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Abstract

The purpose of this Master’s thesis is to establish a methodology for hydrobushing
modelling and parameter identification. The studied hydrobushing is used as a
connector element between suspension components in Volvo S60, S80, V70, and
XC70. The hydrobushing has coupled amplitude and frequency dependence. At
Volvo Cars there is a need for a component model, which fully captures this property.

Experimental tests have been performed at the Materials Centre laboratory at
Volvo Cars, and this data is used to establish the hydrobushing model. The model
consists of one non-linear spring, several fluid elements and elasto-plastic elements
coupled in parallel. An automatic fitting procedure finds the set of model parameter
values that gives the best fit of the calculated response to the experimental data. The
fitting procedure is based on hysteresis fitting, where each calculated data point in a
hysteresis loop is compared to the corresponding experimental one and the deviation
is minimized.

In the validation process it turns out that the hydrobushing model, however, is
not able to completely capture the coupled amplitude and frequency dependence
of the component. The model is seen to underestimate the damping for dynamic
loading at small amplitudes (≤ 0.2 mm). Dynamic loading at amplitudes larger than
0.2 mm, as well as static and quasi-static loading, are represented in a satisfying
way.

ii



Contents

1 Introduction 1
1.1 Background and objective . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hydrobushing properties 3

3 Laboratory experiments 5
3.1 Test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Overview of performed tests . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Analysis of experimental data . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Static tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Quasi-static tests . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Dynamic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Hydrobushing modelling 12
4.1 Stress response algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Non-linear elastic part . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Fluid part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Elasto-plastic part . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Fitting procedure 16
5.1 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Error minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Initial value estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3.1 Elastic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 Elasto-plastic part . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.3 Fluid part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Validation 22
6.1 Expectation on the validation . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Static tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 Quasi-static tests . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



6.2.3 Dynamic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.4 Computation time . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Summary and conclusions 31
7.1 Hydrobushing model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix 36

A Validation of weighted fitting 36
A.1 Weighting of the fitting procedure . . . . . . . . . . . . . . . . . . . . 36
A.2 Validation of dynamic loading . . . . . . . . . . . . . . . . . . . . . . 37

B Parameter values 42

C MATLAB M-files 43
C.1 Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.2 Routines used by the main program . . . . . . . . . . . . . . . . . . . 43

C.2.1 LOAD INDATA.M and its subroutines . . . . . . . . . . . . . 43
C.2.2 HYDRO FIT.M and its subroutines . . . . . . . . . . . . . . . 45

iv



Chapter 1

Introduction

1.1 Background and objective

Rubber components such as rubber bushings, hydrobushings, hydraulic engine mounts,
and jounce bumpers constitute a vital element in vehicle suspension systems since
they often are crucial for the dynamic behaviour. The rubber components are used
as connector elements in the suspension system and as an interface between the
chassis and the body structure. Dynamic simulations of systems including rubber
elements are complex, due to the fact that the dynamic characteristics depend on
several variables, e.g. amplitude, frequency, preload, and temperature.

A hydrobushing is a combined elastomeric and hydraulic system, which consists
of natural rubber and cavities partly filled with a fluid (glycol). The fluid can
flow between chambers through channels. By using a hydrobushing, stiffness and
damping properties not possible to achieve with conventional rubber bushings can
be provided. The dynamic behaviour is characterized by very high damping at a
specific frequency, where the fluid comes into resonance. Hydrobushings are useful
for NVH (Noise, Vibration, and Harshness) control.

Multi-body simulations of full vehicles and subsystems are carried out in the
automotive industry to analyse durability, handling, and ride comfort. The Multi-
Body-System (MBS) code ADAMS is used at Volvo Cars. The component models
of rubber elements have proven to be critical for the quality of the simulations. As
considering bushing models at Volvo Cars, there is a need to be able to fully capture
the coupled frequency and amplitude dependence of a hydrobushing.

The main objective of this thesis is to establish a methodology for hydrobushing
modelling and parameter identification.

1.2 Overview

This Master’s thesis is a cooperation between Volvo Car Corporation and the Divi-
sion of Structural Mechanics, Lund Institute of Technology, Lund University. The
major activities have been to:
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2 CHAPTER 1. INTRODUCTION

• Propose a hydrobushing model, which models both rubber and fluid.
• Develop an automatic fitting procedure that fits the model parameters to the
experimental results.

• Validate the hydrobushing model by comparison with component testing.

The modelling and identification is performed in MATLAB. The model can be im-
plemented into commercial MBS codes like ADAMS.

1.3 Outline

Chapter 2: Hydrobushing properties This chapter is a presentation of the anal-
ysed component. The design and the dynamic characteristics of the hy-
drobushing are described.

Chapter 3: Laboratory experiments A description of the test method is given
in this chapter, although the focus is on the test results. The static, quasi-
static, and steady state harmonic dynamic characteristics of the hydrobushing
are analyzed and hysteresis loops are studied in detail.

Chapter 4: Hydrobushing modelling The hydrobushing model is presented and
the equations that build up the model are derived/presented.

Chapter 5: Fitting procedure This chapter describes the development and the
function of the automatic parameter fitting procedure.

Chapter 6: Validation In this chapter the hydrobushing model is compared to
experimental results. This is performed by comparison of hysteresis loops.

Chapter 7: Summary and conclusions The work is summarized and conclu-
sions from the validation are drawn. Ideas on improvements of the hydrobush-
ing model are also discussed.



Chapter 2

Hydrobushing properties

A hydrobushing is a component used in vehicle systems to control NVH (Noise,
Vibration, and Harshness) and ride comfort. The studied hydrobushing is used as a
connector element between the suspension components in Volvo S60, S80, V70, and
XC70. Figure 2.1(a) shows the position of the hydrobushing.

Figure 2.1: (a) The position of the hydrobushing in the front wheel suspension. (b)
The hydrobushing.

Figure 2.1(b) shows a photo of the hydrobushing. It consists of natural rubber,
chambers containing glycol, and a steel axle and cover. The glycol has a low freezing
point, which enables the bushing to perform well under winter conditions. The glycol
can stream between chambers through channels. The presence of the fluid gives the
hydrobushing about ten times higher damping than a conventional rubber bushing.
In Figure 2.2 the interior of the hydrobushing can be seen. The cover has been
removed and the chambers are exposed.

The hydrobushing can be designed to fulfil special requirements with respect to
its damping properties, since the peak damping occurs at the resonance frequency of
the fluid. By slightly varying the design of the chambers or channels, or the amount
of fluid encapsulated, the resonance frequency can be changed. Two interesting
damping applications are sudden bumps, i.e. large displacement amplitude and

3



4 CHAPTER 2. HYDROBUSHING PROPERTIES

Figure 2.2: The hydrobushing parts. Interior and cover.

low frequency, and engine vibrations, i.e. low amplitude and high frequency. The
component studied in this Master’s thesis is designed to give high damping for low
amplitudes (typically 0.10-0.20 mm) at frequencies in the range of 15-20 Hz (wheel
hop frequency).

The dynamic characteristics of the hydrobushing have very strong frequency
dependence due to the fluid encapsulated. The amplitude and frequency dependence
are coupled for a hydrobushing. This will be discussed more thoroughly in Chapter
3.



Chapter 3

Laboratory experiments

This chapter concerns testing of the Volvo hydrobushing. Static, quasi-static, and
steady state harmonic dynamic tests have been performed. The test results are
analysed and hysteresis loops are studied in detail. Frequency and amplitude de-
pendence with respect to dynamic stiffness and phase angle are also studied. The
test results used in this Master’s thesis are the same as in [3]. The test method is
consequently also the same and Section 3.1 has therefore been copied from [3].

3.1 Test method

The tests have been carried out by Lars Janerst̊al at Volvo Car Corporation. All
tests have been performed with a Schenck static/dynamic tensile testing machine,
see Figure 3.1. The machine has a load cell of ±7 kN maximum capacity and is able
to measure at a frequency interval of 0.1-1000 Hz. The used software is TEST STAR
II. The accuracy measured at the latest calibration occasion is less than ±0.1% in
the middle of the measuring interval, and up to at the most ±0.5% at the wings of
the interval.

The hydrobushing is mechanically conditioned to avoid Mullins’ effect1, see Fig-
ure 3.2. It is important to perform this conditioning properly because the usefulness
of the test data depends on how the mechanical conditioning has been performed.
The method to condition the component used in this Master’s thesis is the one-level
conditioning. This one-level method uses only one level of stretch in the conditioning
procedure, which has been set to 110% of the maximum level used in the testing.
In order to avoid heat build-up in the component it is important not to cycle the
component too long. The component is exposed to 3 cycles. A disadvantage of the
one-level method, is that it tends to lower the stiffness of the vulcanizate too much
in regions of small stretch values, according to [1]. The tests have been designed to
preserve the conditioning during the testing. Consequently, the tests have been per-
formed with the highest amplitude first and continued with decreasing amplitudes

1Mullins’ effect is attributed to breaking of the cross-links between the filler and the elastomeric
material, which results in decreasing stiffness for increasing strain amplitude
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6 CHAPTER 3. LABORATORY EXPERIMENTS

[3].

Figure 3.1: The machine used for testing. A Schenck static/dynamic tensile testing
machine [3].
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Figure 3.2: The one-level conditioning of rubber components [3].

3.2 Overview of performed tests

Static, quasi-static, and steady state harmonic dynamic tests of the component,
have been performed by the Material Centre laboratory of Volvo Car Corporation.
The hydrobushing has been tested in the radial direction. The tested amplitudes
are listed in Table 3.1.
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The static tests have been conducted with a triangular displacement history, i.e.
with a constant velocity. The hydrobushing is tested with v=0.05 mm/s except for
the amplitudes 0.5 mm, 0.2 mm, and 0.12 mm, which are tested with v=0.01 mm/s.
The quasi-static tests have been performed with a sinusoidal displacement history
at 0.03 Hz. The dynamic tests have been performed as discrete frequency sweeps
(1-41 Hz, ∆f = 2 Hz) for a given amplitude.

Tests Amplitude [mm]
Static tests 0.12, 0.20, 0.50, 0.80, 1.0, 1.5,

2.0, 3.0, 4.0, 4.5
Quasi-static tests 0.20, 0.50, 0.80, 1.0, 1.5, 2.0, 3.0

Steady state harmonic dynamic tests 0.10, 0.20, 0.50, 0.80, 1.0, 1.5, 2.0

Table 3.1: Performed tests.

3.3 Analysis of experimental data

The experimental test results are presented and analysed in this section. The focus
is on hysteresis loops, but frequency and amplitude dependence with respect to
dynamic stiffness and phase angle are also studied. Non-linear elastic behaviour is
expected for the hydrobushing when it is subjected to large displacements.

3.3.1 Static tests

Static test results are presented in Figure 3.3. The amplitude dependence for large
displacements in Figure 3.3(a) and (b) is due to non-linear elasticity. Amplitude
dependence caused by frictional damping can be seen in Figure 3.3(c) and (d),
where increasing amplitude gives decreasing dynamic stiffness.

3.3.2 Quasi-static tests

Quasi-static test results are presented in Figure 3.4. The non-linearities for dis-
placement amplitudes larger than 2.0 mm is due to non-linear elasticity, see Figure
3.4(a). Amplitude dependence caused by frictional damping can be observed in
Figure 3.4(b).
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Figure 3.3: Static characteristics for the hydrobushing.
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Figure 3.4: Quasi-static characteristics for the hydrobushing.
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3.3.3 Dynamic tests

Steady state harmonic dynamic tests will be referred to as dynamic tests in the
rest of this thesis. The dynamic test results are presented in Figure 3.5-3.8. Figure
3.5-3.7 are copied from [3].

Dynamic stiffness2 and phase angle as function of amplitude and frequency are
plotted in Figure 3.5. 2D representations of Figure3.5 is shown in Figure 3.6 and
3.7. The dynamic characteristics of the hydrobushing have a strong frequency de-
pendence due to the fluid encapsulated.

The dynamic stiffness of the hydrobushing has a strong amplitude and frequency
dependence for small amplitudes. This can be observed in Figure 3.5(a), 3.6(a),
and 3.7(a). The phase angle is a measure of damping, i.e. a large phase angle
indicates high damping. The hydrobushing is designed to give high damping at low
amplitudes, 0.10-0.20 mm, and frequencies between 15-20 Hz (wheel hop frequency).
This property is confirmed by Figure 3.5(b), 3.6(b), and 3.7(b). Conclusions drawn
from Figure 3.5-3.7 are:

• the dynamic stiffness and phase angle have strong frequency dependence for
small amplitudes

• the dynamic stiffness and phase angle have weak amplitude and frequency
dependence for large amplitudes

• the hydrobushing has coupled amplitude and frequency dependence

0
20

40
0

1

2

500

1000

1500

2000

2500

amplitude  (mm)frequency  (Hz)

dy
na

m
ic

 s
tif

fn
es

s 
 (

N
/m

m
)

(a) 

0
20

40
0

1

2

0

10

20

30

40

50

amplitude  (mm)frequency  (Hz)

ph
as

e 
an

gl
e 

 (
de

g)

(b) 

Figure 3.5: Dynamic characteristics for the hydrobushing. Dynamic stiffness (a)
and phase angle (b) as function of amplitude and frequency [3].

2Dynamic stiffness is defined as Kdyn = F0/d0, where F0 is the load amplitude and d0 the
displacement amplitude. The dynamic stiffness is a measure of the inclination of the hysteresis
loop
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Figure 3.6: Dynamic characteristics for the hydrobushing. Dynamic stiffness and
phase angle as function of frequency for different amplitudes [3].
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Figure 3.7: Dynamic characteristics for the hydrobushing. Dynamic stiffness and
phase angle as function of amplitude for some specific frequencies (1, 21, and 41
Hz) [3].

The hysteresis loops for some different frequencies and amplitudes are presented
in Figure 3.8. Three frequencies have been picked out for each displacement am-
plitude. These are presented in order to display the dynamic characteristics of the
hydrobushing. The non-linearities for high frequencies are mainly due to viscous
damping. The frequency dependence of the dynamic stiffness and phase angle is
clearly seen for the small amplitudes, Figure 3.8(b)-(d). The frequency dependence
is much weaker for larger amplitudes, see Figure 3.8(a).
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Figure 3.8: Dynamic characteristics for the hydrobushing.



Chapter 4

Hydrobushing modelling

Figure 4.1: One-dimensional model including elastic, fluid, and elasto-plastic prop-
erties.

The hydrobushing has three kinds of damping - viscous, frictional, and fluid
damping. One way to model the different kinds of damping is to combine one non-
linear spring with several fluid and elasto-plastic elements in parallel according to
Figure 4.1. This model is called the hydrobushing model and it will be shown that
the model is able to fit static, quasi-static, and dynamic test results with reasonable
accuracy. The stress expression is calculated by

σ = σe + σfluid + σep

Several fluid and elasto-plastic elements make it possible to conduct a fit of the
hysteresis loop to a wider frequency range and for larger variations in the amplitude.

The hydrobushing model is an expansion of the generalized non-linear elastic
viscoelastic elastoplastic model used by Karlsson and Persson [3]. The difference be-
tween the two models is the fluid elements. The latter one has uncoupled amplitude
and frequency dependence and is therefore not able to model the hydrobushing accu-
rately. By substituting the visco-elastic elements for fluid elements, which represent

12
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the enclosed glycol, the coupled amplitude and frequency dependent characteristics
of the hydrobushing can be modelled.

4.1 Stress response algorithm

The algorithm for the stress contribution from the non-linear elastic and the elasto-
plastic part of the model was derived in [3] and only the resulting expressions will
be shown here. However, a thorough derivation of the stress contribution from the
fluid part of the model will be presented in this section. The total load is a sum of
the contributions from each element,

Ftotal = Fe +
nf∑
i=1

F i
fluid +

np∑
i=1

F i
ep (4.1)

where nf is the number of fluid elements and np is the number of elasto-plastic
elements.

4.1.1 Non-linear elastic part

�
��

�������������

Figure 4.2: The elastic part of the model represented by a non-linear spring.

The non-linear model used to represent the elastic part is similar to the hyper-
elastic constitutive Yeoh model in simple shear. This is a three-parameter model
that only depends on the first strain invariant. The model has been proven to give
a good fit to experiments carried out on filled rubbers [5]. The force-displacement
relationship for the modified Yeoh model is

Fe = 2(D10u+ 2D20u
3 + 3D30u

5) (4.2)

4.1.2 Fluid part

�
������

� 	 


��

Figure 4.3: The fluid element

The fluid and viscous damping are modelled by the fluid elements. The fluid
element consists of a linear elastic spring, a mass, and a dashpot connected in series,
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according to Figure 4.3. Applying Newton’s second law of motion on the mass gives

Fc − Fk = müm (4.3)

where Fc and Fk are the forces in the dashpot and the spring respectively. The total
force of the fluid element Ffluid is equal to the force in the dashpot

Ffluid = Fc = c(u̇− u̇m) (4.4)

and
Fk = kum (4.5)

Combination of Equation (4.3)-(4.5) gives the equation of motion for the fluid ele-
ment,

müm − c(u̇− u̇m) + kum = 0⇔ müm + cu̇m + kum = cu̇ (4.6)

Solving this second order differential equation gives the displacement of the mass,
um, and the acceleration of the mass, üm. Inserting the results into (4.3) gives the
force contribution from one fluid element,

Ffluid = müm + kum (4.7)

The second order differential equation is solved by using the MATLAB based CALFEM1

function step2. This function computes, at equal time steps, the dynamic solution
to a set of second order differential equations of the form

Mü+Cu̇+Ku = f(x, t)
u(0) = u0

u̇(0) = v0

M,C, and K represent the n×n mass, damping, and stiffness matrices respectively.
The initial conditions are given by the vectors u0 and v0, containing initial displace-
ments and velocities. Time integration constants for the Newmark family should be
specified. Linear acceleration is used, giving α = 1

6
and δ = 1

2
[2].

Since the experimental series of data does not have equal time steps throughout
one series, linear interpolation of the time vector is made. For each time step, a
time vector with N minor time steps is created.

t = [t1 = ti t2 . . . tN tN+1 = ti+1]

In order to make the displacement vector correspond to the new longer time vector,
cubic spline interpolation of the displacement vector is made. The step2 function
is then applied to these new displacement and time histories. The elements on the
position N + 1 in the result vectors, ü, u̇, and u, are the acceleration, velocity, and
displacement for the next original time step i+1. These results are used in (4.7) to
calculate the next fluid load step, F i+1

fluid.
In the MATLAB function for calculation of the fluid force the parameters are

termed m =M , k = Kf , and c = Kf · Trf , where Trf is the relaxation time for the
dashpot, see Figure 4.4.

1CALFEM is a finite element toolbox to MATLAB. It is an interactive computer program for
teaching the finite element method. The program can be used for different types of structural
mechanics problems and field problems [2].
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Figure 4.4: The fluid element with model parameters.

4.1.3 Elasto-plastic part

Figure 4.5: (a) The elasto-plastic element. (b) The force-displacement relation for
the elasto-plastic element.

The frictional damping is symbolized by two blocks with sliding friction according
to Figure 4.5(a). The friction is fully developed when the force in the element reaches
the yield force, i.e. the model is elastic perfectly plastic and its force-displacement
relation is shown in Figure 4.5(b). The algorithm used for determining the force
contribution from one elasto-plastic element:

i = 1, 2, 3...

∆u = ui+1 − ui

F trial = F i +Kp∆u

α = Fy/F
trial

if α < 1 then α = 1

F i+1 = αF trial

First the displacement increment ∆u is calculated. Then the trial force, F trial, is
determined from the assumption that the response is purely elastic. Fy is the yield
force. If the ratio α = Fy/F

trial is larger than 1 the frictional part of the element is
sliding and the response of the element is no longer purely elastic. The next force
level is then recalculated as αF trial. If the ratio α is less than 1 the next force level
is equal to the trial force.



Chapter 5

Fitting procedure

The goal of the fitting procedure is to determine the set of parameter values that
gives the best fit of the model to experimental data. The fitting procedure is based
on hysteresis loop fitting.

5.1 Error estimation

In order to find the set of parameter values that gives the best fit of the modelled
displacement-load response to corresponding experimental data, each experimental
data point is compared to the corresponding calculated one. The hydrobushing
model is a displacement controlled model, i.e. the load is calculated from a known
displacement history. Therefore the error is estimated as the difference between the
calculated load value and the experimental load value for each data point. Since the
load level will differ considerably from small displacement amplitudes to larger ones,
also the size of the error will differ considerably and a relative measure of the error
is desirable. This is achieved by dividing the absolute error by the load amplitude
for the data series analysed. The error function resulting from this discussion, for
each data point, is

φi =
|F i

x − F i
m|

max|Fx| (5.1)

where the indices m and x stands for modelled and experimental, respectively. One
series of data contains 53 data points, which describe one hysteresis loop for a certain
displacement amplitude and frequency. A total of 92 series of data are used in the
fitting procedure, of which 7 series are static, 5 are quasi-static, and 80 are dynamic.

In order to get an error estimation for the total fitting procedure, including all
the experimental data, the error must be summarized in some way. The method
chosen is:

1. Calculate the error for every data point in one series of data using (5.1).

2. Take the average of the errors calculated in 1 to represent the error of the
series of data considered.

16
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3. Repeat the procedure of 1 and 2 for every series of data.

4. The error for every series of data has now been calculated. Take the average
of these errors to represent the total error of the model.

5.2 Error minimization

The fitting procedure aims at finding a set of parameter values giving an error as
small as possible. The MATLAB function fmincon is used to find the minimum of
the error function. The fmincon function finds a constrained minimum of a function
of several variables. It solves problems of the form:

find min F (X) if

AX ≤ B
AeqX = Beq

}
linear constraints

C(X) ≤ 0
Ceq(X) = 0

}
nonlinear constraints

LB ≤ X ≤ UB lower and upper limits

The vector X contains the parameters of the hydrobushing model. Not all of the
available constraints are used in this fitting procedure. X is subjected to the linear
constraint AX ≤ B in order to sort the fluid and elasto-plastic elements and set
upper limits for some of the parameters. The linear constraints used result in a
sorting of the elements according to

Trf 1 ≥ Trf 2 ≥ . . . ≥ Trfnf

Fy1 ≥ Fy2 ≥ . . . ≥ Fynp

Upper boundary vector, UB, and lower boundary vector, LB, are defined so that
the solution X is found in the range LB ≤ X ≤ UB. The boundaries are chosen on
the basis of the initial values of the previously defined model parameters, the vector
Par0, where

Par0 = [D10, D20, D30,K
1
p . . .K

np
p , F

1
y . . . F

np
y ,M1 . . .Mnf ,K1

f . . .K
nf
f , T r1f . . . T r

nf
f ]

The lower limit is set to 0.1Par0 and the upper one to 10Par0.

5.3 Initial value estimation

The fitting procedure needs initial parameter values for the first error estimation.
These initial values must be close enough to the best fit solution, otherwise the
best fit will never be found. Estimations of the initial values are made using the
experimental test results.
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5.3.1 Elastic part

The elastic part of the model is represented by a non-linear elastic spring. The non-
linear behaviour is described by the modified hyperelastic constitutive Yeoh model
containing three parameters, D10, D20, and D30. The initial values of these param-
eters are chosen to fit the hysteresis loop of the largest amplitude of the static tests
[1]. This series of data is chosen because the non-linearities of the hysteresis loop is
most evident for this series.

5.3.2 Elasto-plastic part

The elasto-plastic part of the model is represented by several elasto-plastic elements
with two parameters, Kp and Fy, each. At low frequencies, the fluid contribution
to the stiffness can be neglected and only the elastic and the elasto-plastic elements
contribute to the stiffness [4]. The experimental data contains measurements of the
dynamic stiffness for every series of data. If the fluid contribution can be neglected
for frequencies ≤ 1 Hz, the dynamic stiffness at these low frequencies depends only
on the elastic and the elasto-plastic parts of the model. For small amplitudes the
non-linearities can be neglected and the stiffness of the elastic spring will be 2D10

according to Equation (4.2). The elasto-plastic contribution to the dynamic stiffness,
Ktot

p , can then be estimated by

Ktot
p = K1Hz,0.1mm − 2D10 (5.2)

When the number of elasto-plastic elements is greater than one, and the stiffness
of element i is K i

p, K
tot
p according to (5.2) is considered to be the sum of all K i

p.
The initial distribution of the dynamic stiffness among the elasto-plastic elements
is done according to

K1
p = c ·Ktot

p

K i+1
p = (c− 1)K i

p, i = 2, . . . , np− 2
Knp

p = Ktot
p − ∑np−1

i=1 K i
p

(5.3)

where the constant c is empirically set to 0.95 in order to obtain the parallelogram
shape sought. This gives a distribution where the stiffness of element i+ 1 is 5% of
the stiffness of element i.

The yield force Fy is the load level at which the frictional element starts to slide.
Since frictional damping is not a prominent feature for small amplitudes, i.e. the
area where the fluid damping is most evident (0.1-0.2 mm), the yield force can be
estimated by

F i
y = K

i
p(ul +∆u(i− 1)), i = 1, 2, . . . , np (5.4)

where ul is the lower displacement limit where frictional damping is introduced and
∆u is the increase of this displacement limit for the next elasto-plastic element. ul is
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set to 0.2 mm and ∆u is empirically chosen to be 0.1 mm. If (ul+∆u(i−1)) > 2.0mm
then the initial yield force will be estimated by

F i
y = K

i
p · 2.0mm (5.5)

Equation (5.4) and (5.5) are valid for any number of elasto-plastic elements. If few
elasto-plastic elements are used in the model, the frictional damping is introduced
in the lower amplitude range, but if many elements are used the frictional damping
will be introduced more even over the whole amplitude range. However, by experi-
ence, two elements are sufficient to get a satisfactory representation of the frictional
damping.

5.3.3 Fluid part

The fluid part of the model is represented by several fluid elements with three
parameters each; M , Kf , and Trf . The mass parameters are initially equally dis-
tributed and approximated in a way that the sum of them equals the weight of the
encapsulated glycol,

Mi =
Mglycol

nf
(5.6)

where nf is the number of fluid elements.
The dynamic stiffness at small amplitudes (0.1-0.2 mm), where the fluid part

has greatest influence, is the sum of the stiffness contribution from each element in
the model.

Ktot = 2D10 +K
tot
p +Ktot

f (5.7)

where Ktot
f =

∑nf
i=1K

i
f , and nf is the number of fluid elements. By assuming

that the displacement amplitude is small, i.e. no frictional damping, and that the
mass can be neglected, the model can be approximated by the standard linear solid
model1, see Figure 5.1, in order to determine the viscoelastic parameters of the fluid
elements. The neglected mass is a rough approximation that will be corrected for
later.

Figure 5.1: The standard linear solid model.

The relative amount of relaxation for the fluid elements g is set to 0.8. Figure 5.2
displays the definition of g in terms of normalized relaxation stiffness. By studying
this figure an expression for g can be derived:

1The standard linear solid model is also known as the Zener model.
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totKK

rt

1

1−g

g

/

t

R(t)

Figure 5.2: The relative amount of relaxation, g, defined in terms of the normalized
relaxation stiffness. Ktot is the instantaneous stiffness.

KR

Ktot

→ 1− g, t→ ∞

KR → 2D10 +K
tot
p , t→ ∞

1− g =
2D10 +K

tot
p

Ktot

⇒

g =
Ktot

f

Ktot

(5.8)

The equation for the total stiffness contribution from the fluid elements is found by
dividing (5.7) by Ktot and then using (5.8) and (5.7).

Ktot
f =

g

1− g
(2D10 +K

tot
p ) (5.9)

This total fluid stiffness is initially equally distributed amongst the fluid elements,
i.e.

K i
f =

Ktot
f

nf
(5.10)

The relaxation time parameters distinguish one fluid element from an other. The
relaxation time parameters are chosen to give high damping for frequencies between
10-20 Hz. The relation between frequency and relaxation time used is the relation
valid for the standard linear solid model.

2πf · Trf = 1⇔ Trf =
1

2πf
(5.11)

The mass in the fluid element has great influence on the damping properties of
the element. In the standard linear solid model all damping is due to the dash
pot. Therefore (5.11) will be corrected with a factor in order to give reasonable



5.4. WEIGHTING 21

properties to the fluid element. The relaxation time parameter for each element is
chosen in order to give peak damping at a frequency in the range fmin-fmax=10-20
Hz according to

∆f =
fmax − fmin

nf − 1 (5.12)

Tri
f = c1

1

2π(fmin +∆f(i− 1)) (5.13)

where i = 1, . . . , nf and c1 is an empirical correction factor. This factor is set to 0.1
[1].

5.4 Weighting

There is a possibility to give data of certain interest a greater influence in the
parameter fitting process. This results in a better hysteresis fitting in the area
of interest at the expense of worse fitting in other areas. The series of data to
be weighted are specified by setting an amplitude range and a frequency range
for the area of interest. The error estimation in (5.1) is then multiplied with a
weighting factor set empirically to 3 for the selected series of data, giving the errors
of these series greater influence in the total error estimation. When weighting is
used Equation (5.1) is reformulated as

φi = weight · |F
i
x − F i

m|
max|Fx| (5.14)



Chapter 6

Validation

The hydrobushing model is validated for static, quasi-static, and dynamic loading by
comparison of the calculated hysteresis loops with the corresponding experimental
test results. The model used in this validation consists of one non-linear spring,
two elasto-plastic elements, and two fluid elements. It is possible to vary both
the number of elasto-plastic elements and the number of fluid elements, but from
experience this combination gives satisfactory accuracy.

6.1 Expectation on the validation

The hydrobushing has a coupled amplitude and frequency dependence. The hy-
drobushing model developed in this work is expected to capture such a behaviour.
The frequency and amplitude range to which the model is fitted is large and the
model is not likely to fit well in the whole range. If very good fitting in a small range
is desired, this range can be given greater importance during the fitting procedure
by weighting, see Section 5.4.

6.2 Validation results

Most of the validation results presented in this section are not weighted. If weighting
is used it is clearly stated in the text. The effect of weighting is more thoroughly
discussed in Appendix A, where two different weighting ranges have been evaluated
- one with greater importance for the 0.1 and 0.2 mm displacement amplitudes and
the other with greater importance for the 1.0 and 2.0 mm amplitudes. This results
in a better hysteresis fitting in the area of interest at the expense of worse fitting in
other areas.

6.2.1 Static tests

The hysteresis loops for the static tests are plotted in Figure 6.1 together with
the results from calculations using the hydrobushing model. The non-linearities of

22



6.2. VALIDATION RESULTS 23

−4 −2 0 2 4

−5000

0

5000

displacement (mm)

lo
ad

 (
N

)
amplitude 4.5 mm

−4 −2 0 2 4

−5000

0

5000

displacement (mm)

lo
ad

 (
N

)

amplitude 4.0 mm

−3 −1.5 0 1.5 3

−2000

0

2000

displacement (mm)

lo
ad

 (
N

)

amplitude 3.0 mm

−2 −1 0 1 2

−2000

0

2000

displacement (mm)

lo
ad

 (
N

)

amplitude 2.0 mm

−1 −0.5 0 0.5 1

−1000

0

1000

displacement (mm)

lo
ad

 (
N

)

amplitude 1.0 mm

−0.6 −0.3 0 0.3 0.6

−600

0

600

displacement (mm)

lo
ad

 (
N

)

amplitude 0.5 mm

−0.2 −0.1 0   0.1 0.2 

−200

0

200

displacement (mm)

lo
ad

 (
N

)

amplitude 0.2 mm

test
model

test
model

test
model

test
model

test
model

test
model

test
model

Figure 6.1: Validation of the static series of data by comparison of experimental
hysteresis loops (test) to calculated ones.
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the larger displacement amplitudes are modelled well. This was expected since the
initial values of the non-linear parameters, the Yeoh parameters, were estimated in
order to fit the largest static displacement amplitude. For displacement amplitudes
smaller than 2.0 mm, the damping is overrated. The reason for the overestimation
of the damping property is that the yield forces for the elasto-plastic elements are
slightly too low, which will introduce frictional damping at too small displacement
amplitudes. For the 0.2 mm displacement amplitude no frictional damping is active.
This results in overestimation of the dynamic stiffness and underestimation of the
damping (no damping present).

6.2.2 Quasi-static tests

The hysteresis loops for the quasi-static tests are plotted in Figure 6.2 together with
the results from calculations using the hydrobushing model. The non-linearity of
the largest quasi-static displacement amplitude is well captured by the hydrobushing
model. The overestimation of the damping for displacement amplitudes smaller than
2.0 mm is due to frictional damping, see discussion in Section 6.2.1.

6.2.3 Dynamic tests

The hysteresis loops for some of the dynamic tests are plotted in Figure 6.3 and
6.4 together with the results from calculations using the hydrobushing model. The
hysteresis loops for four frequencies - 3, 15, 21, and 41Hz - are presented for four
different displacement amplitudes - 0.1, 0.2, 0.5, and 2.0 mm. These 16 hysteresis
loops can be assumed to represent the frequency and displacement range evaluated,
see Section 3.2 for more information on performed tests.

In Figure 6.3 the hydrobushing model seems to underestimate the damping for
the 0.1 and 0.2 mm displacements. This is the case if no weighting is used. In
Figure 6.5 the 0.1 and 0.2 mm displacement amplitudes have been weighted with
a factor of 3 according to Section 5.4. The calculated hysteresis loops then fit the
test results more accurately. The dominating damping in this area is fluid damping.
In the hydrobushing model this type of damping has too great influence on larger
displacement amplitudes, compared to experimental test results, i.e. if fluid damping
is fitted to the hydrobushing area the damping is overestimated for larger amplitudes,
see Appendix A. The fluid elements do not only influence the damping properties
but also the dynamic stiffness. In Figure 6.3 the dynamic stiffness of the calculated
hysteresis loops correlate poorly to the experimental test results. In Figure 6.5 the
calculated dynamic stiffness is seen to fit the test results much better.

Frictional damping is the dominating type of damping for larger amplitudes al-
though the fluid damping is still present for higher frequencies. The parallelogram
shape of the experimental hysteresis loops in Figure 6.4 is due to frictional damp-
ing. In the hydrobushing model fluid damping has too great influence on large
displacement amplitudes as mentioned above. This results in too little influence
from frictional damping in order not to overrate the total damping. Therefore the
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Figure 6.2: Validation of the quasi-static series of data by comparison of experimen-
tal hysteresis loops (test) to calculated ones.
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parallelogram shape is not as prominent for the calculated hysteresis loops as for the
test results. In order to get a better fit to large displacement amplitudes the 1.0 and
2.0 mm amplitudes are weighted with a factor of 3. The effect of this weighting on
the displacement amplitudes 0.5 and 2.0 mm is presented in Figure 6.6. Weighting
results in better fitting of the 2.0 mm amplitude. The fitting of the 0.5 mm displace-
ment amplitude is seen to be worsen rather than improved. This is a result of the
weighting that gives worse fitting in areas not weighted, and the 0.5 mm amplitude
was not included in the weighting range.

6.2.4 Computation time

The fitting procedure is an iteration process, where the 13 model parameters are
varied in order to minimize the deviation between the calculated response and ex-
perimental data. In every iteration step the elastic, elasto-plastic and fluid response
are calculated for every data point in the hysteresis loops. The fluid response takes
by far the longest time to calculate. In fact, it constitutes the great majority of
the total computation time. The fluid response is computed using the CALFEM
function step2, which computes the dynamic solution to the second order differen-
tial equation, Equation (4.6), at equal time steps. However, the time steps of the
experimental data to which the calculated response should be compared are not of
equal length, and therefore the time steps of the hydrobushing model cannot be of
equal length either. The step2 function must then be applied to every time step
separately, giving an evident increase of the fitting time. The computation time
of the total response is in direct proportion to the computation time of the fluid
response.
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Figure 6.3: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (model). Displacement amplitudes 0.1 and
0.2 mm for some different frequencies.
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Figure 6.4: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) calculated ones (model). Displacement amplitudes 0.5 and 2.0
mm for some different frequencies.
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Figure 6.5: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). Displacement amplitudes
0.1 and 0.2 mm for some different frequencies. Weighting of displacement ampli-
tudes 0.1 and 0.2 mm with a factor of 3.
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Figure 6.6: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). Displacement amplitudes
0.5 and 2.0 mm for some different frequencies. Weighting of displacement ampli-
tudes 1.0 and 2.0 mm with a factor of 3.



Chapter 7

Summary and conclusions

The main objectives of this Master’s thesis have been to establish a methodology
for hydrobushing modelling and parameter identification. The major activities have
been to:

• Propose a hydrobushing model, which models both rubber and fluid.
• Develop an automatized fitting procedure that fits the model parameters to
the experimental results.

• Validate the hydrobushing model by comparison with component testing.

7.1 Hydrobushing model

The hydrobushing model proposed contains one elastic part, one elasto-plastic part,
and one fluid part.

The elastic part consists of a non-linear spring, which can represent the non-
linearities that arises at large displacement amplitudes.

The elasto-plastic part is composed of several elasto-plastic elements in parallel.
Each element consists of a linear spring and a frictional element coupled in
series. This part of the model captures the frictional damping of rubber.

The fluid part is composed of several fluid elements in parallel. Each element
consists of a linear spring, a mass, and a linear dashpot coupled in series. This
part of the model captures the viscous damping and the fluid damping peak
for the resonance frequency of the fluid.

7.2 Fitting procedure

The hydrobushing model used in the validation part of this thesis consists of one non-
linear spring, two elasto-plastic elements, and two fluid elements, giving 13 unknown
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parameters. The values of these parameters were determined by an automatized
fitting procedure that finds the set of parameter values giving the best fit of the
model to experimental data. The steps in developing this procedure have been:

Error estimation. The fitting procedure is based on hysteresis fitting, i.e. each
data point in the modelled hysteresis loop has been compared to the corre-
sponding experimental test value. Summation of all data points gives the total
error.

Error minimization. The MATLAB function fmincon was used to find the min-
imum of the total error. This function finds a constrained minimum of a
function of several variables.

Initial value estimation. The fitting procedure needs initial parameter values in
order to make the first error estimation. Estimations of the initial values were
made using the experimental test results.

Weighting. The fitting procedure includes a possibility to give data of certain
interest greater influence in the fitting process. This gives better hysteresis
fitting in the range of interest at the expense of worse fitting in other ranges.

7.3 Validation

The hydrobushing model has been validated for static, quasi-static, and dynamic
displacement controlled loading by comparison of the calculated hysteresis loops
to the corresponding experimental ones. The model was expected to capture the
coupled amplitude and frequency dependence of the hydrobushing.

Some observations from the validations:

• The non-linearities of the static and quasi-static loading at larger displacement
amplitudes were modelled well.

• At static and quasi-static loading, the damping for displacement amplitudes
smaller than 2.0 mm was overestimated due to the fact that frictional damping
was introduced by the model at too small amplitudes.

• For dynamic loading the damping was underestimated for small displacement
amplitudes. The dominating damping in this range is fluid damping. In the
hydrobushing model this type of damping has too great influence on larger
displacement amplitudes, compared to experimental test results, i.e. if fluid
damping was fitted to smaller displacement amplitudes the damping would be
overestimated for larger amplitudes.

• The parallelogram shape of the hysteresis loops for larger dynamic displace-
ment amplitudes is due to frictional damping. In the hydrobushing model
fluid damping has too great influence on large displacement amplitudes as
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mentioned above. This results in too little influence from frictional damping
in order not to overrate the total damping. Therefore the parallelogram shape
is not as prominent for the calculated hysteresis loops as for the test results.

• By making use of weighting, much better fit in the weighted range was achieved.
For small amplitudes, 0.1 and 0.2 mm, the damping was underestimated for the
whole frequency range, otherwise the damping follows its frequency dependence. For
larger amplitudes, 1.0 and 2.0 mm, the damping property was correctly estimated for
the lower frequencies, but overrated for the upper half of the frequency range, i.e. the
damping did not follow its frequency dependence. Properties of the hydrobushing
model:

The hydrobushing model:

• captures the behaviour of the static and quasi-static loading well.
• gives a satisfactory response for dynamic loading at amplitudes > 0.2 mm.

• does not represent the behaviour of dynamic loading at amplitudes ≤ 0.2 mm
in a satisfying way.

7.4 Future work

Some suggestions for work within this field that can be done in the future:

• Develop a model that better captures the coupled amplitude and frequency
dependence. A proposed model that may describe this behaviour more accu-
rately is the model seen in Figure 7.1. This model has amplitude and frequency
dependent elements coupled in series and is therefore expected to describe the
coupled behaviour.

σ

ε

Figure 7.1: Model with interrelated elastic, viscous, and frictional properties.

• Shorten the computation time for the parameter fitting. By calculating the
force contribution from the fluid elements analytically instead of using the
numerical, time consuming CALFEM function step2 the time needed to fit
the model parameters to experimental data can be shorten.
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• Extension of the 1D hydrobushing model to a 3D model. It is desirable to de-
velop a hydrobushing model, which describes the behaviour of the component
in 3D.

• Implementation of the hydrobushing model in MBS-codes such as ADAMS.
This makes it possible to use the hydrobushing model in durability, handling,
and ride comfort simulations.
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Appendix A

Validation of weighted fitting

The fitting procedure offers a possibility to weight an amplitude-frequency range of
certain interest. This results in a better hysteresis fitting in the range of interest at
the expense of worse fitting in other ranges. In this section, results from weighted
fitting are presented and discussed.

A.1 Weighting of the fitting procedure

The series of data to be weighted are specified by setting a displacement amplitude
range and a frequency range for the area of interest. In this range, the error for each
data point is weighted with a factor of 3 according to

φi = weight · |F
i
x − F i

m|
max|Fx| (1.1)

where the indices m and x stands for modelled and experimental, respectively. The
error contribution from the rest of the data is given by

φi =
|F i

x − F i
m|

max|Fx| (1.2)

In order to get an error estimation for the total fitting procedure, including all the
experimental data, the error must be summarized in some way. The method chosen
is:

1. Calculate the error for every data point in one series of data using Equation
(1.1) if the series will be weighted or else Equation (1.2).

2. Take the average of the errors calculated in 1 to represent the error of the
series of data considered.

3. Repeat the procedure of 1 and 2 for every series of data.

4. The error for every series of data has now been calculated. Take the average
of these errors to represent the total error of the model.
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A.2 Validation of dynamic loading

Validation of two different weighting ranges have been carried out. The displacement
amplitudes and frequencies that are weighted in the two fittings are:

• the fluid range - displacement amplitudes 0.1 and 0.2 mm for the whole fre-
quency range.

• the rubber range - displacement amplitudes 1.0 and 2.0 mm for the whole
frequency range.

The results of the validations are presented in Figure A.1 - A.4. In Figure A.1 and
A.2 the fluid range has been weighted with a factor of 3 according to Equation (1.1).
This procedure gives satisfactory fitting of the weighted displacement amplitudes,
however, the farther away from the weighted range, the worse is the fitting. Similar
conclusions is drawn when studying Figure A.3 and A.4. In the hydrobushing model
fluid damping has too great influence on larger displacement amplitudes, and there-
fore the damping is greatly overestimated for large displacement amplitudes when
fitting to the fluid range, see Figure A.2. In a similar way the damping is greatly
underestimated for small displacement amplitudes when fitting to the rubber range,
see Figure A.3.
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Figure A.1: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). The fluid range has
been weighted by a factor of 3. Displacement amplitudes 0.1 and 0.2 mm for some
different frequencies.
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Figure A.2: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). The fluid range has
been weighted by a factor of 3. Displacement amplitudes 0.5 and 2.0 mm for some
different frequencies.
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Figure A.3: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). The rubber range has
been weighted by a factor of 3. Displacement amplitudes 0.1 and 0.2 mm for some
different frequencies.
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Figure A.4: Validation of the dynamic series of data by comparison of experimental
hysteresis loops (test) to calculated ones (weighted model). The rubber range has
been weighted by a factor of 3. Displacement amplitudes 0.5 and 2.0 mm for some
different frequencies.



Appendix B

Parameter values

0.1 and 0.2mm 1.0 and 2.0mm
no weighting weighted weighted

D10 (N/mm) 217.2 212.6 222.3
D20 (N/mm

3) 1.256 2.413 6.404

D30 (N/mm
5) 0.3461 0.2827 0.0265

K1
p (N/mm) 442.2 440.2 441.8

K2
p (N/mm) 23.27 21.39 22.70

F 1
y (N) 88.44 84.37 89.79

F 2
y (N) 4.652 0.04655 6.963

M1 (kg) 0.01350 0.01413 0.004662
M2 (kg) 0.001540 0.0001000 0.0001696
K1

f (N/mm) 1365.4 1365.5 1365.3

K2
f (N/mm) 1365.4 1365.5 1365.4

Tr1f (s) 0.002602 0.002871 0.001842

Tr2f (s) 0.0005057 0.002480 0.000007958

φ 0.1593 0.3881 0.2977
elapsed time (h) 2.26 5.30 6.49
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MATLAB M-files

C.1 Main program

MAIN HYDRO.M

Purpose:
Determine the 1D hydrobushing model parameters.

Par = [D Kp Fy M Kf Trf] 1D hydrobushing model parameters
D = [D10 D20 D30] Yeoh parameters
Kp = [Kp1 Kp2 ...] spring stiffnesses (elasto-plastic part)
Fy = [Fy1 Fy2 ...] yield forces (frictional part)
M = [M1 M2 ...] fluid mass
Kf = [Kf1 Kf2 ...] spring stiffnesses (fluid part)
Trf = [Trf1 Trf2 ...] relaxation times (fluid part)

References:
Marie H̊akansson and Malin Svensson 13-02-2004

Figure C.1 visualizes the program structure of the fitting procedure.

C.2 Routines used by the main program

C.2.1 LOAD INDATA.M and its subroutines

LOAD INDATA.M

Purpose:
Read dynamic, quasi static and static experimental data
and turn it into a proper format for further analysis.

References:
Marie H̊akansson and Malin Svensson, 10-02-2004
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Generated matrices:
DispX, LoadX, TimeX:
Each column of the matrices represents a time history
size (nbr timepoints) x (nbr series of data)

K, d0, f, dt:
Column vectors where each element correspond to a column
in the matrices DispX, LoadX and TimeX.

CORRECT.M

function[TimeX]=correct(DispX,TimeX,index 1)

Purpose:
Correct the time step at the start and the end
of the dynamic time history at the frequency 1 Hz.

References:
Marie H̊akansson and Malin Svensson 19-12-2003

Input:
DispX, TimeX experimental data
index 1 indices for the 1Hz series of data

Output:
TimeX corrected time history

SINGLE LOOP.M

function

[Disp,Load,Time,Disp stat,Load stat,Time stat,Disp quas,Load quas,Time quas]...

=single loop(DispX,LoadX,TimeX,d0,index 1,DispX stat,LoadX stat,TimeX stat,...

d0 stat,stl stat,DispX quas,LoadX quas,TimeX quas,d0 quas,stl quas,index fel)

Purpose:
Select one single hysteresis loop from the experimental data.
Every hysteresis loop contains the same nbr of data points.

References:
Marie H̊akansson and Malin Svensson, 08-12-2003

Input:
DispX, LoadX, TimeX experimental data
d0 displacement amplitude
index 1 indices for the 1Hz series of data
index fel indices for troublesome series of data
stl sizes of the series of data (static and quasi static)
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Output:
Disp, Load, Time experimental data (one period)

CENTER.M

function [Disp]=center(DispX,LoadX,f,dt)

Purpose:
Center the hysteresis loop with respect to the displacement.

References:
Marie H̊akansson and Malin Svensson 02-12-2003

Input:
DispX,LoadX experimental data
f frequency
dt time step

Output:
Disp displacement (centered)

C.2.2 HYDRO FIT.M and its subroutines

HYDRO FIT.M

function [Par,phi]=hydro fit(Par,DispX,LoadX,TimeX,f,np,nf,index vikt)

Purpose:
Fit 1D hydrobushing model parameters to experimental load history.

References:
Marie H̊akansson and Malin Svensson 13-02-2004

Input:
Par0 = [D Kp Fy M Kf Trf] initial values
D = [D10 D20 D30] Yeoh constants
Kp = [Kp1 Kp2 ...] spring stiffnesses (elasto plastic part)
Fy = [Fy1 Fy2 ...] yield forces
M = [M1 M2 ...] fluid mass
Kf = [Kf1 Kf2 ...] spring stiffnesses (fluid part)
Trf = [Trf1 Trf2 ...] relaxation times
LoadX, DispX, TimeX experimental data
f frequency
np nbr of elasto plastic elements
nf nbr of fluid elements
index vikt indices for important series of data

Output:
Par Fitted 1D hydro bushing model parameters
phi relative error
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ERROR HYDRO.M

function [phi]=error hydro(Par,DispX,LoadX,TimeX,f,np,nf,index vikt)

Purpose:
Compute the relative error between experimental data
and calculated results in the 1D hydrobushing model

References:
Marie H̊akansson and Malin Svensson 13-02-2004

Input:
Par = [D’ Kp Fy M Kf Tr] parameter values
D = [D10 D20 D30] Yeoh parameters
Kp = [Kp1 Kp2 ...] spring stiffnesses (elasto-plastic part)
Fy = [Fy1 Fy2 ...] yield forces (frictional part)
M = [M1 M2 ...] fluid mass
Kf = [Kf1 Kf2 ...] spring stiffnesses (fluid part)
Trf = [Trf1 Trf2 ...] relaxation times (fluid part)
DispX, LoadX, TimeX experimental data
f frequency
np nbr of elasto-plastic elements
nf nbr of fluid elements
index vikt indices for important series of data

Output:
phi relative error

HYDROMODEL.M

function Load=hydromodel(Disp,Time,f,Par,np,nf)

Purpose:
Compute the load history for a given displacement history
using the 1D hydrobushing model

References:
Marie H̊akansson and Malin Svensson 13-02-2004

Input:
Disp, Time experimental data
f frequency
Par = [D Kp Fy M Kf Trf] parameter values
D = [D10 D20 D30] Yeoh parameters
Kp = [Kp1 Kp2 ...] spring stiffnesses (elasto-plastic part)
Fy = [Fy1 Fy2 ...] yield forces
M = [M1 M2 ...] fluid mass
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Kf = [Kf1 Kf2 ...] spring stiffnesses (fluid part)
Trf = [Trf1 Trf2 ...] relaxation times
np nbr of elasto-plastic elements
nf nbr of fluid elements

Output:
Load load history vector

main hydro.m

load indata.m

correct.m
single loop.m
center.m

✒✫ 


✚
✚✚

hydro fit.m

error hydro.m

hydromodel.m

✏✩

�
��

❙
❙❙

φ Par

Figure C.1: Description of the program structure.


