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Abstract 
Glulam arches can be used when designing structures with large spans such as 
halls or arenas. Wood has low density compared to steel and concrete which 
keeps down the dead weight of the structure. The cross section of glulam 
arches is often built up as a box-section for efficiency reasons. However, wood 
shows strongly orthotropic behavior where maximum allowed stress 
perpendicular to grain is only 1-2% of maximum stress along grain. Bending 
moment creates stress perpendicular to grain for a curved beam element. By 
altering the slope of the arch, moment forces can be minimized for a specific 
load distribution and the structure can be designed using a minimum of 
material. 

Wood is a heterogeneous material which means that different parts of the 
material have different properties. The volume of wood needed for designing 
an arch big enough for a structure as a hall or an arena is substantial. As the 
volume of wood under stress is increased the probability that a small part of 
the volume has a low ultimate stress value also increases. This effect can be 
handled using Weibull statistics theory. 

In this thesis expressions for calculation of normal stress, shear stress and 
stress perpendicular to grain are derived for a curved beam with box cross 
section using beam theory. By using equilibrium conditions and an 
approximation method, the force vector corresponding to a distributed load 
of a curved beam element is described without the need of shape functions. 
With use of the finite element method, reaction forces can be calculated for 
an arbitrary system of curved beams. If the reaction forces are known, it’s 
possible to calculate the section forces using the equilibrium conditions. 
Finally, Weibull theory is used to calculate the strength of such a structural 
system. 

The theory is implemented using MATLAB/CALFEM to create a toolbox which 
can be used for strength design of structures made of curved glulam beams. 

Calculations carried out using the toolkit developed show that the Weibull 
theory size effect has a large impact on the strength of large arches. Analysis 



 

 

 

 

of an arch with a span of about 90 meters shows that the strength may be 
heavily overestimated if the size effect is disregarded.



 

 

 

 

 

Sammanfattning 
Limträbågar kan användas för att bygga upp det bärande systemet i 
byggander med stor spännvidd som arenor eller hallar. Trä är lätt i förhållande 
till stål och betong vilket möjliggör en låg vikt för konstruktionen. Tvärsnittet 
är ofta av lådtyp av effektivitetsskäl. Trä har egenskapen att vara extremt 
ortotropt där den maximalt tillåta spänningen vinkelrät fiberriktningen enbart 
är 1-2% av den maximal tillåta spänningen längs fiberriktningen. För en krökt 
balk är böjmoment den främsta orsaken till spänningar vinkelrät 
fiberriktningen. Genom att välja en bågkonstruktion med rätt krökning för en 
specifik last kan momentkrafterna minimeras. 

Trä är ett heterogent material vilket innebär att olika delar av materialet har 
olika egenskaper. Den totala volymen som krävs för att konstruera en balk 
stor nog för en hall eller arena är substansiell. Då volymen av trä under 
spänning ökar, ökar också risken att någon liten del av den volymen har en 
lägre hållfasthet. Detta beskrivs av Weibull teori och kallas storlekseffekt. 

I denna rapport har uttryck för normalspänning, skjuvspänning och spänning 
vinkelrät fiberriktningen härletts för en krökt balk av lådtvärsnitt med hjälp av 
balkteori. Genom att utnyttja jämviktsvillkor kan lastvektorn för en krökt balk 
under utbredd last beräknas utan att formfunktioner behöver vara kända. 
Med hjälp av finita element-metoden kan upplagskrafter beräknas för ett 
godtyckligt system av krökta balkelement. Är last och upplagskrafter kända 
kan snittkrafter beräknas med hjälp av jämviktsvillkor. Avslutningsvis används 
Weibullteori för att beräkna systemets hållfasthet. 

Teorin beskriven ovan är implementerad som rutiner i MATLAB/CALFEM, 
dessa bygger upp en verktygslåda av funktioner som kan användas för att 
konstruera strukturer av godtyckliga krökta limträelement utav lådtvärsnitt. 

Beräkningar utförda med hjälp av verktygslådan visar att storlekseffekten är 
högst påtaglig för stora bågar. Analys av en båge med drygt 90 meters 
spännvidd visar på att hållfastheten kraftigt överskattas om storlekseffekten 
inte tas med i beräkningarna. 



 

 

 

 

 



 

 

 

 

 

List of Symbols 
Greek letters 

α Angle 

ε Normal strain 

γ Shear strain 

φ Angle 

θ Angle 

σ Normal stress 

σr Tensile stress perpendicular to line of gravity 

τ Shear stress  

 

Latin letters 

f Force vector 

h, ho Total height of cross section 

hweb Total height of web 

I Moment of inertia 

J Moment of inertia of a curved beam 

K Stiffness matrix 

m Cross section constant 

m* Measure of spread in Weibull theory 

M Moment  

N Normal force 
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u Displacement vector 
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CHAPTER 1 

1 INTRODUCTION 
 

1.1 BACKGROUND 

Glulam timber arches can be used as an alternative to steel when designing 
large structural systems such as halls or arenas. The cross section is for very 
large arches often designed as a hollow box section to increase the bending 
moment capacity. Wood, as a construction material, is a renewable resource, 
has excellent fire withstanding abilities and has a low self weight compared to 
steel and concrete (Burström, 2001). An example of such a structure is the 
Nordic Hall, which is situated in Sundsvall, a city in north of Sweden. The span 
of the wooden arch building up the structural system is almost 90 meters. 
During winter 1993 this structure almost collapsed due to large cracks along 
the curved beam elements. These cracks arose because of excessively 
unsymmetrical snow load which created large forces perpendicular to line of 
gravity in the connection points of the beams building up the arch (Olsson, 
2001). More of these kinds of structures are planned, during spring 2008 a 
glulam arch-structure width a span of 108 meters is being built in Sandviken, 
Sweden.  

By choosing an arch as design element moment forces are minimized. The 
slope of an arch can be chosen in such a way that loads mainly will be 
transported as compressive forces attacking the ends. A good illustration of 
the concept is old stone arch bridges built without using any cement or steel 
bars. It’s clear that the stone structure can’t withstand more than a minimum 
of moment- or shear forces, the whole concept is dependent on the fact that 
the arch structure transfers load mainly as compressive force (Isaksson et al, 
2005). The compressive force action is, however, dependant of the load 
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distribution. For a stone arch the dead-weight is dominating and the load 
carrying action is not very much affected by variations of the external load. 

The shape of the arch can be chosen for a specific load so that no bending 
moment occurs. It is possible to derive this shape mathematically and the 
result, called the thrust line, is parabolic for a uniform vertical load. The 
reason why bending moment should be minimized is that bending moment 
leads to large stresses parallel to grain, stress perpendicular to grain and in 
general also to shear stress. Since wood shows strongly orthotropic behavior 
where the maximum allowed stress perpendicular to grain is only 1-2% of 
maximum stress along grain, stress perpendicular to grain often becomes the 
limiting factor when designing arches.  

Wood is a heterogeneous material which means that different parts of the 
material have different properties.  The volume of wood needed to construct 
arches with span as large as 90 meters is substantial. As the volume of wood 
under stress is increased the probability that some small part has a low 
ultimate stress value also increases. This is called the volume effect and can 
be handled using Weibull statistics, also known as weakest link theory. 
(Olsson, 2001) 

Equations based on beam theory for calculating stresses for curved beams can 
be found in several collections of formulas, see e. g. Warren (2004). These 
equations or expressions are however generic and needs further development 
before application to a specific cross section. As an alternative, it would be 
possible to build up a complete finite element model using 3D shell elements 
or 2D plate elements. This would, however, require FEM-modeling skills and 
be very time consuming, thereby also making the strength design more 
expensive. 

1.2 OBJECTIVES 

The main objective of this master’s thesis is to develop a method that can be 
used when designing structural systems built up by glulam arches with hollow 
box cross section. 
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The sub activities of this master’s thesis are: 

• Derive a method for obtaining normal force, shear force and bending 
moment for a structural system of curved beams using the finite 
element method and beam theory. 

• Derive expressions for tangential normal stress, radial normal stress 
and shear stress for a curved glulam beam with a hollow box section.  

• Suggest a method for obtaining a design value for the strength of a 
curved wooden beam where the volumetric effect is taken into 
account, using Weibull statistics.  

• Implement the above derivations and methods to create a software 
toolbox for designing large curved beams where normal stress, shear 
stress and stress perpendicular to line of gravity are taken into 
account. 

1.3 LIMITATIONS 

Only stresses caused by in-plane external loading of the arch are considered. 
Possible torsion, out-of-plane bending and shear force, and moisture induced 
stresses are accordingly not considered. Neither is buckling nor possible 
effects of creep studied. The material is assumed to be linear elastic. 

1.4 AUDIENCE 

To fully comprehend this thesis, some knowledge of the finite element 
method, beam theory, calculus and linear algebra is recommended.  
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CHAPTER 2 

2 THEORY 

2.1 FINITE ELEMENT FORMULATION OF STRAIGHT AND CURVED BEAMS 

The finite element method is used to solve partial differential equations 
numerically. Almost all physical phenomena are modeled using differential 
equations, and in most cases the equations are too complicated to be solved 
by classical analytical methods. The approach of the finite element method is 
to divide the region of interest into smaller elements, finite elements. Instead 
of seeking an approximation that holds for the entire region, approximation 
that holds for a small part of the region is used. The smaller parts are 
connected by their boundaries, which makes it possible to build up a global 
equation system describing the physical behavior of the entire region.  

It is a characteristic behavior of the finite element method that as the number 
of finite elements used to describe a problem is increased, the error of the 
approximation decreases. The finite element method can be used to solve 
differential equations describing ground water flow, electrical current, laminar 
flow in pipes and many other physical engineering problems. The reference 
used for this chapter (2.1) is “Introduction to the Finite Element Method” by 
Ottosen and Peterson (1992). 

A complete derivation of the finite element formulation for a straight beam is 
not carried out in this report. The interested reader can find such a derivation 
in e.g. Ottosen and Peterson (1992). The mechanical behavior of a straight 
beam can if certain assumptions are made be described by the differential 
equation: 
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   (2.1) 

Such a beam is called a Bernoulli beam and the derivation is based on the 
assumption that "plane sections normal to the beam axis remain plane and 
normal to the beam axis during deformation". The critical point of this 
assumption is that it leads to the contradiction of existence of shear stress, τ, 
in spite of zero shear strain γ. The theory shows good results for long slender 
beams where the ratio of length to height is about six or more. For higher 
beams, Timoshenko beam theory which is more refined can be used. For 
extremely high beams, general plane stress elasticity theory has to be used. 
The stiffness matrices used in this paper are derived using the same basic 
assumptions as used in the Bernoulli beam theory for straight beams. 

2.1.1 ELEMENT STIFFNESS MATRIX 
The element stiffness matrix (Ke) gives the relationship between the element 
displacements (ue) and the element reaction forces (fe):  

Ke ⋅ ue = fe     (2.2) 

The vector ue describes displacements in the direction of the degrees of 
freedom and f is the corresponding force vector.  

The stiffness matrix of a 2D straight Bernoulli beam element can e.g. be found 
in (Austrell et al, 2004) and is as follows: 
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Figure  2.1. Straight beam element
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L denotes length of the beam, E denotes Young's modulus. A and I denotes 
area and moment of inertia of the beam cross section, respectively.  

The stiffness matrix of a curved beam is more complicated because of more 
coupling. For instance is displacement u4 for a curved beam (see figure 2.1) 
coupled not only to the forces f1 and f4, but also coupled to f3 and f6.  

 

2a
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u1 

u3 u5

u4 

u6 

R

 

Figure  2.2. Curved beam element 
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S. Krenk (1993) has developed a general method to compute the stiffness 
matrix for curved and non-homogenous beam elements. The stiffness matrix 
is obtained using a number of stress energy terms. The length a and angle θ 
are defined in figure 2.2. The stiffness matrix Ke for a curved beam with 
constant radius R, in is local coordinates, given by: 

Ke = GT DG     (2.4) 

Where G and D are defined in (2.5) and (2.6). 

G =
−1 0 0 1 0 0

0 0 −a 0 0 a

0 1 a 0 −1 a

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤

⎦

⎥
⎥
⎥
  (2.5) 

 

D =
H22 H −H12 H 0

−H12 H H11 H 0

0 0 1 H 33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  (2.6) 

where 

H11 = 2
R

EA
+ R3

EJ

⎛ 

⎝ 
⎜ 
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⎠ 
⎟ θ cos2 θ + R3

EJ
(θ − 3sinθ cosθ)

H22 = 2
R

EA
+ R3

EJ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ θ sin2 θ

H12 = 2
R

EA
+ R3

EJ

⎛ 

⎝ 
⎜ 

⎞ 
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⎟ θ sinθ cosθ − 2

R3

EJ
sin2 θ

H33 = R3

EJ
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H = H11H22 − H12
2

  (2.7) 

 

J denotes a cross-section parameter which for a straight beam corresponds to 
the moment of inertia, I: 

J = (r − R)2

r /R
dA

A

∫     (2.8) 
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Where R denotes the radius of the centroid line and r is an arbitrary point 
located at the distance r from the centre of the circle, see figure 2.3. (Bresler 
and Lin, 1960) 

 

 

2.1.2 MODIFIED MOMENT OF INERTIA FOR HOLLOW BOX SECTION 
J can, for a solid rectangular cross section, be calculated by equation (2.9) 
where w denotes the width and h denotes height (Bresler and Lin, 1960). 
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Figure  2.3. Geometry of a curved beam element

Figure  2.4. Hollow box section
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The modified moment of interia for a hollow double-symmetrical box cross-
section of the type shown in figure 2.4 can be obtained as the difference 
between the integral of the whole section and the integral of the inner 
section. With parameters according to figure 2.4., equation (2.9) becomes for 
a hollow box section:  
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If the integrals are expanded and the expression condensed, equation (2.10) 
will take the form: 
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Where wo and ho denotes outer width and height and wi and hi width and 
height of the hollow section. Note that equation (2.11) is valid only if the cross 
section is double-symmetrical.  

2.1.3 TRANSFORMATION TO GLOBAL SYSTEM 
The stiffness matrix given by (2.4) is valid only as long as the orientation of the 
degrees of freedom is equal to the axis of the coordinate system. To be able 
to assemble a system of multiple beam elements with different orientations a 
transformation (rotation) needs to be done. This can be achieved with the use 
of a transformation matrix, which holds information of the orientation of the 
individual beam. The transformation is carried out using equation (2.12). The 
equation can be found in Austrell, et. al. (2004).  

Ke
g = AT Ke A     (2.12) 

The transformation matrix A can be calculated by different methods, see for 
example Calfem – a finite element toolbox (Austrell et al, 2004) where the 
following result is presented: 
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A =

nxx nyx 0 0 0 0

nxy nyy 0 0 0 0

0 0 1 0 0 0

0 0 0 nxx nyx 0

0 0 0 nxy nyy 0
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L
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L

L = (x2 − x1)
2 + (y2 − y1)

2

  (2.13) 

Where (x1, y1) and (x2, y2) denotes the coordinates from start point to the end 
point of the beam in the global coordinate system. 

2.1.4 HORIZONTAL FLIP OF BEAM 
It's of importance to be aware of the definition of direction of curvature of 
curved beams. The stiffness matrix given in chapter 2.1.1 and shown in figure 
2.2 can be said to have a negative curvature in the local system. Let α* denote 

the angle from  to the tangent of the beam in P1, see figure 2.5. If the 

angle α* is less than or equal to π, the curvature is positive. 

 

Figure  2.5. Horizontally flipped curvature of beam. Solid line: negative 
curvature, dotted line: positive curvature. 

Since this paper focuses on arches that normally have the opposite curvature 
a default transformation method would be handy. It is of course possible to 

P1 P2 
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rotate the beam 180 degrees using the transformation matrix discussed in 
chapter 2.1.3. This does however have the effect that the groups of degrees of 
freedom locally switch places. When working with multiple beam elements 
that are connected this complicates the global assembly since the local DOF 
numbering no longer directly translates to the global numbering. This is 
illustrated in figure 2.6 where beam elements with two degrees of freedom 
each are rotated. 

One solution is to number the elements in such a way that all elements are 
rotated 180 degrees as shown on the right side of figure 2.6. This is however 
not a very intuitive method. A better solution is to "horizontally flip" the 
stiffness matrix with respect to rotations. If the stiffness matrix is element-
wise multiplied with a "horizontal flip" matrix, the stiffness matrix of an 
equivalent beam with opposite curvature is obtained. Such a matrix is can be 
created by consideration to the effects of the displacement of two curved 
beam elements, mirrored around the x-axis as shown in figure 2.5. If equation 
(2.2) is used, all displacements are set to zero except degree of freedom 1. 
Then the reaction forces are calculated for both beams. If there is a sign 
difference, a minus sign will go to the corresponding place in the “flip”-matrix. 
The same methodology is then carried out for all degrees of freedom to 
complete the “flip”-matrix: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−−

−−

=

111111
111111
111111
111111
111111
111111

hfA    (2.14) 
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Figure  2.6. Effect of element 180 degree rotation
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2.2 FORCE VECTOR AND EXTERNAL LOAD 

2.2.1 APPROXIMATION OF ARBITRARY DISTRIBUTED LOAD 
When designing structural systems the major design criterion is normally the 
ability to withstand external load. Other design criteria can e.g. be sound 
isolation ability, the capacity to withstand fire or long-term moisture exposure 
reactions. (Isaksson et al, 2005)  

 

 

The main loads when designing an arch that will carry a roof are: 

• Snow load 

• Wind load 

• Dead weight 

Figure 2.7 shows an example of how the different distributed loads can attack. 
The dead weight load could be approximated as a number of triangular 
shaped distributed loads applied in vertical direction.  

To describe an arbitrary distributed load, a corresponding finite element load 
vector valid for curved beam elements is needed.  

An arbitrary distributed load can be approximated as a number of point loads 
as in figure 2.8. This will not give the exact solution but the error reduces as 

qsnow

qwind

qdead

Figure  2.7. Different examples of load
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the number of point loads is increased. To compute the load vector that 
corresponds to an arbitrary located point load, the shape functions of the 
beam element must be known. Shape functions for a curved beam become 
quite complex. Litewka and Rakowski (1996) suggest an approximation based 
on expansion of trigonometric functions in the power series. These kinds of 
shape functions become very unhandy and complex.  

 

≈

 

Figure  2.8. Approximation of distributed load 

To avoid complex shape functions the beam element can be divided into 
smaller elements where the approximate point load attacks directly into the 
nodes. If there are no load on the span of the (small) element the force vector 
doesn't depend on shape functions for calculation of the equivalent load. 
Instead, the load can be put directly into the corresponding degree of 
freedom of the force vector. The orientation of the force does of course have 
to match the directions of the global coordinate system. Such a 
transformation is easy to achieve, the force of arbitrary direction just has to 
be divided into two components parallel with the global x-axis and y-axis. 

The drawback of such a solution with short elements is that it takes more time 
to compute. On the upside all possible kinds of distributed loads can be 
approximated without restrains.  

 

= 

 

Figure  2.9. One element divided into many parts. 
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The method chosen here to calculate the load vector for a curved beam 
element is to approximate an arbitrary distributed load as a number of 
equivalent point loads, and then divide the curved beam element into shorter 
elements matching the number of point loads as shown in figure 2.8 and 2.9. 
As the system is solved the load vector can be obtained, see chapter 2.2.3.  

2.2.2 REACTION FORCE VECTOR 
By studying the equilibrium conditions of a small beam element the load 
vector can be derived. See figure 2.10 which represents a small part of a 
beam. A reasonable approximation for a small part of the beam is to divide 
the distributed load equally into the nodes in vertical and horizontal direction. 
If the distributed load is divided equally into each nodal point then RAY = RBY 
and RAX = RBX: 

2 1( )
2

y
Ay By

q x x
R R

−
= = −     (2.15) 

2 1( )
2

x
Ax Bx

q y yR R −= = −     (2.16) 

 

qx 

qy 

A 
(x1,y1) 

B 
(x2,y2) 

 

Figure  2.10. Equilibrium conditions. 

With the above assumption, moment reaction forces in both ends will be 
zero:  

−qy

(y2 − y1)
2

2
+ qx

(x2 − x1)
2

2
+ RBy (x2 − x1) − RBx(y2 − y1) + MB = 0   (2.17) 
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if (2.19) is rearranged we get MB (2.20) 

2 2
2 1 2 1

2 1 2 1
( ) ( ) ( ) ( ) 0

2 2B y x By Bx
y y x xM q q R x x R y y− −= − − − + − =   (2.18) 

and with point B as base the moment equilibrium is described by equation 
(2.19): 

qy

(y2 − y1)
2

2
− qx

(x2 − x1)
2

2
+ RAy(x2 − x1) − RAx (y2 − y1) + MA = 0   (2.19) 

which if rearranged gives MA 

2 2
2 1 2 1

2 1 2 1
( ) ( ) ( ) ( ) 0

2 2A y x Ay Ax
y y x xM q q R x x R y y− −= − + − − + − =   (2.20) 

When all reaction forces are known, the reaction force vector can be 
described using by presenting equation (2.15 - 2.20) in matrix notation: 

2 1

2 1

2 1

2 1

( ) / 2
( ) / 2

0
( ) / 2
( ) / 2

0

y

x

r
y

x

x x q
y y q

f
x x q
y y q

− ⋅⎡ ⎤
⎢ ⎥− ⋅⎢ ⎥
⎢ ⎥

= −⎢ ⎥− ⋅⎢ ⎥
⎢ ⎥− ⋅
⎢ ⎥
⎣ ⎦

   

(2.21) 

2.2.3 FORCE LOAD VECTOR 
Using the previously described method to approximate an arbitrary 
distributed load the reaction forces of an element can be calculated. The 
solution of the system of equations developed is based on the condition that 
the structural system is in equilibrium state. This implies that the reaction 
forces of a beam element are equivalent but negative to the external force, 
which means that the reaction forces can be used to describe the external 
load. To avoid complications, a section evaluated should not spread over 
more than one quarter of a circle. See chapter 2.3 for further discussion 
regarding this matter. 
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Figure  2.11. Reaction forces. 

If displacements of the beam endings are restrained, reaction forces can be 
developed. For a beam element, the reaction forces fb

e plus the external load 
fl

e equals the stiffness time displacement as described by equation (2.22) 
(Ottosen et al, 1992). 

K eae = fb
e + fl

e     (2.22) 

If displacements, ae, is set to zero we get 

Ke ⋅ 0[ ]= fb
e + fl

e     (2.23) 

fl
e = − fb

e      (2.24) 

fl = −
RA

RB

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥      (2.25) 

This means that the force vector now can be calculated (approximated) 
without using shape functions. The tools to describe the stiffness matrix of a 
curved box-section beam element and the equivalent force vector of arbitrary 
distributed load acting on such a beam is now derived. This makes it possible 
to describe a complex arch where e.g. load and radius varies. To summarize 
the process: 

• The distributed load is approximated as a number of point loads 
(figure 2.8) 

• The curved beam element is divided into a sub-system of smaller 
curved beam elements so that the each point-load corresponds to a 
connection point between two sub elements (figure 2.9) 

• The end displacements are set to zero and the system is solved (figure 
2.11) 

=>
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• The reaction forces can be used to describe the corresponding load 
vector (equation 2.25) 

The reason to calculate the corresponding force vector instead of settling for 
the system of many elements is compatibility. If both the stiffness matrix and 
force vector are known, the curved beam element can be a part of a system 
consisting of multiple types of elements in a much more easy-to-handle way. 
This approach will make it easy to combine bar elements, straight beam 
elements and curved beam elements using CALFEM and the CBEAM2-toolkit. 
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2.3 SECTION FORCES 

If reaction forces and external loads are known for a beam element, it's 
possible to evaluate the section forces in all points using equilibrium condition 
for the subsystem of interest. See e.g. (Heyden, 2005). 

P' is the point where normal force, shear force and moment are to be 
evaluated. Equilibrium gives expressions for N', V' and M', see figure 2.12. 

→ Rx + qx ⋅ ′ l y + N '= 0     (2.26) 

  ↑ Ry + ′ q y ⋅ ′ l x + ′ V = 0     (2.27) 

022

22

=′+⋅′+⋅′−′⋅+′⋅− ′′ MxqyqylRxxlRyM yx ll
R    (2.28) 

Note that (2.28) only is definitely true as long as P' and PR are in the same 
quarter of the unit circle if external load exists. This condition is easy to fulfill 
by using a reasonable element mesh.   

RX 

RY 
MR 

M' 
V 

N 

V' 

N' 

q'x 

q'y 

PR 

P' 

l'y 

l'x 

 

Figure  2.12. Evaluation of section forces.
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It's now just a matter of transforming V' and N' to finally derive V and N. Basic 
trigonometry gives shear force V according to: 

cos sinV V Nϕ ϕ′ ′= ⋅ − ⋅     (2.29) 

In the same way, the normal force N is determined using equation (2.32) 

N = cosϕ ⋅ ′ N + sinϕ ⋅ ′ V      (2.30) 

If equation (2.30) is rearranged, M' can be derived. Since moment is a scalar 
rather than a vector, no transformation needs to be done. 

M = ′ M = −MR + Ry ⋅ ′ l x − Rx ⋅ ′ l y + ′ q y ⋅ ′ l x
2

2 − ′ q x ⋅ ′ l y
2

2    (2.31) 

Careful consideration needs to be taken when section forces are evaluated for 
a curved beam element that reaches over more than one quarter of the unit 
circle if external loads exist. This is due to that fact the distributed loads qy 
and qx may individually give both positive and negative contributions to M' if 
the point of evaluation is within certain intervals. This not is taken into 
consideration in the above derivation of the section forces.  
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2.4 BEAM THEORY 

In the following chapter expressions for shear stress and tension stress 
perpendicular to grains are derived. The derivation presented here is based 
on professor Gustafsson's notes made for a previous more comprehensive 
version of the course "Beam Theory” (code VSM091) given by the Division of 
Structural Mechanics. The author of this thesis has derived the stress 
equations from general form to the specific case of a hollow box section. The 
shear force (chapter 2.4.5) is derived by using a different approach than used 
in Gustafsson’s lecture notes. 

 The following assumptions are made 

• Displacements and strains are small 

• The material is linear elastic 

• Cross section is double-symmetrical 

• A plane cross section will stay plane during loading 

• The cross section will stay perpendicular to the centre line of the beam  

• The external load is applied distributed on the cross-section and with 
such a distribution that the shear stress and the stress perpendicular 
to grain are affected only by N, V and M, and not by local load 
distribution. 

Even though there is no shear strain due to the assumption that the cross-
section remain perpendicular to the centre-line, shear stresses must exist due 
to equilibrium conditions. Both the shear stress and stress perpendicular to 
grain are derived by equilibrium conditions, not by strain calculation and use 
of the stress-strain relation. 
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2.4.1 GEOMETRY 
First, the geometry of an infinitely short curved beam element needs to be 
defined. 

 

Figure  2.13. Definition of geometry of an infinitely short beam element, ds.  

Sinus for an angle dφ can be approximated as the angle itself and cosine for 
dφ can be approximated as 1 (cos(0) = 1). The length ds is related to dφ by: 

ds Rdϕ=      (2.32) 

Let r be a coordinate such that r = (R+y), then the length rdφ is:
 

( ) ( ) dsrd R y d R y
R

ϕ ϕ= + = +    (2.33) 

Displacements are described by the variables v(s) and u(s,y) where v(s) is the 
radial displacement and u(s,y) denotes the tangential displacement. s is the 
coordinate along the centre line of the beam. See figure 2.14 on the next page 
for definitions. 

 
 

  
 

  y 

Rdφ

ds h
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Figure  2.14.  Definition of displacement, with location of centre line (line of gravity) 
 before and after loading 

Since sinus for small angles can be approximated as the angle itself, the 
displacement angle α can be calculated as: 

ds
dv≈α

     
 (2.34) 

The tangential displacement u at height y on the cross section can be 
expressed as (2.37) 

ds
dvysuysu −= )0,(),(

    
 (2.35) 

2.4.2 STRAIN 
Normal strain is defined as the change of length over undeformed length 
(2.38) 

l
lΔ=ε       (2.36) 

Since the undeformed length is rdφ, the strain can be calculated as: 

ϕ
ε

dr
ysuydssuys ),(),(),( −+=     (2.37) 

Using (2.33), (2.37) can be expressed as: 

v(s) 

u(s,0) 

  

α
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⎟
⎠
⎞

⎜
⎝
⎛ −+

+
=−+

ds
ysuydssu

yR
R

rd
ysuydssu ),(),(),(),(

ϕ    (2.38) 

Using the fundamental theorem of calculus, (2.38) can be rewritten as (2.39) 

⎟
⎠
⎞

⎜
⎝
⎛

+
=⎟

⎠
⎞

⎜
⎝
⎛ −+

+ ds
ysdu

yR
R

ds
ysuydssu

yR
R ),(),(),(

   (2.39) 

If (2.37) is inserted into (2.41), we get  

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
+

=⎟
⎠
⎞

⎜
⎝
⎛

+ ds
ds
dvd

y
ds
sdu

yR
R

ds
ysdu

yR
R )0,(),(

   (2.40) 

=⎟
⎠
⎞

⎜
⎝
⎛ −−+

+
=−

+
= ''''')'''( 0000 yvu

R
yu

R
yu

yR
Ryvu

yR
R

  (2.41) 

0 0 0' ' ' ''
( ) ( )

Ru Ryu Ryu Ryv
R y R y R R y R R y

= + − − =
+ + + +

   (2.42) 

Which finally gives an expression for the strain at height y: 

),()'''(' 00 ysRvu
yR

yu ε=+
+

−=
   

  (2.43) 

 (2.43) can be expressed as (2.44) using matrix notation 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

−=
'''

'
1),(

0

0

Rvu
u

yR
yysε     (2.44) 

It is easy to realize that u’0 denotes relative change of length, strain, at the 
line of gravity. The variable v’’ contains the change of curvature of the beam. 
New notations are introduced for u’0 and v’’: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
κ
ε 00

''
'

v
u

      (2.45) 

Using (2.44) and (2.45), the strain can be expressed as 
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[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

+
=

κ
ε

ε 01 y
yR

R
     (2.46) 

Hooke’s law states that the stress is Young’s modulus times the strain: 

E⋅= εσ       (2.47) 

If (2.49) is inserted into (2.48), a stress equation is obtained (2.50): 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

+
=

κ
ε

σ 01 y
yR

ER
     (2.48) 

2.4.3 MOMENT AND NORMAL FORCE 
The normal force is defined as the integral (2.49) and moment is defined as 
the integral (2.50), see e.g. Heyden et al (2005). 

∫=
A

dAN σ      (2.49) 

∫−=
A

dAyM σ      (2.50) 

With (2.48) inserted into (2.49) and (2.50) we get 

∫∫ ∫ +
−++==

AA A

dA
yR

yREdAEdAN )( 00 κεεσ    (2.51) 

∫∫∫ +
++−=−=

AAA

dA
yR

yREdAyEdAyM
2

00 )( κεεσ    (2.52) 

Let m denote the integral (2.53). The value of m depends only on the 
geometry of the cross section of the beam. Hence; if the cross section is 
constant along the beam then the parameter m also will be constant. 

∫ +
−=

A

dA
yR

y
A

m 1
     (2.53) 

Using m, (2.51) and (2.52) can be rewritten in a more compact form. 

∫ ++==
A

AmREAEdAN )( 00 κεεσ     (2.54) 
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∫ ++−=−=
A

RAmREEdAyM )(0 00 κεεσ    (2.55) 

Using matrix notation, (2.54) and (2.55) can be expressed as: 

⎥
⎦

⎤
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⎡
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⎦

⎤
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⎣

⎡ +
=⎥

⎦
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=⎥

⎦

⎤
⎢
⎣

⎡
κ
ε
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ε 0

2
0

0 1
0 mRmR

mRm
EA

RERAm
EAmEA

M
N

  (2.56) 

In order to express stress using normal force and moment (2.56) needs to be 
inverted: 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦
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⎣
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RR
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2

2
0

κ
ε

    (2.57) 

If (2.57) is inserted into (2.48), an expression to calculate the tangential stress 
σ is finally obtained:  

[ ] =⎥
⎦
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⎣
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ER 111
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2σ    (2.58) 
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2.4.4 SECTION FORCES AND LOADING 
In order evaluate the connection between loading qr and qt and section forces 
N, V and M an infinitely small piece of the curved beam is studied using the 
equilibrium conditions.  

 

Figure  2.15. Section forces and load. 

Moment equilibrium around the center of the left side of the arch gives the 
correlation between moment and normal force: 

 ( ) ( ) 0
2r

A

dsM M dM V dV ds q dAds− + − + − =∫
  

(2.60) 

(2.60) is rearranged: 

{ {
2

0 0

1 0
2r

A

dM Vds dVds q dAds
≈ ≈

− − − − =∫
   

 (2.61) 

Which makes it possible to eliminate some terms and (2.62) is condensed to: 

dM V
ds

− =       (2.62) 

Equilibrium in vertical (parallel to left side of cross section) direction: 

( ) ( ) 0r
A

V V dV q dAds d N dNφ− + + + − + =∫    (2.63) 

 

dϕ 

M 

N

V V+dV

M+dM

N+dN 

ds

qr qt
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(2.63) is rearranged: 

0

0r
A

dV q dAds d N d dNφ φ
≈

+ − + =∫ 123
    (2.64) 

And since 
R
dsd =ϕ , (2.64) can be rewritten as: 

0r
A

dsdV N q dAds
R

− + =∫      (2.65) 

Equilibrium in horizontal direction (perpendicular to left side cross section): 

( ) ( ) 0t
A

N N dN d V dV q dAdsφ− + − + − =∫    (2.66) 

(2.66) is rearranged: 

0

0t
A

dN d V d dV q dAdsφ φ
≈

− − − − =∫123
    (2.67) 

Some terms can be eliminated: 

0t
A

dN ds V dsq dA
ds R ds ds

− − − =∫     (2.68) 

(2.68) rewritten using a more compact fashion: 

' 0t
A

VN q dA
R

− − − =∫      (2.69) 

Finally, the volume load can be expressed in terms of moment, normal force 
and shear force. 

' ''r
A

N Nq dA V M
R R

= − = +∫     (2.70) 

'' 't
A

V Mq dA N N
R R

= − − = −∫     (2.71) 
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2.4.5 SHEAR FORCE 
In order to be able to derive an expression for shear stress parallel to line of 
gravity, a small portion of the beam is studied in equilibrium state. The 
external load (qr, qt) is neglected in the derivation. This approach makes the 
derived equation valid only where no external load attacks unless the load is 
applied in such a way that it does not affect the shear force or stress 
perpendicular to center of gravity.  

 

Figure  2.16. Moment equilibrium. 

The same notation as earlier is used. Let r1 denote where on the cross section 
the shear force is to be evaluated and (R + h/2) the maximum reach of the 
cross section. The area made up by the cross section from r1 to (R + h/2) is 
denoted As. w denotes the width of the cross section, h denotes cross section 
height, see figure 2.17 for definitions. 

     (2.72) 

              )  

Moment equilibrium around the center of the circle of the curved beam is 
studied: 

  (2.73) 

 

τ 

dϕ 

qr
qt

r

τ(s) 

σ(s) 

τ(s+ds) 

σ(s+ds) 

r1
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(2.73) is rearranged using (2.33) and divided by ds:  

 

 (2.74) 

 
Using the fundamental theorem of calculus, (2.74) becomes: 

  
(2.75) 

 

Solving this equation with respect to τ, a general equation for shear stress is 
finally obtained: 

 

 

 

 

 

 

 

 

 

h

w

hweb

wweb/2

ys

Figure  2.17. Geometric definitions of cross section.
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 (2.76) 

 

If the integral above is expanded, a direct equation for shear stress is 
obtained. This integral does obviously depend of the shape of the cross 
section. For a hollow box section the equation needs to be divided into three 
cases. 

The derivative of equation (2.59) with respect to ds yields as follows: 

 

    (2.77) 

 
Since the influence of local tangential load is neglected, equation (2.71) 
becomes: 

     (2.78) 

Inserting (2.78) into (2.77), and then using (2.62), some terms can be 
eliminated. 

  (2.79) 

Then if (2.76) and (2.79) are combined, equation (2.80) gives a general 
formula for the shear stress. 

   (2.80) 

Suppose constant width over a specific area, then: 

     (2.81) 

For a cross section of constant width, (2.81) can be inserted into (2.80), giving: 

   (2.82) 
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For a hollow box section, three equations need to be derived; one for the 
upper flange, one valid for the web and one valid for the lower flange. The 
shear stress in the upper flange can be calculated from 

   (2.83) 

   (2.84) 

   (2.85) 

To be able to describe the shear stress in the web, the integration need to be 
divided into two parts since the active width are different over the region. 
Equation (2.87) gives shear stress in the web.  

 (2.86) 

 (2.87) 

And finally, equation (2.88) can be used to calculate stress in the lower flange. 
It shows that the equation for shear stress in the lower flange is exactly the 
same as for the upper flange.  

     

 (2.88) 

Since the integral over the web is symmetrical, it will become zero. Thus 

 (2.89) 

Some terms can be terminated, and then the final expression valid for the 
lower flange (2.90) is obtained: 

     (2.90) 
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2.4.6 STRESS PERPENDICULAR TO LINE OF GRAVITY 
To derive an expression for stress perpendicular to center of gravity, vertical 
equilibrium is studied. As for the derivation of τ, the influence of local external 
load is omitted. 

 

Figure  2.18. Derivation of stress perpendicular to line of gravity. 

The same variables as in chapter 2.4.5 are used, except b here denotes width. 

Vertical equilibrium gives the general expression of stress perpendicular to 

line of gravity: 

0)()()( =⋅−+−+− ∫∫∫ ϕσσϕττ rdbdAdssddAdssdAs r
AsAsAs

  (2.91) 

Equation (2.32) is inserted 

0)()()( =⋅−+−+− ∫∫ R
dsrbdAdss

R
dsdAdsss r

AsAs

σσττ   (2.92) 

Equation (2.92) is rearranged 

0)()( =⋅−−+−
∫∫ R

rbdA
Rds

dAdsss
r

AsAs

σσττ
   (2.93) 
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By using the fundamental theorem of calculus: 

0' =⋅−−∫ R
rbdA

R r
As

σστ      (2.94) 

If (2.96) is solved with respect to σr: 

dA
RyRb

R

Asys
r ∫ −

+
= στσ '

)(
     (2.95)

 

The following are equations are known from (2.59), (2.70) and (2.80). 
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R
N

ds
dV −=       (2.97) 

    (2.98) 

It is easy to realize that (2.95) fully expanded using the equations above 
become very complex and ungainly. By omitting the influence of the normal 
force and disregarding the curvature effect on the normal stress distribution 
as suggested by Young (1989) equation (2.95) takes the form (2.100). If effect 
of curvature is disregarded from, stress can be calculated using equation 
(2.96). See e.g. Heyden (2005). 

      (2.99) 

Where M denotes moment, I denote moment of inertia and y is a variable. 
This simplification can be done since these two factors are very small in 
comparison to the moment unless the curvature is extremely steep, which 
seldom is the case for beams used as structural base. 

    (2.100) 

As with the shear force, the integral inside (2.100) needs to be divided into 
three parts depending on where the stress is to be evaluated.  
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Using (2.81) with (2.100), the top flange stress can be calculated: 

    (2.101) 

Evaluation gives: 

    (2.102) 

For evaluating the web, the integral needs for obvious reasons be divided into 
two parts: 

  (2.103) 

If the integral is evaluated, a final expression is derived: 

  (2.104) 

For evaluated the lower flange, integration needs to be carried out over all 
three sub regions. 

       (2.105) 

The integral over the web will become zero and can be omitted: 

   (2.106) 

If (2.106) is rearranged, a final expression for the stress perpendicular to line 
of gravity for the lower flange is obtained: 

    (2.107) 
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2.5 EFFECTIVE STRESS AT COMBINED STATES OF STRESS 

In the case of combined states of stress with two or more non-zero stress 
components, a scalar effective stress can be calculated for evaluation of 
failure. The different components (normal tangential stress, shear stress and 
normal stress perpendicular to grain) interact which makes it insufficient to 
study them as separated units.  Empirical expressions are often used. Norris 
(1962) suggests the following failure criterion: 

   (2.108) 

This criterion is partly derived from a theoretical base and is commonly used. 
σ, σr and τ are the stresses in the wood. f, fr and fv are the corresponding 
ultimate stresses when only one stress component is non-zero. 

f, fr and fv have different values. If the quotient for each of the stresses σ, σr 
and τ over f, fr and fv respectively are calculated and then multiplied with 
stress perpendicular to grain, an effective stress corresponding to the above 
Norris failure criterion is obtained: 

    (2.109) 

f, fr and fv can be found in design code literature, see e.g. Isaksson and 
Mårtensson (2006). 

2.6 SIZE EFFECT AND WEIBULL THEORY 

In brittle materials such as wood, the size has influence on the strength. This is 
explained by statistics; when a larger volume is under stress the probability 
that a small portion of the beam has a weakening defect such as a twig 
becomes more likely. A theory that describes this behavior was developed by 
Weibull and is referred to as Weibull theory or the weakest link theory 
(Vännman, 2002).  Hult (1966) recites the Weibull cumulative distribution 
function (2.110).  

    (2.110) 
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S is the probability that a test body of unit volume exposed to uniform tension 
will fail at a tensile tension stress less or equal to σB. σ0 is chosen so that the 
failure stress is less than σ0 in 63.2% of the test cases. σ0 is a material 
parameter and can also be chosen as the median ultimate stress level of a test 
body with a volume of ln2 (≈0.69). m* is the second material parameter and is 
a measure of the spread. Gustafsson (1983) described a method of application 
of Weibull theory in relation to strength analysis of concrete pipes. This 
method is applicable to brittle materials in general, including wood, and is the 
method used in the present application. 

The Weibull distribution describes the probability that a specific piece of the 
material has a certain ultimate stress level. This means that different parts of 
a larger piece of the material can withstand different maximum stress. As a 
result, a larger volume is more likely to have a lower ultimate stress value 
somewhere than a small volume. As for brittle materials, a collapse of one 
point anywhere in the volume is assumed to lead to total collapse.  

The probability gained by using equation (2.110) is valid for a unit volume 
under evenly distributed stress. In order to use the probability function for 
analysis of an arbitrary (large) volume with arbitrary stress distribution, the 
(large) volume can be treated as a number of small unit volumes under evenly 
distributed stress. The probability that the large volume collapses is 
equivalent to the probability that a small unit volume collapses somewhere in 
the large volume. This gives, see (Gustafsson, 1983)   

    (2.111) 

where Vb is the volume of the structure examined. Using the method derived 
in this thesis, an analytic expression describing the combined stresses in an 
arbitrary volume is probably possible to derive but most likely not very useful 
since of its complexity. A better approach is to numerically calculate the 
integral stated in equation (2.111) above. Discretization of equation (2.111) 
yields: 

   (2.112) 

Using equation (2.109), it is possible to calculate an effective stress in an 
arbitrary point of a curved beam element. The stress is then summed over the 
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entire body using equation (2.112) above. The result of such a calculation is 
the probability (S) that the entire body will collapse.  

However, calculation of the probability of failure are seldom made by 
practicing engineers when designing structures. Instead, prediction of a failure 
load or a quotient between the actual load and the failure load is preferred. 
Gustafsson (1983) gives the following equation: 

   (2.113) 

where σu is the stress in an arbitrary choose reference point when the load 
equals the median value of the ultimate load. ft is the median ultimate load 
for a test body of volume Vprisma. m* is a measurement of the spread for such 
a test and can be approximately calculated by equation (2.115). V is the 
volume of the mass under stress and γ is a value defined by: 

    (2.114) 

where σk is the stress in the reference point as used for equation 2.113 and σ 

is the stress integrated over the volume. Gustafsson (1983) also shows that 
the variable m* can approximately be calculated by 

    (2.115) 

where s* is the coefficient of variation.  

If (2.114) is inserted into (2.113) it is possible to calculate the quotient 
between actual stress and ultimate stress in the reference point: 

   (2.116) 

The quotient between the stresses is denoted with Q: 

     (2.117) 

The expression above will give the same type of result as many formulas used 
for designing structures; if the quotient is ≥ 1 then the ultimate stress is 
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reached and the structure will collapse (or to be more exact, the maximum 
allowed probability that the structure will collapse has been reached). The 
expression is of course dependent on the input parameters ft, m* and Vprisma. 
Characteristic value used for design is often set to the 5 percentile. Values for 
these variables can be derived by testing specimens and can be found 
tabulated. Thelandersson and Larsen (2003) have tested perpendicular to 
grain tensile strength of spruce for specimens of various volumes.  The 
following numbers were obtained by testing a prismatic glulam specimen 
(prisma) of volume 90x275x500 mm3. 

σ5% = 0.74MPa     

Vprisma = 10 dm3    

m = 5     

The integral in equation (2.116) can be numerically solved using the same 
method as used in equation (2.112) and finally a design value for the entire 
structure can be derived. 

 

 



Denna sida skall vara tom!
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CHAPTER 3 

3 SOFTWARE IMPLEMENTATION OF THEORY 
 

Many of the calculations presented in the theory chapter are excessively time 
consuming to do by hand. Since designing structures in many cases is an 
iterative process it stands clear that the theory needs to be implemented to 
become truly useful. As a part of this thesis a piece of software has been 
developed with the aim to completely implement the theory. 

The software is developed as a set of MATLAB/CALFEM functions. The toolkit 
consists of a number of functions which can be used to build up structures 
made of curved beam elements with hollow box section. The functions for 
creating and analyzing bars and beams included with CALFEM can be 
combined with the curved beam functions to analyze complex structures built 
up by arbitrary FEM-elements. 

3.1 OUTPUT 

The section forces, the deformed shape and a plot of where the stress is 
evaluated when using Weibull theory are presented in way that gives the user 
valuable feedback.  

3.2 MATLAB FUNCTIONS 

The functions can be found in appendix A. They are commented to make it 
easier to expand or modify them. The different functions are moreover briefly 
explained in the following sub chapters.  
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3.2.1 CBEAM2E 
function [Ke,fe] = cbeam2e(ex, ey, eq, ep, flip_beam); 

The “curved beam 2 dimension element” uses the method derived in chapter 
2.1 to compute the stiffness matrix of a curved beam. First, the modified 
moment of inertia is calculated using equation (2.9). Then equation (2.4) - 
(2.7) are used to compute the stiffness matrix. Unless the flag flip_beam is set, 
the beam is “flipped” as described in chapter 2.1.4. Then the stiffness matrix 
rotated into global position according to method described in chapter 2.1.3. 

A basic transformation of distributed load is also implemented. The load is 
simply divided equally between the two nodes as described in chapter 2.2.2. 
This is a sufficient approximation if the beam element is very short compared 
to the size of the arch, and the output force vector should only be used under 
such conditions. A more refined method for generating the load vector is 
implemented in the cbeam2dl function. 

3.2.2 CBEAM2DL 
function [Ke,fe] = cbeam2dl(ex, ey, eq, ep, flip_beam, n) 

The function “curved beam 2 dimension distributed load” calculates the 
corresponding load vector of a distributed load. It also returns the stiffness 
matrix of a curved beam. The function implements the method described in 
chapter 2.2.1. The curved beam element is divided into n pieces and the 
distributed load is approximated as n+1 point loads. This makes it possible to 
create a subsystem of smaller curved beam elements where the load attacks 
directly into the nodal points which make the use of shape functions 
superfluous. The end points of the beam are then locked and the equation 
system of the subsystem is solved. The negative reaction force vector is then 
returned as the corresponding force vector. For convenient reasons, the 
stiffness matrix is also returned. 

3.2.3 CBEAM2DISP 
function [ce_disp, mfact] = cbeam2pdisp(ex, ey, eq, ep, flip_beam, n, ed, 
mfact) 

The “curved beam 2 dimension displacement” is used to plot the deformation 
of a curved beam under load/displacement. The methodology is much the 
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same as for cbeam2dl. The element is divided into smaller parts, the 
distributed loads are approximated as point loads and subsystem is then 
solved using the global displacements as element end boundary conditions. 

3.2.4 CBEAM2P 
function [beam_coord,xc,yc] = cbeam2p(ex, ey, R, n, flip_beam) 

This function uses trigonometry, geometry and algebra to calculate 
coordinates evenly (angle-wise) spread over a bow of constant radius. The 
function will return a vector of size [nx2] containing the coordinates of the 
bow. It will also return the coordinates of the center of the circle the bow is a 
part of. 

3.2.5 CBEAM2STRESS 
function [sigma,tau,sigma_perpendicular] = cbeam2stress(ys, M, V, N, ep) 

The “curved beam 2 dimension stress”-function calculates the normal stress, 
shear stress and stress perpendicular to line of gravity at any height of the 
cross section of a curved beam element made out of a hollow box section. The 
stresses are computed using the stress equations derived in chapter 2.4. 

3.2.6 CBEAM2S 
function [es,sf] = cbeam2s(ex, ey, eq, R, n, Q, flip_beam) 

The function “curved beam 2 dimension section forces” is used to calculate 
the section forces of a curved beam element. The section forces are 
computed using equilibrium conditions as derived in chapter 2.2.4. This also 
means that this method has the limitation that the section forces (or reaction 
forces) must be known in the left end of the beam for this function to work. 

3.2.7 CBEAM2WEIBULL 
function [sum_sigma, ft, m, Vprisma] = cbeam2weibull(ex, ey, es, ep, 
flip_beam, settings) 

The “curved beam 2 dimension weibull”-function is used to analyze the 
combined stresses using weibull statistics as derived in chapter 2.6. The 
curved beam element is divided into a number of smaller regions. The number 
of tangential evaluation points are determined by the number of elements in 
the es vector, which are individually examined using the cbeam2stress 
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function. Unless the settings-vector is defined, standard values of Vprisma, ft, 
m*, f, fr and fv are used. The settings-vector is defined as follows: 

settings = [m* ft Vprisma fv f fr] 

The number of evaluation points perpendicular to line of gravity is defined by 
the variables iterations_flange and iterations_web in the first section of the 
code. The function returns the integral over Vb, defined by equation (2.118) as 
well as ft and m*. This makes it possible to calculate the collapse probability 
for structures made up out of several curved beam elements. The function 
will also plot the points of evaluation, see figure 3.1 below. The figure is a 
close up of the result of the example in appendix B. 

 

 

Figure  3.1. Points of evaluation and deformed curvature 
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CHAPTER 4 

4 CURVATURE EFFECT ON STRESSES 
The stress distribution in a beam is effected by the curvature. To make the 
reader attentive on this fact, and to illustrate how the results of the stress 
equations presented in this paper differs from the distribution in a straight 
beam, some plots are presented below. The stresses are plotted using the 
cbeam2stress function found in appendix A. The section which has been 
evaluated is presented in figure 4.1 below. The input load parameters are N  = 
-10.6 kN, M = 16.5 kNm , V = -15.9 kN. 

Figure  4.1. Geometry of example beam.
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4.1 NORMAL STRESS 

In figure 4.2 below, two distributions are plotted. The solid line is valid for a 
ratio between radius and height of R/h = 2 and the dotted line is valid for R/h 
= 1000. All other conditions are the same for the two beams. As seen in the 
plot, the large radius beam has an almost linear distribution of normal stress. 
It can also easy be seen that the maximum stress level is underestimated if 
using a straight-beam formula for a steep curvature beam. 

 

 

Figure 4.2. Normal stress is dependent on curvature. 
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4.2 SHEAR STRESS 

As for normal stress, shear stress is affected by curvature. The solid line 
represents a curved beam where R/h = 2. The dotted line represents R/h = 
1000 for the same variables for a beam under the same load. As for the case 
with normal stress, maximum stress is underestimated if using straight beam 
formulas for a steep curvature beam. It can also be observed that the stress 
level of the web is much higher that the stress level for the flange. This is due 
to the fact that the web has a smaller width than the flange. See figure 4.3 
below: 

 

 

Figure  4.3. Shear stress is dependent on curvature. 
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4.3 STRESS PERPENDICULAR TO LINE OF GRAVITY 

The most interesting effect of introducing curvature on a beam is the 
appearance of stress perpendicular to line of gravity. This kind of stress does 
not exist at all in a perfectly straight beam. For steep curvature, this kind of 
stress becomes quite large and has to be taken into account. This is especially 
true for wooden beams since the ultimate stress levels perpendicular to line 
of gravity is just a few percent of the ultimate tension stress levels of normal 
stress (Burström, 2001). On the plot below, the solid line represents a beam 
with R/h = 2 and the dotted line represents R/h = 1000 for the same variables. 
All other conditions are the same. As seen in the figure, the presence of stress 
perpendicular to line of gravity is virtually zero for an almost straight beam. 
For beams of very steep curvature, it will in most cases become the limiting 
factor for the load capacity. See figure 4.4 below: 

 

Figure  4.4. Stress perpendicular to line of gravity is dependent on curvature. 
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4.4 COMMENTS ON CURVATURE EFFECT ON STRESSES 

It is noted that the absolute maximum of stress perpendicular to line of 
gravity and shear stress does not appear to occur at the same level as the 
neutral axis as expected. This may however depend on the fact that some 
simplifications have been made during derivation of the stress formulas. The 
equation used for stress perpendicular to line of gravity disregards the effect 
curvature has on normal stress distribution. The formula relies on a linear 
variation of normal stress (dotted line in figure 4.2) rather than the more 
exact curved distribution (solid line in figure 4.2). The influence of the 
simplifications made become evident for beams with small R/h. However, the 
offset decreases as the curvature decreases which makes the equations 
sufficient as long as the curvature is not extremely steep.   

 

 



Denna sida skall vara tom!
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CHAPTER 5 

5 USER MANUAL – CBEAM2 TOOLKIT EXPLAINED 
This chapter describes how to use the cbeam2 toolkit to analyze the strength 
of a structure built up by curved beam elements. The software required is 
MATLAB, a numerical computing environment and the programming 
language, CALFEM, a finite element toolbox developed as an extension to 
MATLAB by the Division of Structural Mechanics, Lunds University, and the set 
of CBEAM2-functions listed in appendix A. The arch structure in figure 5.1 
below is to be analyzed. 

 

R=10 R=6

q=24kN/m

0,4x0,9 

0,2x0,3

P1=(0,0) m 

P2=(9,6 m)

P3=(14,3) m 

Figure  5.1. Arch geometry and properties

Material properties 
E  = 10400 MPa Weibull data 
f   = 23 MPa  m* = 5 
fr = 0,5 MPa  σ5% = 0,74 MPa 
fv = 4 MPa  Vprisma = 0,01 m3 
                      Cross section 

x 

y 



 

 

 

 

 
The user must first make sure that the location of both the CALFEM-toolbox 
and the CBEAM2-package is listed in the environmental variable PATH of 
MATLAB. To add a directory to the PATH, choose <Set Path> under the menu 
<File> of MATLAB. The CALFEM-toolkit can be found on the website of 
Department of Structural Mechanics at the University of Lund (which as of 
2008-05-14 is http://www.gorkon.byggmek.lth.se/bmforms/AppListPage). The 
CBEAM2-package can be received by contacting the author of this thesis. 

Lines starting with the sign ‘>’ states what is to be written into the MATLAB 
prompt. 

 

 

 

 

 

 

 

Figure  5.2. Element and DOF numbering 

First, the geometry needs to be defined for the two beam elements that the 

arch consists of. The variables ex and ey holds information about x and y 

coordinates. The ep-vector holds information about Young’s modulus, radius, 
total width of cross section, total thickness of walls, total height and height of 
web: 

> ex1 = [0 9]; 
> ey1 = [0 6]; 
> ep1 = [10400e6 10 0.4 .2 .9 .3]; 
> ex2 = [9 14]; 
> ey2 = [6 3]; 
> ep2 = [10400e6 6 0.4 .2 .9 .3]; 
 
Then the load needs to be defined. The eq-vector holds information about 
vertical and horizontal load: 
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> eq1 = [0 -24000]; 
> eq2 = [0 -24000]; 
 
The variable n denotes the number of evaluation points used for analysis of 
each arch. In this example 15 points are used for both beam elements. 

> n = 15 
 
When load and geometry is defined, it is possible to create the stiffness matrix 
and load matrix using the cbeam2dl() function. 

> [Ke1, fe1] = cbeam2dl(ex1, ey1, eq1, ep1, 0, n) 
> [Ke2, fe2] = cbeam2dl(ex2, ey2, eq2, ep2, 0, n) 
 
The element degrees of freedom are defined by the edof-matrix, see figure 
5.2. 

> edof = [1 1 2 3 4 5 6 
          2 4 5 6 7 8 9]; 
 
The boundary conditions are defined using the bc-matrix. Since the left end 

of the arch is fix-ended and the right end is simply supported the bc-matrix 
becomes: 

> bc = [1 0 
        2 0 
        3 0 
        8 0]; 
 
An empty global stiffness matrix and an empty global force matrix needs to be 
created, preferably by the built in command zeros(). 

> K = zeros(9); 
> f = zeros(9,1); 
 
The two beam elements needs to be assembled to create a global system. The 

CALFEM-function assem() is used for this purpose. assem() makes use of 
the edof-matrix to complete its task. 

> [K, f] = assem(edof(1,:), K, Ke1, f, fe1) 
> [K, f] = assem(edof(2,:), K, Ke2, f, fe2) 
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The system is now complete with global stiffness matrix, global load vector 

and defined boundary conditions. The CALFEM-function solveq() is used to 
solve the equation system K a = f (equation 2.2). 

> [a, Q] = solveq(K, f, bc); 
 
The displacements and reaction forces of the global system is now known. The 

cbeam2p() and plot() is used to plot the undeformed geometry and 
cbeam2pdisp() can be used to plot the deformed geometry: 

> figure; hold on; 
> axis square; 
> axis([0 20 -13 7]); 
> title(‘Analysis of an arch using the cbeam2 
toolkit’); 
 
> bcoord1 = cbeam2p(ex1, ey1, ep1(2), n, 0); 
> bcoord2 = cbeam2p(ex2, ey2, ep2(2), n, 0); 
 
> plot(bcoord1(:,1), bcoord1(:,2),’-‘);  
> plot(bcoord2(:,1), bcoord2(:,2),’-‘); 
 
> [ce_disp, mfact] = cbeam2pdisp(ex1, ey1, eq1, ep1, 
0, n, a(1:6), 0); 
> cbeam2pdisp(ex2, ey2, eq2, ep2, 0, n, a(4:9), 
mfact) 
 
The ce_disp vector contains the geometry of the deformed beam element. 

The mfact is the magnification factor which is calculated by the function 
unless it is defined in the call. To compute the section forces the command 

cbeam2s() is used. Since the section forces are calculated using equilibrium 
condition for a subsystem of the beam, the reaction forces of the left end of 
the beam element needs to be known. 

> [es1, sf] = cbeam2s(ex1, ey1, eq1, ep1(2), n, 
Q(1:3), 0); 
>  [es2, sf] = cbeam2s(ex2, ey2, eq2, ep2(2), n, sf, 
0); 
 
The CALFEM function eldia2() is used to plot the section forces for the 
two beam elements. 

> sfac = eldia2(ex1, [-3 -3], es1(:,3)); 
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> sfacv = eldia2(ex1, [-6 -6], es1(:,2)); 
> sfacn = eldia2(ex1, [-9 -9], es1(:,1)); 
> eldia2(ex2, [-3 -3], es2(:,3), [2 1], sfac); 
> eldia2(ex2, [-6 -6], es2(:,2), [2 1], sfacv); 
> eldia2(ex2, [-9 -9], es2(:,1), [2 1], sfacn); 
 
The function cbeam2weibull() makes use of the Weibull theory 

described in chapter 2.6, ssigma is the value of the integral described in 
equation (2.115): 

> [S1, ft, m, Vprisma] = cbeam2weibull(ex1, ey1, es1, 
ep1, 0, 0); 
> [S2, ft, m, Vprisma] = cbeam2weibull(ex2, ey2, es2, 
ep2, 0, 0); 
 

The function cbeam2weibull() does plot a dot for every point of 
evaluation. When the value of the integral has been evaluated for both beam 
elements the probability of collapse can be calculated using equation (2.116): 

> Q = 1/(ft * (Vprisma/(S1+S2))^(1/m)) 
 
 
Q =  
 
     0.972 
 
Where Q denotes the quotient between maximum allowed value of stress and 

actual value of stress as described in chapter 2.6. If Q is 1 or lower, the 
maximum stress has not been reached and the building will not collapse. Of 
course, if the arch would have consisted of more beam elements, the sum 
‘S1+S2’ will have to be expanded to include those elements as well. The total 
set of commands can be found in appendix B. The graphical output is 
presented in figure 5.3: 
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Figure  5.3. Output from example in appendix B.  

 
 

 

Analysis of an arch using the cbeam2 toolkit 
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CHAPTER 6 

6 EFFECT OF LOAD DISTRIBUTION, SIZE AND SHAPE ON STRENGTH 
When designing and arch, parameters such as height and size of the cross 
section have an influence on the strength of the structure. In this chapter a 
number of setups of arch structures are studied using the cbeam2 toolbox.  

6.1 INFLUENCE OF LOAD DISTRIBUTION AND SIZE 

To study the influence of size and distribution of load on strength, the 
following setups are analyzed: 
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Figure  6.1. Setup a 
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L = 40H

R = 25H

q = 10kN/m

L = 40H

R = 25H

q = 10kN/m

Figure  6.1. Geometry and load for evaluation of size effect 
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The size of the cross section is shown in figure 6.2: 

 

The result of the analysis is presented in figure 6.3 below. The variable Q on 
the y-axis is stress over ultimate stress and H on the x-axis is the parameter 
that defines the size of the structure. Hence; if Q>1 the structure will collapse. 

 

Figure  6.3. Effect of size on strength 
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The two curves in figure 6.3 shows that the probability of collapse decreases 
as the structure becomes larger in comparison to the load. This is expected as 
a larger structure has a larger volume which decreases the average stress. 
However, the positive effect on strength by scaling up the structure decreases 
as the volume increases. This is expected in accordance to Weibull theory 
which also is known as the size effect. Since a larger structure contains a 
larger volume of wood under stress, it is more likely that a small portion of 
that volume has a weakening defect. As this probability of a weakening defect 
increases, the positive effect of a larger structure in comparison to the load 
decreases. 

6.2 INFLUENCE OF SHAPE AND HEIGHT 

To study the influence of shape and height on strength, the following setups 
are analyzed: 
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                 Figure  6.4. Geometry and load for evaluation of shape effect
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The size of the cross section is shown in figure 6.5: 

 

 

The result of the analysis is presented below in figure 6.6: 

 
        Figure  6.6. Effect of shape on strength 
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Q is same quotient as for the setups in chapter 6.1. For setup A, the lowest 
probability of collapse seems to occur when H is about 64. When H is equal to 
40, the shape of the arch becomes a half circle. As H increases, the curvature 
of the arch decreases and as H goes towards infinity, the arch will assume the 
shape of a straight beam. It is possible to design an arch in such a way that no 
bending moment occurs for a specific load. Such a design is said to follow the 
thrust line. For a uniform load the thrust line will become parabolic (Olsson, 
2001). With this in mind, it makes sense that the most efficient design for the 
arch in setup A is somewhere between a half circle and a straight line. Setup B 
is harder to analyze since the shape of the arch is more complex. The reason 
may be that as H increases, the arch will get a more efficient curvature. For 
setup B there will be infinitely high stresses (R=0) in the intersection point 
between the beam elements, these are disregarded of. 

6.3 INFLUENCE OF SIZE EFFECT 

To analyze the influence of the size effect on strength, the following setup is 
analyzed:   

 

 

The size of the cross section is the same as used in chapter 6.1 and is 
presented in figure 6.2. By altering the parameter m* in equation 2.116, 
which denotes spread in Weibull theory, it is possible to reduce the influence 
of the size effect on strength. As m* approaches infinity the standard 
deviation approaches 0 and hence there will be no variation of the ultimate 
stress value. The setup in figure 6.7 has been analyzed for m*=5 and m*=50 
for different H. The result is presented in figure 6.8: 

 

 

 

 

 L = 40H

R = 25H

q = 30H kN/m

6.7. Setup for analyze of size effect
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Figure  6.8. Influence if size effect 

If m* would be infinite, the full line in figure 6.8 above would form a straight 
line. The result shows what is expected; if the size effect is disregarded from 
there is no effect of scaling the structure up as shown by the (almost) straight 
line in figure 6.8. If the size effect is taken into account scaling the structure 
up results in a higher probability of failure. 

6.4 ANALYSIS OF ARCH 7 IN SANDVIKEN STRUCTURE 

As mentioned in the first chapter, a structure built up of glulam arches of box-
section are being built in Sandviken, Sweden, during spring 2008. In this 
chapter one of the structural arches is analyzed using both a deterministic 
method and the more refined method based on Weibull theory described in 
this thesis. As explained in chapter 6.3 the Weibull theory will act as a 
deterministic method if the spread parameter m* is infinite. Since m* acts as 
a power function, m*=50 is a very large value. The geometry of the arch is 
defined in figure 6.9. The material properties are the same as in figure 5.1, 
except m*. 

     m*=5
      m*=50 

H (m) 
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The arch consists of four curved beam elements with different radius. The 
arch is symmetrical and pin-ended. The load case represents an unevenly 
distributed snow load. The cross-section of the arch is presented in figure 6.10 
below: 

 

 

 

 

 

 

 

 

  Figure  6.10. Cross section 

The results show that the size effect has quite a large effect on structure of 
such large volume. The output of the CBEAM2-toolbox is presented in figure 
6.11 below: 

 

  

L = 92,71m

R = 74,51m 

(0,0)

R = 93,23m

(28.54, 13.77) 
(46.35, 16.40)

36 kN/m
18 kN/m 

Figure  6.9. Analysis of size effect on strength
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                  Figure  6.11. Analysis of arch when size effect is disregarded of. 

In figure 6.11, the plots of the section forces are not plotted using the same 
scale. In the plot above (figure 6.11) the Weibull spread parameter m* is set 
to 50. This means the size effect is almost completely disregarded of. The 
quotient between stress and ultimate stress is for different m*: 

  
  
Hence, according to Weibull theory the maximum allowed stress is about 1/3 
of the maximum allowed stress calculated by deterministic theory for this 
particular structure under this specific load. It should be noted that values 
presented above are of characteristic value since the input value of the 
parameter fr used is the characteristic value, see figure 5.1 and equation 
2.108. 

x 
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CHAPTER 7 

7 CONCLUSIONS 

7.1 CONCLUDING REMARKS 

This toolbox offers powerful tools for analysis of stress in curved beams. The 
results show that the Weibull theory size effect has a significant impact on 
strength for large beams. The result of the toolbox has been validated by 
comparing the output of the different functions with hand calculations based 
on straight beam theory. However, before the toolbox can be used in a 
professional matter, the correctness should be confirmed by comparing 
results with other analysis. 

7.2 FUTURE WORK 

This report makes a base for further work on the subject. The following areas 
have been identified as prosperous for continues work by the author: 

• Derive the load vector the proper way using shape functions. Since the 
shape functions for a curved beam can be derived, even though they 
become complex, this could be done. This would save much computing 
time comparing to the method described in this paper. 

• Optimize the MATLAB-functions. There are several steps in the 
functions (especially where the beam is divided into a subsystem) 
which easily can be optimized. For example, the un-rotated stiffness 
matrix of a subsystem beam could be reused to save computing time. 

• Implement the MATLAB functions in a high-speed optimized language 
such as FORTRAN. 

• Create a graphical interface to let the user design curved beams 
without having to learn CALFEM/MATLAB.  



Denna sida skall vara tom!
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Appendix A  

Curved beam element functions 

 

CBEAM2E(EX, EY, EQ, EP, FLIP_BEAM) 
 
function [Ke,fe] = cbeam2e(ex, ey, eq, ep, flip_beam); 
 
% function [Ke,fe] = cbeam2e(ex, ey, eq, ep, flip_beam); 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Compute the stiffnes matrix of a curved beam element 
% made out of a hollow box section. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           eq = [qx qy]        Uniform external load (global  
%                               coordinate system) 
%           ep = [E             Young's modoulous 
%                 R             Radius of curvature 
%                 w_flange      Width of flange 
%                 w_web         Total width of web ('walls') 
%                 htot          Total height of cross section 
%                 hweb]         Height of web 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               x for more detailed information. 
% 
%------------------------------------------------------------- 
% OUTPUT:   Ke                  Element stiffnes matrix (global) 
%           fe                  Element force vector (simple  
%                               approximation, global system) 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
% Element properties 
E = ep(1); 
R = ep(2); 
w_flange = ep(3); 
w_web = ep(4); 
htot = ep(5); 
hweb = ep(6); 
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% 2a = Distance from (x1,y1) to (x2,y2) 
g=[ ex(2)-ex(1); ey(2)-ey(1) ]; 
a = sqrt(g'*g)/2;      
 
% Angle fi (see figure x for definition) 
 
 
fi = asin(a/R); 
 
% Area 
A = w_flange*(htot-hweb)+hweb*w_web;  
 
% Modified bending stiffnes for hollow box section 
J = (R^3*w_flange*log((2*R+htot)/(2*R-htot))-R^2*w_flange*htot)  -  
(R^3*(w_flange - w_web)*log((2*R+hweb)/(2*R-hweb))-R^2*(w_flange - 
w_web)*hweb); 
   
% Expressions used to build up the D matrix 
H11 = 2*( R/(E*A)+R^3/(E*J) )* fi * (cos(fi)^2) + (R^3/(E*J)) * (fi - 
3 * sin(fi) * cos(fi)); 
H22 = 2*( R/(E*A)+R^3/(E*J) )* fi * sin(fi)^2; 
H12 = 2*( R/(E*A)+R^3/(E*J) )* fi * sin(fi)*cos(fi) - 2*( R^3/(E*J) ) 
* sin(fi)^2; 
H33 = R^3/(E*J)*(fi-sin(fi)*cos(fi)); 
H = H11*H22 - H12^2; 
 
% G matrix 
G = [-1, 0, 0, 1, 0, 0; 
      0, 0,-a, 0, 0, a; 
      0, 1, a, 0,-1, a]; 
 
% D matrix   
D = [H22/H, -H12/H,     0; 
    -H12/H,  H11/H,     0; 
         0,      0, 1/H33]; 
 
% Ke in local coordinate system 
Ke = G'*D*G; 
          
% Transformation to global system 
alpha = asin((ey(2)-ey(1))/(2*a)); 
 
b=[ ex(2)-ex(1); ey(2)-ey(1) ]; 
L=sqrt(b'*b);  n=b/L; 
 
Gt=[n(1) n(2)  0    0    0   0; 
   -n(2) n(1)  0    0    0   0; 
    0    0    1    0    0   0; 
    0    0    0   n(1) n(2) 0;  
    0    0    0  -n(2) n(1) 0; 
    0    0    0    0    0   1];   
   
% Approximation of distributed load          
fy = abs((ex(2)-ex(1))/2)*eq(2); 
fx = abs((ey(2)-ey(1))/2)*eq(1); 
   
fe = [fx fy 0 fx fy 0]'; 
 
% "Flip" beam, unless flip_beam flag is set  
if (flip_beam == 0)     
    Ke = [ Ke(1,1)  Ke(1,2) -Ke(1,3)  Ke(1,4)  Ke(1,5) -Ke(1,6) 
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           Ke(2,:) 
          -Ke(3,1)  Ke(3,2)  Ke(3,3) -Ke(3,4)  Ke(3,5)  Ke(3,6) 
           Ke(4,1)  Ke(4,2) -Ke(4,3)  Ke(4,4)  Ke(4,5) -Ke(4,6) 
           Ke(5,:) 
          -Ke(6,1)  Ke(6,2)  Ke(6,3) -Ke(6,4)  Ke(6,5)  Ke(6,6)]; 
end; 
 
 
% Transform to global system 
Ke = Gt'*Ke*Gt; 
 
%--------------------------end-------------------------------- 
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 CBEAM2DL(EX, EY, EQ, EP, FLIP_BEAM, N) 
 
function [Ke,fe] = cbeam2dl(ex, ey, eq, ep, flip_beam, n) 
 
% function [Ke,fe] = cbeam2dl(ex, ey, eq, ep, flip_beam, n) 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Compute the corresponding force vector of a curved beam element 
% under distributed load applied along the axis of the global 
% coordinate system. The global load is approximated as a  
% number (n) point loads. A subsystem of (n-1) curved beam  
% elements is created with fully supported ends. The equation 
% system is then solved and the negative supporting forces are  
% returned as the corresponding load vector. 
% 
% For convenient reasons, the stiffness matrix is also returned. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           eq = [qx qy]        Uniform external load (global  
%                               coordinate system) 
%           ep = [E             Young's modoulous 
%                 R             Radius of curvature 
%                 w_flange      Width of flange 
%                 w_web         Total width of web ('walls') 
%                 htot          Total height of cross section 
%                 hweb]         Height of web 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               x for more detailed information. 
%           n                   Number of nodal points used 
%                               for approximation (n>=2) 
%            
% 
%------------------------------------------------------------- 
% OUTPUT:   Ke                  Element stiffnes matrix (global) 
%           fe                  Element force vector 
%                               (approximation, global system) 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
% Element properties 
E = ep(1); 
R = ep(2); 
w_flange = ep(3); 
w_web = ep(4); 
htot = ep(5); 
hweb = ep(6); 
 
% Generate coordinates 
bcoord = cbeam2p(ex, ey, R, n, flip_beam); 
 
% The curved beam element is divided into smaller parts and the 
% distributed load is approximated as a number of point loads which 
% attacks directly into the nodal points of the subsystem. 
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nbr_of_dofs = n*3; 
nbr_of_elements = n-1; 
K = zeros(nbr_of_dofs); 
f = zeros(nbr_of_dofs,1); 
 
% Generate local edof 
ledof = zeros(n-1,7); 
for i = 1:n-1 
    ledof(i,:) = [i (1+(i-1)*3):1:(6+(i-1)*3)]; 
end; 
 
% Generate the subsystem using cbeam2e 
for p = 1:nbr_of_elements 
    [Ke,fe] = cbeam2e(bcoord(p:p+1,1),bcoord(p:p+1,2), eq, ep, 
flip_beam); 
    [K,f] = assem(ledof(p,:),K,Ke,f,fe); 
end; 
 
% Set boundary conditions so the endings beam is fix-ended 
bc=[1 0 
    2 0 
    3 0 
    nbr_of_dofs-2 0 
    nbr_of_dofs-1 0 
    nbr_of_dofs 0]; 
 
% Solve the system of equations 
[a,Q] = solveq(K,f,bc); 
 
% It is now possible to "translate" the distributed load into a 
equivalent 
% lock force vector which means that the curved beam element can be 
used as 
% any beam element in the calfem toolbox. 
 
fe = [-Q(1) 
      -Q(2) 
      -Q(3) 
      -Q(nbr_of_dofs-2) 
      -Q(nbr_of_dofs-1) 
      -Q(nbr_of_dofs)]; 
 
% Calculate the stiffnes matrix for the complete element 
 
Ke = cbeam2e(ex, ey, eq, ep, flip_beam); 
 
%--------------------------end-------------------------------- 
 
 

 



 

74 

 

 

 CBEAM2PDISP(EX, EY, EQ, EP, FLIP_BEAM, N, ED, MFACT) 
 
function [ce_disp, mfact] = cbeam2pdisp(ex, ey, eq, ep, flip_beam, n, 
ed, mfact) 
 
% function [ce_disp, mfact] = cbeam2pdisp(ex, ey, eq, ep, flip_beam, 
n, ed, mfact) 
%------------------------------------------------------------- 
% PURPOSE 
% 
% This function plots the displacement of a beam section using 
% (n) points. The methology is the same as for cbeam2dl(), except 
% that different end displacements are used as boundary conditions. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           eq = [qx qy]        Uniform external load (global  
%                               coordinate system) 
%           ep = [E             Young's modoulous 
%                 R             Radius of curvature 
%                 w_flange      Width of flange 
%                 w_web         Total width of web ('walls') 
%                 htot          Total height of cross section 
%                 hweb]         Height of web 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               x for more detailed information. 
%           n                   Number of nodal points used 
%                               for approximation (n>=2) 
%           ed = [dx1 dy1 dr1,  Element ending displacements 
%                 dx2 dy2 dr2]   
%           mfact               Magnification factor 
% 
%------------------------------------------------------------- 
% OUTPUT:   ce_disp [x1 y1      Deformed shaped 
%                    .  . 
%                    xn yn]       
%           mfact               Magnification factor 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
% Element properties 
E = ep(1); 
R = ep(2); 
w_flange = ep(3); 
w_web = ep(4); 
htot = ep(5); 
hweb = ep(6); 
 
% Generate coordinates 
bcoord = cbeam2p(ex, ey, R, n, flip_beam); 
 
% Create local subsystem 
nbr_of_dofs = n*3; 
nbr_of_elements = n-1; 
K = zeros(nbr_of_dofs); 
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f = zeros(nbr_of_dofs,1); 
 
% Generate local edof 
ledof = zeros(n-1,7); 
for i = 1:n-1 
    ledof(i,:) = [i (1+(i-1)*3):1:(6+(i-1)*3)]; 
end; 
 
%element = 1 => p1->p2 
for p = 1:nbr_of_elements 
    [Ke,fe] = cbeam2e(bcoord(p:p+1,1),bcoord(p:p+1,2), eq, ep, 
flip_beam); 
   % Ke = beam2e(bcoord(p:p+1,1),bcoord(p:p+1,2),[210e9 0.01 8.3333e-
06]); 
    [K,f] = assem(ledof(p,:),K,Ke,f,fe); 
end; 
 
% Set boundary conditions 
bc=[1 ed(1) 
    2 ed(2) 
    3 ed(3) 
    nbr_of_dofs-2 ed(4) 
    nbr_of_dofs-1 ed(5) 
    nbr_of_dofs ed(6)]; 
 
% Solve the system of the equations 
[a,Q] = solveq(K,f,bc); 
 
bcoord_disp = bcoord; 
 
if (mfact == 0) 
    mfact = (sqrt((ex(2)-ex(1))^2+(ey(2)-ey(1))^2)/max(abs(a)))*0.09; 
end; 
 
% Add the displacements to the original curvature 
for i = 1:n 
    bcoord_disp(i,1) = bcoord_disp(i,1)+a(1+((i-1)*3))*mfact; 
    bcoord_disp(i,2) = bcoord_disp(i,2)+a(2+((i-1)*3))*mfact; 
end; 
 
% Plot! 
plot(bcoord_disp(:,1),bcoord_disp(:,2),'r--'); 
 
ce_disp = bcoord_disp; 
 
%--------------------------end-------------------------------- 
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 CBEAM2P(EX, EY, R, N, FLIP_BEAM) 
 
function [beam_coord,xc,yc] = cbeam2p(ex, ey, R, n, flip_beam) 
 
% function [beam_coord,xc,yc] = cbeam2p(ex, ey, R, n, flip_beam) 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Geometric function for generating (n) coordinates for a section 
% of a circle, reaching from (x1,y1) to (x2,y2) width radius R. 
% The center of such a circle is also calculated. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           R                   Radius 
%           n                   Number of coordinates 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               x for more detailed information.% 
% 
%------------------------------------------------------------- 
% OUTPUT:  beam_coord = [x1 y1  Coordinates 
%                        .  . 
%                        xn yn] 
%          xc                   Center of circle (x) 
%          yc                   Center of circle (y) 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
% Comment: flip_beam is not yet fully implemented and should not be 
used! 
 
% Point 1, P1 
x1 = ex(1); 
y1 = ey(1); 
 
% Point 2, P2 
x2 = ex(2); 
y2 = ey(2); 
 
% Geometrical calculations 
s = sqrt((x2-x1)^2 + (y2-y1)^2);       % |P1P2| 
 
if(s>2*R) 
     disp('Diameter error. No such circle can exist in euclidean 
geometry.'); 
     return; 
end 
    
x3 = (x2-x1)/2+x1;                     
y3 = (y2-y1)/2+y1; 
m = sqrt(4*R^2-s^2)/2;               % |P3Pc|, P1P2 -> Pc 
 
if((x2-x1) == 0)                    % Exception when y = k 
    xc = x1+m 
    yc = (y1+y2)/2+y1 
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else 
    k = (y2-y1)/(x2-x1);                 % Slope P1P2 
    v = 1/(sqrt((x2-x1)^2+(y2-y1)^2))*[x2-x1,y2-y1]; 
    nv = [v(2),-v(1)];                   % Slope (v) P3Pc, normal  

     % vector (nv) 
 
    if (nv(1) == 0)                      % Exception when k=0 to avoid  

     % division by zero 
        xc = x3; 
        yc = y3-m; 
                                         
    else     
        kc = nv(2)/nv(1);                % Slope P3Pc 
 
        % See derivation in notes from 15/1. Based on the assumption  
        % that 
        % |P3Pc| = m and that the equation of the line P3->Pc is known 
        % since the slope is the normal of the coefficient of P1P2 
        xc1 = sqrt(4*R^2-s^2)/(2*sqrt(kc^2+1)) + x3; 
        xc2 = x3 - sqrt(4*R^2-s^2)/(2*sqrt(kc^2+1)); 
 
        % Because of the nature of the circle equation, two  
        % centerpoints 
        % are withheld.  
        yc1 = kc*(xc1-x3)+y3; 
        yc2 = kc*(xc2-x3)+y3; 
 
        % Use the 'lower' of the two, unless flip_beam is true 
        if ((yc1 < yc2) & (flip_beam == 0)) 
            xc = xc1; 
            yc = yc1; 
        else 
            xc = xc2; 
            yc = yc2; 
        end 
    end 
end; 
 
alpha  = asin(s/(2*R))*2;                    % Angle P1-Pc-P2 
beta = alpha/(n-1);                         % Angle for each piece 
 
% Gamma denotes the angle betweem PcP1 and the coordinate system, 
measured from 
% the slope (1,0). Depending on where on the circle P1 is located, 
gamma is 
% calculated using different expressions. 
 
if(x1<xc)                                   % Second quarter 
    gamma = pi - asin((y1-yc)/R);     
else                                        % First quarter 
    gamma = asin((y1-yc)/R); 
end; 
 
beam_coord = zeros(n,2); 
beam_coord(1,1) = x1; beam_coord(1,2) = y1; 
beam_coord(n,1) = x2; beam_coord(n,2) = y2; 
 
% Calculate n coordinates 
for i = 1:(n-2) 
    t = cos((pi-gamma)+beta*i)*R;            % t is the x-part of PcPt 
    xglobal = xc - t;                  % Convertion to global system     
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   % When solving the equation of circle, information of slope is lost 
   % since the square root is involved. If gamma-beta*n > pi then P is 
   % located in third/fourth quarter and y = -y. 
    if( ((gamma-beta*i) > pi) ) 
        yglobal = -sqrt(R^2-(xglobal-xc)^2)+yc;; 
    else 
        yglobal = sqrt(R^2-(xglobal-xc)^2)+yc; 
    end; 
     
    beam_coord(i+1,1) = xglobal; 
    beam_coord(i+1,2) = yglobal; 
end; 
 
%--------------------------end-------------------------------- 
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 CBEAM2STRESS(YS,M,V,N,R,EP) 
 
function [sigma,tau,sigma_perpendicular] = cbeam2stress(ys, M, V, N, 
ep) 
 
% function [sigma,tau,sigma_perpendicular] = cbeam2stress(ys, M, V, N, 
ep) 
% 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Compute normal stress, shear stress and 
% stress perpendicular to line of gravity 
% for a curved beam element of box cross 
% section. 
% 
%------------------------------------------------------------- 
% INPUT:    ys                  Point of evaluation 
%           M                   Moment 
%           V                   Shear force 
%           N                   Normal force 
%           ep = [E             Young's modoulous 
%                 R             Radius of curvature 
%                 w_flange      Width of flange 
%                 w_web         Total width of web ('walls') 
%                 htot          Total height of cross section 
%                 hweb]         Height of web 
% 
%------------------------------------------------------------- 
% OUTPUT:   sigma               Normal stress at ys 
%           tau                 Shear stress at ys 
%           sigma_perpendicular Stress perpendicular 
%                               to line of gravity at ys 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
R = ep(2); 
w_flange = ep(3); 
w_web = ep(4); 
htot = ep(5); 
hweb = ep(6); 
 
% Constants valid for cross section 
yeweb = hweb/2; 
A = w_flange*(htot-hweb)+hweb*w_web; 
 
Fflange = @(y) (w_flange.*(-y./(R+y))); 
Fweb = @(y) (w_web.*(-y./(R+y))); 
m = 1/A * (quadl(Fflange,-htot/2,-yeweb) + quadl(Fweb,-yeweb,yeweb) + 
quadl(Fflange,yeweb,htot/2)); 
 
% Set variable 'where' depending on where to evaluate 
if (ys <= htot/2 & ys > hweb/2) 
    where = 'upper'; 
elseif (ys >= -hweb/2  & ys <= hweb/2) 
    where = 'web'; 
elseif (ys >= -htot/2 & ys < -hweb/2) 
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    where = 'lower'; 
else 
    sprintf('Error: y out of scope'); 
    return; 
end; 
 
% Normal stress 
sigma = N/A-(M/(R*A))*(1+ys/(m*(R+ys))); 
 
% Shear stress 
switch where 
    case 'web' 
        tau = 
(V./(w_web.*(R+ys).^2.*A.*m)).*(w_web.*((yeweb.*2).^2./8-
ys.^2./2)+w_flange.*(htot.^2./8-(yeweb.*2).^2./8)); 
    case 'lower' 
        tau = (V./((R+ys).^2.*A.*m)).*(((htot).^2./8-ys.^2./2)); 
    case 'upper' 
        tau = (V./((R+ys).^2.*A.*m)).*(((htot).^2./8-ys.^2./2)); 
end; 
 
% Stress perpendicular to line of gravity 
I = w_flange*htot^3/12 - (w_flange-w_web)*hweb^3/12; 
sigma2 = @(y) (y); 
 
switch where 
    case 'upper' 
        sigma_perpendicular = 
(M/(w_flange*(R+ys)*I))*w_flange*quadl(sigma2,ys,htot/2); 
    case 'web' 
        sigma_perpendicular = 
(M/(w_web*(R+ys)*I))*(w_web*quadl(sigma2,ys,yeweb) + 
w_flange*quadl(sigma2,yeweb,htot/2)); 
    case 'lower' 
        sigma_perpendicular = 
(M/(w_flange*(R+ys)*I))*(w_flange*quadl(sigma2,yeweb,htot/2) + 
w_web*quadl(sigma2,yeweb,-yeweb) + w_flange*quadl(sigma2,ys,-yeweb)); 
end 
 
%--------------------------end-------------------------------- 
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 CBEAM2S(EX, EY, EQ, R, N, Q, FLIP_BEAM) 
 
function [es,sf] = cbeam2s(ex, ey, eq, R, n, Q, flip_beam) 
 
% function [es,sf] = cbeam2s(ex, ey, eq, R, n, Q, flip_beam) 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Compute the section forces of a curved beam element 
% made out of a hollow box section. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           eq = [qx qy]        Uniform external load (global  
%                               coordinate system) 
%           R                   Radius of curvature 
%           n                   Number of evaluation points 
%           Q                   Equivalent reaction forces 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               x for more detailed information. 
% 
%------------------------------------------------------------- 
% OUTPUT:   es = [N V M]        Section forces 
%           sf = [N V M]        Reaction forces 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
fx = Q(1); 
fy = Q(2); 
Mu = Q(3); 
qx = eq(1); 
qy = eq(2); 
 
% Coordinates for evaluation 
[bcoord,xc,yc] = cbeam2p(ex, ey, R, n, flip_beam); 
es = zeros(n,3); 
 
for i = 1:n 
    xev = bcoord(i,1); 
    yev = bcoord(i,2); 
     
    xl = xev-bcoord(1,1); 
    yl = yev-bcoord(1,2); 
     
    % Slope 
    k = -(xev-xc) / sqrt(-xev^2+2*xev*xc+R^2-xc^2); 
 
    % Slope 
    vev = ([1,k]) / (sqrt(1^2+k^2)); 
 
    % Angle between vev and (0,1) 
    phi = asin(vev(2)); 
     
    % Equilibrium 
    vbis = -fy - qy*xl; 
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    nbis = -fx - qx*yl;  
    V = cos(phi)*vbis - sin(phi)*nbis; 
         
    N = cos(phi)*nbis + sin(phi)*vbis; 
     
    M = -Mu + qy*xl^2/2 - qx*yl^2/2 - fx*yl + fy*xl; 
    es(i,:) = [N V M]; 
    %es(i,:) = [nbis vbis M]; 
end; 
 
sf = [-nbis -vbis -M]; 
 
%--------------------------end-------------------------------- 
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 CBEAM2WEIBULL(EX, EY, ES, EP, FLIP_BEAM) 
 
function [sum_sigma, sigma_d, m, Vprisma] = cbeam2weibull(ex, ey, es, 
ep, flip_beam, settings) 
 
% function [sum_sigma, sigma_d, m, Vprisma] = cbeam2weibull(ex, ey, 
es, ep, flip_beam, settings) 
%------------------------------------------------------------- 
% PURPOSE 
% 
% Discretization of weibull integral for stresses over a hollow 
% box section. Output is used to calculate probability of collaps. 
% 
%------------------------------------------------------------- 
% INPUT:    ex = [x1 x2]        Coordinates 
%           ey = [y1 y2]         
%           eq = [qx qy]        Uniform external load (global  
%                               coordinate system) 
%           ep = [E             Young's modoulous 
%                 R             Radius of curvature 
%                 w_flange      Width of flange 
%                 w_web         Total width of web ('walls') 
%                 htot          Total height of cross section 
%                 hweb]         Height of web 
%           flip_beam           Boolean, if set to true curvature 
%                               of beam will be flipped. See chapter 
%                               2.1.4 for more detailed information. 
%           settings =          Vector to define variables 
%             [m                used for Weibull analysis. 
%              sigma_d    If set to zero default values 
%              Vprisma          will be used. See chapter 2.6 
%              fd_tau           for definitions of variables. 
%              fd_sigma 
%              fd_90] 
% 
%------------------------------------------------------------- 
% OUTPUT:   sum_sigma           Part of weibull integral for 
%                               calculation of probability of 
%                               collaps. 
%           sigma_d             Experimental value 
%           m                   Experimental value 
%           Vprisma             Experimental value 
% 
%------------------------------------------------------------- 
% AUTHOR:        Erik Persson   2008-04-18 
% 
% Copyright (c)  Erik Persson 
%------------------------------------------------------------- 
 
R = ep(2); 
w_flange = ep(3); 
w_web = ep(4); 
htot = ep(5); 
hweb = ep(6); 
 
% Use this section for setup 
iterations_flange = 3; 
iterations_web = 10; 
 
% Material properties 
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% if settings = 0, use default values, else use values defined in 
'settings' 
 
if (settings == 0) 
    m = 5;                              % experimental value 
    sigma_d = 0.74e6;           % experimental value, here for 5% 
    Vprisma = 0.01;                     % experimental value for size 
of prisma 
 
    fd_tau = 4e6;           % fvd 
    fd_sigma = 23e6;        % ftd 
    fd_90 = 0.5e6;          % ft90d 
else 
    m = settings(1); 
    sigma_d = settings(2); 
    Vprisma = settings(3); 
    fd_tau = settings(4);            
    fd_sigma = settings(5);         
    fd_90 = settings(6); 
end; 
     
     
k_tau = fd_tau/fd_90; 
k_sigma = fd_sigma/fd_90; 
 
h_flange = (htot-hweb)/2; 
sum_sigma = 0; 
nbr_of_points = length(es); 
dl = (asin(sqrt( (ex(1)-ex(2))^2 + (ey(1)-ey(2))^2 
)/(2*R))*R)/(nbr_of_points-1); 
 
dv_flange = w_flange * (h_flange / iterations_flange) * dl; 
dv_web = w_web * (hweb / iterations_web) * dl; 
[beam_coord,xc,yc] = cbeam2p(ex, ey, ep(2), nbr_of_points, flip_beam); 
 
line_uflange = zeros(nbr_of_points,2); 
line_lflange = zeros(nbr_of_points,2); 
for element_x = 1:nbr_of_points 
 
    k = (yc-beam_coord(element_x,2))/(xc-beam_coord(element_x,1)); 
    alpha = pi/2-atan((yc-beam_coord(element_x,2))/(xc-
beam_coord(element_x,1))); 
 
    if(k>0) 
        flip = -1; 
    else 
        flip = 1; 
    end; 
    
    yp = cos(alpha) * (htot/2) * flip + beam_coord(element_x,2);                  
    xp = (yp-beam_coord(element_x,2))/k + beam_coord(element_x,1); 
    line_uflange(element_x,:) = [xp, yp]; 
 
    yp = cos(alpha) * (-htot/2) * flip + beam_coord(element_x,2);                  
    xp = (yp-beam_coord(element_x,2))/k + beam_coord(element_x,1); 
    line_lflange(element_x,:) = [xp, yp]; 
     
    % Exception for first and last subsection (half length) 
    if (element_x == 1 || element_x == nbr_of_points) 
        redox = 0.5; 
    else 
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        redox = 1; 
    end; 
     
    for i=1:iterations_flange 
        y_flange = h_flange/(iterations_flange*2)+(i - 1) * (h_flange 
/ iterations_flange); 
        ys = (htot/2)-y_flange; 
        [sigma,tau,sigma_perpendicular] = 
cbeam2stress(ys,es(element_x,3),es(element_x,2),es(element_x,1),ep); 
        sigma_comp = 
sqrt(sigma_perpendicular^2+(tau/k_tau)^2+(sigma/k_sigma)^2); 
        (dv_flange * redox); 
        sum_sigma = sum_sigma + (sigma_comp)^m * (dv_flange * redox); 
  
        yp = cos(alpha) * ys + beam_coord(element_x,2);                  
        xp = (yp-beam_coord(element_x,2))/k + beam_coord(element_x,1);   
        plot(xp, yp, 'o'); 
 
    end; 
     
    for i=1:iterations_web 
        y_web = hweb/(iterations_web*2)+(i - 1) * (hweb / 
iterations_web); 
        ys = (hweb/2)-y_web; 
        [sigma,tau,sigma_perpendicular] = 
cbeam2stress(ys,es(element_x,3),es(element_x,2),es(element_x,1),ep); 
        sigma_comp = 
sqrt(sigma_perpendicular^2+(tau/k_tau)^2+(sigma/k_sigma)^2); 
        (dv_web * redox); 
        sum_sigma = sum_sigma + (sigma_comp)^m * (dv_web * redox); 
 
        yp = cos(alpha) * ys + beam_coord(element_x,2); 
        xp = (yp-beam_coord(element_x,2))/k + beam_coord(element_x,1); 
        plot(xp, yp, 'o'); 
 
    end; 
     
    for i=1:iterations_flange 
        y_flange = h_flange/(iterations_flange*2)+(i - 1) * (h_flange 
/ iterations_flange); 
        ys = (-hweb/2)-y_flange; 
        [sigma,tau,sigma_perpendicular] = 
cbeam2stress(ys,es(element_x,3),es(element_x,2),es(element_x,1),ep); 
        sigma_comp = 
sqrt(sigma_perpendicular^2+(tau/k_tau)^2+(sigma/k_sigma)^2); 
        (dv_flange * redox); 
        sum_sigma = sum_sigma + (sigma_comp)^m * (dv_flange * redox); 
 
        yp = cos(alpha) * ys + beam_coord(element_x,2); 
        xp = (yp-beam_coord(element_x,2))/k + beam_coord(element_x,1); 
        plot(xp, yp, 'o'); 
 
    end; 
end; 
 
plot(line_uflange(:,1),line_uflange(:,2),'g-'); 
plot(line_lflange(:,1),line_lflange(:,2),'g-'); 
 
end 
 
%--------------------------end-------------------------------- 



Denna sida skall vara tom!
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APPENDIX B 

cbeam toolbox example 

 

Analysis of a complex curved beam made out of hollow box section using 
using the cbeam toolbox extension of MATLAB/Calfem.  

 
echo on 
% example cbeamex1.m 
%  
% Purpose:  
% Example of how to use the cbeam toolbox 
% 
close all; 
 
% Create geometry 
ex1 = [0 9]; 
ey1 = [0 6]; 
ep1 = [10400e6 10 0.4 0.2 .9 .3]; 
 
ex2 = [9 14]; 
ey2 = [6 3]; 
ep2 = [10400e6 6 0.4 0.2 .9 .3]; 
 
% Assign distributed loads 
eq1 = [0 -24000]; 
eq2 = [0 -24000]; 
 
% Assign number of evaluation points 
n = 15; 
 
% Create stiffness matrices for the elements 
[Ke1,fe1] = cbeam2dl(ex1, ey1, eq1, ep1, 0, n); 
[Ke2,fe2] = cbeam2dl(ex2, ey2, eq2, ep2, 0, n); 
 
% Element DOF 
edof = [1 1 2 3 4 5 6  
        2 4 5 6 7 8 9 
        ]; 
 
% Assign boundary conditions 
bc = [1 0 
      2 0 
      3 0       
      8 0]; 
 
% Setup the global matrices 
K = zeros(9); 
f = zeros(9,1); 
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% Assemble the system 
[K,f] = assem(edof(1,:),K,Ke1,f,fe1); 
[K,f] = assem(edof(2,:),K,Ke2,f,fe2); 
 
% Solve! 
[a,Q] = solveq(K,f,bc); 
 
% Plot the geometry 
figure; 
hold on; 
axis square; 
axis([0 20 -13 7]); 
title('cbeam toolbox'); 
 
bcoord1 = cbeam2p(ex1, ey1, ep1(2), n, 0); 
bcoord2 = cbeam2p(ex2, ey2, ep2(2), n, 0); 
 
plot(bcoord1(:,1),bcoord1(:,2),'-'); 
plot(bcoord2(:,1),bcoord2(:,2),'-'); 
 
% Plot the deformed geometry 
[ce_disp, mfact] = cbeam2pdisp(ex1, ey1, eq1, ep1, 0, n, a(1:6), 0); 
cbeam2pdisp(ex2, ey2, eq2, ep2, 0, n, a(4:9), mfact); 
 
% Compute section forces 
hold on; 
[es1,sf] = cbeam2s(ex1, ey1, eq1, ep1(2), n, Q(1:3), 0); 
[es2,sf] = cbeam2s(ex2, ey2, eq2, ep2(2), n, sf, 0); 
 
% Plot section forces 
sfac = eldia2(ex1,[-3 -3],es1(:,3)); 
sfacv = eldia2(ex1,[-6 -6],es1(:,2)); 
sfacn = eldia2(ex1,[-9 -9],es1(:,1)); 
 
eldia2(ex2,[-3 -3],es2(:,3),[2 1],sfac); 
eldia2(ex2,[-6 -6],es2(:,2),[2 1],sfacv); 
eldia2(ex2,[-9 -9],es2(:,1),[2 1],sfacn); 
 
% Compute the probability for collaps 
hold on 
[S1, sigma_d1, m, Vprisma] = cbeam2weibull(ex1, ey1, es1, ep1, 0, 0); 
[S2, sigma_d1, m, Vprisma] = cbeam2weibull(ex2, ey2, es2, ep2, 0, 0); 
 
% Weibull probability off collaps (must be < 1) 
Q = 1/(sigma_d1 * (Vprisma/(S1+S2) )^(1/m)) 
 
 

 




