LUN

UNIVERSITY
METHODS FOR INTEGRATING
FORTRAN BASED FINITE ELEMENT
APPLICATIONS IN A SCRIPTING
ENVIRONMENT
MARTIN ROOS

Structural , _

, Master’s Dissertation
Mechanics

Structural Mechanics

ISRN LUTVDG/TVSM--05/5129--SE (1-XXX)
ISSN 0281-6679

METHODS FOR INTEGRATING
FORTRAN BASED FINITE ELEMENT
APPLICATIONS IN A SCRIPTING

ENVIRONMENT

Master’s Dissertation by

MARTIN ROQOS

Supervisors:

Jonas Lindemann and Ola Dahlblom,
Div. of Structural Mechanics

Copyright © 2005 by Structural Mechanics, LTH, Sweden.
Printed by KFS | Lund AB, Lund, Sweden, Month, 2005.

For information, address:
Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.Ith.se

Preface

The work presented in this Master’s thesis was carried out at the Division of
Structural Mechanics at Lund’s University, Sweden, during September 2004
- February 2005.

I would like to express my gratitude to my supervisors, Professor Ola
Dalhblom and PhD Jonas Lindemann. Ola Dalhblom for helping me to find
this Master’s thesis and start it up. Jonas Lindemann for supporting me
during the entire process and for the discussions we had regarding the topics
in this work.

I am also very grateful to have had the possibility to use the resources at
the Division of Structural Mechanics and thanks to Mr Bo Zadig for helping
me with the graphics and printing.

Finally I would like to thank all other students in the Master’s thesis
room for giving me motivation and laughter.

Lund February 2005,

Martin Roos

Abstract

The course Software Development for Technical Systems at the division of
Structural Mechanics teaches students techniques for implementing finite
element applications with both user interface and computational code. Cur-
rently Borland Delphi environment is used for the user interface and Fortran
is used for the computational part. This master’s thesis is an effort to study
methods of integrating Fortran with script languages and user interface to
create more flexible and easier to use software. An interesting candidate
for user interface and computational environment is Python. Python is a
script language, which is easy to use and learn for non-programmers and yet
powerful enough to use as a scripting environment for computational codes.

A finite element application is developed where the computational code
is written in Fortran and the user interface in Python. The main task to
solve is how to link Fortran and Python. To perform the link a tool, Fortran
to Python interface generator (F2PY) is used after an evaluation of differ-
ent tools. The test application shows that F2PY creates an interface in a
single step, no advantages of Fortran are lost, all major Fortran functions
are supported and a F2PY created module is as easy to use as a built-in
function in Python. The disadvantage of F2PY is that it need five prerequi-
sites. Overall F2PY fulfills all requirements on a link between Fortran and
Python. Python has all features a scripting languages shall have, easy code
structure, rapid development and the ability to glue components together.
Python also gives the user possibility to create a graphical user interface
(GUI) with or without a GUI-builder. Finally all parts that are used are
platform independent. This result in that it is recommended to replace Bor-
land Delphi with Python in the course Software Development for Technical
Systems.

iii

Sammanfattning

Kursen Programutveckling for Tekniska System pa avdelningen for Byg-
gnadsmekanik ldr ut tekniker fér att implementera finita element program
som betsar av en berdkningsdel och ett anvindargrinssnitt. For tillfillet an-
véinds utvecklingsmiljon Borland Delphi for anvindargrianssnittet och For-
tran for berdkningskoden. Detta examensarbete syfte ar att studera metoder
for att integrera Fortran med skriptsprak och anvindargrinssnitt for att
utveckla mer flexibla och lattanvinda applikationer. Ett intressant program-
meringssprak for anvindargrianssnittet och som beréiknings skal &r Python.
Python &r ett skriptsprak som &r anvéndarvinligt och l&tt att lara for ny-
borjare men dnda tillrackligt kraftfullt for att anvindas som en skript miljo
for berdkningskod.

Ett finita element program ar utvecklat dér berikningskod &r skriven i
programmeringsspraket Fortran som integreras i scriptspraket Python, hu-
vuduppgiften ér att skapa en fungerande link mellan Fortran och Python.
Gréanssnittet till linken skapas med ett verktyg, Fortran to Python inter-
face generator (F2PY) som valdes efter en genomgang av olika verktyg.
Under utvecklingen av finita element programmet ses att F2PY skapar
ett grénssnitt i ett steg, integreringen av spraken gors utan att Fortrans
berikningsegenskaper forsdmras, alla Fortran funktioner stéds av F2PY och
en modul som &r skapad av F2PY ér lika enkel att anvinda som en in-
byggd funktion i Python. Nackdelen med F2PY ér att det kridvs fem an-
dra program installerade. Som helhet fungerar F2PY bra for att skapa en
link mellan Python och Fortran. Python uppfyller ocksa alla krav som
stills pa ett scriptsprak, enkel struktur, snabb utveckling av applikation-
er och mojligheten att skapa grafiska anvindargrianssnitt med eller utan
en grafisk gréanssnitts byggare. Fortran och Python &r plattformsoberoende
vilket F2PY ocksa ar. Detta resulterar i att det rekommenderas att byta
ut Borland Delphi mot Python i kursen Programutveckling for Tekniska
System.

Contents

Preface
Abstract
Sammanfattning

1 Introduction
1.1 Background
1.2 Objective e
1.3 Limitations
1.4 Outline e

2 Mixed Language Programming
2.1 Static linking
2.2 Dynamic linking o L
2.3 Tools for generating interfaces to script languages

3 Scripting languages and computational code
3.1 Python
3.1.1 User Interfaces for Python
3.1.2 Computational environment
3.2 Fortran
3.3 Tools used in thiswork
3.4 Fortran to Python Interface Generator (F2PY)
3.4.1 Creating a Python module
3.4.2 Using F2PY generated modules in Python

4 Application cases
4.1 2D Truss. o
4.1.1 Quick review of former course layout
4.1.2 Interfacing Python with Fortran
4.1.3 User interface implementation
4.1.4 Final outline for 2D Truss
4.1.5 Python help and hints

vil

N N ==

4.1.6 Python to executable file 40

4.2 Graphical user interface for F2PY 40
5 Summary and Conclusions 43
5.1 Summary 43
5.2 Conclusions e 43
5.3 Future Worko 44
Bibliography 45
Appendices
A Python Modules A-1
A1 Start ... A-1
A2 Mainframe A-1
A3 Base A-8
A4 Modeldraw A-14
A5 Elementproperties L. A-21
A.6 Elementpropertiesui A-24
B Fortran Modules B-1
B.1 Calcprog B-1

viii

Chapter 1

Introduction

1.1 Background

The course Software Development for Technical Systems at the division of
Structural Mechanics [21] teaches students techniques for implementing fi-
nite element applications with both user interface and computational code.
Currently Borland Delphi environment is used for the user interface and
Fortran is used for the computational part. This master’s thesis is an ef-
fort to study methods of integrating Fortran with script languages and user
interface to create more flexible and easier to use software. The user in-
terface has become more important and a natural part of computational
programs because users often demand better graphical tools for creating
complex models and viewing results. An additional advantage with better
graphical interfaces is that the application reaches a larger user base. An
interesting candidate for user interface and computational environment is
Python. Python is a script language, which is easy to use and learn for non-
programmers and yet powerful enough to use as a scripting environment for
computational codes. Another advantage is the cost, Delphi is an expensive
commercial application, Python is free and open source. Most students in
this course are not experienced programmers, so the language must be easy
to learn and understand, so that they can concentrate on the task instead
of learning the intricate details of a complicated language.

1.2 Objective

This master thesis will investigate how forthcoming courses can be imple-
mented with focus on Fortran integration in a script environment such as
Python. The thesis will also investigate how the Python script-language can
be used to develop user interfaces, in the same way as the Borland Delphi
development environment has been used in former courses. A test applica-
tion similar to the assignment in the existing course Software Development

for Technical Systems will be developed. The objective with the application
is to evaluate if it is possible to use it in the new version of the course, it will
also be considered if the application is user-friendly enough and platform
independent.

1.3 Limitations

In this work the application case is developed in Windows and the graphical
parts are tested both in Windows and Linux, but as no usable free Fortran
95 compiler is available for Linux at the time the F2PY created Python
module is implemented on Windows. The test application does not have
full support for all functions for a bar element. Fortran is not examined at
the same levels as Python and F2PY since only minor changes are made in
Fortran from the existing course.

1.4 Outline

Chapter 2: Mixed Language Programming Introduction how to mix
different programming languages, both in Linux and Windows. Different
tools that creates interfaces are introduced.

Chapter 3: Scripting languages and computational code Distin-
guishing features for scripting languages are described. The programming
languages and interface tools that will be used are described with focus on
interface creation and graphical user interfaces.

Chapter 4: Application Cases In this chapter two application cases are
studied. The first is an application similar to the assignment in Software
Development for Technical Systems, which investigates how to implement
a finite element application. The second application test if it is possible to
use Python as a rapid application develop environment as well as a tool for
integrating different computational software components.

Chapter 2

Mixed Language
Programming

Integrating computational code with user interface code often has special re-
quirements. These two parts often have different demands on the program-
ming language. The graphical part must support rapid development and
integrate well with other languages. The language implementing the com-
putational part must be fast in execution and able to handle large amounts
of data e.g. matrices. To combine these aspects it is often needed to mix
languages to take the advantage of the features different languages can offer.

According to Arnholm [8] a number of difficulties has to be considered
before using a mixed language support. Hence it is important not to add new
difficulties that are larger than the advantages. The main things to consider
are that no new constraints should be added and that the complexity should
not increase compared to using one language. If new constraints are added
the lifetime of a project reduces and more complexity makes development
inefficient and increases maintenance costs.

The described difficulties above can be translated to the following re-
quirements [8]:

e Source code must be possible to use on any platform.

e The procedure to make a link between languages must be easy to
perform.

e Mixed languages shall not loose execution speed although a linking is
made.

e All major features must be supported in the linking for the linked
language so that the original code does not have to be changed. If the
original code has to be changed then old tested and verified code will
not be usable in a convenient way.

e It shall not be much harder to call the linked code than calling code
within a language.

Interfacing languages can be difficult since calling conventions often dif-
fers between compilers. There are two types of linking, static linking and
dynamic linking. To understand what happens when linking different pro-
gramming languages and to see the difficulties involved a short description
of static and dynamic linking will follow. Differences between linking in
Windows and Linux/Unix are also mentioned.

2.1 Static linking

Static linking [22, 9] is the simplest form of linking and the most easy to
perform. A static link is made when a number of functions and modules
are made into one single executable file when the module is compiled. The
execution is usually faster than for dynamic linking but is more inconvenient
when many programs uses the same modules, for example the Windows
APIL. If all programs should include all modules they use into one executable
file, the program would become huge and it would be difficult to update a
function that many program uses. Linux and Microsoft Windows use the
same method when linking statically.

2.2 Dynamic linking

In dynamic linking [22, 9] the modules are not included at compile time,
instead at execution time. In Windows dynamic linking is accomplished
using dynamic link libraries (DLL). In Linux/Unix it is implemented using
Shared Objects (SO). The DLL and SO objects are files with pre-compiled
code that can be used by any application. The dynamic objects are only
loaded when they are needed and are never loaded in multiple instances,
though multiple applications can use the same copy of the dynamic objects.

Dynamic linking have two load types, run-time and load-time. When
loading Windows and Linux API functions load-time is used. Load-time
is when a module is loaded into the memory when the program is loaded,
just before execution. When run-time loading is used, the DLL is loaded
dynamically during execution. The dynamic files have two types of linking,
implicit and explicit linking. In implicit linking the operating system handles
the linking, while in explicit linking the application handles the linking and
the operating system is not involved. Files that uses explicit linking can
be of any sort (*.*) but files that use implicit linking must have the file
extension DLL for Windows or SO for Linux. The most common is implicit
load-time linking.

The dynamic linking process is divided into two parts. First, the module
that will be linked has to be located. Second, the address of the function in
the module must be found. When the two parts are successful the external
module can be linked just as if was linked static. Windows and Linux/U-
nix have differences in these two steps. In Windows the DLL file can have
a complementary library file (LIB file) that contains the functions in the
DLL file and the location of the corresponding functions. An application
examines the headers to find the desired module it will link dynamic. In
Linux/Unix it is the SO file it self that contains the corresponding infor-
mation. Two more difference that exists between Windows and Linux is
that Linux can link variables and uses position independent code but Win-
dows does not. Position independent code means that the loaded dynamic
library can change place in the memory during runtime. This leads to a
more complex architecture but is more flexible [22, 9].

The advantages of using dynamic loading are that modules can be up-
dated easily by just replacing a file. All processes using this module are
updated automatically. The size in bytes is reduced when several applica-
tions can use the same modules. The memory usage is also reduced because
multiple applications can use the same copy of the dynamic objects. Dy-
namic linking also have some disadvantages, when linking does not work it
can be hard to find the errors, because the architecture of a program with
dynamic linking is complex [22].

2.3 Tools for generating interfaces to script lan-
guages

Creating interfaces for script languages is often a difficult task to do com-
pletely by hand. To make it easier special tools can be used to create inter-
faces between different languages. The most common tools are:

e Simplified Wrapper and Interface Generator (SWIG)

e Fortran to Python Interface Generator (F2PY)

e Common Object Request Broker Architecture (CORBA)
e Component Object Model (COM/DCOM)

Previously, in the course Software Development for Technical Systems a spe-
cial tool, Fortran interface wizard (FIW), was used to create the interfaces
between Fortran and Borland Delphi. This tool is also reviewed.

Fortran Interface Wizard (FIW)

FIW [3] is a tool to make it easier to bind Fortran DLL files to Delphi. In
FIW, interfaced subroutines are declared with variables. From this FIW cre-

ates a Delphi import unit and skeleton code in Fortran, which is needed for
creating a Fortran DLL. The created Delphi import unit is ready to use but
as the name implies the skeleton file(s) needs additional code. The skeleton
code contains declaration of variables that are used within the linking to
Delphi and implementation to accomplish the linking. The skeleton only
needs to be complemented with the code that perform what the subrou-
tine shall do and declaration of local variables. The subroutine(s) are then
compiled to a Fortran DLL file that the Delphi import unit links to.

The DLL file is dynamically linked when the Delphi project is loaded
(explicit load-time is used). This interface also requires a compiler that can
build DLL files of Fortran source files. FIW is a Windows-only-solution since
Delphi is only available for this platform.

Simplified Wrapper and Interface Generator (SWIG)

SWIG [20] is a multitool that can generate interfaces to script languages
such as Python from C/C++. SWIG can use a header file in C/C++ to
create wrapper code that interfaces the script language with the underlying
C/C++ code. To use SWIG, a special interface file has to be written by
hand, which is used to define what goes in the wrapper. SWIG is distributed
for Windows, Linux and UNIX. SWIG main users are C/C++ developers
wanting to provide an interface to a script language. SWIG uses runtime
loading. If SWIG is to be used to link Python and Fortran an additional
interface generator is necessary for interfacing C/C++ with Fortran.

Fortran to Python Interface Generator (F2PY)

F2PY [13] is an extension module for Python that generates a direct in-
terface between Fortran and Python. This means that a Fortran module
processed by F2PY can create a ready-to-use Python module in a single
step. A Python module is a dynamically loadable file that contains the bi-
nary compiled Fortran code. All Python applications can use the module
that F2PY creates. Disadvantage with F2PY is that it needs five prereg-
uisites. F2PY uses run-time loading and explicit linking when loading the
Python module. Inside the module implicit load-time is used e.g. when the
Fortran DLLs are loaded. The code that binds Python with the Fortran
code is generated by a signature file created by F2PY. F2PY is platform
independent and can be run under Window, Linux and Unix.

Common Object Request Broker Architecture (CORBA)

CORBA [1, 2, 12] is a middlelayer process in a server/client architecture,
which makes objects and applications interact and interoperate. Applica-
tions and objects communicate through an Object Request Broker (ORB)
that has to be present to run a CORBA process. ORB:s exist for almost all

platforms that makes CORBA platform independent. Interfaces in CORBA
are defined using an interface definition language (IDL). The purpose of the
IDL is to define the object interfaces in a way that is independent of any pro-
gramming language, which makes it possible for applications implemented
in many different languages to interact. Client and server source codes are
generated with an IDL compiler that is specific for each programming lan-
guage. The source code is compiled to an executeable that links to other
CORBA applications. CORBA can be used both locally and over networks.
If CORBA is used locally, the server and client parts can be made into one
binary file, which is very similar to SWIG. For more details see Henning and
Vinoski [1].

The disadvantages with CORBA is that there is no straight connection to
Fortran and that an IDL file always has to be created. CORBA is made for
object oriented programming and is flexible and dynamic but this also make
it complex. F2PY and SWIG compile code for the linked language, which
means that only a specified language can use the created object. CORBA
makes the object accessible for all languages.

Component Object Model (COM/DCOM)

COM/DCOM [2] is a multitool very similar to CORBA and is built in to
Windows. A difference is that DCOM/COM uses a modified IDL. DCOM
is used for remote connection and COM for local linking. DCOM/COM is
written to work in most operating systems but in practice it almost only
works in Windows.

Chapter 3

Scripting languages and
computational code

Scripting languages are often used as a tool for gluing components together,
which often results in reduced development time. System languages as
C/C++ are often compared to scripting languages. System languages are
designed to build data structures and algorithms with focus on fast execu-
tion in well defined and slowly changing applications, while script languages
are designed to glue, handle strings, being easy and fast in development.
Script- and system languages complement each other and do not replace
each other. Using a script language on top of a low level language makes it
more flexible. Changes in code are much faster when script languages has
less developing time and is easier to understand. Script languages often have
good possibilities to create graphical user interfaces, in a way that is easy
both for the developer and the user of the finished product, Ousterhout [6].

Scripting language has given up execution speed and strength for getting
better reuse of code and higher programmer productivity. Each statement
in the source code of a script language contains more instructions for the
cpu than a system language. But a scripting language is about 10-20 times
slower in execution than a system language, Ousterhout [6]. Execution time
for code is getting less important when computers become cheaper and faster
in comparison to the cost of a programmer. The main problem for most ap-
plications today is not the computing time. Generally, the tasks a script
language executes are not the tasks that need to be fast, e.g. it can be
waiting for user inputs. Scripting languages are based on built in func-
tions implemented and compiled in a system language, which makes built-in
functions almost as fast as system language. When a script language is used
the user shall try to use as many of the built-in modules and not to create
custom modules that duplicates the built-in modules.

A distinguishing feature for scripting languages is that they are typeless
to simplify connections between components. System languages are designed

for implementing complex components and have a strong degree of typing. In
a typeless language variables do not have to be declared before they are used.
They can be created on the fly and can change type during execution, and
are sometimes called dynamic variables. This makes it possible to execute
code in script languages at once. Compilation and execution is done in one
step. In system languages the entire code first has to be compiled and then
linked before execution.

When dynamic variables are used, the debugging procedure between
system languages and scripting language differ. System languages check for
errors during compilation, and that is impossible for scripting languages as
they are typeless. Dynamic variables cannot be checked for errors at compi-
lation because the variables type are not set at this stage. This problem is
solved by debugging applications during execution. This result in an error
check that is performed as late as possible, which often makes scripting lan-
guages more flexible. Scripting languages seem as they can allow errors to be
undetected but is as safe as the debugging for system languages, Ousterhout
6].

Scripting languages had a breakthrough when the Internet and compo-
nent frameworks started to expand, graphical user interfaces became popular
and script languages started to be good to glue other components. Most pro-
grams today have a scripting languages built-in, enabling the user to change
the program behavior with custom scripts. Updating programs and using
plug-ins are also made easier.

3.1 Python

Python is a programming language created by Guido van Rossum in 1990
and named after the Monty Python’s Flying Circus. Python is best described
in programming terms as a modern object-oriented script language. Python
has a good mix of engineering language and scripting language, full support
for object-oriented programming and a powerful code structure. Python
source code is platform independent and can be run on operating systems
as Windows, Linux and Unix [4].

As described earlier, script languages can be used to glue components
together, which is a distinguishing feature for Python too. This results in
better code reuse and fewer rewrites. Python has a very close relation to
C/C++ and Java, which makes this languages very easy to use with these
languages. Python also has good integration capabilities to most other lan-
guages as well e.g. Fortran. Python’s easy code structure makes it straight-
forward to translate Python to Java and C/C++. This illustrates the flex-
ibility of Python as it can be used to glue components together as well as
being embedded in other languages. To enhance speed most built-in modules
are made in C/C++. Python can also be extended with modules written

in C, C++ or in Python. The modules can define new functions, classes,
variables and objects.

Python has a large library including functions for Internet access, op-
erating system (OS) integration and user interface. The code structure in
Python is simple and that makes it easy to write and understand. Python
can also be used as a command line interpreter or in an integrated develop-
ment environment (IDE) to execute code at once. When the code is executed
in Python, the text in the Python file (PY) is parsed and converted to byte-
code stored in a PYC-file, which is executed by Python’s virtual machine.
This makes the second execution of a PY file faster since the PYC file can
be executed immediately since no parsing of the Python file is needed, as
illustrated in figure 3.1.

D—>‘ parser }—>‘ Byte code HMachine code‘
textfile.py m Byte code HMachine code‘
textfile.pyc

Figure 3.1: Difference between PY and PYC files

To facilitate the development of Python code an IDE can be used, an
IDE often has parts that help the developer for writing, editing, testing,
debugging and executing code. Komodo 3.1 from Activestate [7] is a pro-
fessional development environment for dynamic languages, which supports
the programmer with autocompletion, highlighting built-in commands and
debugging code in the development, see figure 3.2. Komodo also has an
interactive shell where single lines of code can be executed.

3.1.1 User Interfaces for Python

The user interface is the graphical part of the application that communicates
with the user. Often this is used to define input data and view results.
Python has a number of different graphical user interface (GUI) toolkits,
such as Tkinter and wxPython [23]. More toolkits can be found on Python’s
GUI section [15]. Tkinter is built in to Python that makes it de facto
standard GUI toolkit for Python. The same Tkinter source code can be
used on all platforms supporting Python. wxPython is another good toolkit
that could have been the main one if Tkinter was not first. wxPython is
as simple and easy to use as Tkinter but contains more graphical objects.
wxPython’s two disadvantages are that it is not built-in to Python and that
it can be hard to run on all platforms even though it said to be platform
independent [16].

The graphical objects in a GUI toolkit are often called Widgets. The
widgets that make Tkinter (Python) better than other toolkits are the text-

10

;‘SMalnFlﬂl“E.py' (W:\2DFackverk) - ActiveState Komodo i 5!
Ble Edt Code Uiew Debug Project Teobox Iools Window Help |

BERE A oS08 -0 Y E-REBEEEE = - EEEEET
‘ Projects ‘ Code | [| StertPage | MainFrame.py * | x
& W E- e B p E
| 239 # options to set which to draw Highlighted code| The code is
ame 2]
L= 210 det aravGea TSEIT. drav (1, dn=z)
Ha) 20Fackverk 241 def drawDisp(self):self.draw(i,dm=3) dEbuggEd and
; ‘! start 242 def drauwForce (self) iaelf,draw (1, de=d) run lfthlS button
HIfE dlementprop.i = :
FIfg MairFrame.ui S Hnen amesulibide e is pressed
13 MainFrame.py 245] def openResultFile(self): p
<1 MainFrame_uipy 245 global projekt
HIfE rodeforces.ui 247 projekt=Hodel ()
FIPE nodeinfo.ui | zas self
G prescribednodes i 249 self afpcverk - Resultatfil')
Bl Probleminformation.ui 250 self draw
B ShowResul.u 251 Proj frmshovkesult elr. lbealc)
13 base.py z52 self lhcalc =1y
B et 253 self lpstatus wffxt='Endast resultacsil')
B i 2854 otz ITE=CRFIIEDTAI0F. aekopent ilenane (title='Oppna en resultatfil', filetypes=[('resul
B nodeusy 255 Pprojekt.setoutfilename (outfile) J
3 256 self. frrshovResult ()
startpyw
257 # END USER CODE class
258 b -
| | »
Breakpaints | Command Cutput | SCC Output | S8 Pykhon Shell 2
B X
Python 2.3.2 (#49, Nov 13 2003, 10:32:54) [MSC v.1200 32 bit (Intel)] on win3z A
Type "copyright”, "credits” or "license" for more information.
[P a=1
VB o=t
P ath
z Interactive shell
>
exceptions, SyntaxErrar: invalid syntas (at column 143 [® CustomainFrame [§0 | cPizsz [Lni2dacal 14 Python 4

Figure 3.2: Komodo IDE with explanations

and the canvas widgets [4]. Using these widgets text, lines or pictures can
be added and in an easy way deleted by setting tags (a group of objects) to
different objects. Python also support many other functions for graphical
interfaces. Most types of applications can be developed.

GUI builders

A large amount of source code is often needed to implement a user inter-
face. To make this task easier a program can be used, which automatically
generates source code for the graphical parts of a program e.g a button.
This sort of program is called a GUI-builder. Often objects/widgets can be
added to a window using drag and drop, see figure 3.3. The GUI builder
can also change the attributes for the created widgets eliminating editing in
the source code. The code for the graphical parts of a program that needs
to be written manually is the event code. The event code can be code that
describes what happens if a button is pressed or code for loading values into
entries. Komodo 3.1 that is described earlier also includes a GUI builder, as
shown in figure 3.3.

One disadvantage with the Komodo GUI-builder environment is that
Python is not the best supported language. Some functions does not work
at all, the documentation is also lacking in many areas. Komodo GUI builder
generates two files. One read only file, which contains the graphical com-
mands for the widgets and one, which can be edited that contains the event
code and other settings that are added manually. To understand the gener-

11

ol

Eile Edit Commands Help
E|Tsxl.Bullun : v Bl M‘_IJJ@|X (3 1

Palette ID\alng | Menu |
B Tk
D frame:
[Iabelfrare N =
M convas 2]
¥ checkbutton ey ([‘ #% Tk button _button_1 Properties x|
Pzl ety [o] [Ctior 1 =]
A label
fistbow ™ Checkbutton ¥ Basic
+}+ panedwindow -background SystemButtonFace
1+ radiohuiton ‘ ‘ ‘ -bitmap -
scale -cammand
E serollbar = -cursor =
[spinbox font M5 Sans Seif - =
i temt -foreground - SystemButtonT ext
_: il Teriion “takefocus & Yes/True ' NodFalse
ComboBox = ’Bullun—
Couniter
i -testariabl
i HigtamT ext catealiane
[53 MoteBook = b Advanced
"i‘ Panedwidget » Geometry
[ScralledT ext
2 TimeCounter oK | Cancel | Apply l

Figure 3.3: Komodo GUI builder.

ated code and to add own code, the user must have knowledge about object
oriented programming including the self variable and inheriting as the two
generated files are built up with classes. The preferences that can be change
in the GUI builder will also easily confuse. All preferences that can be edited
does not make any difference or does not work. Despite some weaknesses
Komodo is an good GUI builder and reduces the time to implement a graph-
ical user interface. Komodo is available for Linux, Microsoft Windows and
Solaris [7].

3.1.2 Computational environment

Python has no built-in support for matrices and advanced mathematical
computations. To handle this sort of functions in Python, additional mod-
ules have to be used. There are two main modules available, Numarray and
Numeric [11]. Numeric is the predecessor to Numarray and they are very
similar except that Numarray is faster for larger systems. They support
both matrices and advanced computation, such as solving linear equation
systems. Numeric and numarray creates a MATLAB [10] like environment
in Python with similar syntax and functionality. The preferred module is
Numarray, but Numeric is still frequently used. None of the modules are
included in the Python distribution and they have to be installed separately.

12

3.2 Fortran

Fortran [8, 3] was developed in the 1950, since then new standards has been
developed and the latest is Fortran 95, Fortran 2003 is under development.
All new standards are backward compatible with the three latest standards.
Since Fortran is standardized it is a platform independent language, so a
program written in Fortran can be compiled on any platform having a For-
tran compiler. Fortran is mostly used by engineers and researchers, as it is a
fast system language that is often used in software requiring fast numerical
calculations. A large amount of well established numerical code is written in
Fortran. The main disadvantage with Fortran is that it can be complex and
does not support object orientated programming. Fortran is about 15-20
times faster than Python. This is due to the fact that Fortran compiles the
entire code to machine code executing directly on the target processor.

3.3 Tools used in this work

Python was chosen as the script language in this work. The main reasons for
this are that it is an easy-to-learn language, integrates well with Fortran and
supports GUI development. The graphical user interfaces are implemented
with the Tkinter toolkit as it is built-in to Python. As interface generation
tool F2PY was chosen after evaluating the different interface generation
tools available. F2PY creates an interface to Fortran in a simple single
step. The SWIG interface generator is mostly used to generate interfaces
for C/C++. Generating Fortran interfaces would require extra C layer,
which makes it less useful. Almost a new programming language has to be
learned if CORBA or DCOM/COM is used. Numeric is used for matrices
that are passed between Fortran and Python.

3.4 Fortran to Python Interface Generator (F2PY)

F2PY [13] is an extension module to Python that make it possible to link
Fortran source code to Python. F2PY creates Python C/API modules from
signature files. The signature files are made by hand or generated automat-
ically with F2PY from Fortran source code. The signature files contains
information about functions and variables in the Fortran source code. From
the signature files the bindings between Python and Fortran functions can be
built. F2PY is simple to use because binary Python modules can be built in
a single step from Fortran source. The interface is generated without loosing
any advantages in Fortran as the Python modules are binary.
The main features for F2PY are:

e Fortran 77/90/95 functions, F90/95 modules and C function are sup-
ported.

13

Supported in F2PY | Passed as reference | Output
Scalar numbers yes no yes
Numeric arrays yes yes™ yes
Numarray arrays yes no no
Strings yes no yes
Dictionaries no no no
Lists yes** no no
Tuples yes™* no no

Table 3.1: Overview of supported variables in F2PY. * The variables are
only passed as reference if the arrays are set to column major storage and
declared as an array in Fortran. ** Lists and Tuples are converted to nu-
meric variables in F2PY and are not recommended to use with F2PY.

e Functions and data in Python can be accessed from modules created
in F2PY with a callback function.

e Arguments in linked functions can be optional, required or hidden and
dependencies between arguments are solved automatically.

o F2PY detects automatically if an array that is sent to a F2PY created
module is of column major storage or row major storage.

3.4.1 Creating a Python module

To create a Python module some issues have to be considered. Even though
F2PY detects what sort of storage an array has, this is the main problem
when interfacing Fortran and Python. The problem is that matrices in For-
tran and Python are stored differently in memory. Python uses row major
storage (C contiguous) and Fortran use column major storage (F contigu-
ous). The input to F2PY is solved automatically but returned arrays from
Fortran are always column major storage. This introduces some complica-
tions in Python, as described later. An array of Numeric type stored in
column major storage is passed by reference between Python and Fortran.
If the variable is not stored in the correct format and is of the right variable
type, the variable will be copied before function call. Passing scalars vari-
ables as references requires the scalars to be declared as an array with length
one, the default is to pass scalars by value. Python variables also have to be
declared with the same type as the corresponding variable in Fortran if they
should be passed by reference. For example a double variable in Fortran
needs to be linked with a Python variable declared as a double. Numarray
arrays cannot be passed by reference to F2PY created modules. An overview
of variables supported and how they are passed is shown in table 3.1.
Changing a Python array to column major storage can be done by trans-
posing or using the as_column_major_storage(<array>) function, which

14

is built-in to all F2PY created modules. The latter function converts the
matrix to column major storage without flipping the rows and columns as
transpose does. With both these functions some important properties of the
matrices are lost, therefore the returned matrices must be treated carefully
in Python. E.g rows or columns that are not next to each other in a matrix
cannot be change at the same time, partial indices can’t be used. Both
Numeric and Numarray has a function copy, which creates a exact copy of
a F-contiguous array but it is C-contiguous.

Special F2PY attributes controlling the behavior of variables can be set
in the signature file or directly in the Fortran source code. Adding these
attributes does not have any disadvantages for the Fortran code. The most
common attributes are:

e In, which is the default setting if no other attributes are set to a
variable. This means that a variable is a required input in a subroutine
or function.

e Out, which is set to a variable if it is to be returned to Python. If a
variable is both an input and output variable in, out is used.

e Copy, if a Numeric variable that is Fortran contiguous is used it is
linked as a reference. If this Numeric variable does not want to be
passed as a reference, copy can be used.

e C, defines the array variable as row major storage. It is not recom-
mended to use since a Numeric C-contiguous array will be passed as
reference, which results that position [2,2] of the matrix in Python
does not correspond to position [2,2] in Fortran. This is confusing and
makes the variable less usable.

Attributes are added after the normal Fortran declaration of the variable
by using the intent F2PY keyword, as shown in the following code.

lvariable declaration
real (kind=8) :: eprop(6,%)
ladding attribute

I f2py intent(in,out) eprop

F2PY keywords are declared in Fortran as comments, so that they do
not interfere with the compiler. All variables that are given an attribute are
declared in the subroutine’s header. More detailed documentation can be
found on F2PY’s homepage [13].

15

There are as well some minor Fortran features not supported functions
in F2PY. F2PY has problems compiling files with the extension .f95 but files
with the extension .f, .f77 or f90 are supported. The accuracy of a variable
cannot be set by a parameter, it has to be set with a value, e.g. kind=8.

Before starting to use F2PY some prerequisites have to be installed.
They are listed below.

e Python
e Numpy (Numeric), Matrix handling

e Numarray (optional), Matrix handling

SciPy, Compiler handling

e Fortran compiler

C compiler

The C and Fortran compilers should preferably be from the same vendor.
This is specially important for Windows since the object file formats differ
between compilers. In Linux any Fortran and C compilers can be used in any
combination. F2PY supports a number of major Fortran and C compilers as
listed in F2PY’s documentation [13]. When all the prerequisites are installed
and configured properly F2PY is easy to use.

To compile the Fortran files to Python modules, F2PY is called with the
command F2PY in the command prompt in Windows or Linux. To build a
Python module in a single step the following command is used.

f2py -c¢ —m <Name Python module> <Fortran files>

Additional options can be set to F2PY in the same command. The
reader is referred to F2PY’s documentation [13] for more information. The
example below illustrates a session of using F2PY from the command line.

W:\f2pyGUI>f2py -c -m testmodule hello.f90

numpy_info:

FOUND:
define_macros = [(’NUMERIC_VERSION’, *"\\"23.1\\""’)]
include_dirs = [’C:\\Python23\\include’]

running build running config fc running build_src building
extension "testmodule" sources

16

Removing build directory
c:\docume”1\bmxjmr\locals~1\temp\tmpsb2max

W:\f2pyGUI>

The modules are also automatically documented with KTEX in F2PY.
To make it easier to use F2PY a GUI is developed in Python for F2PY. The
application is described in section 4.2.
3.4.2 Using F2PY generated modules in Python
Using F2PY generated modules in Python is done in the same way as normal
Python modules. To illustrate how to use F2PY two examples are given.
Example 1

Example 1 shows very basic commands for F2PY. A Fortran module test is
located in a file file.f90 and this file is compiled in F2PY and the Python
module module.pyd in Windows or module.so in Linux is created. The
Fortran code is presented first and then commands in a Python interpreter
with results. The # or ! signs is a comment.

Fortran code

I File module. f90

subroutine test (a)
integer :: a

printx, "Hello_Python”

printx,"a=_" a
end subroutine test

I End file module. 90

The Fortran code is compiled with F2PY by giving the following com-
mand in Windows command prompt.

f2py -c¢ -m module file.f90

Python interpreter

To import the F2PY created module module.pyd the command import is
used.

17

>>> import module

The help documentation is printed on the screen with the following com-
mand.

>>> module. test . __doc__
test — Function signature:
test(a)

Required arguments:
a : input int

The instructions in the documentation shows how to use the module, the
module requires one input argument. The module is executed underneath.

>>> module. test (5)

Hello Python
a=>5

Example 2

This example illustrates how Numeric arrays are used with F2PY created
modules. The example shows how a Numeric array is handled when inter-
faced as a reference and as a copy. It also describes how a return-variable is
given an attribute.

Fortran code

I'File test2.f90
subroutine test (a,b,c)
real (kind=8) :: a(2,%), b, c(2,%)

I'f2py intent(out) b
If2py intent(in,out) a,c

a(1,2)=a(1,2)+10
b=a(1,2)
c(1,2)=c(1,2)+10

end subroutine test

IEnd file test2.f90

18

Compiling Fortran code to Python module:

f2py -c -m test2 test2.£90

Python interpreter

Importing Numeric module for matrix support.
>>> from Numeric import
Importing F2PY generated module.
>>> import test?2

Print the documentation, which shows that there are two required arguments
(a,c) and three returned objects (a,b,c).

>>> print test2.test.__doc__

test — Function signature:
a,b,c = test(a,c)
Required arguments:

a : input rank—2 array('d’) with bounds
(2.%)

c : input rank—2 array('d’) with bounds
(2,%)

Return objects:
a : rank—2 array(’'d’) with bounds (2,x)
b : float
c : rank—2 array('d’') with bounds (2,%)

Creates variable ”a” that shall be a matrix with two rows and the number
of columns is defined by the user. The 'd’ means that it is a variable of type
double. The variable is transformed to be column major storage.

>>> a=test2.as_column_major_storage(array (((1,2)

(2.3)).,'d"))

Creates the array 'c’ that looks exactly as the variable ’a’ except that it is
row major storage array.

>>> c=array (((1,2),(2,3)),'d")

The function test is executed with the input variables a and c, the returned
variables are stored in A,B and C.

19

>>>A,B,(=test2.test(a,c)

Variable A is printed, this is the original ”a” value, which is returned and
changed.

>>> print 'A=_" A

A:
[1. 12.]
[2. 3]

Variable B is printed, this variable shows how to set an attribute to a vari-
able, which is only output.

>>> print 'B=_" B

B= 12.0

Variable C is printed, This is the original ”c¢” value that is returned and
changed.

>>> print 'C=" ,C
C:

[1. 12.]
[2. 3.]]

Variable a is printed, it is passed as a reference since it is column major
storage and that is the reason why it is change from the original value.

>>> print 'a=_' ,a
a=
[[1. 12.]
[2. 3.

Variable c is printed, it is passed as a copy since it is not column major
storage, this result in that it is not changed from the original value.

>>> print 'c=_' ,c

[

[1.
[2.

w N

20

Chapter 4

Application cases

Python, Fortran and F2PY are evaluated in combination to so see if they
fulfill the demands computational applications has both from the user and in
a developers perspective. Test application cases are implemented to evalu-
ate this combination of programming languages, where both difficulties and
possibilities for Python and F2PY are mentioned. Fortran is not covered
extensively as there is nearly no change in Fortran from the existing course
layout of Software Development for Technical Systems. The creation and
structuring of the test applications are also described.

Two applications cases are studied. The larger application case is a two
dimensional finite bar element program (2D Truss). The smaller application
is a graphical user interface for F2PY. The latter application illustrates how
Python can be used to implement an user interface to an application rapidly
and be used as a good gluing language.

All Python code is generated with help from the books by Mark Lutz
& David Ascher [4, 5] and the Python.org web site [14] if nothing else is
written.

4.1 2D Truss

2D Truss is a two dimensional finite element truss program where all ele-
ments consist of bar elements, see figure 4.1. A finite element solver imple-
mented in Fortran is used for the computations, the graphical user interface
(GUI) is implemented in Python and F2PY is used to implement the inter-
face between Fortran and Python.

In the existing course of Software Development for Technical Systems
there is an assignment that is very similar to 2D Truss. This assignment is
used as a skeleton for 2D Truss and can be found on Structural Mechanics
homepage [21]. The writer who has taken the existing course has there
developed the application in the assignment, the computational part will be
partly reused in 2D Truss. A rough layout for a finite element computational

21

Element properties

Input:

A = cross section area

E = elastic modulus

x1, yl, x2, y2 = coordinates

In and output:
u = displacment

Figure 4.1: Bar element with properties

program and the requirements for 2D Truss are described in the assignment.
In the list below the rough layout of a computational application is show.
After a introduction to 2D Truss a quick review will be given for the existing
layout of the assignment.

e Give input data in text form and/or graphically.
e Perform calculations.

e Presentation of result in text form and graphically.

2D Truss have goals for each item in the list above and the goals are
taken from the existing assignment and are described underneath. Figure
4.2 shows an example how the application will look like when it is finished.

Input data: The input data is set in the graphical part and gives the user
the possibility to create elements, define element topology, set nodal
forces and set prescribed displacement of nodes. The element prop-
erties are presented in figure 4.1, which shows a bar element for a
plane truss. Before calculation the geometry can be drawn to verify
the input.

Calculation: Calculations are made with a banded finite element solver.
The calculations also include assembling to stiffness matrix and force
vector.

Result: The results are presented both in text form and graphically. The
results in text form are presented in a result file and contains reaction
forces in nodes, displacement of nodes and normal forces in elements.
The result file can be viewed in 2D Truss. Normal forces in elements
and displacement of nodes are also presented graphically in combina-
tion with the geometry of the model.

22

Other requirements: 2D Truss also follows the requirements to be able
to save, save as, open and create new models.

W:/2DFackverk /testexample.DAT 2 I Ellﬂ

File Inputdata Calculations Cutput data

¥ Show elementor, [ShowNodenr. [Shownodalforces [Show prescribed node displacements

1\\‘._
4 o

20Truss, wersion: 1.0 Calculations perfomed: ‘Ye:z Status: Momal

Figure 4.2: Main window in 2D Truss with displacement and element number
drawn for a test model.

4.1.1 Quick review of former course layout

In former courses the goal was to create a program with the same struc-
ture and requirements as the program described above. The layout was
constructed so that Fortran was used for computational code and Borland
Delphi is used for the user interface. The interface between Fortran and Del-
phi is made with help from Fortran Interface Wizard (FIW) and a Fortran
Compiler.

First, the computational part in Fortran is developed. It consists of
functions to create element matrices, a boundary vector, assemble element
matrices to a global stiffness matrix and to create a force vector. These
vectors and matrices generate a system of linear equations, which is solved
with a finite element solver that can handle boundary conditions. The results
from the solver are displacements of elements, from which the normal force in
each element can be calculated. To be able to test and verity the calculations,

two functions are created, one to read input files and one to write a result
file.

23

The Fortran Interface Wizard is used to create an interface between
Fortran and Delphi. FIW is described in section 2.3. Three main Fortran
subroutines are interfaced: read size of the problem, read input data and
execute the solver. Delphi has to read the size of the problem before all input
data can be read because the matrices in Delphi have to be allocated before
the cells can be filled. The three main subroutines are not run in a single
step as the user shall have the ability to make changes in the input data
before a calculation is performed. The read and write routines could have
been implemented in Delphi but in order not to rewrite any code, Fortran
continued to implement these functions.

To build the graphical user interface, Borland Delphi’s GUI builder is
used. When the finished application built with the GUI builder and started,
a main window appears. This window shows the menu and graphics of a
created model. The input data and results of a model are stored in a matrix
and vector controlled by a unit Model. The input data is edited in sub
windows that are reached from the menu. If the size of a model is changed,
a function that resizes the matrix and vectors without loosing the stored
values is called and all new cells are set to zero. If the changes needs to be
saved a save command is found in the menu. The save command creates a
input file that follows the input data manual that Fortran uses when reading
input data. To perform a calculation, calculate is chosen in the menu. Then
the input data in the matrices and vectors are passed straight to the Fortran
DLL. The result from the calculations is returned both in arrays for the
graphical presentation and in a text file to show the result in numbers. A
unit called ModelDraw controls the graphical presentation in the canvas of
the main window. All sub windows have one unit each that handles event
code and build up the windows.

This assignment shows that Delphi has a simple structure that is easy
to follow. In the project, no object oriented programming was used, which
makes the application less flexible and complex if larger applications are
built. Delphi GUI builder is an advanced builder with many built-in prefer-
ences and all objects can easily be linked to an event. The application made
with Delphi looks almost the same as the application in figure 4.2.

4.1.2 Interfacing Python with Fortran

The prerequisite and the review from the former course assignment makes it
possible to start to create a more detailed outline for 2D Truss. The outline
for the computational part is made first since most of the Fortran source
code will be reused from the Fortran-Delphi project described above. The
graphical interface is not dependent on the structure of the computational
part but the GUI is dependent on the computational part.

The computational part of Fortran (FE-solver) defines the output and
input variables (arguments) for the subroutine that is called from Python.

24

To continue further it has to be decided how the input data (input to FE-
solver) for a model is stored and treated in the Python part of 2D Truss. The
FE-solver requirements are matrices, vectors and scalars. Either they are
stored in Python exactly as the FE-solver requires them or the input data is
stored in any form and the required variables are created just before calcu-
lation. The first variant that is used in the existing course is not possible to
use conveniently, as Python does not have a variable type, which can change
size in combination with saving the old values in the same cells and set ze-
ros to new cells. Because Python has good support for object orientated
programming it can handle the input data in instances of classes. From the
instances matrices, vectors and scalars are create just before computation.
A consequence with the latter method is that Python will read the input
data files. Python has a good function cpickle to save instances of a class
to file. The latter method is used in 2D Truss. The routines in Fortran for
computation and writing the result to a result file are reused. FE-solver re-
turns displacement and normal forces to Python for graphical presentation.
Input data to 2D Truss are described with three classes: model, element and
node.

Classes

The classes are implemented so an instance of the model object is created for
each opened project in 2D Truss. The model class have methods for adding
and removing instances of element and node objects (aggregates), see figure
4.3. An example of a class implementation is shown in a listing after the
three classes are described.

Classes

<>_,— Element

>——

Model

Node

Figure 4.3: Structure of classes in 2D Truss

Model An instance of the model class handles most of the properties of a
structure/model such as the names for the input data files and result files.
Lists with element and nodes are stored and the instance also contains the
number of elements, nodes, nodal forces and prescribed node values. After
calculations the results that are used in the graphical presentation are stored
in arrays. Functions to set and retrieve variables are also implemented.

25

Node An instance of the node class contains the variables, number of
degrees of freedom, x and y coordinates of the node, nodal forces and pre-
scribed node values. To control the variables, functions are implemented to
set values and get values of the variables.

When an instance of the node class is created, the number of degrees of
freedoms a node has can be defined. The default value is set to two degrees
of freedom and is not changed in this application, as other functions does
not support other than two degrees of freedom.

Element The element class implements the properties of an element, which
are area, E-modulus, and nodes. The nodes contains the x and y coordinates
so the elements define their size and position in terms of nodes.

Class that handles bar element with two
dimensions

class element:
When an instance is created
def __init__(self ,nl,n2):
self.nodes=[nl,n2] #Nodes
self .E=0. #E—moduls
self .A=0. #Area

Returns the area and the e—modulus

def getprop(self):
return [self.E, self.A]

Returns the nodes

def getnodes(self):
return self.nodes

Set properties

def setprop(self ,Emodule, Area):
self .E=Emodule
self .A=Area

Set nodes of the element

def setnodes(self ,nl, n2):
self.nodes=[nl,n2]

26

Implementing the Fortran Python module

The decision how a project handles input data makes it possible to change
the Fortran source code so it can be reused. After the Fortran source code
is modified to suit F2PY it can be run in F2PY and tested.

The Fortran solver is built with reused parts of the Fortran code from the
former course. A main module calcprog is created that includes a subrou-
tine execute, which is the subroutine that interfaces to Python. Execute
calls the other Fortran sub modules that implements the components part
of the application, illustrated in figure 4.4. As the subroutines are tested
and verified in the former assignment of Software Development for Technical
Systems this results in that only the new main module has to be tested and
verified. It is easier to manage, update and find errors when the Fortran DLL
is structured as in figure 4.4. The Submodule barelement creates element
matrices and force vectors, which are assembled to a global stiffness matrix
and force vector. Barelement also calculates the bandwidth of the global
stiffness matrix. Solve solves the linear equation system and barelement
calculates the normal forces in the elements from the displacement that are
given from the solver. As a last operation outputfile creates the result file.
Main module calcprog is shown in appendix B.1.

Main module Subroutine in Sub modules Subroutines in
main module sub modules
bar2e
bar2s
Barelement ~E assemble
bandwith
Calcprog execute Solve bandsolve

reaction forces and displacment
Outputfile —E

element forces

Figure 4.4: Structure of Fortran DLL solvepro.pyd

The interfaced variables from Python to calcprog does not need any
F2PY attributes, since the arrays in the interface are Numeric variables
and converted to column major storage so they will be passed as references.
Displacement and normal forces arrays are returned from the Fortran DLL
are created in Python before the calculation and then passed as reference,
which make them change to the result automatically. The returned arrays in
Python do not impose any difficulties as they are Fortran contiguous and can
be treated as vectors and not matrices since they are rank-1 arrays. Rank-1
arrays of column major storages do not affect the properties of the arrays.
The only code that is changed in the Fortran code before the compilation
in F2PY is the accuracy of a variable. The interface is shown below where

27

the header to FE-solver is shown and the entire module in appendix B.1.
Header of solver in Fortran

subroutine execute(nel,neq,nnl, npv,eprop,edof,f,bc,
b,eforces ,outfile ,ierr ,displace)

| ———— Declaration of exported variables.

implicit none

integer :: nel

integer :: neq

integer :: nnl

integer :: npv

real (kind=8) :: eprop(6,%)
integer :: edof(4,x)

real (kind=8) :: f(x)
real (kind=8) :: bc(x)

integer :: b(x)

real (kind=8) :: eforces(x)
character (255) :: outfile
integer :: ierr(1)

real (kind=8) :: displace(x)

To call FE-solver in Python the following procedure is used, the complete
module can be found in appendix A.3. The name of the PYD file is solvepro
and then the subroutine execute is in a module calcprog. Before the FE-
solver is called from Python the necessary variables are constructed with a
function createArrays from the input data in the instances of model, node
and element.

Python call procedure

creates the arrays which are linked.

[nel ,neq,nnl, npv,eprop,edof ,f,bc,b,ierr]=
createArrays(projekt)

sets the returned vectors to zero and get them
from the class object

projekt.setDispAndEforceToZeroAndSetSize ()
disp , eforces=projekt.getDispAndEforces()

Calls execute in the module calcprog in the
file solvepro.pyd to perform the calculations

solvepro.calcprog.execute(nel,neq,nnl, npv,eprop,
edof ,f ,bc,b,eforces ,outfile ,ierr ,disp)

28

ierr is a errorflag if the probelm is
nonpositive definit

outfile is the name of the resultfile

eforces and disp are returned arrays and the
rest are input variables

createlArrays is shown in the listing below. Transpose is used to convert
the matrices to column major storage and is done in order not to depend on
the F2PY command as_column_major_storage(<array>), which is only
available if a F2PY module is imported. When doing this, the matrices
have to be constructed transposed to the matrices that will be linked to
Fortran.

CreateArrays

def createArrays(projekt):

var=projekt.getprobleminfo ()
nel=var [0]

neq=var[1l]*2

nnl=var [2]

npv=var [3]

b=zeros(neq,
bc=zeros(neq, 'd")

Creates the arrays with zeros
ierr=array(0)
eprop=zeros ((nel ,6) d’)
edof=zeros ((nel ,4),'1")
f=zeros(neq, 'd’

I

)
R

Fill the arrays with information about the
problem after a patter from a indata manual
for the fortransolver

for i in xrange(nel):
e=projekt.getelement (i)
nl=projekt.getnode(e.getnodes()[0]—1)
n2=projekt.getnode(e.getnodes()[1]—1)

epropel=[e.getprop()[1].,e.getprop()[0], nl
getcoord () [0],nl.getcoord () [1],n2
getcoord () [0],n2.getcoord () [1]]

edofel=[nl.getdof()[0],nl.getdof()[1],h n2
getdof () [0],n2.getdof () [1]]

eprop[i]=epropel

29

edof[i]=edofel

for i

f[i*2]=n.getnodeforces ()|
f[i*2+1]=n.getnodeforces(

in xrange(var[1l]):
n=projekt.getnode (i)

0]
) [1]

b[i*2]=n.getb () [0]
b[i*2+1]=n.getb () [1]
bc[i*2]=n.getbc()[0]
bc[i*2+1]=n.getbc () [1]

End filling the arrays with

indata

Transpose the arrays to store them
columnwise Ilike fortran needs and not
rowwise like python makes by default

eprop=transpose(eprop)
edof=transpose(edof)

return nel ,neq,nnl,npv,eprop,edof,f,bc,b,ierr

Because the input data is layout in the correct structure for the Fortran
module, it can now be tested. If F2PY runs correctly it is now possible to
compile the Fortran source code to a Python module in one single step.

4.1.3 User interface implementation

The main frame in the graphic part is used as a starting point for 2D Truss
user interface and is implemented first. All windows and modules are im-
plemented with approximately the same structure as in the assignment in
the former course. The structure for 2D Truss is shown in figure 4.5. The
user interface modules are built with Komodo 3.0 GUI builder.

Modules
One module
Base Modeldraw | | for each
| window P\ Main Frame] Main window
Fortran
DLL \
Solvepro 5 Hod
Element Model Node FZSOC;ZE ¢ Nodal forces
properties information properties : ¢
displacment

Result

Sub window result

Figure 4.5: Structure of GUI for 2D Truss

30

Sub windows
indata

Windows and Modules

In the main frame the drawing area and the menu are displayed, they are
shown in figure 4.2. The menu is built with four main drop down menus:
file, input data, calculations and output data. The sub items to each main
menu can be seen in figure 4.6. All sub items of the file menu are handled
by the module base.

File Input data Calculations | | Output data
New Model information Calculate Resultfile |
Open Element properties Graphical presentation > | Element geometry
Save Node properties Open resultfile Displacments
Save as ...|| Nodal forces Normal forces
Quit Prescribde node displacment

Figure 4.6: Menu in 2D Truss

Module base and file menu Module base contains the model class,
createArrays function, execute function(perform a calculation) and the
functions in the file menu. The class model, createArrays and execute
are described earlier. The new option in the menu creates a new instance
of the model object. Save calls a module cpickle in Python, which is a
module that can save an instance of a class to a file [14]. In 2D Truss the
instance of the class model is saved and since it contains all the instances of
element and node they are saved as well. Open also uses cpickle to open
the saved instance again. Save as ... and Open open a built-in module
tkFileDialog that provides interfaces to native file dialogues, Secret Labs
internet site [19] has good documentation.

Input data menu In this menu the properties for the model can be
changed or set. All options are opened in a new window. Sub windows
that handles input data use the same flow of event when the input data
is set or changed, see figure 4.7. The figure also shows the window where
the element properties are shown and can be changed. The code for the
element properties window is presented in appendices A.5 & A.6. All input
sub windows are describe below.

e Model information This window shows number of elements, number
of nodes, number of nodal forces and number prescribed node values
in the project. Nothing is set in this window, the purpose is to verify
data.

e Element properties From this window the area, E-modulus, start
and end node can be set for each element in the structure. Number of
elements is also set here.

31

=olxi| Flow ofeventsina

~Element Propertie: input window
I1 _“] Mumber of elements l3
3 From node i2 - - -
Fill entries with
e i3— Updatel vallues
E [Pal i2e” Change values
in entries

Area [ma) ED.DDD4 |

Save .
_I Cmel Save Reject

new values new values

i

Figure 4.7: The figure to the left shows a typical input data window in 2D
Truss, The figure to the right describes how an input data window is imple-
mented for changing input data.

e Node properties From this window the properties for the nodes can
be set or changed. The entries are number of nodes, x coordinate and
y coordinate. The windows also shows which degrees of freedom that
belongs to the node and are set automatically.

e Nodal Forces This is the window for setting nodal forces for each
degree of freedom, one horizontal and one vertical degree of freedom
for each node. The default value is zero.

e Prescribed node values The same as for nodal forces but here the
displacement for each degree of freedom is set. A checkbox is ticked if
the node is prescribed or not.

Calculations menu Once a complete model has been built or opened it
can be solved by choosing Calculate in the Calculations menu.

Output data menu This is the last menu option. In this menu the result
file can be shown in a new window or a graphical presentation of the model
can be viewed in the drawing area, where deformations and normal forces
can be shown graphically in combination with the model. The drawings are
handled in a module modeldraw.

e Result file window The result file is shown in a text canvas in a new
window.

Module Modeldraw The module modeldraw handles the drawing of the
geometry and results in the drawing area, implemented using a Canvas wid-
get. The Canvas is one of the strong parts in Tkinter, see figure 4.2. With

32

only a few lines of instructions, a complex geometry can be drawn, includ-
ing lines with thickness and arrowheads, Secret Labs homepage [19] provides
good documentation. The advanced drawing functions of the Canvas wid-
get is illustrated in the code below, in appendix A.4 the complete module
modeldraw is shown.

If tensile stress in a bar element

if force[i]>0:
canvasMain.create_line(xdl,ydl,xd2,yd2, arrow='
both', tag="arrow’', fill="blue’', arrowshape
=(8,10,3))

If compressive stress in a bar element

else:
canvasMain.create_line (xdl,ydl,xd2,yd2, arrow='
both ', tag="arrow’', fill="red’, arrowshape
=(-8,-10,-5))

™ Showelementnr. [Shownode . [Show nedal farces: ™ Show presciibed node displacements

]

4 o

20T s, version; 1.0 Calculations perfomed: e Status: Nomal

Figure 4.8: Normal forces drawn in 2D Truss

In the listing above two commands for drawing lines are shown. The
option arrow is only written if arrows are wanted, £i11 means what color
the line has. Arrowshape sets the shape of the arrow, a minus makes the
arrow change direction, see figure 4.8

Before the geometry and results can be drawn a translation has to be
done of the geometry as the global coordinate system for the FE-model is
different from the canvas coordinate system. The structure also has to be
scaled to fit the window. The canvas coordinate system is defined from the
upper left corner with the x-axis going right and the y-axis going downwards
and the FE system is defined as in figure 4.1. To translate the coordinate sys-
tem two functions are implemented, coordvalues and maxminXY. MaxminXY

33

finds the size of the structure and the window to draw in so a ratio can
be calculated, which is set to use as much of the window that is possible.
Coordvalues finds a function with help from the ratio, which can translate
and scale FE coordinates to the canvas coordinates.

The structure, displacement and normal forces are drawn in the canvas
with three different functions. If displacement or normal forces are drawn
the geometry function is called first to draw the geometry. When a drawing
option is called in the menu, a draw function in the mainframe module is
first called. This draw function then calls the functions in modeldraw.

Tkinter’s canvas has a useful option that allows each object that is drawn
to get a tag. In 2D Truss the drawn objects for element numbers, node num-
bers, nodal forces and prescribed node values have a tag each so that they
can easily be deleted or drawn when the checkbuttons in the mainframe are
ticked or unticked eliminating the need to redraw the whole figure. This
option is available for all drawings in 2D Truss. The following code is ex-
tracted from the DrawGeometry function in the modeldraw module, which
calls functions to draw if the checkbuttons are ticked.

Draws elementnumbers if the checkbutton is
filled

if int(root.getvar('showEINr'))==L:printElementNr (
canvasMain , projekt)

Draws nodenumbers if the checkbutton is filled

if int(root.getvar('showNodeNr'))==1:printNodeNr
canvasMain)

Draws nodal forces if the checkbutton is filled

if int(root.getvar('showNodeForce'))==1:
printNodeForce (canvasMain , projekt)

Draws prescribde dof if the checkbutton is
filled

if int(root.getvar('showPreNodes'))==1:printPreNode
(canvasMain, projekt)

If the window that contains the drawing area is resized the drawing
area has to be resized and the objects in the drawing area redrawn. In the
following listing the method for doing this is shown. This example is taken
from initialization of the main window where the drawing area is created.
Canmain is the name of the instance of the Canvas widget (the drawing
area) and draw is the drawing function in the program. This event happens

34

if something is changed to Canmain, not only if the drawing area is resized.

def __init__(self root):

self.canmain.bind('<Configure>', self.draw)

Another good characteristic of the canvas is that different objects can
be moved forward and backwards on the screen.

4.1.4 Final outline for 2D Truss

The final structure of the application 2D Truss is presented in figure 4.9.
All events in 2D Truss starts from the main frame and are initiated by the
user. Figure 4.9 also illustrates the flow of events. The numbers represents
the main tasks of the application.

@

Main Frame

Open, Save, | base
save as..., new o y
Iy
Sub windows > - Element
for input Model <@—»>| Nodes
LA
Perform >
calculations base -
Canvas for
graphical <

presentation

Sub window
to show result
in text form

‘ Result file -

Fortran DLL

Figure 4.9: How 2D Truss works

1. When a model/project is saved, opened, saved as.. or a new is created,
a function in module base is called, which retrieves or set the input
data in the classes. Everything is set to zero when a new project is

created.

2. When a input data window is opened input data is collected from
the model instance, which in the other hand collect input data about
elements and nodes from from the instances in the node and element

35

lists. If input data is changed by the user input data is sent in the
other direction.

3. Calculations are performed by the Fortran computational module were
a result file is created and displacements and normal forces of the struc-
ture are sent to the model instance. The input data is collected and
transformed to arrays in base before the computations are performed.

4. When results are chosen to be shown graphically the canvas retrieves
all input data for the structure from the model, element and node
instances.

5. The result file is included in a text canvas, which is opened in a sub
window when that menu option i chosen.

2D Truss has been tested and verified with a application example, see
figures 4.10 and 4.11.

4.1.5 Python help and hints

Building the graphical user interface brings up a number of difficulties that
are worth mentioning in this section.

Some difficulties are introduce when linking frames/windows that are
created with Komodo. All frames or windows in an application can first
be built up and run separately with Komodo. At some stage in a project
one window is linked to another window through a button or a menu. To
implement this, a function that is run when the window is created has to
be added to the sub window. This function also make it possible to setup
variables and call functions when the window creates. After this is added the
window cannot be run separately, if not a complementary if statement is
added, which disables the initialize functions described above. In the listing
below it is show how a new window is opened and then the extra functions
that are added to the sub window’s source code. In appendices A.2 & A.5
the entire files are shown.

Open a new window to set element properties,
code from the main window

def frmElementProp(self):
import elementprop
window=Toplevel ()
elementprop.CustomElementprop (window, projekt)
window . grab_set ()
window . focus_set ()
window . wait_window ()

1.32 "o

'
@

Application example

e
| — _@_F

u 1] u
LE..U? 5= B‘-‘n ~JE - 1_13-'15 7w

idz H@\h él E‘ :

Lt —Jo- L5 D~

NN

g 4Uyp

L9 —(2-

'

QN

U1y (Ji=

Uy

2.95m

2.85m

|—p _2_.95r|1 _+ - 2.95m

Prerequisite in application example
E=21%*105MPa

Element 1,2,3,4: A=21.2%10-4m2
Element 5: A=106%*10-4m2
Element 6,7,8,9: A=212%10-4m2
Element 10,11,12,13: A=212*%10-4m2
Element 14,15,16,17: A =388*10-4m2

R4 =R20 = -8.5 * 10-3 MN
R8=RI2=RI6 =-17.0 * 10-3 MN
u2=ul7=ul9=0

Application example built in 2DTruss

W:/2DFackverk tillexample.DAT
File Inputdata Calculations Outpuk data

[~ Showelementrr [Showrnoderr W Shownodal forces W Show prescribed node displacements

=101

20T russ, version: 1.0

Calculations perfomed:

Mo

Status: Mormal

Figure 4.10: Application example in 2D Truss

37

Result Application example

Result: displacment

=loix

File Inputdats Calculations Qutput data

I~ Show elemert e, [~ Shawnedeni. [Shownedal forces [Shaw preseibed nade displacements

20T russ, version: 1.0 Calculations perfomed: Yes Status: Nomal

Result: normal forces

=[ofx]
File Inputdata Caleulations Output data
I~ Showelsmentrr. [Shownoderr. [Shownodalfarces [Show prescribed node displacements
| ¥
A A
i o
2DTruss, wersion: 1.0 Calculations perfomed: ‘Yes Status: Momal
Result file
| Resukat =0l
FRieaktioner -
DOF O]

2 0EB0DE+DS
17 0.3EE+06
19 0,346 +06
Fiirskiutningar
am]
-0.42084E-02
0,000
03446602
-0.2016E-03
-0.4284E-02
-0.2007E-01
0.2954E 02
-0.2024E-01
-0.3306E-02
10 03ESIED
11 02152
12 037301
13 01892012
14 Q4EB1E-01
15 0110302
16 -0.4863E-01
17 000
12 04952601
19 0000
20 0495701
Elementiatter
Element Momalkraft [N] Spanning [Fa)
1 DEBOGESDS -0 320BE+08
2 DSHE-DS -02607E+08
3 DAE+D5 -0.2005E+08
4 DZSE0EA05 -01203E+08
5 00 -DBOSE+07 B
6 DI457E-05 0BB72E+08
7
8
]
0
1

=1
0 0~ 0 = D
=1

01055E+06 0.4978E+08
0B155E+05 0.2903E+08
02081E+05 0.9817E+07

0.000 0.000
013306406 0.6272E+08

Stang fonstret

Figure 4.11: Result for application example in 2D Truss

38

Extract from element properties window
Import class which draws the widgets

from elementprop_ui import Elementprop

Init is automatically called when the window is

created
def __init__(self root,projekt):
Elementprop. __init__(self ,root)

self.root=root

self.root.title("Element_properties”)

self . project=project

self.loadlistbox ();

self .entnrelement.insert (0,str(projekt.
getprobleminfo () [0]))

Functins which is called when the close button
is preset in the sub window

def btnClose_command(self, xargs):
self.root.destroy ()
pass

A start file is needed to change some preference as the title of the main
window and the extra initialize function, which is described above is needed
too in the mainframe’s source code. This is also specific for Komodo. The
start file is included in appendix A.1.

To quit an application from a menu created in Komodo use root.quit
if root is the name of the instance of Tkinter.

The input data windows contains listboxes, entries, labels, checkbuttons,
frames and buttons. All these widgets are easy to control with help form the
documentation except the checkbutton. Checkbuttons are controlled with
built in variables in Tkinter. These variables are created with the variables
that are assigned to be a Tkinter class. If this main variables is root then the
command root.setvar (name,value) creates a variable. To read the stored
value of this variable the command getvar is used instead. This variable
is always a string. Other types of built in variables can be used, but then
the name of the variables are set automatically. This is an disadvantage
in combination with Komodo GUI builder since the name of variables to
control widgets are set manually. The good thing with these variables is

39

that the variable change automatically when e.g a checkbutton is ticked.
The on and off value of a checkbutton can be set to any values, the default
is 1 for on and 0 for off in Komodo.

To make a listbox in Komodo GUI builder hold a selection when other
widgets are selected the preference export selection must be NO.

General for all widgets are that if they are disabled it is the same as if
they are read-only.

The import module tkMessageBox is used to show short messages in new
windows with an OK button.

A function that can be a bit hard to handle is the binding command for
events e.g a mouse click or the enter button is pressed. More instructions on
how to use a binding event can be found on Pythonware’s homepage [17].

Python is started with a console but by giving a Python file the extension
PYW it is run without a console.

4.1.6 Python to executable file

Running a Python application on Linux is easy as Python is built in to
Linux. A Python application can only be run on Windows if Python is
installed or Python scripts are converted into a standalone binary Windows
application using a special tool. This tool is called Py2exe [18] and can be
found on the Internet. Py2exe makes it possible to run Python program on
any Windows computer with or without having Python installed. It is very
easy to use, only a small setup file has to be written. To convert 2D Truss
into a executable file the following setup file can be used.

setup file for 2DTruss

from distutils.core import setup
import py2exe

setup (windows=["start .pyw"])

Start.pyw is the file that is run to start 2
DTruss

Some additional files can be necessary if the Fortran compiler uses a
separate run-time library.

4.2 Graphical user interface for F2PY

F2PY is normally controlled from the command prompt in windows as
mentioned in section 3.4.1. Students following the Software Development
for Technical Systems course are often non-programmers, which often also
means that they are not used to the command prompt. Therefore a graphical

40

interface has been implemented for F2PY, which makes it easier to use and
more effort can be put into learning Fortran and Python instead. The F2PY
user interface is made in Python with ActiveState Komodo 3.0 GUI builder,
illustrated in figure 4.12. The user interface consist of a single window that
makes it easy to understand and use.

Graphical Fortran 2 Python compiler =10 5‘
 Main module
Help
| Choose main module
-Sub modul e:
Add sub module(s]
Remove
- Option:
MName Python mudulei
W Save log fil=?
Create in directon Browse
Create Python module Quirl

Figure 4.12: Graphical F2PY

The user interface for F2PY has multiple support for Fortran files so
Fortran code can be divided into multiple Fortran files were the main mod-
ule has to be specified. The main module must always be selected in the
program. An unlimited number of submodules can be added and this is op-
tional requirement. The only additional settings that is needed is the name
of the Python module, the directory of the module that is built and if a log
file shall be created. The log file is saved in a text file in the same directory
as the generated Python module. If any errors occurs during the compilation
the text file is displayed in any cases and the errors are highlighted. This
makes the user interface very simple to use as only one Fortran file needs to
be selected and then the program can create a Python module.

A Python module is created with F2PY when the create Python module
button is pressed. The application creates a text string with the modules
and settings to F2PY. A runtime operation with the text string is done in
Windows command prompt that executes F2PY with the generated string.

Open commando promt to run the commandline
generated earlyer

r ,w=os . popen4 (command)

Command is a string which is generated with the

41

same commands as are used to run F2PY in the
command promt

Runs the commandoline and reads the output

text=w.readlines ()

Disadvantage with the wizard is that not all setting for F2PY are sup-
ported, but normally it shall work without any problems if it is possible to
write attributes for variables in the Fortran code. F2PY user interface is so
far in its early stages as not all functions of the F2PY tool is reflected in the
user interface, but they will be added when the need advises.

42

Chapter 5

Summary and Conclusions

5.1 Summary

This master thesis has investigated how forthcoming courses in Software
Development for Technical Systems can be implemented with focus on For-
tran integration in a script environment such as Python. A finite element
application is created where Python is used for the graphical parts and For-
tran for computational parts. A tool F2PY was used to create an interface
between Python and Fortran. The focus was on the implementation of the
linking with F2PY. The application should also have the possibility to be
created by non-experienced programmers. They shall focus on Python and
Fortran and not learning the intricate details of a complicated language or
interface. Python is also examined to see if it fulfills the requirement a finite
element application has on the user interface. Finally the application shall
be platform independent.

5.2 Conclusions

F2PY is capable of creating Python modules in a single step from Fortran
source code and if Numeric F-contiguous variables are used, not a single
line of code have to be added to the Fortran code. This makes Python most
suitable to create an interface as it is easy to use. Using the created modules
in Python is also easy as the same calling conventions as calling internally are
used. F2PY is a flexible tool as all major features in Fortran are supported,
and the advantages of Fortran are conserved. The disadvantages with F2PY
are that it requires five prerequisite and that matrices are stored differently
in Python and Fortran. Overall F2PY is surprisingly good tool to create an
interface between Python and Fortran and it fulfills all requirements when
used in Microsoft Windows.

Python code is easy to implement and has an easy structure since Python
is an advanced script language. The easy code structure render possibility

43

to rapid development and makes Python applications easy in development.
User interfaces are developed with the toolkit Tkinter in a GUI-builder.
This also decreases developing time and Tkinter contains all necessary wid-
gets and functions for development of user interfaces. Most operations in
Python requires a small amount of code if built-in functions are used. Cre-
ating complex and flexible applications are also possible as Python support
object oriented programming and have a good capability to glue other com-
ponents. Disadvantages with Python are that everything can be done in
many different ways so it can be confusing. Extension toolkits can be need
for Tkinter if more advanced user interfaces are wanted. Replacing Delphi
with Python encourage new possibilities in the developing of finite element
application. The possibilities can be updating software, adding plug-ins,
create user interfaces rapid for applications and easy development.

The combination with Python, Fortran and F2PY can be used on most
operating systems since all parts are platform independent. F2PY modules
has to be compiled for each platform but the same Python source code can
be run on any platform.

This results in, the next time Software Development for Technical Sys-
tems is given a change in programming languages to Python instead of Bor-
land Delphi is recommended. Fortran is still recommended to be used as the
computational language since a link between Python and Fortran is possible
to perform. To perform the interface the tool F2PY is suggested to be used.
Python has good possibilities to create a user interface if it is used with a
GUI-builder.

5.3 Future Work

Some suggestions for future work in this area:

e Investigate if it is possible to create a finite element toolbox for Python,
which consists of functions and modules implemented in Fortran.

e Study the gluing possibilities for Python, as gluing a complex mesh
generator and solver to a Python user interface.

44

Bibliography

[1] HENNING, MIcHI & VINOSKI, STEVE Advance CORBA Programming
with C++, Addison Wesley Longman, USA, 1999

[2] LINDEMANN, JONAS Programming and visualisation techniques in
finite element software, Licentiate Dissertation, KFS i Lund AB,
Lund, Sweden, 2001

[3] LINDEMANN, JONAS & DAHLBLOM, OLA Tillimpad Programmering,
5:e utgavan, KFS i Lund AB, Lund, Sweden, 2003

[4] Lutz, MARK, Programming Python second edition, O’reilly, USA,
2001

[5] Lutz, MARK & ASCHER, DAVID, Learning Python, O’reilly, USA,
1999

[6] OusTERHOUT, JOHN K., Scripting: Higher Level Programming for
the 21st Century, http://home.pacbell.net/ouster, 2004-12-02, The
article appeard in IEEE Computer magazine March 1998

Internet references

[7] ACTIVESTATE Komodo 3.1 homepage, www.activestate.com,
2005-02-13

[8] ARNHOLM, CARSTEN Mized language programming using C++ and
FORTRAN 77, Version 1.1, 28-May-1997, home.online.no/~arnholm

[9] BRAINYENCYCLOPEDIA, Library (computer science),
http://www.brainyencyclopedia.com/encyclopedia/l/li/library__computer_science_.html,
2005-02-16

[10] MATHWORKS, MATLAB, http://www.mathworks.se, 2005-02-16

[11] NUMERICAL PYTHON, Numeric and Numarray,
http://numeric.scipy.org/, 2005-02-24

45

[12]

[13]

[14]

[21]

22]

[23]

OBJECT MANAGEMENT GROUP CORBA homsite,
http://www.corba.org, 2005-02-10

PETERSON, PEARU F2PY User Guide and Reference Manual,
Revision 1.25, 2005-01-30,
http://cens.ioc.ee/projects/f2py2e/usersguide/f2py_usersguide.pdf

PYTHON.ORG Documentation, http://www.python.org/doc,
2005-02-18

PYTHON.ORG, GUI programming in Python,
http://www.python.org/moin/GuiProgramming, 2005-02-10

PYTHON.ORG, wzPython, http://www.python.org/moin/wxpython,
2005-02-10

PYTHONWARE Chapter 7. Events and Bindings,
http://www.pythonware.com/library /tkinter /introduction/events-
and-bindings.htm,

2005-02-18

PYTHON TO EXECUTABLE HOMEPAGE
http://starship.python.net/crew/theller /py2exe/, 2005-02-10

SECRET LABS PythonWare and effbot.org, www.Pythonware.com &
www.effbot.org, 2004-12-02

SIMPLIFIED WRAPPER AND INTERFACE GENERATOR HOMEPAGE,
http://www.swig.org, 2005-02-10

STRUCTURAL MECHANICS, LUNDS INSTITUE OF TECHNOLOGY,
http://www.byggmek.lth.se, 2005-02-10

TECFACS, Overview of Dynamic Linking,
http://www.tecfacs.com/dynamic.htm, 2005-02-16

WXPYTHON’S OFFICIAL HOMEPAGE http://www.wxpython.org/,
2005-02-13

46

Appendix A

Python Modules

A.1 Start

A.2

Start file for 2DTruss

Import modul with the mainframe for 2DTruss
from MainFrame importx

Make a loop

try: userinit()

except NameError: pass

root = Tk()

demo = CustomMainFrame(root)

root.title('2DTruss') # Title of the mainframe

try: run()

except NameError: pass

root.protocol ('"WM_DELEimport_cpickleTE_ZWINDOW ’ ,
root.quit)

root.mainloop ()

Mainframe

_MainFrame. py, —

Ul _generated by _GUI_Builder_Build_107673_on
.,2005-02-09_18:18:22_from:
e W: /2DFackverk /MainFrame . ui

_This_file_is_auto—generated.__Only_the_code_within

vouo #BEGIN_USER _CODE_(global|class)’
vooo #END_USER_CODE_(global|class)’

A-1

_and_code_inside_the_callback_subroutines_will_be_
round—tripped.
The "main’' function is reserved.

from Tkinter import x
from MainFrame_ui import MainFrame

BEGIN USER CODE global
from base importx

import modeldraw

END USER CODE global

class CustomMainFrame(MainFrame):
pass

BEGIN CALLBACK CODE
ONLY EDIT CODE INSIDE THE def FUNCTIONS.

#
i
chkbtnShowEnr_command ——
#
#

Callback to handle chkbtnShowEnr widget
option —command

def chkbtnShowEnr_command(self , xargs):

Check if the checkbutton is marked or
not then the elementnumbers are drawn or
deleted

if int(self.root.getvar('showEINr")):
modeldraw . printElementNr(self.canmain,
projekt)
else:
self.canmain.delete('elnr’)
pass

chkbtnShowNnl_command ——

R RN

Callback to handle chkbtnShowNnl widget
option —command

def chkbtnShowNnl_command(self , xargs):
Check if the checkbutton is marked or
not then the nodeforces are drawn or

deleted

if int(self.root.getvar('showNodeForce')):

A-2

modeldraw . printNodeForce(self.canmain,
projekt)
else:
self.canmain.delete(' nodeforce’)

pass

chkbtnShowNnr_command ——

R NN

Callback to handle chkbtnShowNnr widget
option —command

def chkbtnShowNnr_command(self, xargs):

Check if the checkbutton is marked or
not then the nodenumbers are drawn or

deleted

if int(self.root.getvar('showNodeNr')):
modeldraw . printNodeNr(self.canmain)

else:
self.canmain.delete('nodenr")

pass

chkbtnShowNpv_command ——

RN

Callback to handle chkbtnShowNpv widget
option —command

def chkbtnShowNpv_command(self, xargs):

Check if the checkbutton is marked or
not then the prescribde sign for the
nodes are drawn or deleted

if int(self.root.getvar('showPreNodes')):
modeldraw. printPreNode(self.canmain,
projekt)
else:
self.canmain.delete(' prenode’)

pass

END CALLBACK CODE

BEGIN USER CODE class

When the frame is created
def __init__(self 6 root):

MainFrame. __init__(self ,root)

A-3

def

#

def

def

def

self.root=root

Redraw if the window is modify like
resized

self.canmain.bind('<Configure>", self.draw)
self.root.setvar('showEINr', 0)
self.root.setvar('showNodeNr’, 0)
self.root.setvar('showNodeForce', 0)
self.root.setvar('showPreNodes', 0)

Open window for showing the result

frmShowResult(self):

import ShowResult

window=Toplevel ()

ShowResult. CustomShowResult (window, projekt)
window . grab_set ()

window . focus_set ()

window . wait_window ()

Open window that shows the information
about the problem

frmProblemlInfo(self):

import Probleminformation

window=Toplevel ()

Probleminformation. CustomProbleminformation
(window , projekt)

window . grab_set ()

window . focus_set ()

window . wait_window ()

projekt.setCalcMade (0,self.lbcalc)

Open window to set nen and node properties

frmNodelnfo(self):

import nodeinfo

window=Toplevel ()
nodeinfo.CustomNodeinfo(window, projekt)
window . grab_set ()

window . focus_set ()

window . wait_window ()
projekt.setCalcMade(0,self.lbcalc)

Open a new window to set element properties
frmElementProp(self):

import elementprop

A-4

window=Toplevel ()

elementprop . CustomElementprop (window,
projekt)

window . grab_set ()

window . focus_set ()

window . wait_window ()

projekt.setCalcMade (0,self.lbcalc)

Open window to set prescribde node values

def frmPreNodes(self):
import prescribednodes
window=Toplevel ()
prescribednodes. CustomPrescribednodes(

window , projekt)

window . grab_set ()
window . focus_set ()
window . wait_window ()
projekt.setCalcMade(0,self.lbcalc)

Open window to set nodalforces

def frmNodeForces(self):
import nodeforces
window=Toplevel ()
nodeforces. CustomNodeforces (window, projekt)
window . grab_set ()
window . focus_set ()
window . wait_window ()
projekt.setCalcMade(0,self.lbcalc)

Function to open an existing project

def open(self):

global projekt

projekt=0Open ()

infile=projekt.getinfilename ()

if infile: self.root.title(infile)

self .draw(1,dm=1)

projekt.setCalcMade(projekt.isCalcMade (),
self.lbcalc)

self.Ibstatus.config(text="Normal")

Function that calculates the displacment
for each node and normalforces in evrey

element

def execute(self):
Execute(projekt ,self.lbcalc)

A-5

Function that creates a new projekt

def new(self):
global projekt
projekt=Model ()
New(projekt)
self.root.title('2D_Fackverk_— New_Project’

)
self.draw(1,dm=1)

projekt.setCalcMade (0,self.lbcalc)
self.lbstatus.config(text="Normal")

Fuction that saves your project
def save(self):
infile=projekt.getinfilename ()
if infile:
Save(projekt)
else:self.saveas ()

Fuction that save your project as

def saveas(self):
SaveAs(projekt)
infile=projekt.getinfilename ()
if infile: self.root.title(infile)

Function to draw elements, dispacement of
the structure or normalforces in the

elements

def draw(self ,event ,dm=None):
if dm: modeldraw.Displaymode=dm

get the size of the canvas

height=self.canmain.winfo_height ()
width=self.canmain.winfo_width ()

Don't draw anything

if modeldraw.Displaymode==1:
self.canmain.delete("all")

Draw the structure

elif modeldraw.Displaymode==2:
self.canmain.delete(all")

A-6

modeldraw . DrawGeometry (width , height ,
self.canmain, projekt , self.root)

Structure with displacement

elif modeldraw . Displaymode==3:
if projekt.isCalcMade():
self.canmain.delete("all")
modeldraw . DrawDisplacement (width ,
height , self.canmain, projekt , self
.root)
else:
modeldraw . Displaymode=1
showerror('Fatal_Error’,
Berdkningar_ej_utférda ')

Structuer with normalforces

elif modeldraw.Displaymode==4:
if projekt.isCalcMade():
self.canmain.delete(all")
modeldraw . DrawForces (width , height ,
self.canmain, projekt ,self.root)

else:
modeldraw . Displaymode=1
showerror('Fatal_Error’,’

Berikningar_ej_utférda ')
options to set which to draw

def drawGeo(self):self.draw(1l,dm=2)
def drawDisp(self):self.draw(1,dm=3)
def drawForce(self):self.draw(1l,dm=4)

Open a resultfile

def openResultFile(self):
global projekt
projekt=Model ()
self.root.title('2D_Fackverk_—_ Resultatfil’

self.draw(1,dm=1)

projekt.setCalcMade (0,self.lbcalc)

self.lbcalc.config(text="—")

self.lbstatus.config(text="Endast
resultatfil ")

outfile=tkFileDialog.askopenfilename(title=
'Oppna_en_resultatfil ', filetypes=[(’
resultatfil ', *.Ist"),(Alla_Filer’', "x")

A-7

1)

projekt.setoutfilename(outfile)
self . frmShowResult ()

END USER CODE class

is only used if the frame is run seperatly , is
auto generated.

def main():
Standalone Code Initialization
DO NOT EDIT
try: userinit()
except NameError: pass
root = Tk()
demo = CustomMainFrame(root)
root. title('MainFrame")
try: run()
except NameError: pass
root.protocol ('WM_DELETEWINDOW' , root.quit)
root. mainloop ()

if __name__ == "__main__": main()

A.3 Base

Begin Module base

import other modules

import tkFileDialog

from tkMessageBox importx
from Numeric importx

from node import node

from element import element
import cPickle

import solvepro

Begin Class model

class Model:

Runs when the class is created

def __init__(self):

self.nel=0# number of elements

self.nen=0 # number of nodes

self.nnl=0# nuber of nodal loades

self.npv=0 # number of prescribed
nodevalues

self .nodelist=[] # list that contains all
nodes in the problem
self.elementlist=[] # list that contains

all elements in the problem

self.infile="" # Name of the input file
self.outfile=""# Name of the output file

Array that contains the displacement of
the nodes (after calculations)

self.disp=zeros(self.nenx2,'d")

Forces in the elements (after
calculations)

self.eforces=solvepro.
as_column_major_storage(zeros((2,self.

nel),'d"))
calcMade=1 if calculations are made
self.calcMade=0

def setprobleminfo(self, nel=None, nen=None, nnl=
None, npv=None) :

if nel : self.nel=nel
if nen : self.nen=nen
if nnl : self.nnl=nnl
if npv : self . npv=npv

def getprobleminfo(self):
return [self.nel, self.nen, self.nnl, self.

npv]
Returns the node with index in the nodelist

def getnode(self ,index):
return self.nodelist[index]

Returns a element from elementlist

A-9

def

def

def

def

def

def

def

def

def

def

getelement (self ,index):
return self.elementlist[index]

Make a new element

addElement(self ,element):
self.elementlist.append(element)

Add a new node to the problem
addNode(self ,node):
self.nodelist.append(node)
node.setdof(len(self.nodelist)—1)

Remove a node

removeNode (self ,index):
del self.nodelist[index]

Remove a element

removeElement (self ,index):
del self.elementlist[index]

Change infilename

setinfilename (self ,name):
self.infile=name

Change outfilename

setoutfilename (self ,name):
self.outfile=name

getinfilename (self):
return self.infile

getoutfilename(self):
return self.outfile

setDispAndEforceToZeroAndSetSize(self):
self.disp=zeros(self.nenx2,'d")

Fortran uses column major storage
self.eforces=solvepro.

as_column_major_storage(zeros ((2,self.
nel),'d"))

A-10

#

def

def

def

def

setDispAndEforce(self ,disp,eforces):
self.disp=disp
self.eforces=eforces

returns Disp and eforces

getDispAndEforces(self):
return [self.disp,self.eforces]

Controlls if a calculation is made

isCalcMade(self):
return self.calcMade

setCalcMade(self ,calc,label):
self.calcMade=calc

if calc:label.config(text="Yes')
else:label.config(text="No")

End Class model

Model functions but not a part of the model

#

class

Calculate the problem in fortran

def Execute(projekt,lbcalc):

inf

#

if

ile=projekt.getinfilename ()
Check if there is a inputfile

infile:
projekt.setoutfilename(infile[:=3]+ "Ist")

Creates the neccesary variabels from
the model to calculate the problem

[nel ,neq,nnl, npv,eprop,edof ,f,bc,b,ierr]=
createArrays(projekt)

lg in if ierrrorr
outfile=projekt.getoutfilename ()
projekt.setDispAndEforceToZeroAndSetSize ()
disp , eforces=projekt.getDispAndEforces()

solvepro uses a python module created
with f2py from fortran. Matrix and

A-11

#

def

def

#

def

arrays must be in numarray or numeric
format to be abel to use

solvepro.calcprog.execute(nel ,neq,nnl,npv,
eprop ,edof ,f ,bc,b,eforces ,outfile ,ierr,

disp)

ierr is a errorflag if the probelm is
nonpositive definijt

if ierr==I1L
projekt.setCalcMade (0, Ibcalc)
showerror (' Problemet_ej IAfist’,’
Problemet_Adr_inte_positivt_definit

och_ej lAfist")
Ibcalc.config(text="No")
else:
projekt.setDispAndEforce(disp , eforces)

projekt.setCalcMade (1, lbcalc)
showinfo ('Klart', ’BerAd’kningarnauAd’ru

utfAiirda ")
else:
showerror (' Inte_mAdjligt! ', "lIngen_
indatafil ")

Function to open a projekt/inputfile

Open () :

infile=tkFileDialog.askopenfilename(title="
AUppna_ett_projekt’', filetypes=[('Projekt/
indata ', '«.DAT") ,("Alla_Filer ', 'x")])

projekt.setinfilename (infile)

file=open(infile , 'r")

projekt=cPickle.load(file)

file.close()

return projekt

Creates a new projekt

New(projekt):
projekt.setinfilename('")

Saves a projekt

Save(projekt):

A-12

def

#

infile=projekt.getinfilename ()
file=open(infile , 'w')
cPickle .dump(projekt , file)
file.close()

save as

SaveAs(projekt):

infile=tkFileDialog.asksaveasfilename(title="
Spara_ett_projekt ', defaultextension=".DAT",
filetypes=[('Projekt/indata', ' «.DAT") ,("'Alla
LFiler™,"x")])

projekt.setinfilename(infile)

file=open(infile , 'w')

cPickle .dump(projekt , file)

file.close()

Function that creates the nessesarry arrays
that are needed to solve the problem with
execute

def createArrays(projekt):

var=projekt.getprobleminfo ()
nel=var [0]

neq=var[1]x2

nnl=var[2]

npv=var [3]

Creates the arrays with zeros

ierr=array(0)
eprop=zeros ((nel,6),'d")

edof=zeros ((nel ,4),'1")
f=zeros(neq, 'd")
b=zeros(neq,'|")

bc=zeros(neq, 'd")

Fill the arrays with information about the
problem after a patter from a indata manual
for the fortransolver

for i in xrange(nel):
e=projekt.getelement (i)
nl=projekt.getnode(e.getnodes()[0]—1)
n2=projekt.getnode(e.getnodes()[1]—1)

epropel=[e.getprop()[1] . e.getprop()[0],nl.
getcoord () [0],nl.getcoord()[1],n2.

A-13

getcoord () [0],n2.getcoord () [1]]
edofel=[nl.getdof()[0],nl.getdof()[1],n2.
getdof () [0] ,n2.getdof () [1]]

eprop[i]=epropel
edof[i]=edofel

for i in xrange(var[1l]):
n=projekt.getnode (i)
f[i*2]=n.getnodeforces ()|
fli*2+1]=n.getnodeforces(
b[i*2]=n.getb () [0]
b[i*24+1]=n.getb () [1]
bc[i*2]=n.getbc () [0]
bc[ix2+1]=n.getbc()[1]

0]
) [1]

End filling the arrays with information
about the problem

Transpose the arrays to get the stored
columnwise Ilike fortran needs and not

rowwise like python makes by default

eprop=transpose (eprop)
edof=transpose(edof)

return nel ,neq,nnl,npv,eprop,edof,f,bc,b,ierr

A.4 Modeldraw

Module modeldraw to draw in the drawing area

percentage of the drawing area to be drawn

k=0.9
Handels what is going to be drawn, 1=nothing is
drawn

Displaymode=0

Coordvalues calculates the variabels that
transform the coordinates from normal to
computer coordinatessytem and makes the

strucutre to fit into the window

def coordvalues(width, height):

A-14

global s,x0,y0
s=min ([kxwidth /(Xmax—Xmin) ,kxheight /(Ymax—Ymin)

x0=—s*xXmin+(1—k) /2« width
yO=height+s*xYmin—(1—k) /2« height

Claculates max and min X,Y, it also returns the
nodes X and Y coordinates in lists

def maxminXY (width , height, projekt):
global Xmax,Ymax, Xmin, Ymin, var , X,Y
var=projekt.getprobleminfo ()
X=[0]*var[1]
Y=[0]*var[1]

for i in xrange(var[l]):
node=projekt.getnode (i)
X[i]=node.getcoord () [0]
Y[i]=node.getcoord () [1]

if Displaymode==2 or Displaymode==4:
Xmax=max (X)
Ymax=max(Y)
Xmin=min (X)
Ymin=min (Y)

coordvalues (width , height)

Displaymode 3 is diffrent though the max
min XY changes when the displacement is
drawn

elif Displaymode==3:
dispX=[0.]*var [1]
dispY =[0.]xvar[1]
disp=projekt.getDispAndEforces () [0]
absdisp=[0.]xlen(disp)

for i in xrange(len(disp)):absdisp[i]=abs(
disp[i])

sd=0.05*max(abs (max(X)—min (X)), abs(max(Y)—
min(Y)))/max(absdisp) # Scalefactor

for i in xrange(var[l]):
node=projekt.getnode(i)
dispX [i]=X[i]+disp[i=*2]*sd
dispY [i]=Y[i]+disp[i*2+1]*sd

A-15

Xmax=max (max(X) ,max(dispX))
Ymax=max(max(Y) ,max(dispY))
Xmin=min (min(X) ,min(dispX))

() ())

Ymin=min (min(Y),min(dispY
coordvalues(width , height)
return dispX , dispY

Function that draws the gometry for the
structure with elementnumbers and nodes

def DrawGeometry(width, height ,canvasMain, projekt,
root):

if Displaymode !=3: maxminXY (width ,h height,
projekt)

Draws one element att the time

for i in xrange(var[0]):
nodes=projekt.getelement(i).getnodes|()

x1=x0+s*X|[nodes [0] —1]
x2=x0+s*X[nodes[1] —1]
yl=y0—s*Y[nodes[0] —1]
y2=y0—s«Y[nodes[1] —1]

canvasMain.create_line(x1l,yl,x2,y2, tag='
lines ")

canvasMain. create_oval (int(x1—0.03x*s),int(
y1—0.03%s),int(x14+0.03%s),int(yl+0.03xs)
, tag='circ')

canvasMain. create_oval (int(x2—0.03%s),int(
y2—0.03%s),int(x2+0.03%s),int (y2+0.03%s)
, tag='circ")

canvasMain . tkraise ('text ')

Draws elementnumbers if the checkbutton is
filled

if int(root.getvar('showEINr'))==1:
printElementNr (canvasMain , projekt)

Draws nodenumbers if the checkbutton is
filled

A-16

if int(root.getvar(showNodeNr'))==1:
printNodeNr (canvasMain)

Draws nodal forces if the checkbutton is
filled

if int(root.getvar('showNodeForce'))==1:
printNodeForce (canvasMain , projekt)

Draws prescribde dof if the checkbutton is
filled

if int(root.getvar(showPreNodes'))==1:
printPreNode (canvasMain , projekt)
Function that first draws the geometry with "
DrawGeometry” and then adds the displacement of
the elements in blue color

def DrawDisplacement(width , height ,canvasMain,
projekt ,root):

dispX , dispY=maxminXY (width , height , projekt)
DrawGeometry (width , height ,canvasMain , projekt ,
root)

Draws one element att the time

for i in xrange(var[0]):

nodes=projekt.getelement(i).getnodes()

xd1=x0+s*dispX [nodes[0] —1]

xd2=x0+s*dispX [nodes[1] —1]

ydl=y0—sxdispY [nodes[0] —1]

yd2=y0—sx*dispY [nodes[1] —1]

canvasMain.create_line(xdl,ydl,xd2,yd2, fill
='blue’, tag='dlines")

canvasMain.create_oval (int(xdl1—0.03%s),int(
yd1 —0.03%s),int(xd140.03xs),int (ydl
+0.03xs), fill="blue', tag="dcirc')

canvasMain.create_oval (int(xd2—0.03%s),int(
yd2 —0.03%s),int(xd2+0.03*s),int (yd2
+0.03x%s), fill="blue', tag='dcirc")

canvasMain . tkraise ('text ')
Function that first draw the geometry with
DrawGeometry” and the adds arrow which are

equivalent to tensile and compressive
normalstress

A-17

def DrawForces(width , height ,canvasMain, projekt , root

) .

from math import sqrt

DrawGeometry (width , height ,canvasMain , projekt ,

root)

force=projekt.getDispAndEforces () [1]
force=force [0]
absforce=[0.]xlen(force)

for

i in xrange(len(force)):absforce[i]=abs(
force[i])

sd=0.1xmax(abs (Xmax—Xmin) ,abs(Ymax—Ymin)) /max(

#

for

absforce) #Skalfaktor
Draws one element att the time

i in xrange(var[0]):
nodes=projekt.getelement(i).getnodes()
x1=X[nodes[0] —1]

yl=Y[nodes[0] —1]

x2=X[nodes[1] —1]

y2=Y[nodes[1] —1]

Half length of the force arrow
halflength=abs(force[i]xsd/2)
Calc half the length of the element

lengthtomid=sqrt (((x2—x1)/2)*x2+((yl—-y2)/2)
*k2)

Finds the pixel were to start drawing
the force arrow

deltax=(lengthtomid—halflength)/lengthtomid
*(x2—x1)/2

deltay=(lengthtomid—halflength)/lengthtomid
«(y2—-yl) /2

xd1=x0+s*(x1+deltax)

ydl=y0—s«*(yl+deltay)

xd2=x0+s *(x2—deltax)

yd2=y0—s«*(y2—deltay)

If tensile stress

if force[i]>0:

A-18

canvasMain.create_line (xdl,6ydl,xd2,6yd2,
arrow="both ', tag='arrow ',k arrowshape
=(8,10,3),fill="blue")

If compressive stress

else:
canvasMain.create_line(xdl,ydl,hxd2,yd2
, tag="arrow ', fill="red’, arrow="both
",arrowshape=(—8,—-10,-5))

Function to draw element number
def printElementNr(canvasMain, projekt):

Goes through all elements and prints the
number, var[0] is number of elements

for i in xrange(var[0]):
n=projekt.getelement(i).getnodes ()
canvasMain. create_text (int (((X[n[0]—1]+X[n
[1] —1])*s+2%x0) /2) ,int ((—(Y[n[O] =1]+Y[n
[1] —=1])*s+2xy0) /2) ,text=str (i+1), fill="#
AA0000' ,tag="elnr',anchor="s"' font="{MS,
Sans_Serif}_12")

Function print node numbers
def printNodeNr(canvasMain):

Runs a for loop for each node and prints
the number, var[1] is nuber of nodes

for i in xrange(var[l]):
canvasMain . create_text (x0+s*X[i],y0—sxY[i],
text=str(i+1),fill="blue’,tag="nodenr’,

anchor="s"', font="{MS_Sans_Serif}_12")
Function that draws the nodeforces
def printNodeForce(canvasMain, projekt):

Finds the biggest nodeforce and makes it
10% of the size of the structure

absf=[]

for i in xrange(var[l]):
ftemp=projekt.getnode(i).getnodeforces ()

A-19

absf.append(max(abs(ftemp[0]) , abs(ftemp[1])
))
sd=0.1xmax(abs (Xmax—Xmin) ,abs(Ymax—Ymin))/max(
absf) #Skalfaktor

Make a loop for each node and draws an
arrow to symbolize the nodeforce, one for x—
direction and one for y

for i in xrange(var[1l]):
f=projekt.getnode(i).getnodeforces()
if f[0]:
canvasMain.create_line (xO+s*(X[i]—f[0]=*
sd) ,y0—s*Y[i],x0+s«X[i],y0—s*Y[i],
arrow="last ', fill="blue’, tag="
nodeforce ' ,width="2")
if f[1]:
canvasMain.create_line (x0+s+xX[i],y0—sx*(
Y[i]=f[1]*sd),x0+s«X[i],y0—s«Y[i],
arrow="last ', fill="blue’ tag="
nodeforce ' ,width="2")

Function to draw a sign if the node i
sprescribed or not

def printPreNode(canvasMain, projekt):

Draws the sign 2% of the size of the
structure

sd=0.02«max(abs (Xmax—Xmin) ,abs(Ymax—Ymin)) #
Scalefactor

Runs a loop for each node and check if the

deegres of freedom at the node | prescribde
or not.

for i in xrange(var[1l]):
b=projekt.getnode(i).getb()
if b[O]:

canvasMain. create_line (xO+s*xX[i],y0—sx(
Y[i]4+sd) ,x0+s«X[i],y0—sx*(Y[i]—sd),
fill="red ', tag='prenode’ ,width="2")
if b[1]:
canvasMain.create_line (xO+s*(X[i]+sd),
y0—sxY[i],x0+s*(X[i]—sd),y0—sxY[i],
fill="red ', tag='prenode’ ,width="2")

A-20

A.5 Elementproperties

noaon

_elementprop.py —

LUl _generated_by_GUI_Builder_Build 107673 on
.,2005—-02—-08,,19:26:20_ from:

e W: /2DFackverk /elementprop . ui

_This_file_is_auto—generated.__Only_the_code_within

tooo #BEGIN_USER_CODE_(global|class)’

oo #END_USER_CODE_(global|class)’

_and_code_inside_the_callback_subroutines_will_be_
round—tripped.

_ The_'main’'_function_is_reserved.

noon

from Tkinter import x
from elementprop_ui import Elementprop

BEGIN USER CODE global
from tkMessageBox import showerror

END USER CODE global

class CustomElementprop (Elementprop):

pass
BEGIN CALLBACK CODE

ONLY EDIT CODE INSIDE THE def FUNCTIONS.

btnClose_.command ——

z Callback to handle btnClose widget option —

command
def btnClose_.command(self , xargs):
self.root.destroy ()

pass

btnSave_command ——

k%

Callback to handle btnSave widget option —
command

def btnSave_command(self , xargs):
try:
nl=int(self.entfromnode.get())
n2=int (self.enttonode.get())

A-21

RN

def

def

emodule=float(self.entemodule.get())
area=float(self.entarea.get())
except:
showerror('Error!', "Det_var_inga_
giltiga_tal")
else:
index=self.lbelements.curselection();
self.projekt.getelement(int(index[0])).
setprop (emodule, area)
self.projekt.getelement(int(index[0])).
setnodes(nl,n2)
pass

btnuppdate_.command ——

Callback to handle btnuppdate widget option
—command

btnuppdate_command(self , xargs):
from element import element
temp=self.projekt.getprobleminfo () [0]
try:
nel=int (self.entnrelement.get())
except:
showerror('Error!', "Det_var_inget_
heltal”)
else:
self.projekt.setprobleminfo(nel=nel)
self.loadlistbox ()
if temp<=nel:
for i in xrange(nel—temp):
self.projekt.addElement(element
(0.0))
else:
for i in xrange(temp—nel):
self.projekt.removeElement(temp
—i-1)
pass

END CALLBACK CODE

BEGIN USER CODE class

Init happends when the window is opened
__init__(self ,root,projekt):
Elementprop.__init__(self ,root)

self.root=root
self.root.title("Element_properties™)

A-22

def

self.projekt=projekt

self.loadlistbox ();

self.entnrelement.insert (0,str(projekt.
getprobleminfo () [0]))

Fills the lisbox with elementsnumbers

loadlistbox (self):
self.lbelements.delete (0, END)
nr=self.projekt.getprobleminfo () [0]
for i in xrange(nr):
self.lbelements.insert(i,str(i+1))

This bind command controls what
happends when a element | selected

self.lbelements.bind('<ButtonRelease—1>",

self.selectionlbelement)

When a element is selected the entrys are
filled with the actuall properties for the

element and they can be change

def selectionlbelement(self event):

#

index=self.lbelements.curselection ();
element=self.projekt.getelement
n=element(int(index[0])).getnodes ()
prop=element(int(index[0])).getprop()
self.entfromnode.delete (0,END)
self.enttonode. delete (0,END)
self.entemodule. delete (0,END)
self.entarea.delete (0,END)
self.entfromnode.insert(0,n[0])
self.enttonode.insert(0,n[1])
self.entemodule.insert (0,prop[0])
self.entarea.insert (0,prop[1l])

END USER CODE class

is only used if the frame is run seperatly,
auto generated.

def main():
Standalone Code Initialization
DO NOT EDIT
try: userinit()

except NameError: pass
root = Tk()

A-23

is

A.6

demo = CustomElementprop(root)
root.title('elementprop’)

try: run()

except NameError: pass

root.protocol ("WM_DELETEWINDOW' , root.quit)
root.mainloop ()

if __name__ == '__main__": main()

Elementproperties ui

nmon

_elementprop_ui.py —

LUl _generated by GUI_Builder_Build 107673 _on
.2005—-02—-08_,19:26:18_from:

e W: /2DFackverk/elementprop . ui

THIS_1S_AN_AUTOGENERATED_FILE_AND_SHOULD_NOT_BE,
EDITED.

The_associated _callback file_should_be modified
instead .

[

import Tkinter

class Elementprop:
def __init__(self, root):

Widget Initialization

self.labfrm = Tkinter.LabelFrame(root,
text = 'Element’,

self.frmegenskaper = Tkinter.LabelFrame(
root ,
text = "Properties ',

)

self.Ibelements = Tkinter. Listbox(self.
labfrm ,
activestyle = "dotbox ',
exportselection = '0",
height = '"15",
takefocus = '1",
width = '0"',

)

self. _scrollbar_1 = Tkinter.Scrollbar(self.
labfrm ,

)

A-24

self.labfnode = Tkinter.Label(self.
frmegenskaper,
text = 'From_node’,

)

self.labtnode = Tkinter.Label(self.
frmegenskaper,
text = 'To_,node’,

self.labe = Tkinter.Label(self.
frmegenskaper,
text = 'E_(Pa) "',

)

self.laba = Tkinter.Label(self.
frmegenskaper,
text = "Area_(m2)",

self.entfromnode = Tkinter.Entry(self.
frmegenskaper,
takefocus = '1",
width = "10",

)

self.enttonode = Tkinter.Entry(self.
frmegenskaper,
takefocus = '1",
width = "10",

)

self.entarea = Tkinter.Entry(self.
frmegenskaper,
width = 10",

)

self .entnrelement = Tkinter.Entry(root,
width = '5",

self.labnrel = Tkinter.Label(root,
text = 'Number_of_elements ',

self.btnuppdate = Tkinter.Button(root,
text = 'Update’,
)

self.btnSave = Tkinter.Button(self.
frmegenskaper,
text = 'Save’,

self.btnClose = Tkinter.Button(root,
text = 'Close ',

)

self.entemodule = Tkinter.Entry(self.

frmegenskaper,
width = 10",

A-25

widget commands

self.lbelements.configure(
xscrollcommand = self.
Ibelements_xscrollcommand

self.lbelements.configure(
yscrollcommand = self._scrollbar_1.set

self. _scrollbar_1.configure(
command = self.lbelements.yview
)

self.entfromnode.configure(
invalidcommand = self.
entfromnode_invalidcommand

self.entfromnode.configure(
validatecommand = self.
entfromnode_validatecommand
self.entfromnode. configure (
xscrollcommand = self.
entfromnode_xscrollcommand
self.enttonode.configure(
invalidcommand = self.
enttonode_invalidcommand
self.enttonode.configure(
validatecommand = self.
enttonode_validatecommand
self.enttonode.configure(
xscrollcommand = self.
enttonode_xscrollcommand
self.entarea.configure(
invalidcommand = self.
entarea_invalidcommand
self.entarea.configure(
validatecommand = self.
entarea_validatecommand
self.entarea.configure(
xscrollcommand = self.
entarea_xscrollcommand

A-26

)

self.entnrelement.configure(
invalidcommand = self.
entnrelement_invalidcommand
self.entnrelement.configure(
validatecommand = self.
entnrelement_validatecommand
self .entnrelement.configure(
xscrollcommand = self.
entnrelement_xscrollcommand

self . btnuppdate.configure(
command = self.btnuppdate_command

self.btnSave.configure(
command = self.btnSave_command
)

self.btnClose.configure (
command = self.btnClose_command
)

self.entemodule. configure(
invalidcommand = self.
entemodule_invalidcommand
self.entemodule. configure(
validatecommand = self.
entemodule_validatecommand
self.entemodule. configure(
xscrollcommand = self.
entemodule_xscrollcommand

Geometry Management
self . labfrm.grid(

in_ = root ,
column =1,

row =1,
columnspan = 1",
ipadx = '0",
ipady = '0",
padx = '0",

pady = 0",
rowspan = "4,
sticky = "news’

A-27

self.frmegenskaper.grid(

in_ = root ,
column = 2,
row =1,
columnspan = '1",
ipadx = '0",
ipady = '0",
padx = '0",
pady = 0",
rowspan = "4,
sticky = 'news'

)

self.lbelements. grid(
in_ = self.labfrm,
column =1,
row =1,
columnspan = '1",
ipadx = '0",
ipady = '0",
padx = '0",
pady = '0"'
rowspan = '1",
sticky = "news'’

)

self. _scrollbar_1.grid(

in_ = self.labfrm,
column = 2,

row =1,
columnspan = '1",
ipadx = '0",

ipady = '0",

padx = '0",

pady = 0",

rowspan = '1",

sticky = "nsw’

self.labfnode. grid(

in_ = self.frmegenskaper,
column = 1,

row =1,

columnspan = '1",

ipadx = '0",

ipady = '0'

padx = '0",

pady = 0",

rowspan = '1"',

sticky = "'

self.labtnode. grid(

A-28

in_ = self.frmegenskaper,

column =1,

row = 2,

columnspan = '1",

ipadx = '0",

ipady = '0",

padx = '0",

pady = '0",

rowspan = '1",

sticky = "’
self.labe.grid(

in_ = self.frmegenskaper,

column =1,

row = 3,

columnspan = 1",

ipadx = "0’

ipady = '0",

padx = '0",

pady = 0",

rowspan = 1",

sticky = "’
self.laba.grid(

in_ = self.frmegenskaper,

column = 1,

row = 4,

columnspan = "1,

ipadx = '0",

ipady = '0",

padx = '0",

pady = "0’

rowspan = 1",

sticky = "'

)

self.entfromnode. grid (

in_ = self.frmegenskaper,
column = 2,

row =1,

columnspan = '1",

ipadx = '0",

ipady = '0",

padx = '0",

pady = '0",

rowspan = '1",

sticky =

)

self.enttonode. grid(
in_ = self.frmegenskaper,

A-29

column = 2,

row = 2,
columnspan = '1",
ipadx = '0",
ipady = 0"

padx = '0’

pady = 0",
rowspan = '1",
sticky = "'

)

self.entarea.grid(

in_ = self.frmegenskaper,
column = 2,

row = 4,

columnspan = 1",

ipadx = '0",

ipady = '0",

padx = '0",

pady = '0",

rowspan = '1",

sticky = "’

)
self.entnrelement. grid(
in_ = root ,
column = 4,
row =1,

columnspan = '1",
ipadx = '0",
ipady = '0",
padx = '0",
pady = "0,
rowspan = '1",
sticky = 'w’

)

self.labnrel.grid(
in_ = root ,
column = 3,
row =1,
columnspan = '1",
ipadx = '0",
ipady = '0",
padx = '0",
pady = '0"'
rowspan = '1",
sticky = "e’

self.btnuppdate. grid(
in_ = root ,
column = 4,

A-30

row = 2,
columnspan = "1,
ipadx = '0",

rowspan = '1",
sticky = 'w
)
self.btnSave.grid(
in_ = self.frmegenskaper,
column = 2,
row =5,

I
o
c
3
S
(72}
©
-

rowspan
sticky =

self.btnClose.grid(

in_ = root ,
column = 4,
row = 4,
columnspan = '1",
ipadx = '0’
ipady = '0",
padx = '0",
pady = 0",
rowspan = 1",
sticky = "’
)
self.entemodule. grid (
in_ = self.frmegenskaper,
column = 2,
row =3,
columnspan = 1",
ipadx = '0",
ipady = '0",
padx = '0",
pady = '0",
rowspan = 1",
sticky = "'
)

Resize Behavior

A-31

root.grid_rowconfigure (1, weight = 0,
minsize = 35, pad = 0)

root.grid_rowconfigure (2, weight = 0,
minsize = 40, pad = 0)

root.grid_rowconfigure (3, weight = 0,
minsize = 64, pad = 0)

root.grid_rowconfigure (4, weight = 0,
minsize = 27, pad = 0)

root.grid_columnconfigure (1, weight = 0,
minsize = 127, pad = 0)
root.grid_columnconfigure (2, weight = 0,
minsize = 133, pad = 0)
root.grid_columnconfigure (3, weight = 0,
minsize = 102, pad = 0)
root.grid_columnconfigure (4, weight = 0,

minsize = 51, pad = 0)
self . labfrm.grid_rowconfigure(1l, weight
= 0, minsize = 217, pad = 0)
self.labfrm.grid_columnconfigure (1, weight
= 0, minsize = 102, pad = 0)
self.labfrm.grid_columnconfigure (2, weight
= 0, minsize = 2, pad = 0)
self.frmegenskaper.grid_rowconfigure (1,
weight = 0, minsize = 40, pad = 0)
self.frmegenskaper.grid_rowconfigure (2,
weight = 0, minsize = 40, pad = 0)
self.frmegenskaper.grid_rowconfigure (3,
weight = 0, minsize = 40, pad = 0)
self.frmegenskaper.grid_rowconfigure (4,
weight = 0, minsize = 31, pad = 0)
self.frmegenskaper.grid_rowconfigure (5,
weight = 0, minsize = 40, pad = 0)
self.frmegenskaper.grid_columnconfigure (1,
weight = 0, minsize = 40, pad = 0)
self.frmegenskaper.grid_columnconfigure (2,
weight = 0, minsize = 40, pad = 0)

A-32

Appendix B

Fortran Modules

B.1 Calcprog

! File calcprog.f90
module calcprog

! Importing sub modules
use barelement

use solve

use outputfile

contains

subroutine execute(nel ,neq,nnl, npv,eprop,edof,f, bc,
b,eforces ,outfile ,ierr ,displace)

I ——— Declaration of exported variables.

implicit none

integer , parameter :: fp =8
integer :: nel

integer :: neq

integer :: nnl

integer :: npv

real (kind=8) :: eprop(6,x)
integer :: edof(4,x)

real (kind=8) :: f(x)

real (kind=8) bc ()
integer :: b(x)

real (kind=8) :: eforces(2,x)

B-1

character (255) :: outfile
integer :: ierr(1)
real (kind=8) :: displace(x)

I Local declarations

integer :: bandbredd,i, Edofel(4),nlcs
real (kind=8) :: kel (4,4),Epropel(6)
real (kind=8), allocatable :: Kmatrix(:,:)

real (kind=8) :: ftemp(neq)

! Open file to write result to

open(unit=unitoutfile , file=outfile ,&

access='sequential ', action="write 'K status='
unknown ")

I Calculates bandwith

bandbredd=BB(Edof, nel)

! Creates stiffness matrix

allocate (Kmatrix(neq, bandbredd))

Kmatrix=0.0_ap

nlcs=1

I Creates element matrices and assembles to
stiffness matrix

do i=1, nel
Epropel=Eprop(:,i)
Edofel=Edof (:,i)

call bar2e(Epropel, kel)

call assem(Kmatrix, kel , Edofel ,bandbredd , neq

)

end do

! Solves the system of linear equations which
gives displacement and reaction forces

do i=1,neq
displace (i)=bc(i)
ftemp (i)=f(i)

end do

call bandsolve(Kmatrix, displace ,ftemp,b,neq,
bandbredd , nlcs ,ierr (1))

! Computes elementforces (normal forces)
do i=1,nel
Epropel=Eprop(:,i)
Edofel=Edof(:, i)
call bar2s(Epropel ,Edofel ,displace ,neq,
eforces (:,i))
end do
!'Write displacement and reaction forces to file
call write3(ftemp,displace ,b,neq)
I Writes element forces to file

call write4 (eforces, nel)

close(unitoutfile)
deallocate (Kmatrix)

return
end subroutine execute
end module calcprog

! End file calcprog.f90

