy state [15]. 
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2.1.2. pn-junction 

 A pn-junction is a two terminal device having  properties which makes it the basis of 

many electronic devices. It is also important to know that it is a single crystal device in which 

one region is doped with impurity atoms to form a p-region and the other is doped to form an n-

region. The metallurgical junction is formed between these two regions as shown in Fig 2a. 

Initially, at the metallurgical junction, the doping concentration of  donors and acceptors is equal. 

If there are no external connections, majority carrier electrons in the n-region diffuse across the 

junction and combine with holes in the p-region, leaving behind positively charged immobile 

ions. Similarly, majority carrier holes in the p-region diffuse into the n-region and combine with 

electrons, leaving behind negatively charged immobile ions. These ions will  induce an electric 

field near the junction, providing a force opposing the further diffusion across the junction as 

given in Fig 2b. This region is called depletion region [15]. 

   

 

Figure 2 : (a)  Simple pn-junction. (b) The space charge region, the electric field, and the forces 

acting on the charged carriers. 

The energy band diagram of uniformly doped n-type and p-type semiconductors before 

the formation of a pn-junction is shown in Fig 3a. When the pn-junction is formed, and no 

voltage is applied across the junction, the Fermi level remains constant through the whole 

crystal. The conduction and valence bands must bend in the depletion region, because the 

conduction and the valance band position are always related to the Fermi level. The eɸFp and 
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eɸFn are the difference in energy between the Fermi-level and the intrinsic Fermi-level at the p- 

and n-side of the junction.  Fig 3b shows the energy level diagram of the pn-junction. 

 

 

Figure 3 : (a) Position of Fermi-level for n-type and p-type semiconductors (b) Energy-band 

diagram of a pn junction in thermal equilibrium [15]. 

The difference in work function of the n-type and p-type semiconductor causes the 

internal potential near the junction,  which is called built-in potential. It is represented by Vbi and 

is equal to the sum of eɸFp and eɸFn . The built-in potential maintains the equilibrium between 

majority and minority carriers in n-type and p-type region. This potential only maintains the 

equilibrium, so no current will be produced by this voltage. The potential energy corresponding 

to this potential is eVbi. 

2.1.3 Solar cell 

A solar cell is an electrical device that converts the solar light energy into electricity by 

the photovolatic effect and delivers this energy to a load. The first solar cell was developed at 
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Bell Laboratories by Chapin, Fuller and Pearson in 1954 using a silicon pn-junction [13]. Since 

then solar cells have been widely used for power supply purpose.  

  

Figure 4 :  Schematic diagram of Solar cell operation [15]  

Fig 4 shows the basic structure of the solar cell with load resistance R. The solar cell 

device is a simple pn-junction with large surface area. Incident radiation that comes from the sun 

is absorbed in the semiconductor material and generates electron-hole pairs in the space charge 

region of the pn-junction. This is only possible, if the energy of the photons is higher than the 

band gap value. If the diffusion length of the excited electrons and holes is sufficiently large, the 

charge carriers diffuse in opposite direction to the edge of a depletion region where they will be 

swept across and generate a photocurrent in an external circuit. The energy band diagram for 

solar cell operation is shown in Fig 5 [16]. 

 

Figure 5 : Silicon p-n solar cell [16] 
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2.2 Nanowires 

 Nanowires are defined as single-crystalline materials with two dimensions confined in 

the nanometer scale. Typical nanowires have a cylindrical or hexagonal shape with a diameter 

between about 10 to 500nm and several µm length. Such structures are of particular interest for 

electronic, photonic, sensor technology, biosciences, and the PV devices. They exhibit unique 

and fascinating physical properties such as higher carrier mobility, good optical obsorption, 

minimization of surface recombination, and defect free crystalline structure.   

 Semiconductor nanowires are made up of semiconductor materials such as Si, Ge, GaAs, 

InP, GaN, CdSe, and ZnO [1]. All the advantages of semiconductor NWs over the bulk materials 

are related to their small dimensions. For example, eleastic strain relaxation in NWs inhibits the 

generation of crystal defects. This fact opens the high possibility of growing the III-V 

semicondutor material with an important lattice mismatch with inexpensive substrates, such as 

silicon. At the same time  it also allows the growth of defect free hetrostructures within NWs 

without constraints on lattice mismatch [1].  III-V semiconductors are more expensive than the 

silicon, but have high performance. The most important difference of III-V semiconductor 

nanowires is the direct bandgap, which is especially important for optoelectronic applications 

since radiative transistions form CB to VB have higher probability in these materials. Also the 

electrical and optical properties of the semiconductors NWs can be controlled by the introduction 

of impurity atoms, therefore semiconductor nanowires have particular importance for all 

electrical and optical devices [17]. Furthermore, it is also important to know the growth 

mechanism of nanowires as discussed below. 

2.2.1 Nanowire growth 

In general, there are two main approaches to manufacture nanostructures, referred as 

“top-down” and “bottom-up” [18]. For this thesis the nanowires have been synthesized using the 

Vapour-liquid-solid (VLS) growth technique, which is one type of bottom-up method. Arrays of 

vertical semiconductor nanowires of InP are grown by the VLS technique in a low pressure 

Metal-organic-vapor phase epitaxy (MOVPE) system [19]. To get the arrays of vertical 

semiconductor nanowires, each nanowire is seeded by a catalyst gold particle by using 

nanoimprint lithography (NIL). The principle of nanoimprinting lithography is very simple. 

Figure 6 shows the schematic of the nanoimprint lithography process. First of all a thin layer of 
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the imprint resist material is coated onto the sample substrate. A stamp or mold with predefined 

monolithic silicon structure is pressed into the resist material at controlled temperature and 

pressure for imprinting process. The sample is then cleaned to remove surface oxide. Afterwards 

a thin gold film is deposited via thermal evaporation in the vaccum chamber. At the end the rest 

of resist material is removed with part of gold layer covering it [20].  

 

Figure 6: Schematic of the nanoimprint lithography. (a,b) imprint process using stamp. (c,d) 

deposition of gold particle and pattern transfer. 

After the nanoimprint lithography, the substrate with gold particles is introduced into the 

low-pressure MOVPE system and placed on an RF-heated graphite susceptor. In order to anneal 

the sample, the temperature is increased to 580
0
C, which is above the desired growth temperature 

in the presence of  the group V precursor . This step aids in the desorption of surface oxide, and 

alloys the Au-particle with the InP substrate. A group V precursor background is used to  reduce 

the decomposition of  the InP substrate at elevated temperature. After annealing, the temperature 

is ramped down to 400
0
C. Nanowire growth is started under the Au-particle, when the constant 

flow of group III and group V precursors are introduced into the reactor. Finally, the sample is 

cooled down to room temperature. The different steps involved in MOVPE system are shown in 

Fig 7. 
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Figure 7 : Schematic view of nanowire growth mechanism in MOVPE. (a) Au particles are 

deposited on a substrate. (b) Desorption of oxide surface using high temperature under group V 

pressure. (c) III-V precursors are supplied for growth process. (d) The nanowires after growth. 

Uniform arrays of vertical InP nanowires are obtained where the diameter of the 

nanowire is directly controlled by the catalyzed Au-particle, and the length is determined by 

growth time. The location of the nanowire is defined by nanoimprint lithography [20].  

The nanowires are typically grown in the direction perpendicular to the closed-packed 

planes in the crystal structure. In contrast to the bulk crystal phase, nanowires exhibit the zinc 

blende (ZB), wurtzite (WZ), or a combination of both structures depending on the growth 

parameters (temperature, doping, gas flux) and diameter [1]. The crystal structure of the 

nanowires is important since it affects the electronic and optical properties of the materials. The 

atomic arrangements of the ZB structure and WZ structure are illustrated in Figure 8. The 

Bravais lattice of the ZB and WZ crystal structure are cubic and hexagonal, respectively. They 

can be distinguished by the stacking sequence of each bilayer. The ZB stacking sequence is 

described as ABCABC……, and  for WZ it is described as ABAB……… [21]. 
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Figure 8: The atomic structure for (a) the zincblende (ZB) and (b) the wurtzite (WZ) crystal phase 

[22].                                                      

2.2.2 Nanowire Doping 

 Doping is an important prerequisite for most device applications to control the 

conductivity. The NWs typically grow vertically and the growth dynamics of NWs are complex; 

therefore it is hard to create the doping profile using post growth diffusion or ion implantation as 

used in bulk semiconductor materials. Semiconductor NWs have been doped using in-situ 

doping. 

 In in-situ doping the dopant atom is introduced into NWs during the growth process. For 

vapor-liquid-solid (VLS) NW growth using MOVPE, dopant precursors are supplied from the 

vapor phase together with the III-V material precursors. These dopant precursors enter the NW 

via the gold particle as shown in Fig 9. In MOVPE the doping concentration is controlled by 

varying the gas phase ratio of precursors. For in-situ doping of InP NWs, dimethylzinc (DMZn) 

and diethyalzinc (DEZn) precursors are used for p-type doping, and hydrogensulfide (H2S) and 

tetraethyltin (TESn) precursors are used for n-type doping [23].  
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i
 

Figure 9. Schematic diagram of dopent concentrations in vapor-liquid-solid nanowire growth via 

MOVPE [23]. 

These dopant precursors affect the crystal structure and growth dynamics of 

semiconductor NWs. The p-type dopant DMZn and n-type dopant H2S increase the axial growth 

rate and reduce the radial growth rate. In contrast, the DEZn and TESn dopant precursors offers 

unaffected growth dynamics. Both p-type dopant precursors, DMZn and DEZn promote 

Zincblende (ZB) InP crystal structure. The use of H2S for n-type doping induces growth in 

wurtzite (WZ) crystal structure and TESn n-type dopant does not effect the crystal structure [1].  

2.2.3 Nanowire Solar cell. 

 Nanowire solar cells have recently been a hot topic of research within science and 

technology. The geometry of the nanowire provides potential advantages over conventional solar 

cell. Usually, the formation of the pn-junction in the nanowire solar cell is either axial or radial, 

as shown schematically in Fig 10. 

 

Figure 10. Schematic view of a nanowire pn-junction (a) axial pn-junction (b) radial pn-junction 

(adapted from [6]). 
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An axial pn-junction within a single nanowire is shown in Fig 10(a). The pink and blue 

regions are the p-type and n-type semiconductor respectively. Similarly, a p-n radially-

modulated nanowire structure is shown in Fig 10(b). In this case the nanowire consists of a p-

type material core capped with an n-type shell [6].  

The fabrication of a nanowires solar cell consists of multiple parallel connected InP NWs 

integrated on a InP substrate. In the case of this thesis, the nanowire array has been grown using 

VLS method and imprint lithography. 

 

Figure 11.  Schematic diagram of nanowire solar cell [1]. 

Figure 11 shows the schematic diagram of the NW solar cell, including an insulating layer 

between the top contact and the substrate. The insulating layer is used to eliminate the risk of 

short circuits. At the top contact indium tin oxide (ITO) is used to interconnect the tips of the 

NWs [1]. 

2.3. IV characteristics of an ideal diode 

 The diode equation gives an expression of diode current as a function of applied voltage. 

The ideal diode equation is expressed as. 

)1(0  nkT
qV

eII     (1) 

where V is applied voltage, q is charge of the electron moving in the pn-junction, and k and T is 

Boltzmann constant and absolute temperature respectively. Since we have done all the I-V 

measurements at room temperature, the value of q/kT is equal to 39.5C/J. For sufficiently large 
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forward bias (V >> 1/40V) the exponential term is very large, so we can neglect the term ‘1’ in 

the diode equation. However, for non-ideal diodes, different mechanisms (generation-

recombination, series resistance effect) decrease the slope of the I-V curve, resulting in 

nkT
qV

eII 0  (2) 

nkT

qV
I )ln(   (3)

 

where n is called ideality factor. It is a measure of how closely the diode follows the ideal diode 

equation meaning that for an ideal diode the ideality factor is n = 1 [24].  According to eq. (3), by 

plotting  ln(I) against V we should obtain a straight line if the diode was ideal, as shown in Fig 

13. When a real diode is considered, different effects change the slope in different voltage 

regions, as shown in Fig 12(b). In general the intermediate voltage region is best for linear 

fitting, because the slope is steepest and most linear here, coming closest to the ideal diode case 

with n = 1. The voltage where the slope starts to be steep and linear is called on-set voltage. By 

determining the slope (m) of the linear fit in this region of the real diode, we can obtain the 

ideality factor using the equation:  

m
n 5.39 ,  (4) 

 

Figure 12. (a) I-V characteristics of a pn-juntion in logarithmic plot to measure the slope for 

forward bias and in inset linear curve for the same nanowire and I-V measurement (b) Logarithmic 

plot with all effects in different voltage regions [25]. 
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2.4. IV characteristics of the solar cell 

 The electrical transport properties of the solar cell are characterized by the current-

voltage (I-V) measurement, under the dark and the illuminated condition at room temperature. In 

the dark condition the solar cell behaves like an ideal diode. 

The two basic parameters that characterize the solar cell are the open-circuit voltage and 

short-circuit current denoted by Voc and Isc respectively. The voltage of the solar cell in the case 

of zero current flow is called open-circuit voltage. Similarly, the current through the circuit when 

no voltage is applied across the device is called short-circuit current as sketched in Fig 13 [26]. 

 

Figure 13:  I-V characteristic curves of a solar cell with and without illumination [26]. 
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3. Experimental Technique 

 

In most cases, it is not possible to characterize a sample completely by using only one 

technique. Different complementary techniques have been used to characterize a sample for 

different purposes. This thesis has focused on the I-V characterization of single nanowires for 

solar cell application. Usually, a field effect transistor (FET) geometry is mostly used to 

characterize electrical transport properties of individual nanowires, but in this thesis we have 

used scanning tunneling microscopy (STM) to measure the conductivity (I-V) of single 

nanowires. 

3.1 Scanning Tunneling Microscopy 

 Scanning tunneling microscopy is a promising tool for analyzing surface structure at the 

atomic level. The basic principle used in STM is the quantum tunneling effect, where electrons 

tunnel between a conducting tip and the sample. It was invented by Gerd Binning and Heinrich 

Rohrer in 1982. Today it has become a standard technique for high resolution imaging and 

characterization of conducting nanostructures [27]. 

In scanning tunneling  microscopy, a sharp metal tip is brought near to the conducting 

sample. When a bias is applied between the tip and sample, electrons tunnel through the vacuum 

and cause a tunneling current I typically in pA - nA range, as shown in Fig 14. In the simplest 

approximation the tunneling current is dependent on the tip-sample separation z, vacuum barrier 

height ɸ  and tunneling voltage VT as  



)(2
2 TVm

z

eI








 

The exponential dependence of the tunneling current on the tip-sample distance in STM 

ensures the high resolution, typically of the order of pm [27].  
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Figure 14.  Schematic drawing of a STM setup [21]. 

Basically, the STM can be operated in two modes to take images. For this thesis the STM 

was operated in constant current mode, in which the tip is scanned over the surface in x-y-plane 

while the tunneling current remains constant using a feedback loop. To maintain the constant 

current the tip and height is adjusted to the sample morphology along the z-axis using a 

piezoelectric tube, which can expand or contract if the bias voltage is applied. The z-

displacement of the tip is recorded and converted into a color scale STM image, representing the 

sample topography. The other STM operation mode is a constant height mode, in which the 

height of tip remains constant, while the change in tunneling current is recorded and translated 

into images. The benefit of this mode is that it is faster than the constant current mode. But it can 

only be applied for flat sample surface, because otherwise the surface corrugation causes the tip 

to crash [21]. 

In order to get high resolution images at the atomic level, the tip and  sample should be 

clean during the scanning process. This is only possible when the STM works under ultra high 

vacuum (UHV) conditions. The STM can also be used in air, water, and other liquids for many 

other applications [5]. The other prerequisite for high resolution images is excellent vibration 

isolation, and  mechanical springs or gas damping are often used to reduce external vibrations. 
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3.2 Experimental Setup 

3.2.1 Equipment 

1. JEOL  JSTM-4500 XT STM. 

2. RHK SPM Control Unit and PC. 

3. RHK XPMPro Software. 

5. Stanford Research System SR830 Lock-In Amplifier. 

6. Stanford Research System SR570 Current Preamplifier. 

7. Hewlett Packed HP34401A Multimeter. 

6. Labview Program. 

The STM imaging of the nanowires and point contact formation as presented in this 

thesis is obtained using a JEOL JSTM-4500 XT microscope with an RHK SPM 100 control unit 

and the XPMPro software. The Stanford Research System SR 830 lock-In Amplifier (as external 

voltage source) and Stanford Research System SR 570 Current preamplifier with HP 34401A 

Multimeter are used to measure I-V curves controlled via Labview program. The block diagram 

of the experimental setup is shown in Fig 15. The whole experiment is operated at room 

temperature and a pressure below 10
-9

mbar.  

3.3. Experimental procedure 

  In this thesis we have measured the conductivity of single nanowires using a Scanning 

tunneling microscope [28], in ultrahigh vacuum conditions without any sample processing and 

with no significant contact resistance. The STM system has been used to first image the 

nanowires, which are still standing upright on their growth substrate. After that a low resisitive 

contact is formed between the STM tip and the top end of an individual nanowire. The STM 

control unit is then replaced by an external setup as shown in Fig 15 to measure the I-V curve of 

the individual nanowire. This process is repeated to measure the curves of many nanowires. 

First the I-V curves were taken of the uncleaned sample, which had been carried through 

air. The sample is then cleaned to remove the  surface oxide and different contaminants under 
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UHV conditions. New measurements for I-V curves of the clean sample are then taken with the 

same procedure as disussed earlier.  

 

Figure 15: Block diagram of the experimental setup. (A) marks the connections that can be changed 

from the STM control unit (A) to an external circuit (B) for measuring the I-V characteristics.  

3.3.1 Scanning Electron microscopy 

Scanning electron microscopy is used to produce images of the sample by scanning it 

with an electron beam, as shown in Fig 16. In our work F-SEM JSM 6400F is used to measure 

the length and diameter of the nanowires.  
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Figure 16. SEM images of the sample containing InP nanowires (a) Side image of upright standing 

nanowire obtained under an angle 28
0 
(b) top view image showing the nanowire top ends. 

3.3.2 Tip etching and preparation 

A tungsten wire of 0.25mm diameter is used to make the STM tips by an electrochemical 

etching process in NaOH solution, prepared from 100ml distilled water and 20g NaOH pellets. 

Typically, etching voltages of 2.3V are used to obtain sharp and regularly shaped tips. Etched 

tips are rinsed in distilled water to remove the traces of the solution controlled with an optical 

microscope, and introduced into the UHV chamber. Contaminants and surface oxide are 

removed from the tip apex by Ar
+
 ion sputtering at 2 to 3keV.   

3.3.3 Sample fabrication and preparation   

The sample used in this work is an array of axial InP pn-junction NWs, grown vertically 

on an InP substrate. The nanowires are grown on the substrate in a MOVPE reactor using a VLS 

method with Au seed particles as described earlier. Fig16 shows scanning electron microscope 

(SEM) images of the InP NW array. The average diameter of these InP nanowires is 450nm, the 

actual length is about 1.5um and the distance between two nanowires is 550nm. 

All III-V semiconductors and most other materials oxidize when exposed to ambient air, 

resulting in a surface layer of native oxide. In order to remove the oxide layer and other 

contaminants, the sample can be placed on a heatable holder, consisting of a filament inside a 

ceramics plate, where the sample is heated indirectly. Hydrogen gas at a pressure of 2x10
-5

mbar 

is introduced into the chamber through a leak valve and thermally cracked to atomic hydrogen 

applying a simple cracker with a current of 5A. In the presence of thermally cracked hydrogen 

the sample is heated at a temperature of 415- 420
0
 C for 40 mintues, controlled by a pyrometer. 
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The atomic hydrogen interacts with the surface oxide and removes it from the surface. The 

sample is then introduced again into the UHV STM chamber.  

3.3.4 STM Tip –Sample approach for nanowire sample 

After introducing the tip and sample, the next step is the tip-sample approach for starting 

the STM imaging and finding the nanowires. Firstly, to bring the tip and sample very close, the 

lateral and vertical movement of the tip is controlled by hand using simple electronic motors. 

After this coarse approach and adjusting the electronics parameters at the electronics control unit, 

the XPMPro Software is used for a further automatical tip-sample approach. In the case of a 

nanowires sample, the height of standing nanowires is greater than the STM range along the z-

axis. The initial approach of the tip is not trivial. In the first tunneling contact the actual position 

of the tip relative to the nanowire is not known. Therefore, the tip is retracted again until the 

tunneling contact is lost. 

3.3.5 STM imaging and formation of point contact 

For STM imaging, the tip is now approached towards the sample surface in an iterative 

procedure and is scanned, until we obtaine an image of the top end of several nanowires, as 

sketched in Fig 17a. When several nanowires are found in the STM image, a point contact can be 

established between the tip and one nanowire. Therefore, the STM tip is centered above one of 

nanowire top end and further approached towards the nanowire, until a point contact is formed 

between the tip and the nanowire as in Fig 17b. During this process the STM tip moves in steps, 

called piezo steps. One piezo step is corresponding to the movement of the tip of about 5nm. 

When the point contact is established, the tunneling current typically jumps to the saturation 

level of STM electronics. 
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Figure 17. Sketch of the procedure for imaging, formation of point contact and conductitvity 

measurement [28] 

3.3.6 Electrical measurements 

After establishing a point contact (Fig 17b), the electrical contact to the STM tip is 

disconnected from the STM control unit and instead connected to the input of the external 

current preamplifier as in Fig 17c. I-V curves of all nanowires are obtained via a Labview 

program using a Stanford Research System SR830 Lock-In amplifier as programmable voltage 

source and a Stanford Research System SR570 current preamplifier coupled with a HP34401A 

Multimeter. 
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4. Results and Discussion 

 

In this work I have measured the conductivity of individual pn-junction InP nanowires grown on 

InP substrate, intended for solar cell application using the STM technique. I-V characteristics of 

the nanowires are measured at room temperature. These measurments have been repeated with 

many nanowires to obtain a statistical analysis of the sample, before and after cleaning it from a 

native oxide layer.  

4.1 Establishing a low resistive point contact 

In Fig 18 we can see the typical I-V behavior of a nanowire in the voltage interval from    

-0.5V (reverse bias) to +0.5V (forward bias) at room temperature during the formation of a low 

resistive point contact between the sharp STM tip and the top end of the single nanowire.  

 

Figure 18. I-V characteristics during the formation of a point contact between the STM tip and the 

nanowire: At the initial contact (blue curve), the current is rather instable, resulting in a noisy I-V 

curve. The current increases and stabilizes when the probe tip is further pushed into the nanowire 

by small steps establishing a low resistive point contact . 
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At forward bias we notice an exponential behavior of the I-V curves. The measured 

current starts to increase strongly at a low voltage typically between 0.05V and 0.2V increasing 

exponentially and reaching several µA at forward bias of +0.5V. In reverse bias direction there is 

also a leakage current in the nA range which ís typical for non-ideal pn-diodes. The formation of 

a good low resistive point contact between the tip and the Au particle on top of the nanowire is a 

crucial challenge for all I-V measurements using STM. In some cases we have not found a good 

I-V spectrum in the first measurement at initial contact, then the tip must be pushed further into 

the gold particle, until we get a good diode like curve. Figure 18 shows this behavior of the I-V 

measurements. At initial contact we can see an unstable and noisy curve (blue), the tip is then 

pushed slightly into the Au particle. If we have not yet formed a good and stable contact (green 

curve), a noisy I-V spectrum with an unstable and rather small current is measured. The tip is 

then again pushed further into the Au particle, the measured current typically increases with each 

step, until at one point we get a more stable I-V curve as shown in Fig 18(red curve). The 

exponential behavior in forward bias direction and the smooth curve confirm the formation of  a 

low resistive, ohmic point contact.  

 

Figure 19. I-V characteristics after formation of a low resistive point contat between the tip and the 

nanowire (blue) curve. The measured current decreases when the probe tip is further pushed into 

the nanowire by small steps. 
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Usually, we have found a good contact behavior already at the intial contact between the 

tip and the nanowire, as shown in Figure 19 (blue curve). The InP nanowires are flexible in axial 

direction, therefore further movement of the tip into the gold particle causes strain in the wire, 

and the wire can even start to bend. The intrinsic conductivity of the pn-junction nanowire is 

then changed. Now pushing the tip further into the Au particle causes a decreasing of the 

measured current, as one can see in Figure 19 (green and red curve). For further data analysis, it 

is essential to confirm the formation of an ohmic point contact. Only nanowires with stable and 

reproducible I-V measurments are chosen for further analysis. 

4.2 I-V characteristic of the InP pn-junction nanowires 

 Successful I-V measurements have been obtained for more than twenty nanowires before, 

and after cleaning the sample. For each nanowire we have determined the best I-V curve (a stable 

curve obtained with a low-resistive point contact) for statistical analysis and comparison with 

standard diode characteristics. Fig 20 shows exemplary I-V curves of three cleaned nanowires.  

  

Figure 20. Stable I-V curves with low resistive point contact for three nanowires plotted with (a) 

linear and (b) semilogritimic scale 

 In order to evaluate the conductivity of the pn-junction nanowire, we will compare our 

results with the ideal diode to find the ideality factors. Aditionally, we will specify the reverse 

current and forward current at -0.5V and +0.5V respectively. As a last parameter we will 

determine the voltage where the measured current starts to increase strongly, called on-set 

voltage. Using these parameters we can compare the individual nanowires and analyze the effect 

of the cleaning process on the nanowire I-V properties. 
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 4.2.1 Nanowires with native oxide 

  The ideality factor n of the diode is a measure for the discrepancy between an ideal diode 

(n=1) and a real diode (n>1) with )1(0  nkT
qV

eII , as described in section (2.3). To determine 

the ideality factor, we first plotted the best forward bias I-V curve for each nanowire in 

semilogarithmic plot and fitted the linear slope. Then using the equation (4) of section (2.3) we 

determined the ideality factor of each nanowire.   

The average experimental value of n obtained for the InP pn-junction nanowires is 

obtained as 2.6±0.4. Fig 21 shows the ideality factors of  the uncleaned nanowires. These values 

indicate that the ideality factor exceeds the ideal diode case of n = 1 significantlly. 

 

Figure 21. Ideality factors of the nanowires with native oxide. 

The measured current at forward bias (+0.5V) and reverse bias (-0.5V) also contributes to 

find the difference in conductivity of the cleaned and uncleaned nanowires. Figure 22(a,b) shows 

the current values at +0.5 and -0.5V. In the forward bias direction the average current at +0.5V is 

42±27nA, while in reverse direction at -0.5V a very small average current of -2.5±2.5nA is 

found. 
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 Figure 22. The value of measured current (a) for forward bias at +0.5V and (b) for reverse bias at  

-0.5V (uncleaned sample). 

 

 

Figure 23. on-set voltage of the uncleaned nanowires. 

The values of on-set voltage of different uncleaned nanowires are shown in the Fig 23. 

The average value of the on-set voltage is equal to 0.11V±0.05V. These values are determined 

by taking the point where the current starts to increase exponentially. 

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8

O
n

-s
e

t 
 v

o
lt

ag
e

/ 
V

 

Number of nanowire 



33 
 

4.2.2 Cleaned nanowires 

New measurements have been done by repeating the same procedure after cleaning the 

nanowire sample from the native oxide. The cleaning process is described earlier in section 3.3.  

 

Figure 24. Ideality factors of the cleaned nanowires. 

 The ideality factors for the nanowires are shown in the Fig 24. The average value of n for 

the cleaned sample is 2.5±0.1. This value is slightly smaller than for uncleaned sample, but the 

ideality factors also after cleaning are still higher than the ideal diode value.  

 

Figure 25. The value of measured current (a) for forward bias at +0.5Vand (b) for reverse bias at    

-0.5V  for the cleaned sample. 
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For the forward bias and reverse bias direction the measured values of the current at 

+0.5V and -0.5V for the cleaned sample are given in Fig 25. The average current for forward 

bias at +0.5V is 3.4±1.7µA. In the case of reverse bias the average current is -0.13±0.09µA at     

-0.5V. 

 

Figure 26. On-set voltage of the cleaned nanowires. 

  The average value of on-set voltage for the cleaned sample is 0.07±0.04V. Figure 26 

shows the on-set voltage after removing the native oxide layer from the nanowire.  

4.2.3 Discussion 

 Finally, we have compared all our results of the clean and uncleaned InP nanowire 

sample to know how these factors are changed when we remove the surface oxide from the 

nanowires. Before the cleaning process, the average value of the ideality factor is 2.6±0.4, which 

indicates that the diode behavior of the nanowires is not ideal. When we clean the sample by 

using cracked hydrogen to remove the surface oxide, the ideality factor is changed to 2.5±0.1, 

which includes a very slightly improved average value with a significantly smaller standard 

deviation. This ideality factor is consistent with the value reported for an InP p
+
-i-n

+
 

photodetector pn-junction [29], but slightly higher than the best reported value for InP pn-

junctions, which has been obtained from a multi-nanowire array PV device with n=1.8 [1]. 

Similar ideality factors have been reported for other III-V semicondutor systems, like n = 2.1 for 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 2 4 6 8 10

O
n

-s
e

t 
 v

o
lt

ag
e

/ 
V

 

Number of nanowire 



35 
 

GaInP nanowire p-i-n junctions [30], and n=3 for GaAs pn-junctions [31]. This comparison to 

the literature values shows that the diode behavior of our nanowires is equally good as that of 

other state-of-the-art nanowire pn-junctions. However, the ideality factors both with and without 

native oxide layer are still significantly higher than 1.0, thus exceeding the ideal theoretical value 

by far. Higher values of ideality factors suggest that ohmic losses must be considered, which 

reduce the net current through the device. Also other possible reasons of  high ideality factors 

should be considered, such as the serial resistance due to non-perfect interfaces, defects at the 

nanowire surface or within the nanowire crystalline structure, or a non-perfect pn-interface itself.   

Other important diode parameters are the forward and reverse current. The average value 

of the current at +0.5V forward bias for uncleaned nanowires is 42nA, while for cleaned 

nanowires it amounts to 3.4uA which is nearly a factor of hundred higher. This shows that the 

conductivity of the InP increases dramatically when we remove the surface oxide from the 

nanowires. Similarly, in reverse bias direction the average current at -0.5V is -2.5nA for 

uncleaned nanowires, while after cleaning it increases by a factor of 50 to -0.13 µA.  

If a perfect diode was available, zero current would be measured in reverse direction and 

higher current in forward direction. But it is found for every real pn-junction, that a small amount 

of current flows in the reverse bias direction as a result of the minority carriers in the 

semiconductor. The level of leakage current is dependent upon the type of semiconductor. It 

should be noted that in our experiment also the reverse current is significantly increased when 

we  remove the surface oxide from the sample. This might be due to unpinning of the Fermi level 

when the surface oxide is removed, as discussed later on.  

When we compare all our results for both cleaned and uncleaned nanowires, we notice 

that all the above parameters changed when we heated the sample in the presence of hydrogen 

atoms to remove the surface oxide layer from the InP nanowires surfaces. The measured current 

value of the individual nanowire changes in both forward and reverse bias direction, as well as 

the on-set voltage and ideality factor. In the following, several possible reasons for this 

significant changes are discussed. We start with how the surface oxide can influence the 

electrical properties of the nanowire. It is reported [32] that InP oxides pin the Fermi level close 

to the conduction band in n-type side and valence band in p-side and cause band bending. In Ref 

[32], Hjort et al. have used the same method of atomic hydrogen-assisted annealing to remove 
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the native oxide from InP nanowire surfaces as we have used here. They investigated the 

influence of an oxide layer on the electrical nanowire properties by using a combination of XPS, 

XPEEM, LEEM, STM and STS techniques. Instaed of studying upright standing nanowires, their 

nanowires were firstly broken off from the substrate and then investigated from the side. The 

removal of oxide from the InP nanowire surface leads to unpinning of the Fermi level and 

reduces the band bending. Since the oxide induced band bending is very strong, it also severely 

affects the interior of the nanowire so that the conductivity of the InP nanowires is reduced. This 

effect of Fermi-level pinning due to surface oxides explains the relatively poor conductivity of 

the uncleaned nanowires in our work, which increases over two orders of magnitude after 

cleaning the nanowires.  

Defects at the nanowire surface can act as electron/hole traps, affecting the electrical 

properties of the material and the conductivity of the nanowire There are other possibilities 

which can explain the observed change of conductivity parameters and increased conductivity, 

such as the dopant concentration in both p-type and n-type side, impurities and defects in the 

depletion region, and an imperfect interface between the Au-particle and nanowire surface. Upon 

heating and removing the surface oxide from the nanowires these defects (surface, and 

depeletion region) can be removed. Also imperfect interfaces which causes the serial resistance 

can be improved. Another possible reason are ionic charges on the nanowire surface which 

induce an image charge inside the nanowire surface. A depletion layer is formed at the surface 

and gives rise to surface leakage current and affects the conductivity.   
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5. Conclusion and outlook 

5.1 Conclusion 

We have studied the electrical properties of InP pn-junction nanowires, using scanning 

tunneling microscopy technique. These I-V characteristics have been measured with and without 

a native oxide layer on the nanowire surface. 

The scanning tunneling microscopy technique is particularly successful to make a low 

resistive point contact between the probe tip and the top end of the individual nanowire. A 

speciality of the used setup is the possibility to integrate an external setup (voltage source, and 

current amplifier) into the STM system. 

The I-V characeristcs for the cleaned and uncleaned InP nanowires sample were 

measured for room temperature in ultrahigh vaccum conditions. We have evaluated our results in 

regard to the ideal diode characteristics, and we have compared I-V properties of uncleaned and 

cleaned nanowires. For this results we have investigated specific parameters, such as ideality 

factor, reverse and forward current at +0.5V and -0.5V, and the on-set voltage. 

When we have compared our results with the ideal diode behavior, we found the average 

ideality factor 2.5 to 2.6 for both cleaned and uncleaned nanowires which are significantly 

exceeding the ideal value (n=1.0) although they are in the range of best reported pn-junction 

nanowires. All investigated parameters, such as ideality factor, on-set voltage, reverse and 

forward current at +5.0V and -5.0 V are changed when we clean the sample. We relate this 

behavior to the fact that the oxide layer on the nanowire surface can pin the surface Fermi energy 

level. The pinning of surface Fermi level causes band bending and reduces the conductivity. 

Heating the sample during cleaning process also reduces defects at the surface that can act as 

electron/hole traps and thus increases the conductivity of the device. 

5.2 Outlook 

 Results of this projects are relevant for the NWs pn-junction processing. In this project 

we have used normal LED and laser light, but we have not found an affect of light on the InP pn-

junction nanowire I-V curves. There are few obvious improvements to the apparatus which 

would give it capability for producing more accurate and meaningful results. 
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 Replacing the laser with a more powerful laser and good optical system would improve 

the effect of light on the sample and our results  

 A more robust and powerful laser should be fixed inside the ultrahigh vaccum chamber of 

the STM, whose angle could be easily adjusted to incident laser light on the sample 

easily. 

One important advantage of a nanowire solar cell is that III-V semiconductor nanowires can 

be integrated or grown on many other substrates. In the future, it would therefore be important to 

study InP nanowires grown on cheap and industrially relevant silicon substrate. 
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Appendix. 

 
 

Table 1: Nanowires with native oxide layer 
 

No of 

Nanowire 

Forward 

current (um) 

at 0.5V 

Reverse 

current (nA) 

at -0.5V 

Low-

intermediate 

region (V) 

Slope          

m 

Ideality 

Factor n 

Turn-on 

Voltage VT 

1 0.034 -6.3 0.07-0.2 6.5 6.4 0.07 

2 0.044 -5.4 0.05-0.2 5.7 6.8 0.05 

3 0.021 -2.5 0.2-0.4 5 7.9 0.21 

4 0.033 -0.5 0.2-0.33 6.6 6 0.20 

5 0.043 -0.1 0.1-0.3 8 4.9 0.17 

6 0.1 -2.6 0.1-0.25 6.6 5.9 0.10 

7 0.019 -0.1 0.1-0.3 6.35 6.2 0.20 

 
 
 
 

Table 2: Nanowire without native oxide layer 
 

No of 

Nanowire 

Forward 

current 

(uA) at 

0.5V 

Reverse 

current (uA) 

at -0.5V 

Low-intermediate 

region (V) 

Slope          

m 

Ideality 

Factor n 

Turn-on voltage 

VT 

1 3.6 -0.17 0.07-0.35 7.2 5.4 -0.04 

 

2 6.6 -0.17 0.06-0.35 6.7 5.8 -0.03 

3 3.7 -0.08 0.05-0.35 6.7 5.8 -0.03 

4 1.6 -0.02 0.17-0.35 8.5 4.6 -0.08 

5 2.3 -0.13 0.05-0.35 6.0 6.5 0.02 

6 4.7 -0.23 0.03-0.35 7.1 5.6 -0.01 

7 3.3 -0.27 0.04-0.35 6.0 6.5 -0.01 

8 1.3 -0.02 0.12-0.35 6.0 6.5 -0.07 
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