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Abstract

The geometry of a loud speaker cavity often gets a complicated geometry with
sharp corners and narrow ducts. For this kind of shape the internal energy
losses caused by viscosity and thermal conduction play an important role in
the acoustic behavior. Today there is no method that sufficiently predict these
effects. In this report the analogy between the loudspeaker cavity, a simple mass
and spring system and a Helmholtz’s resonator is very important. It shows that
the damping at the eigen-frequencies corresponds to the acoustic impedance of
the system. That was the reason that the aim of this master thesis was to
create a finite element model of a loudspeaker cavity and with this calculate
the acoustic impedance including the internal energy losses. The model was
created by using a reliable approach of two equations. The first one describes
the acoustic pressure and the second one describes the thermal conduction. The
two equations can be used separated except at the boundaries where they are
connected by the boundary conditions. This finite element model yields results
that are totally damped, meaning that the model is not working. A reason
for that could be that the mesh is too coarse. Another reason could be that
the energy dissipating parameter bulk viscosity is not correctly implemented.
One thing that made it difficult to implement was the lack of relevant values,
another the fact that it seems to have different definitions for different kinds of
applications.
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Chapter 1

Introduction

1.1 Background

A mobile phone consists of many different components that all require a certain
amount of space. The acoustic quality of the loudspeaker for example, is highly
dependent on the loudspeakers cavity. This cavity sometimes gets a complex
geometry with small ducts and narrow spaces. For this kind of shape the vis-
cosity and the heat conduction play an important role in the acoustic behavior,
especially for the acoustic response close to the eigen-frequencies. The viscos-
ity and the heat conduction of the air, damp the amplitude of the frequency
response which will result in a bad sound quality. Today there is no sufficient
way to predict the damping effects of a certain geometry of a loudspeaker cav-
ity. Instead, a lot of time consuming tests have to be done in order to develop
and verify the sound. It would be advantageous and more cost efficient if the
frequency response could be predicted in an earlier stage of the production.

1.2 Purpose

The purpose of this master thesis is to evaluate the possibilities to numerical
calculate the complex acoustic impedance of a loudspeaker cavity, considering
the effects of viscosity and thermal conduction.

1.3 Method

The geometry of the cavity is generated in ABAQUS. In order to get the reso-
nance frequency in the right range the theory of Helmholtz’s resonator is used.
The idea is then to use already existing acoustic and thermal elements in Calfem,
and include the loss of energy by means of the Stokes-Navier equation and ther-
modynamic relationships. This method will be compared to the alternative
approach that is used in ABAQUS.
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Chapter 2

Theory

2.1 The wave equation

The linearized wave equation is given by Equation 2.1[4].

∇2p− 1
c2

∂2p

∂t2
= 0 (2.1)

Here p denotes the acoustic pressure and c denotes the speed of sound which
for air is about 340 m/s for normal conditions. The pressure in Equation 2.1
is described as a function of time. In this work, the analysis of the acoustic
responses will be made as a function of frequency. Therefor, the time derivaty
has to be transformed to a frequency dependent variable using the time harmonic
relationship shown in Equation 2.2, where ω = 2πf denotes the angle velocity.

∂

∂t
= −iω

∂2

∂t2
= ω2

(2.2)

The acoustic pressure tends to cover a very wide range of frequencies. It is
therefor convenient to use the logarithmic variable Lp, shown in Equation 2.3.

Lp = 10log
|p|2
p2

ref

= 20log
|p|

pref
[dB] (2.3)

The reference pressure pref is set to 2 · 10−5, which is the lowest pressure a
human can here.

2.2 The acoustic impedance

The acoustic impedance given by Equation 2.4, is the ratio between the pressure
and the particle velocity of a sound wave.

Z =
p

v
(2.4)
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The impedance and its relevance for this work will be discussed in section 2.3.

2.3 A damped oscillator

To understand the impact of the fundamental quantities, a simple one degree of
freedom-system can be studied. An example of this system, a so called damped
oscillator, is illustrated in Figure 2.1.

Figure 2.1: A damped oscillator. Here κ denotes the stiffness of the spring, d
denotes the damping constant and m denotes the mass.

The second law of motion and the exciting effect of the force on the mass yield,
with stiffness κ, damping constant d and the mass m, the differential equation
2.5[4]:

d2x(t)
dt2

+ 2δ
dx(t)

dt
+ ω2

0x(t) = g(t) (2.5)

where:

ω0 =

√
k

m
, δ =

d

2m
, g(t) =

F (t)
m

(2.6)

The approaches g(t) = ĝeiωt and xp(t) = xpe
iωt yield for Equation 2.5 following

particular solution[4]:

xp =
ĝ

(ω2
0 − ω2) + i2δω

(2.7)

From Equation 2.5 and 2.7, one can see that for frequencies below the eigenfre-
quency (ω < ωo), the stiffness will determine the displacement, while the mass
is decisive for high frequencies. Finally, for the frequencies corresponding to the
eigenfrequencies (ω = ωo), the particular solution is ending up in Equation 2.8
using the expressions for δ and g(t) above.

xp =
F

iωd
(2.8)

Since iωx = dx(t)
dt and Z = F

v the impedance is given by 2.9, where v denotes
the particular velocity.

d =
F

iωxp
=

F

v
= Z (2.9)

6



This leads to the important theory that, for frequencies equal to the eigenfre-
quencies of a damped oscillator, the damping of the system corresponds to the
impedance.

2.4 Helmholtz resonance

One efficient way to absorb acoustic energy is by using a bottle or a jar. The
phenomenon is called the Helmoltz resonance. The device consists of a cavity
connected to the atmosphere via a narrow duct as illustrated in Figure 2.2.
Physically, this resonator resembles a mass and spring system. The fluid in the
neck of the resonator corresponds to the mass of the oscillator and the cavity
corresponds to the spring[3].

Figure 2.2: The Helmholtz’s resonator corresponds to a mass and spring system.
The duct of the resonator represents the mass, and the cavity represents the
spring of the system.

Due to the cyclic pressure fluctuations in the cavity the fluid (or the mass)
oscillates back and forth in the neck. This oscillation results in low tones at the
natural (or resonance) frequencies. The natural frequencies can be calculated
with Equation 2.10 [5], where S denotes the area of the opening of the bottleneck
and V is the volume of the cavity. l′ is given by Equation 2.11 and denotes the
length of the neck, corrected because of the moving air outside the edge[5].

f0 =
c

2π

√
S

l′ · V (2.10)

l′ = l + 1.7 ·
√

S

π
(2.11)

In order to generate this absorption of acoustic energy the cavity walls have
to be rigid and the cross section of the neck has to be much smaller than the
cross-section of the cavity[3]. The analogy between the Helmholtz resonance
and the resonance of the mass and spring system is illustrated in table 2.3.
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Figure 2.3: The analogy between the mass and spring system and the
Helmholtz’s resonator. The smaller cross section and longer pipe, the more
damping you get.

2.5 Internal Energy Loss

2.5.1 Introduction

In chapter 2.1 the reader was introduced to the wave equation. This equation
applies for waves with adiabatic propagation and no internal losses. For wave
propagation in small ducts, and sharp corners, internal energy losses due to
viscosity and thermal conduction have to be accounted for. Thus, the wave
equation has to be modified in order to include these losses.

2.5.2 Boundary layers

Near the boundaries, visco-thermal effects on the sound wave is important in
regions called viscous boundary layers and thermal boundary layers. In figure
2.4 viscous boundary layers are illustrated. The alternating difference in pres-
sure causes a motion of the air molecules between the walls. Half way between
the walls the maximum amplitude of motion will occur, while the molecules
in contact with the walls remain at rest. This velocity difference between the
molecule layers gives rise to frictional losses near the the walls as marked by
(δvisc) in the figure. The thickness of the viscous boundary layer, δvisc is given
by Equation 2.12[6].

δvisc =
√

2µ

ωρo
(2.12)

Here µ and ρo denote the shear viscosity and the density respectively. The
thermal boundary layer is the region where the flow changes character from
adiabatic in the mainstream to isothermal near the surface. The thickness of
the thermal boundary layer δtherm, is given by Equation 2.13[6].

δtherm =
δvisc√

Pr
(2.13)

Here Pr denotes the Prandtl’s number. A frequency of 1 kHz for air yield δvisc =
0.06 mm and δtherm = 0.076 mm. Since the two boundary layers obviously are
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very thin, the energy dissipation within the layers can be considered to appear
at the boundaries. At least for large scale problems. For finite dimensions the
boundary layers will represent a much greater part of the cavity. A natural
consequence from this is that the smaller the dimensions are, the more energy
losses you get. Another thing is that the most energy dissipating point doesn’t
necessarily have to be the one closest to the surface. Obviously it is hard to
determine the variation of the energy losses for small scale problems. For this
reason it is necessary to use a finite element approach. The Finite Element
Method will be described in section 2.7.

Figure 2.4: The Viscous boundary layers. The thickness of δvisc depends on the
distance between the walls, and the viscosity of the fluid.

2.6 The wave equation modified for visco-thermal
effects

The mathematical model presented in this work is based on the Navier-Stokes-
continuity- and energy equations[6]. The original set of field equations are re-
duced to a system with two unknowns: the acoustic part of the pressure, p, and
the acoustic part of the temperature, τ . Equations 2.14 and 2.15 will be the
starting point for the finite element formulation presented in this work[6].

∇2p =
γ

c2
a

(
ω2 + l′vciω∇2

)
(p− ατ) (2.14)

lhc∇2τ = iω(τ − γ − 1
γα

p) (2.15)

Here γ = Cp

Cv
denotes the ratio of specific heat at constant pressure to the

specific heat at constant temperature. The term α denotes the rate of increase
of pressure with temperature at constant volume. The vertical and horizontal
molecular mean-free-path l′v and lh respectively are described in Equation 2.16
and Equation 4.13.

l′v =
ν + 4

3µ

ρc
(2.16)

9



lh =
K

ρCpc
(2.17)

Here K denotes the heat conductivity, ν denotes the bulk viscosity and µ denotes
the coefficient of shear viscosity. The bulk viscosity is the change in pressure
due to isotropic expansion.

From Equations 2.14 and 2.15, two different modes of wave motion can be
derived. The first mode is called the propagational mode and corresponds to a
wave which propagate with an almost adiabatic velocity. For this mode the fluid
equation 2.14 is the dominating one. The second mode, which occur for a state
where τ is much greater than p corresponds to the heat conduction described
in equation 2.15 and is called the thermal mode. Which wave predominates
depends on the influences of the energy-loss term in l′v and lh. The thermal mode
is important only within the thermal boundary layer described in Equation 2.13.
The velocity vector u, of the fluid plays an important role in this mathematical
model. It can be separated into two parts, the longitudinal part ul, given by
Equation 2.18 and a transverse part ut, given by Equation 2.19 [6].

ūl =
∇p

ρiω
− γl

ρc
[∇p−∇T ] (2.18)

ūt =
µ

ρiω
curl(curlūt) (2.19)

u = ul + ut (2.20)

The longitudinal velocity is the one related to the acoustic pressure according to
Equation 2.20. It is therefor coupled to the propagational mode and will be used
to fit its boundary condition. The rotational velocity is unrelated to pressure
waves but constitute a shear motion which actually gives rise to a third wave
mode called the shear mode. Similar to the thermal mode the shear mode is
only important within the boundary layers. The propagational and the thermal
mode, through the set of equations 2.14, 2.15 and 2.18, should be sufficient in
order to analyse the acoustic impedance. The shear mode will be neglected in
this work.
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Chapter 3

The Finite Element Method

3.1 Introduction

The finite element method is a numerical prediction technique. It is used for
solving differential equations that are too complex to be solved analytically.
The region considered is divided into smaller parts, finite elements. Within
each element there is a locally defined shape function to which the field variable
distribution is approximated to. This way the problem results in a set of alge-
braic equations. In this paper, the differential equations for the heat conduction
and the acoustic fluid shown in Equation 3.4 and 3.9 respectively will be solved
by the finite element method. To do this, the including field variables p and τ
first have to be separated in a frequency dependent and a spatial part through
the approximations in Equation 3.1[7]:

p(x, ω) = N(x)p(ω) (3.1)
τ(x, ω) = N(x)τ (ω) (3.2)

Here N is a row matrix containing the shape functions and τ and p contain
the frequency dependent temperature and the frequency dependent pressure
respectively. The differential equations will be multiplied by a weight function
w:

w = Nc

Since w and c are an arbitrary function and an arbitrary matrix, w can be
written as:

w = NT cT

Finally, the matrix B is defined as

B = ∇N

Which yield ∇p = Bp and ∇τ = Bτ . With these statements the finite element
equations for the acoustic fluid and the heat conduction can be derived.
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3.2 Acoustic fluid

To make a finite element solution of the propagational wave mode described
in Equation 2.14, it is necessary to start with the fundamental wave equation,
without visco thermal effects. The wave equation 2.1 is given again by Equation
3.3.

∇2p− 1
c2

∂2p

∂t2
= ω2Q (3.3)

This time the fluid source Q, i.e the mass inflow per unit volume, is added to
the equation. The same equation is rewritten in Equation 3.4:

−ω2p + c2∇2p = c
2
ω2Qa (3.4)

Multiplied with an arbitrary function w, and integrated over the region Ω yields
Equation 3.5:

−ω2

∫

Ω

wpdΩ− c2

∫

Ω

w∇2pdΩ = c
2
ω2

∫

Ω

wQadΩ (3.5)

The second term can be integrated by parts, giving

c2

∫

Ω

w∇2pdΩ = c2

∫

Γ

w∇pndΓ− c2

∫

Ω

∇w∇pdΩ (3.6)

Applying the concepts introduced in the previous section the FE-formulation
of the acoustic fluid is giving by Equation 3.7 and is formulated in matrixes in
Equation 3.8. The index a stands for acoustic fluid.

−ω2

∫

Ω

NT NadΩp + c2

∫

Ω

BT BadΩp = c2ω2

∫

Ω

NT
a

dQa

dn
dΩ + c2

∫

Γ

NT ∂p

∂n
dΓ

(3.7)(−ω2M + K
)
p = fq + fl (3.8)

Where:

Ma =
∫

Ω

NT NadΩ

Ka = c2

∫

Ω

BT BadΩ

fq = c2ω2

∫

Ω

NT
a

dQa

dn
dΩ

fl = c2

∫

Γ

NT
a∇p · ndΓ

fl is the acoustic load acting on the boundary surface Γ. Equation 3.8 now
constitute the foundation to the finite element formulation of the propagational
wave mode.

3.3 Heat conduction

In a similar manner as for the propagational wave mode, the finite element
formulation for the original thermal conduction has to be defined in order to
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solve the thermal wave mode. The differential equation for heat conduction is
given in Equation3.9[2]:

−∇T q + Qh = −ρciωτ (3.9)

Where q(x, t) is the heat flux vector, and Qh is the heat supply. The index h
stands for heat conduction. Similar to the case of the acoustic fluid, Equation
3.9 is multiplied by w and integrated over the region Ω. This yields Equation
3.10[2].

−
∫

Ω

wρciωτdΩ +
∫

Ω

w∇T qdΩ =
∫

Ω

wQhdΩ (3.10)

By introducing the fact that the heat flux vector depends on the temperature
gradient according to Fourier’s law of heat conduction: q = −D∇τ [2], Equation
3.10 is given by Equation 3.11. The matrix formulation of the heat conduction
is given by Equation 3.12.

−
∫

Ω

ρcNT NhiωdΩτ +
∫

Ω

BT DBhdΩτ = −
∫

Γ

NT
h qndΓ +

∫

Ω

NT
h QhdΩ (3.11)

(−iωMh + Kh) τ = f (3.12)

Where:

Mh =
∫

Ω

ρcNT NhdΩ

Kh =
∫

Ω

BT DBhdΩ

f = −
∫

Γ

NT
h qndΓ +

∫

Ω

NT
h QhdΩ

(3.13)

The material parameters ρ and c are defined by the thermal conductivity in the
constitutive matrix D.

D =




kxx 0 0
0 kyy 0
0 0 kzz




Here kxx, kyy and kzz denote the thermal conductivity in x-, y- and z direction
respective. Air is an isotropic material. This means that the thermal conduc-
tivity is the same in all directions.
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Chapter 4

FE- modeling

4.1 Geometry

Figure 4.1: The loudspeaker component

The loudspeaker is situated on top of the phone on the backside. Besides gen-
erating speech when the phone is turned on to speaker mode it also generates
ring melodies and messenger signals. Figure 4.1 shows the loudspeaker com-
ponent, which consists of a plastic form with a cavity where the loudspeaker
is situated. The idea was to make a model similar to this loudspeaker cavity,
but without the loudspeaker. Simplified, this empty cavity forms two smaller
cavities connected with a narrow duct as shown in Figure 4.2.

Even if the geometry is simplified, it still has to generate eigenfrequencies in the
frequency range of interest, namely between 200 and 18000 Hz. Consider the
loudspeaker cavity as the spring system in Figure 4.3(a). Connecting the springs
parallel, as figured in Figure 4.3(b), the system corresponds to a helmoltz’s
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Figure 4.2: The loudspeaker cavity, simplified.

resonator. The effective volume Veff , of the cavity is given by Equation 4.1.

V = Veff =
1

1
V1

+ 1
V2

(4.1)

Figure 4.3: The loudspeaker cavity as a mass and spring system(a) and the
system parallel coupled(b).

From the statement above and Equation 2.10 and 2.11 from the theory of Hel-
moholtz’s resonator, the model shown in Figure 4.6 should generate a first reso-
nance frequency at 2.4 kHz. The two cavities are deliberately made in different
sizes in order to prevent possible effects of symmetry. The model has the di-
mensions according to table 4.1.

16



[h] H1 5 mm
A1 100 mm2

H2 3 mm
A2 36 mm2

S 1 mm2

Veff 88.8 mm3

Table 4.1: The Dimensions of the cavity. H1 and H2 denote the height of
the large and the small cavity respectively. A1 and A2 denote the areas of the
two cavities. Veff is the effective volume calculated according to the theory of
Helmholtz’s resonator and the mass- and spring system in section 2.3 and 2.4.

4.2 Boundary conditions

In order to solve the differential Equations 3.8 and 3.12, relevant boundary
conditions have to be specified. The model described above will be given two
different boundaries for the two wave modes, see Figure 4.3.3.

Figure 4.4: The thermal boundary Γt, covers the entire surface where τ = 0.
On Γp and Γ− Γp the velocity is set to 1 and 0 respectively.

For the propagational wave mode the total surface Γ is divided in two. The
boundary Γp represents the leftmost surface and the boundary Γ−Γp represents
the remaining surface. The entire surface Γ is imposed by a time harmonic load
with velocity amplitude v, described in Equation 4.2.

p = ρiωv (4.2)

In order to generate pressure fluctuations in the cavity the velocity amplitude
is set to 1 on Γp and to 0 on Γ − Γp. This means that all the boundaries are
infinitely rigid, except for the entire leftmost surface which is vibrating back and
forth like a piston. All the nodes on this side have the same displacement. I.e it
is considered as an ideal loudspeaker membrane. The boundary for the thermal
wave mode Γt, is the total surface, i.e Γt = Γ. Since the influence of surrounding
walls are neglected in this investigation, the acoustic part of the temperature on
this boundary is set to 0. The intention of this was to define a perfect heat flow
through all the walls. The boundary conditions are summarized in Equation
4.3.
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τ(Γt) = 0
v(Γp) = 1

v(Γ− Γp) = 0
(4.3)

4.3 The Finite element formulation including loss
of energy

The set of Equations 2.14, 2.15 and 2.18 forms the starting point of the finite
element solution that will include the visco- thermal effects. It will be solved
using two different elements, a three dimensional acoustic element for the propa-
gational mode and a three dimensional heat conduction element for the thermal
mode.

4.3.1 Propagational wave mode

The propagational wave mode is written again in Equation 4.4. It is rearranged
in Equation 4.5, and Equation 4.6 defines again its velocity boundary conditions.

∇2p =
γ

c2
a

(
ω2 + l′vciω∇2

)
(p− ατ) (4.4)

∇2p
γω2

c2 − γlvciω
p =

γω2

c2 − γlvciω
ατ − γiωlvcα

c2
a − γlvciω

∇2τ (4.5)

ul(Γp) = 1
ul(Γ− Γp) = 0

(4.6)

Equation 4.5 is first multiplied with an arbitrary weight function w, and inte-
grated over the volume.

∫

Ω

w∇2pdΩ− ω′ω
∫

Ω

wpdΩ = ω′ωα

∫

Ω

wτdΩ− iω′lvcα

∫

Ω

w∇2τdΩ (4.7)

Where
ω′ =

γω

c2 − γlvciω
(4.8)

The statements from the two previous sections and the divergence theorem yield
the FE formulation below. Equation 4.9 shows the matrix-formulation where
the indexes p and t stand for the propagational mode and the thermal mode

18



respective.
∫

Ω

BT BpdΩp + ω′ω
∫

Ω

NT NpdΩp−

−
∫

Γp

NT∇pndΓp =

= ω′ωα

∫

Ω

NT NtdΩτ+

+ iω′lvcα

[∫

ΓT

NT∇τndΓT −
∫

Ω

BT BtdΩτ

]

(Kp + ω′ωMp)p = Q + fl (4.9)

Kp =
∫

Ω

BT BadΩ

Mp =
∫

Ω

NT NadΩ

fl =
∫

Γp

NT∇pndΓp

(4.10)

Where Q still is the mass inflow per unit volume and time, this time according
to Equation 4.11:

Q = −iω′lvcαKt − ω′ωαCτ + iω′lvcα

∫

Γt

NT∇τndΓt (4.11)

The acoustic load fl is acting on the total boundary surface Γ. From Equation
3.6 yield ∇p:

∇p =
iωρul − γlv

c iωα∇τ

1− γlv
c iω

(4.12)

Applying the boundary conditions, Equation 4.12 gives ∇p = iωρ− γlv
c iωα∇τ

1− γlv
c iω

for
ul = 1 on the vibrating side Γp. On remaining surfaces Γt − Γp, the boundary

condition ul = 0 yields ∇p = − γlv
c iωα∇τ

1− γlv
c iω

. From the derivation above it turns out
that the mass matrix Mp is identical to original mass matrix Ma for the case
without visco-thermal effects, while the stiffness matrix Kp has to be modified
for the lack of the velocity term c2 to correspond to Ka. This is done by changing
the input value c = 340 to c = 1 in the implementation.

4.3.2 Thermal wave mode

The heat conduction from Equation 4.5 is defined by the thermal mode, given
again by Equation 4.13.

lhc∇2τ = iω(τ − γ − 1
γα

p) (4.13)
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Equation 4.13, is treated in the same way as for the propagational mode:
∫

Ω

BT BtdΩτ+
iω

lhc

∫

Ω

NT NtdΩτ =
∫

ΓT

NT dτ

dn
dΓT +

(
γ − 1
γα

iω

lhc

) ∫

Ω

NT NpdΩp

(4.14)
With the matrix formulation 2.1:

(Kt + kMt)τ =
γ − 1
γα

iω

lhc
Mpp +

∫

Γt

NT dτ

dn
dΓt (4.15)

Kt =
∫

Ω

BT BtdΩ

Mt =
∫

Ω

NT NtdΩ

(4.16)

∫
Γt

NT dτ
dndΓt is the temperature gradient on the boundary Γt. Here k = iω

lhc
is the thermal conductivity. Comparing to the original heat conduction matrix
Kh, k has to be set to one in the constitutive matrix D.

4.3.3 Summary of the calculations

An iteration between Equations 4.9 and 4.15 should yield a converged value
of the acoustic pressure, included the visco-thermal effects. In order to make
the calculations more perspicuous a summary of the calculation procedure is
presented in Figure 4.3.3. The values of the parameters introduced in this
model is given in table 4.2.

µ 184.6 · 10−7 (Ns/m2)
ν 110 · 10−7 (Ns/m2)
ρ 1.1614 (kg/m3)
c 340 (m/s)
α 3.66 · 103

γ 260

Table 4.2: The values of the parameters used in this model.
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Figure 4.5: The calculation flow chard. For each frequency in interest the
procedure starts with pin, i.e the pressure without internal energy losses. The
first step is to solve the thermal wave mode, Equation 4.15, which yields τ and
∇τ . With these temperature parameters Q and ∇p can be solved, by Equation
4.11 and 4.12 respectively. The second step is to solve the propagational wave
mode, Equation 4.9 ending up in a ”new” acoustic pressure pout. The procedure
from the first step to the second will be iterated until the acoustic pressure has
converged according to the criteria: |pin−pout

pin
| = epsilon = 0.1.
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4.4 Simulations in ABAQUS

4.4.1 Introduction

A useful tool to solve finite element problems is the computer simulation pro-
gram ABAQUS.CAE. One of its limitations is off course that it does not totally
include the problem introduced in this work. This section will give a brief pre-
sentation of the simulation procedure in ABAQUS.CAE. Since the drawing and
the mesh application of the model are very straight forward, these will not be
payed any further attention. The mesh is illustrated in Figure 4.6. For be-
ginners the basic tutorial and the user’s manual ”Getting started” are highly
recommended.

4.4.2 Internal energy losses in ABAQUS

In ABAQUS the internal energy losses are applied by defining a flow resistance
called volumetric drag, γ [1]. Equation 4.17 shows the analogy between the flow
resistance and the viscous fluid losses.

γ =
ω2ρ

B
(ν +

4
3
µ) (4.17)

Here B denotes the bulk module (B = ρ · c2) and ν again, the bulk viscosity.
In the ABAQUS interface, this volumetric drag is added as a damping constant
to the undamped case. It only influences the frequency response at the reso-
nance frequency for which it will decrease the amplitude. The Equation 4.17 is
found in the ABAQUS user’s manual, where it is only recommended for porous
absorbents, for example mineral wool. In the telephone production it can bee
used, however, as a ”steering wheel”. This means that the volumetric drag is
tuned to get a certain damping, instead of refining the frequency response af-
terwards. For the loudspeaker’s properties Equation 4.17 yields a volumetric
drag of 4 · 10−6. This is too small to affect the frequency response. Instead the
volumetric drag for this model is set to 200.

4.4.3 Material and boundary conditions

In the property module the material behaviors acoustic medium and density
were chosen. For the acoustic medium The bulk modulus B = ρc2 and the
volumetric drag were defined. The material properties were set according to
table 4.2. Since the surfaces for an acoustic medium in ABAQUS are rigid by
default, no velocity boundary conditions needed to be specified. Note that there
is no possibility to apply any heat conduction for an acoustic medium. The load
applied at the leftmost surface was created in the load module. It was defined
as an inward volume acceleration with magnitude 1 + 0i and amplitude 2πf .
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Figure 4.6: The loudspeaker cavity with the mesh, drawn in ABAQUS.
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Chapter 5

Simulation Results

The first step was to investigate the impedance without visco- thermal effects.
This was done by implementing Equation 3.9 using a three dimensional acoustic
element in Calfem. The Impedance is shown in Figure 2.10 and is called the
base case. The peaks are infinite, but is not noticeable in this figure because
of the resolution. The peak of the impedance at a frequency of 2.4 kHz, which
was outlined in section 6 confirms the resonance phenomena of the cavity ge-
ometry. Figure 2.11 shows the comparison between the base case from Calfem,
the corresponding base case made in ABAQUS and the frequency response from
ABAQUS included a volumetric drag of 200. Here the impedance is calculated
for a frequency range including only the first resonance frequency of the model
in order to avoid pressure differences within the elements. As can be seen, the
volumetric drag decreases the amplitudes only at the resonance frequencies. Ac-
cording to Figure 2.11, the calculations in Calfem without visco- thermal effects,
are comparable to the calculations in ABAQUS without the damping constant
volumetric drag. [6]. The last figure shows the base case from ABAQUS and the
frequency response with the energy losses included according to the calculations.
The response seems to be totally damped by the energy losses. Apparently there
is something wrong with the algorithm.
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Figure 5.1: The acoustic impedance without visco-thermal effects as a function
of frequency. The peak at frequency 2.4 kHz corresponds to the resonance
frequency of the loudspeaker cavity.
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Figure 5.2: The acoustic impedance. The base case from ABAQUS.CAE and
Calfem are the same and cover each other. The dotted line shows the impedance
included the volumetric drag, γ = 200.
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Figure 5.3: The broken line shows the acoustic impedance with internal energy
losses included. The solid line is the base case frequency response. From this
figure it seems like the energy losses totally damp the system.
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Chapter 6

Conclusions

It is clear that the internal energy losses, caused by viscosity and thermal con-
duction cannot be neglected for all types of geometries. The geometry of the
loudspeaker cavity, corresponds to a Helmholtz’s resonator. This is demon-
strated in Figure 5.1. A consequence of this is that the damping of the system
determines the amplitude totally for frequencies equal to the eigenfrequencies.
According to the discussion in section 2.3 the damping at the resonance frequen-
cies is equal to the acoustic impedance. For that reason, in order to describe
the acoustic impedance in the loudspeaker cavity, it is important to take the
energy losses into consideration.

Including the internal energy losses, i.e. the viscosity and thermal conduction in
the acoustic impedance is not trivial. In the finite element simulation program
ABAQUS.CAE the viscous part of the damping must be set, or calibrated, using
the volumetric drag. This parameter is described in great detail in the user’s
manual, but is only recommended for porous materials. It was nevertheless
used to analyze its general influence, and to get an idea how the damping would
look like. For the loudspeaker’s properties Equation 4.17 yields a volumetric
drag of 4 ·10−6kg/sm3. This value was first implemented in the ABAQUS.CAE
model but did not have any influence on the frequency response. Instead the
volumetric drag was set to 200kg/sm3. According to Equation 4.17 the value of
the volumetric drag is determined by a number of parameters. One of these is
the ”bulk viscosity”, for which it turned out to be difficult to define the relevant
type of input. This is probably one reason why there is no general method
including all types of materials.

The main reason why ABAQUS is inadequate for this purpose is, however, that
it only includes the viscous losses, not the thermal conduction.

When starting this work, the main goal was not to get an accurate and working
algorithm but to understand and to explain the phenomena of internal energy
losses. The set of equations (Eqs. 7, 8 and 9) has been a common starting
point for similar problems, and is not questioned here. The challenge was to
attempt to translate it into a finite element model. According to the result in
fig 5.3, the model does not seem to work properly. The result should resemble
the frequency response from the ABAQUS simulation, where the resonance
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frequency amplitude is decreased by the volumetric drag. Instead the algorithm
seems to converge to an incorrect value, which results in a totally damped
frequency response. This strong damping probably has to do with the thermal
boundary conditions. One thing that indicates this is the extreme temperature
values (over 1000 degrees). Setting the acoustic part of the temperature to zero
on all boundaries doesn’t necessarily mean that a perfect heat flow has been
established. The definition ”acoustic part of the temperature” and how it is
meant to be interpreted in the modified wave equation and, above all in its
finite element solution is not at all obvious. Another part of the problem is
the model. First of all, the pipe is probably to big in relation to the boundary
layers presented in 2.5.2. This means that, if the algorithm would have worked
as expected, there probably would not be any damping at all. Even if the
proportions are good enough to generate some damping, the mesh of the model
might be too coarse. To make the energy losses occur properly the thin boundary
layer should possibly cover one or more elements in the radial direction. This
means that the elements, at least the ones closest to the surface (and only in the
pipe, since this is where the losses occur), have to be less than 0.016mm. That
element size would mean 3 million elements, which would exceed the available
computational capabilities, in particular with regard to run-time. It would be to
much even if the symmetry was used in order to reduce the numbers of elements.
Another way to investigate the influence of the boundary layer, without changing
the mesh, could be to increase the boundary layer thickness so that it covers
the elements closest to the surface. For this purpose the shear viscosity was
temporarily set to 0.042, given a boundary layer of 1mm. This action had
no effect on the frequency response. The significations of the bulk viscosity
parameter is still unclear, mainly because of lack of information. It seems that
there are different types of definitions of the ”bulk viscosity”, depending on the
context. For that reason the application of the bulk viscosity in this model
might not be correct.

To analyze why the algorithm is not working requires a more thorough study of
the theoretical background, which is beyond the scope of this study. This should
be attempted in future work within the topic. One thing could be to further
investigate the influence of the boundary layers, and generate a mesh more
adopted to the expected boundary layer influence. There are many possibilities
to make a better mesh than the one presented in this work. Another thing could
be to limit the model to only include the viscous losses, since these probably
are the dominating one.
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MWL, Stockholm, 2001.

[5] Sven G. Lindblad. Akustik 4. Lunds Tekniska Högskola, Lund, 1985.
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