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Abstract

We consider a finite position synthesis and branching avoidance of four-bar link-
ages based on kinematic theory derived from dual quaternions. The branching
defect is defined as a situation where all specified task positions are not con-
nected by a continuous motion of the linkage end effector. The workspace of
a four-bar linkage is derived to be the intersection of two hyperboloids in the
kinematic image space. This is used to develop a fast method to determine
branching of a linkage and to find an explicit solution to the end effector tra-
jectory. A new synthesis method is developed where one task position is given
a lower priority. Using the new branching analysis method and by synthesizing
linkages with various values of one parameter of the linkage, we can determine
a range of values for the constrained dimension which will give useful linkages
for the four most prioritized task positions. Finally a method to find the closest
useful linkage to the last task position is derived.

Sammanfattning

Vi betraktar syntes och grendefekten av fyrlänks-mekanismer utifr̊an ett bergän-
sat antal task-positioner, baserat p̊a kinematisk teori härledd fr̊an duala kvar-
ternioner. Grendefekten är definierad som situationen där alla specificerade
task-positionerna inte är sammankopplade av en kontinuerlig rörelse av me-
kanismens end-effector. Arbetsomr̊adet av en fyrlänks-mekanism är härlett som
snittet mellan tv̊a hyperboloider i det kinematiska bildrummet. Detta används
för att utväckla en snabb metod för att avgöra om grendefekten föreligger för
mekanismen, och för att härleda en explicit lösning för mekanismens end effector
trajektoria. En ny syntes-metod är utväcklad där en av task-positionerna är gi-
ven en lägre prioritet. Genom att använda den nya grendefektsanalys-metoden
och beräkna länk-mekanismer med varierande värden av mekanismens paramet-
rar, kan vi hitta ett intervall av värden p̊a parametern som ger en användbar
mekanism för de första fyra task-positionerna. Slutligen härleder vi en metod
för att avgöra vilket värde p̊a parametern som ger den länk-mekanism som n̊ar
närmast den lägre prioriterade task-positionen.
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Chapter 1

Introduction

1.1 Linkage Mechanisms

Robots are getting more and more common in industrial environments and are
primary used to move objects between a set of positions. The object can be
either a tool or the product itself.

To ensure generality in the motion, the arm usually involves several degrees
of freedom, so the same robot arm can be used for many different applications.
A typical industrial robot has six motors and can move in six degrees of freedom,
which is the full flexibility in a 3-dimensional space. A high degree of freedom is
good from a general perspective, but might be a disadvantage in other situation.

The automation industry today is generally more interested in robots with
flexibility than designing a specific linkage which can only perform the task
it was designed for. However when a specific motion is known and no other
motion is of interest for the process, it might be much more convenient to
constrain the motion by designing a mechanism of less degrees of freedom, such
as a mechanical linkage.

Definition 1. A mechanical linkage is an assembly of bodies connected together
to manage forces and movement.

There are both advantages in terms of performance and cost by using linkage
mechanisms. A one degree of freedom linkage would require only one actuator
for the same motion as a normal robot would require at least three actuators
for. Less actuators gives both lower cost and higher accuracy. Linkages can be
found as components in many mechanisms and machines, some examples are
the following.

Example, Airplane Flaps Considering the flaps of an airplane wing. Flaps
are used to change the aerodynamic property of the wing during start, land-
ing and altitude changes. The optimal positions x, y and θ for the flaps are
determined by aerodynamic calculations.
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Figure 1.1: The flaps of an airplane changes the aerodynamic property of a wing
to allow start, landing and altitude changes. Photograph by Jerome Mervelet
[1]

In order to position the flaps at the optimal locations, the flaps may be
supported by various types of mechanisms, e.g. based on links or sliding rails.
The flaps could be positioned at any positions by robot arm with three degrees
of freedom using three actuators. Since each actuator adds mass, cost and
unreliability to the system, it might be much more beneficial to design a linkage
which together with only one actuator can do the same thing. Two examples of
a linkage supporting the flaps are presented in patent [2] which is an example of
a multiloop eleven bar linkage and in patent [3] which is an example of a six-bar
linkage.
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Figure 1.2: This eleven-bar linkage
mechanism was patented by Boeing in
1981. It positions the flap at three
specified positions [2].

Figure 1.3: A six-bar linkage in a
configuration named Stephenson III is
used to control the motion of the flaps
[3].

Example, Race Car Suspension The wheel of a car is required to move
while the shocks deflects. Consider a car in straight motion seen from the front.
In the view plane, a wheel has three degrees of freedom, x, y and rotation θ.

The wheel requires a supporting mechanism that allows the wheel to move
on a one-dimensional trajectory, which is finally controlled by the shocks. If
a robot arm with three degrees of freedom was used to support the wheel, it
would require at least two actuators together with the shock to constrain the
wheel motion. Since there are huge forces involved in a car suspension, the
motors would have to produce a lot of force even though the actual work would
be minimal. It is much more beneficial to design a support mechanism with
only one degree of freedom and let the shock control the final motion.

A double wishbone car suspension, see Figure 1.4, commonly refereed to as
double A-arm, is an example of a four-bar linkage when seen in the front plane.
The car chassis is considered as one link, the two wishbones or A-arms are one
link each and the upright is the fourth link. This mechanism can be found in
most competitive race-cars.

This master thesis will primary consider four-bar linkages, which is the most
basic linkage mechanism. It is still of interest to study since more complex
linkages can be synthesized as a combination of open chains and four-bar linkages
[6].

Example, Trunk Closing Mechanism A design example for a linkage is
to move an object along a path or through a set of positions. An example of a
possible design case is the trunk cover in an automotive.
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Figure 1.4: A double wishbone suspension is used in many competitive race-cars
such as this Formula Student [4] car LUR5 from LU Racing [5].

Figure 1.5: Chrysler Sebring 2005 has a four-bar linkage to support the trunk
cover motion.

Figure 1.5 shows the trunk linkage in a Chrysler Sebring. The design criteria
in this example is that the trunk should be positioned in a closed and an opened
position. Two intermediate positions could also be specified near the opened
and the closed position to obtain a smooth closing motion, the lock mechanism
may need to be hooked in from a certain direction while closing.

The alternative to a linkage in this case is a much longer curved bar con-
nected to a hinge inside the trunk, which is the most common design in coupé
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cars.

1.2 Synthesis of Four-Bar Linkages

A four-bar consists of a ground link, two crank links and a coupler link. In the
case where the linkage is driven by one of the cranks, the other crank is called
the follower.

gx

gy

py

px

l

Wi

Figure 1.6: Drawing of a four-bar linkage with dimension-annotations for one of
the cranks. The two blue lines are called the crank links and the orange triangle
is called the coupler link. The fourth link is the ground.

Linkage synthesis is the process of generating a linkage that satisfies some
design specifications. In this thesis we will consider synthesis where the dimen-
sions of the linkage is calculated so the end effector can be positioned at a set
of task positions.

Definition 2. A position consist of a translation and a corresponding rotation.
A task position is a position used to define the task for a mechanism.

A crank of a four-bar linkage is defined by its ground pivot, link length
and position of the moving pivot relative to the end effector frame. Using
homogeneous transformation matrices, the vector along a crank link can be
written as:

−→
l = Wi

 px
py
1

−
 gx

gy
1

 (1.1)
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where Wi is the matrix describing task position number i. The length of the
link is then given by:

l2i =

Wi

 px
py
1

−
 gx

gy
1

T Wi

 px
py
1

−
 gx

gy
1

 (1.2)

The equation has either zero, two or four real solutions (px, py, gx, gy, li) [7].
At least two solutions are necessary since we need two different cranks.

1.2.1 Homogeneous Transformation Matrices

For the unoriented reader a quick review of homogeneous transformation ma-
trices is given. If coordinate system W is located with origin in the point ~p and
the coordinate axes are given by the vectors ~ex and ~ey, then the homogeneous
transformation matrix is given by:

W =

(
~ex ~ey ~p
0 0 1

)
(1.3)

A vector ~v = (x, y, 1)T in W or a vector ~v = (x, y, 0)T in a coordinate system
with the same rotation as W and origin at the parent’s origin is given in the
parent coordinate system by:

~v0 = W~v (1.4)

In other terms, the zero as the last element means that the vector should be
considered from an origin while the number one means that the vector should
be translated to an origin of an other coordinate system. Several frames can
be added in a chain by matrix multiplication. The last element in the vector
is useful since the coordinate axes will always start in the origo of the last
coordinate system but will be rotated by all parent coordinate systems.

1.3 Multiloop Linkages

The four-bar linkage consists of only one kinematic loop. More complex linkages
can be constructed using more kinematic loops. A six-bar linkage consists of
six links connected by seven joints and can be arranged in several different
ways. McCharty presents a method for synthesizing six-bar linkages in [6], see
Figure 1.8. The method is to first specify a 3R chain, which has three degrees
of freedom and can reach any position within its work space. The 3R chain is
constrained by adding more links. Those extra links can by synthesized with
the four-bar synthesis methods. Patent [3] is an example of an application of
where six-bar linkage is composed from four-bar linkages. The inventor write
explicitly in the abstract that it is a six bar linkage built with a four bar linkage
as a component.
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Stephenson I

Stephenson IIa

Watt Ia

Watt Ib

Step 2

Step 1

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

4

4

4

4

Figure 1.7: The different arrangement of links for a six-bar linkages. From a 3R
chain, the red link is synthesized first using the same method as for four-bars.
[6]

1.3.1 Synthesis of a Watt Ia six-bar linkage

To synthesis a six-bar Watt Ia linkage, one start with a 3R chain reaching all
task positions. Since a 3R chain has 3 degrees of freedom it can reach any
positions as long as they are within a certain distance. E.g. if all the links have
the length l = 1, a position that are further away than three from the base is of
course not possible to reach. A similar case occurs for example if the first link
has length l1 = 10 and the second and third has the lengths l2 = l3 = 1, then a
position closer than eight from the base is of course never reachable.
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F1

F2

F0

F3

1

5

4

3

2

Figure 1.8: A Watt Ia six-bar linkage drawing from [6] with notations added on.

In order to constrain the 3R chain, first the position of frame F2 in frame
F0 is calculated at all task positions. Then a four-bar can be synthesized with
link 1 and link 4 as the cranks and link 2 as the coupler.

A frame F3 is fixed to link 4 and the position of frame F1 given in frame
F3 is calculated at all task positions. A four-bar with link 4 as the ground can
then be synthesized. Link 2 will be one of the cranks which is already defined
at this time. Link 5 will be the second crank in this four-bar.

1.4 Mechanism Branches

Some linkages can be assembled in different configurations, and will depending
on the configuration follow different trajectories. Different terminology may
exist in different literature. Depending of design requirements the usefulness
of a linkage may be different. To avoid confusions or misunderstandings, some
definitions are introduced.
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Figure 1.9: Drawing of a branching four-bar linkage in two different configura-
tions. The reachable trajectory is different for the two configurations.

Definition 3. A configuration of a linkage and its continuous motion is called
a branch of the linkage. When the task positions lie in different branches,
the linkage is branching and not useful.

Definition 4. A linkage with all task positions in the same branch is called a
useful linkage.

The existence of a solution to (1.2) only tells that the linkage can be assem-
bled at each of the task position in some configurations, but there does not have
to be a continuous motion between the task positions. I.e. the task positions
may belong to different branches of the mechanism. It does not have to be an
issue when the linkage has two branches as long as all task positions lie in the
same branch.

1.5 Problem Statement

It is not yet well known what causes the mechanism to branch. The current
approach to find non-branching linkages is to define a tolerance zone for the task
positions and randomly choose task positions in the zone until a non branching
linkage is found. This process is much time consuming and will give different
results each time. This thesis will investigate the conditions for what causes
the mechanism to branch and to find a strategy of modifying task positions to
generate the best possible non-branching linkage.
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1.6 Outline and Approach

• First some kinematic theory that is necessary for the later work will be
introduced, and some equations describing the kinematics of 2R chains
and four-bar linkages are derived. The equations are referred to as the
constraint manifold equations.

• The conditions of when a mechanism branches are analyzed in detail in
order to find a fast method to analyze the branching structure of a four-bar
linkage.

• The shape of the constraint curve (which is a curve describing the motion
of a mechanism) is analyzed and a first approach to find useful linkages
will be to project the task positions onto curves with shapes similar to
shapes that a single branch constraint curve may take. The first approach
did not increase the number of useful linkages, so a second approach was
considered.

• The second approach to find useful linkages will be to only consider four
task positions at a beginning. Then all possible linkages to those four
task positions will be calculated. Using the branching analysis method,
all useful linkages to the four task positions will be calculated and a fifth
task position will be projected on to the motion of the closest matching
linkage.

1.7 Related Work

1.7.1 Kinematic Theory

Linkage synthesis is not a prioritized field and the research is progressing rather
slowly. The approach in this thesis is based on the theory of quaternions ex-
plored in 1844 by Hamilton [8] and geometry in the kinematic image space
presented in 1911 by Grünwald [9]. Not much has been done based on this
theory. Bottema and Roth have a rigorous introduction to the theoretical kine-
matics [10] including dual quaternions and constraint manifold. McCarthy [7]
gives an easier introduction to the theoretical kinematics.

1.7.2 Branching

Branching and usefulness of linkages have been approached in different ways.
I have defined a linkage as useful if there is a continuous motion between the
task positions, and it is assumed that the mechanism can be actuated along the
desired motion. Chase [11] and Parrish [12] considered linkages that are driven
by rotation of one crank, which introduces singularity configurations where the
driving link can not control if the linkage will move in one or another direction.
Chase defines a branch as the range of motion which can be uniquely controlled
by a rotating input link. What is defined as a branch in this thesis is called a
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Circuit by Chase. By writing the kinematic loops for the linkage and analyze the
Jacobian of the loop equations at each task position, Parrish [12] can disqualify
some linkages immediately, but to classify them as useful he needs to do a closer
numeric analysis of the motion.

1.7.3 Branching Analysis in the Kinematic Image Space

The closest related work to this thesis is presented by Schröcker in 2005[13]
and 2007[14]. Schröcker uses constraint manifold equations of 2R chains. The
branching conditions are determined by the intersection between two constraint
manifolds. Schröcker derives the same property of the constraint manifold
shapes as is done in this thesis. However Schröcker’s derivations are different.
The results in [13] and [14] appear to be the same as in Chapter 3.
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Chapter 2

Kinematics Theory

The kinematics of an arbitrary linkage is in the general case non-linear. This
causes problems for design, analysis and control of such mechanism. An ar-
bitrary non linear algebraic equation has usually no exact explicit solution.
However in some special cases when a variable transformation exist, it might be
possible to obtain an exact solution.

2.1 Quaternions and Dual Quaternions

In 1844, William Rowan Hamilton[8] explored a mathematical object which he
named quaternions. The quaternions was an extension of the complex numbers
from one imaginary dimension i into three imaginary dimensions i, j and k.
They have shown to be very useful to represent rotations and are used in many
robotics and flight control systems today.

Theory of dual numbers where later on used to extend the quaternions to
dual quaternions, which can be used to represent a displacement with both
rotation and translation. A dual quaternion consist of two quaternions, one real
and one dual part, which gives a total of eight elements. The real part is only
related to the rotation while the dual part is related to a combination of the
rotation and translation.

A more common way of representing translations and rotations today is by
using vectors and rotation matrices. The quaternions where Vectors where the
inspiration for J.W. Gibbs when invented the vectors in 1884 [15].

The reader is referred to Appendix A for an introduction to dual quaternions.
In the case of planar kinematics, only four non-zero elements remain of the dual
quaternion.

Definition 5. A planar dual quaternion is the four components of a dual quater-
nion which are non-zero for a planar displacement.

A planar displacement (x, y, θ) can be expressed with a planar dual quater-
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nion given by:

Q = (q1, q2, q3, q4) =
=
(
cos
(
θ
2

)
, sin

(
θ
2

)
, x2 cos

(
θ
2

)
+ y

2 sin
(
θ
2

)
, y2 cos

(
θ
2

)
− x

2 sin
(
θ
2

)) (2.1)

Because of the trigonometric unity, any planar dual quaternion has to satisfy
the condition q21 + q22 = 1.

Definition 6. A planar dual quaternion that satisfies the unity condition

q21 + q22 = 1 (2.2)

is called a displacement planar dual quaternion.

The unity condition can easily be enforced by the operator

Pd(Q) =
Q√

Q2
1 +Q2

2

(2.3)

Pd is a projection operator (which means if the operator Pd is applied to a
object in the range of Pd, the same object is returned), operating from the four-
dimensional domain of all planar dual quaternions into the projection space of
all displacement planar dual quaternions.

2.2 Kinematic Image Space

To simplify visualization of a planar dual quaternion, it is useful to project it
onto a three-dimensional space. It will show to be convenient to use the space
defined by:

Definition 7. The projection space S of the operator:

PS(Q) =

(
q1
q1
,
q2
q1
,
q3
q1
,
q4
q1

)
= (1, s1, s2, s3) (2.4)

is called the kinematic image space, and was first introduced by [9].

Definition 8. The point
S = (s1, s2, s3) (2.5)

is called the image point of the displacement defined by the planar dual quater-
nion Q.

Theorem 1. The image point of a displacement x, y and rotation θ is given by:

S = PS(Q) =

[
tan

(
θ

2

)
,

1

2

(
x+ y tan

(
θ

2

))
,

1

2

(
y − x tan

(
θ

2

))]
=

=

[
s1,

1

2
(x+ ys1),

1

2
(y − xs1)

]
(2.6)
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Proof. The planar dual quaternion of a displacement is given by (2.1) to be:

Q =

(
cos

(
θ

2

)
, sin

(
θ

2

)
,
x

2
cos

(
θ

2

)
+
y

2
sin

(
θ

2

)
,
y

2
cos

(
θ

2

)
− x

2
sin

(
θ

2

))
(2.7)

The image point is obtained by applying the projection operator (2.4)

Q

q1
=

[
1, tan

(
θ

2

)
,

1

2

(
x+ y tan

(
θ

2

))
,

1

2

(
y − x tan

(
θ

2

))]
(2.8)

The image point is given by the last three components.

As one can see, the first component is only related to the rotation, while the
two last components are a combination of translation and rotation.

2.2.1 Shapes in the Kinematic Image Space

The map between the physical dimensions to the image space is non linear.
Some non-linear kinematics in the spatial dimensions takes a nice form after
the non linear mapping. A straight line in S can describe a curved motion in
the spatial dimensions.

Rotate around a point in the spatial dimension

It can be observed in (2.6) that a rotation around a point in the physical di-
mension is described by a line in the kinematic image space.

Translate without rotating

From (2.6), it can also observed that a translation along a straight line without
rotation will follow a straight line with a constant x-value, x = s1.

2.3 Constraint Manifolds

A constraint manifold is the set of positions the end effector of a mechanism
can reach. For a 2R chain (Figure 2.1) which has two degrees of freedom, the
constraint manifold forms a surface. For a one degree of freedom linkage, like a
four-bar linkage, the constraint manifold is a curve, called the constraint curve.
The constraint manifolds for 2R chains are importance when studying four-bar
linkages since the four-bar can be seen as two 2R chains with the coupler link
as a common second link. The constraint curve is then the set of points reached
by both 2R chains, and therefore the intersection of two 2R chains’ constraint
manifolds.

18



Φ
-

Θ
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End Effector Frame

Coupler Link

(Second Link)

Crank

(First Link)

Figure 2.1: A 2R chain consists of two links. The first link is connected to the
ground by a rotation joint. The second link is connected to the first with a
second rotation joint. The end effector can be located anywhere on the second
link.

2.3.1 Constraint Manifold for 2R Chain

The constraint manifold equation of a 2R chain will be derived by writing the
kinematics with planar dual quaternions. This gives four equations, one for each
component in the planar dual quaternion. The kinematic variables (the joint
angles) is eliminated from the equations and the constraint manifold equation
is obtained.

Forward Kinematics for 2R chain

Let T (x, y) be a dual quaternion describing a pure translation, R(θ) be a dual
quaternion describing a pure rotation. The dual quaternion Q of the end effector
on the second link is obtained by dual quaternion multiplications, denoted by
⊗.

Q = T (gx, gy)⊗R(θ)⊗ T (a, 0)⊗R(φ)⊗ T (px, py) (2.9)

This can be expanded into:

Q =


cos
(
θ+φ
2

)
sin
(
θ+φ
2

)
1
2

(
a cos

(
θ−φ
2

)
+ (gx + px) cos

(
θ+φ
2

)
− py sin

(
θ+φ
2

))
1
2

(
a sin

(
θ−φ
2

)
+ (px − gx) sin

(
θ+φ
2

)
+ py cos

(
θ+φ
2

))

 (2.10)
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2.3.2 Obtaining the Constraint Manifold Equation

It is desirable to find a constraint manifold equation that works both for all
displacement planar dual quaternions and in the kinematic image space.

Theorem 2. If the constraint manifold equation is a homogeneous equation
with all terms of the same order (e.g. q2i or qiqj if the order is two), and the
dual quaternion Q satisfies the constraint manifold equation, then all multiples
of Q (i.e. tQ for t ∈ R) satisfies the constraint manifold equation.

Proof. The proof is given for second order terms. This is the only order that
will be used later on, but it is easy to make the proof for any other order as
well. Let Q = (q1, q2, q3, q4)T . The constraint manifold equation can be written
as the sum of all possible combinations of qi and qj .

K(q1, q2, q3, q4) =

4,4∑
i=1,j=1

ci,jqiqj = 0 (2.11)

Let P = tQ, such that pi = tqi. Then

4,4∑
i=1,j=1

ci,jpipj =

4,4∑
i=1,j=1

ci,jt
2qiqj = t2

4,4∑
i=1,j=1

ci,jqiqj ⇐⇒ (2.12)

4,4∑
i=1,j=1

ci,jpipj = t2 · 0 = 0 (2.13)

This proves that if the constraint manifold equation is satisfied for a planar dual
quaternion Q, it is also satisfied by a planar dual quaternion P = tQ.

There is a linear map between the four trigonometric functions cos( θ+φ2 ),

sin( θ+φ2 ),cos( θ−φ2 ) and sin( θ−φ2 ) and the components of the planar dual quater-
nion q1, q2, q3 and q4, since (2.10) can be written as:

q1
q2
q3
q4

 =

 A


4×4


cos( θ+φ2 )

sin( θ+φ2 )

cos( θ−φ2 )

sin( θ−φ2 )

 (2.14)

The variables θ and φ can be eliminated in (2.10) by first extracting the
values of the trigonometric functions in terms of qi, then square and use the
trigonometric unity.
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Let:

c1 = cos(
θ + φ

2
) (2.15)

c2 = sin(
θ + φ

2
) (2.16)

c3 = cos(
θ − φ

2
) (2.17)

c4 = sin(
θ − φ

2
) (2.18)

According to the trigonometric unity cos2(x) + sin2(x) = 1:

c21 + c22 − c23 − c24 = 1− 1 = 0 (2.19)

By substituting ci with its values in terms of the components in the dual quater-
nion (C = A−1Q), the constraint manifold equation is obtained as:

K(q1, q2, q3, q4) = q21 + q22 −
1

a2
[
(gxq1 + gyq2 − pxq1 + pyq2 − 2q3)2+

(gxq2 − gyq1 + pxq2 + pyq1 + 2q4)2
]

= 0 (2.20)

Interpreting the Constraint Manifold Equation

It is easy to see that the constraint manifold equation is a second degree poly-
nomial equation of the four variables qi. However more structures are hidden
in the equation.

By writing (2.20) as a quadratic form

QTMQ = 0 (2.21)

with the symmetric matrix M given by:
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M1,1 = −2(gx − px)2

a2
− 2(py − gy)2

a2
+ 2

M1,2 = −2(gx + px)(py − gy)

a2
− 2(gx − px)(gy + py)

a2

M1,3 =
4(gx − px)

a2

M1,4 = −4(py − gy)

a2

M2,2 = −2(gx + px)2

a2
− 2(gy + py)2

a2
+ 2

M2,3 =
4(gy + py)

a2

M2,4 = −4(gx + px)

a2

M3,3 = M4,4 = − 8

a2

M3,4 = 0

(2.22)

It can easily be seen that (2.22) contains 8 different elements or coefficients.
The symmetry of M reduces it to 10 of maximum 16 possible coefficients. One
coefficient is zero and two of them are equal, which reduces it to 8. Since
the equation is homogeneous, there is an infinite number of solutions for the
coefficients. By assigning one of the coefficients a value, the number of solutions
is reduced to one. Since (2.20) is a homogeneous equation, it is according to
Theorem 2 valid for all scale’s of planar dual quaternions. To simplify geometric
reasoning, the constraint manifold will from now on be analyzed in the kinematic
image space S, which gives three dimensions instead of four.

Consider a quadratic form in S of the same structure with the elements ci.
The constraint manifold equation in the kinematic image space is given by:

(
1 x y z

)
m1 m2 m3 m4

m2 m5 m6 m7

m3 m6 m8 0
m4 m7 0 m8




1
x
y
z

 = 0 (2.23)

The zeros tell that there is no product between y an z. The coefficient for
both y2 and z2 is c8, which generates a circle for a constant value of x. By
choosing m8 = 1 we can expand and rewrite (2.23) as:

(y − (m6x+m3))2 + (z − (m7x+m4))2 − (m5 +m6 +m7)x2−
2(m2 +m3m6 +m4m7)x− (m1 +m2

3 +m2
4) = 0 (2.24)

Even though we have seven different coefficients, they are all determined by
the five independent linkage parameters. By matching the values of m1 with
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the corresponding elements in (2.22), one can observe that:

m5 +m6 +m7 = m1 +m2
3 +m2

4 =
(a

2

)2
(2.25)

and
m2 +m3m6 +m4m7 = 0 (2.26)

Which simplifies (2.24) into:

(y − (m6x+m3))2 + (z − (m7x+m4))2 =
(a

2

)2
(1 + x2) (2.27)

This shows that the constraint manifold is a hyperboloid centered in

(0,m3,m4)

and with a center line direction

(1,m6,m7)

The radius of the circle at a fixed x is

r(x) =
a

2

√
1 + x2

Figure 2.2: A constraint manifold of a 2R chain takes the form of a hyperboloid
centered at the point (0,m3,m4) and with a centerline direction of (1,m6,m7)

By matching the values in (2.23) and (2.22), the center line and radius of
the hyperboloid is found to be:

center(x) =
1

2
(2x, gx − px + x(gy + py), gy − py − x(gx + px)) (2.28)

radius(x) =
a

2

√
1 + x2 (2.29)
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Coupler Link

Crank

Second Crank

End Effector Frame

Figure 2.3: A four bar linkage is constructed by two 2R chains with a common
coupler link.

2.4 Constraint Curve of a Four-Bar Linkage

Consider a four-bar linkage constructed by a pair of 2R chains, with a com-
mon coupler link. Also consider the two constraint manifold equations for the
2R chains. For simplicity, one of the equations is for now assumed to take a
simplified shape.

y − (m6x+m3))2 + (z − (m7x+m4))2 =
(a

2

)2
(1 + x2) (2.30)

y2 + z2 =
(r

2

)
(1 + x2) (2.31)

The end effector of the four bar has to satisfy both constraint manifold equa-
tions, and is therefore given by the intersection curve.

2.5 Solving for the Constraint Curve

It is possible to find an explicit solution of the constraint curve. Consider two
circles with radius R and r with a distance d from each other along the first
coordinate axis. The two intersection points, see Figure 2.4, are given by:(

d2 − r2 +R2

2d
,±
√
−d4 + 2d2r2 + 2d2R2 − r4 + 2r2R2 −R4

2d

)
(2.32)

24



R r

d

Figure 2.4: Two circles with radius R and r with their centers at distance d
from each other. The intersection between the circles is given by (2.32).

Consider two constraint manifold hyperboloids at a fixed x-value. This gives
two circles. Align a coordinate system L with origo on the first center line and
the y-axis (Green in Figure 2.5) pointing in the direction of the second center
line. The first hyperboloid is for now assumed to have the trivial shape. The
z-axis (Blue) is chosen to be in the same x = constant plane and orthogonal to
the y-axis.

25



Figure 2.5: At a fixed value of x, the constraint manifolds forms two circles. A
coordinate system is placed with the y-axis (Green) pointing from one center line
to the other. The hyperboloid intersections can be simplified by the coordinate
transformation.

Let d(x) be the vector from the first center line to the second center line.
The vector d(x) is given by:(

0,
1

2
(gx + gyx− px + pyx),

1

2
(−gxx+ gy − pxx− py)

)
(2.33)

The length of d(x) is:

‖d(x)‖ =
√
d(x) · d(x) =√

1

4
(−gxx+ gy − pxx− py)2 +

1

4
(gx + gyx− px + pyx)2 (2.34)

The radius r is given by:

r(x) =
a

2

√
1 + x2 (2.35)

By substituting (2.34) and (2.35) into (2.32) the coordinates of the intersec-
tion curve in the coordinate system L is obtained.
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Transform Coordinates

The coordinate transformation from L to an initial coordinate system is de-
scribed by the matrix L(x)

L(x) =
1

‖d(x)‖

 ‖d(x)‖
0
0

0
dy(x)
dz(x)

0
−dz(x)
dy(x)

 (2.36)

Since the x-axis remains the same, the y-axis is given by the vector d(x) and
the z-axis is the vector d(x) rotated a quarter revolution.

By substituting the values of R, r and d into (2.32), one obtain the intersec-
tion in the coordinate system L:

CL(x) =

 s1
s2
s3

 (2.37)

Where:
s1 = x (2.38)

s2 =
a2
(
−
(
x2 + 1

))
+ (x(gx + px)− gy + py)2 + (gx + x(gy + py)− px)2 + x2 + 1

4
√

(x(gx + px)− gy + py)2 + (gx + x(gy + py)− px)2

(2.39)

s3 = ±
√
a4
(
− (x2 + 1)

2
)

+ 2a2 (x2 + 1) ·

· ((x(gx + px)− gy + py)2 + (gx + x(gy + py)− px)2 + x2 + 1)−

− ((x(gx + px)− gy + py)2 + (gx + x(gy + py)− px)2 − x2 − 1)
2
/

4
√
g2x (x2 + 1) + 2gx (px (x2 − 1) + 2pyx) + g2y (x2 + 1)−

2gy (2pxx− pyx2 + py) + (x2 + 1)
(
p2x + p2y

)
(2.40)

The constraint curve in a original coordinate system is finally obtained by the
matrix multiplication:

C(x) = L(x)CL(x) (2.41)

2.5.1 Arbitrary Hyperboloid Intersection

In the case of two arbitrary constraint manifolds, the coordinate transformation
gets a bit more complex. The vector between the center lines is obtained in the
same way but will now include more coefficients. The new x-axis will take the
direction of the first center line. A basis vector for the x-axis can for example
be obtained by:

ex = center1(1)− center1(0) (2.42)
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The new coordinate system is translated from (x, y, z) = (x, 0, 0) into the
position given by the first center line. The vector between the center lines is
obtained by:

d(x) = center2(x)− center1(x) (2.43)

The ey vector is obtained by normalizing the vector d(x)

ey(x) =
center2(x)− center1(x)

‖center2(x)− center1(x)‖
(2.44)

The ez vector can be obtained by rotating ey by the angle π/2.

ez(x) = R{x,π2 } · ey(x) (2.45)

The constraint curve is then given by:

C(x) = center1(x) + [ex, ey(x), ez(x)]CL(x) (2.46)

There is no real reason for writing out the expression for the constraint curve
since it will cover more than a page. However we have shown that an explicit
solution does exist.
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Chapter 3

Analysis of Branching in
Kinematic Image Space

In the case of real solutions of the constraint equations, there is a linkage that
goes through all the task positions. However the different task positions may
belong to different branches of the linkage.

3.1 Determine Branches

A today’s approach to analyze branching of linkages is to form the equations of
a closed kinematic loop and solve the end effector position for a discrete set of
values for one of the links angles.

3.1.1 New Approach

With our new explored knowledge, the branching analysis can be done in a much
faster way. By solving for the x-values were the constraint manifolds intersects
in only one point, a set of intervals, which are candidates to include continuous
constraint curves, is obtained. By just checking one point inside each interval
we will know wherever there is a continuous curve inside the whole interval or
not. The task positions must all lie in the same interval for the linkage to be
useful.

The structure of the constraint curve was investigated by Schröcker et al. in
[14]. They state that the constraint curve has two affinely finite branches, one
branch or two affinely infinite branches. This is not the whole truth about the
constraint curve. The constraint curve can take one of the five forms shown in
Figure 3.1.

Consider a fixed value of x. As shown previously, each manifold forms a
circle for a fixed value of x. The circles intersects in either zero, one, two or
all points. Intersection in all points only occurs when both the center lines
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(a) One closed affinely finite constraint
curve.

(b) Two half open infinite constraint
curves.

(c) One closed affinely finite, and two half
open infinite constraint curves.

(d) Two closed affinely finite constraint
curves.

(e) Two infinite constraint curves.

Figure 3.1: Illustration of the possible structures of the constraint curve.
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intersects and the two radius are equal at the same time, which is the case for
an ideal parallel linkage (Figure 3.2). This case is not of big interest for us.

Figure 3.2: An ideal parallel linkage. The end effector orientation remains
constant while the position moves on a circle.

Two circles intersect at one point if the distance between the center lines is
the same as either the difference in radius or the sum of radius. Those conditions
can be formulated as

‖∆r(x)‖ = ‖center2(x)− center1(x)‖ (3.1)

‖Σr(x)‖ = ‖center2(x)− center1(x)‖ (3.2)

Two intersection points occur when the distance between the center lines is
in between the sum and the difference of radius.

‖∆r(x)‖ < ‖center2(x)− center1(x)‖ < ‖Σr(x)‖ (3.3)

The absolute values can be eliminated by squaring the equations.

∆r(x)2 = (center2(x)− center1(x)) · (center2(x)− center1(x)) (3.4)

Σr(x)2 = (center2(x)− center1(x)) · (center2(x)− center1(x)) (3.5)

Those equations are second degree polynomials since the center lines are given
by first degree polynomials, and the radius are square roots of a second degree
polynomial.
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Note It is important to mention that the product of two square roots does
not form a polynomial of the same order as the square root’s arguments in a
general case. However it does in this case since the square roots have the same
arguments.

It is of interest to study for which x values one solution occurs. Since the
equations are quadratic, they can have zero, one or two distinct real solutions.
Since there are two equations, there can be a maximum of four x values where
the constraint manifolds intersects in only one point. Those points will be
referred to as the split points since they splits the image space into intervals
Is that either includes no intersection points or includes two intersection points
for each x-value. This means that for an interval Is, there is either a continuous
constraint curve covering the whole interval or no constraint curve at all, except
at the boundary which is shared with the neighbor intervals.

The four split points xi form four intervals for possible constraint curves.
The first instinct would suggest either three or five intervals, which are:

]−∞, x1], [x1, x2], [x2, x3], [x4, x5], [x5,∞[

or
[x1, x2], [x2, x3], [x4, x5]

but certain attention has to be considered at infinity.

The case x→∞

The first dimension in S is represented by x = tan
(
θ
2

)
. This means that x →

±∞ corresponds to the angle θ → ±π. It was shown in section 2.2.1 that a line
of the form [

s1,
1

2
(y + zs1),

1

2
(z − ys1)

]
(3.6)

describes all position with the translation (y, z) in the physical dimensions.
The ends at infinity of such a line will connect to each other in the physical
dimensions, since the angle θ = −π gives the same position as θ = π.

A linkage that includes θ = π in its work space will have a constraint curve
that goes to infinity and connects to an other curve at minus infinity. There
will be a line of form (3.6) tangent to the constraint curves on the ends that are
connected together.

The reason for four intervals is that ±∞ are connected together and therefore
the last and first value forms one interval. The four intervals are:

[x1, x2] (3.7)

[x2, x3] (3.8)

[x3, x4] (3.9)

[x4, x1] (3.10)
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Figure 3.3: The image space is divided into a maximum of four regions which
either contains a constraint curve for all x or no constraint curve at all.

Physical Interpretation

The physical interpretation of this is that a linkage movement can be limited by
a maximum angle and a minimum angle. At the maximum and minimum angle
there is only one translation the end effector can take. For any angle in between
there are two different translations. It also means that a four-bar linkage can
not have more than two translations with the same orientation.

3.1.2 Determine the Side of Infinite Curves

In the case of two infinite constraint curves there are no split points which
implies that all task positions lie in the same interval. However it also implies
that there are two decoupled constraint curves since they never join each other
in a single point. To determine which one of the curves an image point belongs
to, the image point can be transformed to the coordinate system L. The sign
of the z-component will then determine which one of the curves an image point
belongs to.
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Figure 3.4: Two infinite constraint curve. By analyzing an image point in the
coodinate system L(x), the sign of the z-component (Blue axis) will determine
which one of the curves the point belongs to.

3.1.3 The Side of a Closed Curve

Chase[11] considers a linkage useful if it can be driven by rotating one input link
and still reach all task positions. At some values of the input angle a linkage
reaches a maximum or minimum value of the end effector rotation. There are
two different trajectories leading to this position and it may not be possible to
control which one of the trajectories the end effector will follow when leaving
the position. Since the end effector rotation is directly related to the x-value
in the kinematic image space, the minimum and maximum values of the end
effector trajectory will occur at the split points.

Chase[11] defines a linkage as useful if all task positions can be reached
when the linkage is actuated by rotation of one of the links. Therefore it is of
interest to determine which side of a closed curve an image point belongs to. To
determine the side, the same method as in Section 3.1.2 can be applied. Even
if the usefulness defined by Chase[11] is not primary considered in this theses,
the method is still able to use Chase’s definition.
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Chapter 4

Modifying Task Positions

The first approach to avoiding branching was to identify some primitive approx-
imate shapes for the constraint curve and adjust the task positions to mach one
of those primitive shapes.

4.1 Intersection Shapes

By experimenting with moving two cylinders it is observed that the shape of
the intersection goes from one ellipse to a guitar shape, a figure eight and two
ellipses. Those shapes are just approximations and hyperboloids may form much
more complex intersections. It is still reasonable to think that five task positions
that lie close to one of those shapes should have a non branching linkage.

This is investigated by matching an ellipse (which is the most simple case)
to four of the task positions and projecting the fifth position onto the ellipse.

An general ellipse is determined by five coefficients. When the ellipse is
matched to four points, there is an infinite number of solutions. In the experi-
ments, the ellipse closest to a circular shape where selected.

4.2 Projection Methods

4.2.1 Projecting on Curve given by an Implicit Equation

Consider a curve C defined by g(y, z) = k, i.e. the curve is a contour curve to
the function g(y, z). Also consider the square distance function dp(y, z) from a
point p to an arbitrary point (y, z), given by:

dp(y, z) = y2 + z2 (4.1)

The minimum distance from point p to C occurs when the contour curves of
dp(y, z) tangent C. To find the tangential point we look for where the gradients
of g and d are parallel. This will give us a curve for which the tangential point
is the intersection with C.
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After running a large number of syntheses from randomly selected task po-
sitions it was not possible to see a significant difference of the number of useful
linkages after the modification verses before. When analyzing the constraint
manifolds after synthesizing from the modified positions, the intersection curve
did not take shape of the ellipse which it was supposed to.

4.3 Discussion

This gives the conclusion that it is not good enough to project the task positions
onto an approximated shape to avoid branching. Instead the exact shape of the
constraint curves would need to be calculated.

Synthesizing could be done by matching the hyperboloids to the task posi-
tions in the image space. Fitting a general hyperboloid given by 7 coefficients
is just to solve a linear equation, but the solution is not guaranteed to be a
hyperboloid, it might be a ellipsoid instead. Also the extra relations between
the 7 coefficients determined by the 5 linkage parameters introduce many non-
linearities.

An other approach will be introduced in the next chapter.
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Chapter 5

Four-Point Synthesis

A crank of the linkage is defined by five parameters, thus up to five task positions
can be specified. If one of the linkage parameters is specified, only four task
positions remains to be specified.

Instead of specifying five positions and synthesizing a linkage by an iterative
process that goes through the tolerance zone, four task positions will be specified
and all possible motions that go exactly through those four task positions will
be calculated. With that information, a fifth task position could be moved to
the closest possible point.

The approach to calculate all possible motions to a set of four task positions
is:

* Chose one of the linkage parameters (e.g. gy) and find the values where
the constraint curve is changing structure and form a set of intervals with
the same structure in the whole interval.

* Analyze the branching conditions for each interval and determine the use-
ful structure intervals.

Definition 9. An interval for a linkage parameter that gives the same structure
of the constraint curve in the whole interval is called a structure interval.

Definition 10. The values of a linkage parameter where the structure of the
constraint curve changes are called the separation points.

5.1 Determine the Structure Intervals

Consider a four-bar linkage with one linkage parameter constrained, e.g. gy =
value. From four task positions, the synthesis algorithm will give the remaining
linkage parameters and the constraint curve can then be calculated. Using the
branching analysis from Chapter 3, the structure of the constraint curve is easily
known.
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Let G be a vector with a set of values for the linkage parameter gy. If the
structure of the constraint curve is the same for two neighbor values Gi, Gi+1,
the constraint curve is assumed to have the same structure in the interval in
between. This is of course an approximation but it is true for small enough dis-
tances between Gi and Gi+1. If the structure is different between two values Gi
and Gi+1, a refined search is made in the interval [Gi, Gi+1] until the difference
between the separation points is within a specified precision tolerance.

During experiments it was observed that in some intervals the structure could
change in a stochastic or at least unknown way. Those intervals are ignored in
favor to the robustness of the algorithm.

5.2 Analyze the Branching Conditions

A fast closed loop method for investigating the branching was previously de-
veloped in Chapter 3. For each structure interval it can easily be determined
whether the four task positions lies in the same branch. If they do, the structure
interval is useful.

Hypothesis 1. If one linkage synthesized from four task positions and a value
of a linkage parameter (e.g. gy) in a structure interval is useful, then all link-
ages synthesized from the same four task positions and any value of the linkage
parameter in the structure interval is useful.

Hypothesis 1 is not proved to be true but with some geometric reasoning, it
can be fairly well motivated.

Motivation Recall the equations of the constraint manifold center line and
radius.

center(x) =

(
x,

1

2
(gx + gyx− px + pyx),

1

2
(−gxx+ gy − pxx− py)

)
(5.1)

radius(x) =
a

2

√
1 + x2 (5.2)

An infinite change of one or more variables will give an infinitely close constraint
manifold, and thus an infinitely close constraint curve. In other words, the
constraint curve is a continuous function of the linkage parameters. This would
imply that two finitely close constraint curves with the same structure will
approximate a continuous surface generating infinitely many constraint curves
in between.
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Figure 5.1: Two close constraint curve approximates a surface in between that
includes an infinitely number of constraint curves in between.

In the case of only one single branch, all task positions will always be in
the same branch. Consider the case of two branches where the constraint curve
consists of two closed curves, and all task positions lies on the same branch.
The linkage parameters are slightly modified so a near by constraint curve with
the same structure is obtained. Then there is according to our assumptions a
continuous surface with constraint curves of the same structure in between. For
a task position to leave its current branch, the constraint curve has either to
separate into two new curves, or the two existing curves have to join each other
at the task position. But those cases imply a new structure of the curve.

Conclusion This means that, as long as one linkages in a structure interval
is useful, then all linkages in that structure interval are useful.

5.3 Multiple Solutions

Multiple solutions occurs for some values of gy, i.e. there are many linkages
with the same value of gy. The center point curve is the curve that describes
all positions of the fixed pivot for linkages synthesized to four task positions.
It is a continuous cubic curve for four task positions [16]. Multiple solutions
introduce an issue when dividing the values of gy into interval with different
branching structures. If the values of gy where either the branching structure
or the number of solutions is calculated, the points (gx, gy) can be plotted to
show the structure of the center point curve.

The separator values are defined as the values where the structure of the
constraint curve changes. The structure is considered to change if either the
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number of solutions changes or the branching structure of the constraint curve
for any of the multiple solutions is changing. Let the separator values be the
values where either the constraint curve changes structure, or where the number
of solutions are changing. The center point curve may look like Figure 5.2.

1.5 1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

gx

gy

Figure 5.2: Illustration of a center point curve where the different branching
conditions are indicated with different colors. The curve is generated from the
trunk cover example.

5.4 Example

Recall the example in section 1.1. In this example let the value of gy be in the
interval gy ∈ [−2, 2]. The iterative search is used to obtain the values of gy where
the constraint curve changes structure. The following values were obtained in
this example

Gsep = (−0.7901, 0.2469, 0.6420, 0.8395) (5.3)

The Branching cases for the intervals of gy values in this example are
gy ∈ [−2,−0.7901] Two closed finite curves, all positions did not happen to

be on the same branch.
gy ∈ [−0.7901, 0.2469] One closed finite curve, all points are always on the

one and only branch.
gy ∈ [0.2469, 0.6420] Two half open curves, all points are always on the one

and only branch.
gy ∈ [0.6420, 0.8395] One closed finite and two half open curves, all positions

did not happen to be on the same branch.
gy ∈ [0.8395, 2] Two closed finite curves, all positions did not happen to be

on the same branch.
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Figure 5.3: All possible useful constraint curves to the four task positions from
the car trunk demo.

5.5 Modifying the fifth task position

The initial problem where posted to find a strategy to modify a fifth task po-
sition. However the exploration of all possible image curves to four positions
opens up new possibilities. An example of a task description could be to move
through four task positions and avoid one or more points on the way. Then
the line in the image space that describes this point for all orientations can be
calculated, and the constraint curve that goes as far away from this line could
be used.

If it is still desirable to have a fifth task position it can be done as well. In
the classical synthesis methods the task positions are specified together with a
tolerance zone for x, y and θ. The tolerance zone is no longer of the same interest
since it from now on is possible to find the closest reachable task position.

The task positions in our case are assumed to be specified by the joint values
of the first crank. Thus they will all lie on the first crank’s constraint manifold.
Since the position consists of both translation and rotation, the closest distance
has to be defined. The importance of translation verses rotation will be specified
by two weights w1 and w2.

It is assumed that a fifth task position should be reachable by the first
specified crank. Therefore it has to lie on the surface of its constraint manifold.
If the fifth task position is moved along the parametric curve defined by:

p5(t) = center(t) +

 x0 ± w1t
r(x0 ± w1t) cos(θ0 + w2t)
r(x0 ± w1t) sin(θ0 + w2t)

 (5.4)

the point will automatically stay on the constraint manifold. This curve is only
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one example of possible curves to use for modifying the fifth task position, any
other curves that lies on the first constraint manifold surface could be used as
well.

Figure 5.4: A curve defined by (5.4) lies on the surface of a constraint manifold.
The blue point illustrates the image point of a fifth task position. There are
two similar curves rotating in opposite directions.

To find the intersection with a constraint curve, it is enough to find the
intersection with the second constraint manifold that generates the constraint
curve. The constraint manifold satisfies the implicit constraint manifold equa-
tion (2.20). The values for x, y and z in (5.4) can be inserted into the constraint
manifold equation, and the zeros can be solved for.

The NSolve function in Mathematica had problems solving this equation.
Instead a simple systematic search algorithm were used. The search algorithm
finds all zeros within a limited interval for the curve parameter. The algorithm
checks the value of the constraint manifold equation (2.20) for a set of parameter
values and searches for the values where the sign changes, since the equation is
zero at the intersection. When two neighbor values are found, a refined search
is made in the interval in between until the second constraint manifold equation
is satisfied.
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Chapter 6

Discussions

6.1 Adjusting to Primitive Shapes

The idea of adjusting the task positions to match some primitive shapes of
intersection curves did not show to be working. It did not show any significant
differences in branching before and after adjusting the task positions. Also since
the shapes were determined by looking at the intersection of two cylinders, the
intersection of two hyperboloids will probably not take the exact same shape.
The constraint curve for linkages synthesized did not either take a shape similar
to the supposed primitive shape.

6.2 Structure interval

The linkage parameter gy was used to determine the structure intervals. As seen
on the center point curve (Figure 5.2), the curve segments with small changes of
gy are not completed. This could possibly be solved by synthesizing by varying
another linkage parameter such as gx instead. There is still much research to be
done before the most efficient and robust way of calculating all possible linkages
to four task positions is found.

6.3 Constraint Manifolds

The most interesting question is how to apply this theory on multiple-loop
linkages. For a multiple-loop linkage, the constraint manifolds for each four-bar
loop in the linkage could be analyzed. This would give a set of constraint curves
in the image space. The constraint manifolds and constraint curve only tells
which positions are reachable at some joint values. Since the joint values are
eliminated when deriving the constraint manifolds, if the constraint manifolds
for each four-bar loop in the linkage are analyzed, it would give a set of constraint
manifolds which may intersect in more positions than are reachable.
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6.3.1 Order of Constraint Manifolds

The constraint manifold for a 2R chain is given by one equation. A curve in a
two-dimensional space is defined by one equation of any two coordinates vari-
ables defining the plane. A plane in a three-dimensional space is defined by
one equation of any three coordinate variables defining the space. One equation
constraints one variable, so one equation in a four-dimensional space will define
a three-dimensional subspace which is the case for the 2R chain constraint man-
ifold in the planar dual quaternion domain. While deriving the constraint mani-
fold equation, the kinematics was described using two variables (the joint values)
and four equations where given. From the first two equations q1 = cos

(
θ
2

)
and

q2 = sin
(
θ
2

)
, the condition q21 + q22 = 1. A similar condition could be obtained

from the third and fourth equation. The two variables where eliminated by
this and two equations remained. Those equations where subtracted from each
other to obtain the final constraint manifold equation. However one of the orig-
inal two equations has to be saved. Only one of those where considered as the
constraint manifold equation but the trigonometric unity condition has to be
satisfied as well to be a reachable position.

6.4 Synthesis of Non-Branching Six-Bar Link-
ages

Exactly how this work can be applied on higher order of linkages is still unknown.
For a multiloop linkage consisting of many four-bar linkages. The branching
analysis can be applied to each four-bar. A constraint manifold equation can
also be derived for a 3R chain. However since a 3R chain has three degrees
of freedom, the constraint manifold is a 3 dimensional region instead of a 2
dimensional surface.
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Figure 6.1: A Watt Ia six-bar linkage drawing from [6] with notations added on.

If the two constraint manifold regions C1−2−3 for link 1− 2− 3 and C4−5−3
for link 4− 5− 3 are calculated, the intersection would give the work space for
the mechanism without link 2 and 4 connected.

A 3R chain 4−2−3 is considered, the intersection between the regions C1−2−3
and C4−2−3 would be greater then the actual work space of the mechanism. The
reason is that the joint values of link 1 and link 4 is constrained by the four-bar
generated by links 1− 2− 4

It is an interesting future research topic how the constraint manifolds for
four-bar linkages stapled on top of each other will look. An approach I can
suggest for analyze the branching of a six bar is based on an assumption that
no four-bar sub-linkage in the assembly is allowed to branch.
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Chapter 7

Conclusions

7.1 Kinematic Theory

7.1.1 Constraint Manifolds

The constraint manifold equation of a 2R chain was found to be a second degree
homogeneous polynomial equation. Since the constraint manifold equation is a
homogeneous equation, if it is satisfied by a planar dual quaternion Q, it is also
satisfied by all multiples of the planar dual quaternion P = tQ. Therefore the
constraint manifold equation can be projected onto the kinematic image space.
The constraint manifold equation describes a hyperboloid in the kinematic image
space. The hyperboloid can be described by a center line and a radius. For each
x-value the constraint manifold forms a circle.

7.1.2 Constraint Curve of a Four Bar Linkage

A four-bar linkage can be constructed by two 2R chains with a common coupler
link (Figure 2.3). The constraint curve has to satisfy both constraint manifolds
of the two 2R chains. Since a constraint manifold forms a circle for a given
x-value, the constraint curve at that x-value (which is the intersection of two
hyperboloids) will be the intersection of the two hyperboloids’ circles at that
x-value. Thus the constraint curve have zero, one or two points for each x-value.

Number of Intersection Points

There is exactly one intersection point at an x-value if the distance between the
two center lines is the same as the difference or sum of the radius at the same
x-value.

Solving for the constraint Curve

The constraint curve can be found by placing a coordinate system with origo on
one of the constraint manifold’s center lines, with one coordinate axis pointing
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at the other constraint manifold’s center line. In this coordinate system the
intersection points can easily be solved for and the result can be transformed
back to an inertial coordinate system.

7.2 Mechanism Branching

Between two x-values (split points) where the constraint curve has only one
intersection point, there is either no intersection of the manifolds between those
split points, or two intersection points for every x-value in between. Thus the
branching structure of a four-bar linkage can be determined by finding the split
points and checking the structure for only one point in each possible interval.

The split points divides the kinematic image space into a maximum of four
regions, which either includes a constraint curve for all x-values in the region,
or does not include a constraint curve at all.

Figure 7.1: The image space is divided into a maximum of four regions which
either contains a constraint curve for all x or no constraint curve at all.

It can be determined whether a linkage is useful by checking if all the task
positions lie in the same region, if they do, the linkage is useful.

The region below the lowest plane and above the top plane is connected
together in infinity and is considered as one and the same region.
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7.2.1 The Side of the Constraint Curve

In the case of two infinite curves, the branching is determined by which one of
the curves the positions lies on. There can also be situations for closed curves
where the side of the constraint curve is of interest. Which side a point lies
on can be determined of transforming to a coordinate system located on one
center line pointing to the other. The side is determined by the sign of one of
the components.

7.3 Extruding all Possible Constraint Curves

By restricting the task specification to only allow four exact task positions,
a large set of possible linkages could be found. If one linkage parameter is
specified, it can be determined for which values of the parameter the structure
of the constraint curve changes. The structure intervals can then be calculated
for the linkage parameter. If one linkage in a structure interval is useful, either
all linkages in this structure interval are useful, or no linkages in the structure
interval are useful. The usefulness of a structure interval can then easily be
determined by applying the branching test for any linkage in the interval.

7.4 Modifying a Fifth Task Position

A fifth task position has to lie on one of all possible constraint curves. When
all possible constraint curves are calculated, the image point of a fifth task po-
sition could be moved along a curve until it intersects with a possible constraint
curve. The curve to move along should be a curve on the first crank’s constraint
manifold, and is preferable determined by some weights constants determining
the importance of the rotation verses translation of the task position.

7.5 Future Work and Research

It is still not well known which linkage parameter that is best to vary while
finding the structure intervals. gy was used in this thesis but other parameters
might give higher accuracy. The next step would be to calculate all possible
constraint curves without holding one crank fixed. Also a lot of computer pro-
gramming has to be done to provide a robust algorithm. The suggested strategy
of specifying zones or points to avoid by the mechanism could be implemented.
The next interesting problem is to synthesize multiple loop linkages. If the
synthesis starts with specifying one chain and then constraining the chain with
four-bar linkages, then the branching of the four bars could be analyzed for
different dimension of the first chain. The goal would be to find all dimensions
for which the first four-bar is not branching, then proceed to the second four
bar and find the dimensions for which the second is not branching either.
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Appendix A

Dual Quaternions

This chapter contains my notes from learning and understanding dual numbers
and dual quaternions. There are many papers written about quaternion and
dual quaternions, however I found most of them very confusing and complicated.
To understand the dual quaternions I found it useful to start with the most basic
building blocks and build up the understanding from there on.

A.1 Quaternions

The quaternions are mainly used for representing rotations, however they are
at the same time a mathematical object which only represents a valid rotation.
It is still of importance to start with the fundamental mathematics.

The quaternions will later on be considered as four-dimensional vectors.
However the fundamental theory is based on the quaternions being scalar num-
bers in the same as a complex number is a scalar number even though it has
two dimensions and could be represented as a vector. The quaternions are four
dimensional hypercomplex numbers.

A.1.1 The Imaginary Dimensions

In the same way the imaginary unit i is introduced by the definition i2 = −1,
two new imaginary dimensions will be introduced. Hamilton defined[8] the
relationship between the products of the imaginary units to follow the rule:

i2 = j2 = k2 = −1 (A.1)

ij = k, jk = i, ki = j (A.2)

ji = −k, kj = −i, ik = −j (A.3)

An arbitary quaternion can be expressed as:

Q = q0 + q1i+ q2j + q3k (A.4)
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or in a vector form:
Q = (q0, q1, q2, q3) = (s,~v) (A.5)

where:
~v = (q1, q2, q3) (A.6)

Some publications have the real part as the fourth element when represented as
a vector.

Calculation laws

The calculation rules for quaternions follow by the standard calculation rules
together with definition (A.1). The quaternion product expressed in a vector
notation is then:

Q1 ◦Q2 = (s1s2 − ~v1 · ~v2, ~v1s2 + s1~v2 + ~v1 × ~v2) (A.7)

The conjugate of a quaternion is (like the conjugate for a complex number) the
imaginary parts inverted:

Q∗ = (q0,−q1,−q2,−q3) = q0 − q1i− q2j − q3k (A.8)

From (A.7), it follows that

Q ◦Q∗ =
(
q24 − ~v · (−~v,~vq4 + q4(−~v) + ~v × ~−v)

)
= (0, ‖Q‖2) (A.9)

where ‖Q‖ is the euclidean norm of Q. All quaternions multiplied with it is
conjugate is a real number. If ‖Q‖ = 1 the quaternion is a unit quaternion.

Application

A quaternion can be used for representing a three-dimensional rotation [17].

A.2 Dual Numbers

A dual number is a number involving the dual unit and consists of a real and a
dual part. It is similar to the complex numbers except that the dual unit ε has
the property

ε2 = 0 (A.10)

The dual number also follows the commutative law. Let z1 = a1 + b1ε and
z2 = a2 + b2ε be two dual numbers, and λ be a scalar. The following calculation
rules follows from (A.10)

z1 + z2 = a1 + a2 + (b1 + b2)ε (A.11)

λz = λa+ λbε (A.12)

z1z2 = a1a2 + (a1b2 + a2b1)ε+ 0 (A.13)
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Functions of dual numbers

To work with dual quaternions, we need to know about some functions of dual
numbers. The fundamental one is the exponential function. Taking the expo-
nential of a pure dual number and expanding in a power series we get:

ebε = 1 + (bε) +
(bε)2

2!
+

(bε)3

3!
+ · · · (A.14)

By definition in (A.10), all terms of power two or higher is zero, and we obtain:

ebε = 1 + bε (A.15)

The exponential of an arbitrary dual number is

ea+bε = eaebε = ea(1 + bε) (A.16)

The trigonometric functions of a dual number can be derived from the property

eiθ = cos(θ) + i sin(θ) (A.17)

Together with (A.16 ) we can write

ei(a+bε) = (cos(a) + i sin(a))(1 + biε) (A.18)

The dual valued functions of cos and sin can then be obtained from the real and
imaginary part

cos(a+ bε) = Re(ei(a+bε)) = cos(a)− bε sin(a) (A.19)

sin(a+ bε) = Im(ei(a+bε)) = sin(a) + bε cos(a) (A.20)

A.3 Screw Displacement

An arbitrary three-dimensional displacement can be described by a screw. The
screw consist of a unit screw axis, an angle and a distance. The displacement
corresponding to a screw with screw axis S, angle θ and distance d is obtained
by rotating the initial frame around the axis S by the angle θ at the same
time as the frame is translated along the axis by the distance d. We shall note
that the screw axis does not have to go through the origin. Thus it cannot be
represented by a single vector. Instead, the axis is represented by the plucker
coordinates for its line.

Plucker coordinates

A line specified by one arbitrary point C on the line and a direction vector ~S is
transformed to plucker coordinates by:

L = (~S, ~C × ~S) (A.21)

The vector ~C × ~S is a vector which is normal to a plane that contains the line
and it has the length of the shortest distance from origo to the line.
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A.4 Dual Quaternions

To represent an arbitrary three-dimensional displacement we can use a dual
quaternion.

Such a displacement can be described by a rotation around the unit axes S
by an angle θ, and a translation along vector D = (x, y, z, 0) = xi + yj + zk.
The dual quaternion for this displacement is

Ŝ = S +
ε

2
D ◦ S (A.22)

Given a dual quaternion Ŝ = A+ εB where A and B are quaternions. With
use of (A.9), the translation vector can be found by:

D = 2B ◦A∗ (A.23)

Screw to quaternion

If the screw axis S intersects with origo, and the angle around S is θ and
displacement along S is d, then the dual dumber for the screw is Θ̂ = θ+ εd. A
dual quaternion describing the screw is:

Ŝ = cos(
Θ̂

2
) + S sin(

Θ̂

2
) (A.24)

The angle Θ̂ is a dual angle. We use (A.19) and (A.20) to expand this to:

Ŝ = S sin(
θ

2
) + cos

θ

2
+
dε

2

(
S cos(

θ

2
)− sin(

θ

2
)

)
(A.25)

In case of a screw axis not intersecting origo, the vector S has to be the
plucker coordinates for the screw axis. This is the case for the screw axis
intersecting origo as well but in that case the dual part of the screw axis S is
zero. Formula (A.24) is valid in both cases but for an arbitrary screw axis it is
expanded into a more complex expression.

Displacement Chain

In many cases, e.g. robot kinematics, we want to apply a number of transfor-
mations after eachother to finaly reach the end effector position. By having
each transformation represented by the dual quaternions Qi, the end effector
position QTCP is obtained by:

QTCP =

n∏
i=1

Qi (A.26)
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A.5 Notations

· dot product (euclidean norm inner product)
◦ quaternion multiplication
⊗ dual quaternion multiplication
× cross product (Vector product)
Q∗ conjugate of quaternion
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