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Finite position synthesis of four-bar linkages is a problem
representing issues or designing components in mechanism,
which may be found many types of machines, including cars
as well as airplanes. The branching defect is defined as a sit-
uation where all specified task positions is not connected by
a continuous motion for the linkage. The branching defect
is the largest limitation for designing useful linkages with
the up to day finite position synthesis method. The problem
is investigated using kinematic theory based on dual quater-
nions. We derive the workspace of a four-bar linkage to be
the intersection of two hyperboloids in the kinematic image
space. This is used to develop an efficient algorithm for de-
termining branching of a linkage. That also gives an explicit
solution to the end effector trajectory. To find non-branching
linkages, a new synthesis method was developed where one
task position is given a lower priority. Useful linkages can
then be obtained from a range of values for a constrained di-
mension of the linkage, by using the new branching analysis
method, by synthesizing linkages with various values of one
parameter of the linkage. Finally a method to find the closest
useful linkage to the last task position is presented.

1 Introduction

Four-bar linkages can be found as components in many
machines including cars or automation manipulators. They
are useful when something is required to move along a one
degree-of-freedom (DoF) trajectory with a minimal number
of actuators.

We consider synthesis of planar four-bar linkages from
a finite set of task positions. A task position is a translation
(x,y) together with a rotation angle 6, which the mechanism
has to move through during its task.

A four-bar linkage consists of two cranks, see Fig. 1.
Each crank of a four-bar linkage is described by five vari-
ables, which are the position of the fixed and the moving
pivot and the length of the crank. Five variables implies
that up to five task positions can be specified. The synthesis
is based on solving the design equations which are derived
from the length of a crank. We use the notations from Fig.
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Fig. 1. A four-bar linkage can be considered as two 2R chains with
the coupler link in common. The fourth link is the base link which in
many cases is the same a the ground.

2, where W; € R3*3 is a homogeneous transformation ma-
trix representing task position number i. The design equation
then yeild
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A solution (I, py, py, 8x,8y) to Eqn. 1 guarantees that the
crank can reach the task positions W;. When two cranks are
connected together as a four-bar linkage, that linkage can still
be positioned at all task positions. However there may not be
a continuous motion between all of them any more, the links
may need to be decoupled to move from one task position
to another. The case where there is not a continuous motion
between the task positions is known as the branching defect,
which is illustrated in Fig. 3. The up to date strategy to avoid
branching linkages has been to randomly choose new task
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Fig. 2. A four-bar linkage is described with the linkage parameters
for each crank. The figure shows the annotations for the left crank.

positions close to the initial specified set, and synthesis link-
ages until a non-branching linkage is found.

Contribution We develop a method based on kinematic
analysis in the kinematic image space to determine the
branching conditions of a four-bar linkage in an efficient
way. The kinematic image space is a representation of pla-
nar displacements and was introduced by [1] in 1911. It is
based on the same fundamental theory as planar dual quater-
nions which is a restriction of dual quaternions. We use our
new branching determination method together with the tradi-
tional finite-position synthesis from [2] to calculate all four-
bar linkages which are non branching for four out of five task
positions. Finally we provide a method to select the optimal
four-bar linkage with respect to a fifth task position.

1.1 Linkage Meachanisms
We start with defining some important terminology.

Definition 1. A 2R chain is a mechanism consisting of two
links where: the first link is connected to ground by a rev-
olution joint, the two links are connected to each other by
a revolution joint and an end effector frame is fixed on the
second link.

Definition 2. A four-bar linkage is a mechanism consist-
ing of four links connected to each other by a total of four
revolution joints. Each link is connected by two of the joints.
An end effector frame is fixed on the coupler link which is the
link opposite to the ground link.

Definition 3. The links connecting the coupler link and the
ground link are called the cranks of the four-bar linkage.

Fig. 3. lllustration of the branching defect of a four-bar linkage. The
linkage can be assembled in two different configurations. Each con-
figuration has its own continuous end effector trajectory.

1.2 Dual Quaternions

Our kinematic analysis is based on planar dual quater-
nions which is a planar restriction of dual quaternions. Dual
quaternions are dual numbers of quaternions which were in-
vented by Hamilton [3] in 1844, as an extension to the com-
plex numbers into a four-dimensional hyper-complex num-
ber with three imaginary dimensions and one real dimension.
Quaternions can be used to describe a rotation in a three di-
mensional space [4]. To represent a displacement we need to
use a dual quaternion which has a total of eight components.
When considering planar geometry only four non-zero com-
ponents of the dual quaternion remains.

Definition 4. The four non-zero elements of a dual quater-
nion describing a planar displacement is called a planar
dual quaternion.

Dual quaternions as well as planar dual quaternions can
be applied after each other using dual quaternion multiplica-
tion. For multiplication of planar dual quaternions we use
the symbol ®.

2 Constraint Manifolds

Considering a 2R chain, which is a part of a four-bar
linkage. An end effector frame W is fixed to the second link.
The planar dual quaternion of the end effector frame is given
by a function of the two joint angles ¢ and 6 from Fig. 4. Let
T (x,y) be a planar dual quaternion for a translation (x,y), and
let R(0) be a planar dual quaternion for a rotation of angle 6.

Definition 5. A constraint manifold for a linkage mecha-
nism is the set of reachable positions for the end effector.
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Fig. 4. The end effector frame is obtained by multiplying a sequence
of primitive planar dual quaternions. The end effector fram is a func-
tion of the two joint parameters 6 and .

The constraint manifold equation for a simplified case of a
2R chain is derived in [5]. We make a more general deriva-
tion and obtain the planar dual quaternion of the end effector
frame W by multiplications of the sequence of planar dual
quaternion given by Eqn. 2.
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Equation 2 is expanded into Eqn. 3 which can be seen as a
parameterization of the constraint manifold.

E<ev¢> =

Parameterizations are efficient in forward kinematics
since it gives the end effector explicit from the joint values,
but less efficient to check validity of positions. We want to
derive an implicit constraint manifold equation where the pa-
rameters 0 and ¢ are eliminated. Such equation could be
used to check if an arbitrary position is reachable by check-
ing if the position satisfies the equation. In a general case,
we can say that the end effector position is specified by the
four components of the planar dual quaternion, Q(0,0) =
(41.92,93,94)" . To eliminate the joint values in the equa-
tions, we observe that the joint values only occur in the four
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and ¢4 = sin (?) into Eqn. 3
and obtain the following:
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From the determinant of the system, we find it non-singular
for a # 0. Since a > 0 holds (all links have non-zero length),
we can always solve for the variables {c¢;} in terms of {g;}.

From the trigonometric unity we get 3 +¢3 = c3 +c3 =
1, which is equivalent to:
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Definition 6. The constraint manifold equation for a 2R
chain is defined as C% + C% — C% - cﬁ =0.

By substituting {c;} with their values in terms of {g;} Eqn. 6
gives a homogeneous polynomial equation in g with each
term of second degree. The first equation only gives q% +
q% = 1 which is a constraint that can easily be satisfied by
scaling.

In order to visualize and reason about the constraint
manifold we project it to the kinematic image space. The
projection is given by the projection operator Eqn.7.

q1,92,493,494
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We can project back to the space of planar dual quater-
nions with the inverse projection operator Eqn.8.
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Lemma 7. If the constraint manifold equation is satisfied
by a planar dual quaternion Q = (q1,492,93,94), then the pro-
Jjection of Q onto the kinematic image space also satisfies the
constraint manifold equation.

Proof. The constraint manifold equation can be written as:
Q"MQ =0 )

The projection of Q onto the kinematic image space is
Ps(Q) = q%. By substituting Q by Ps(Q) = q% into the left
hand side of Eqn. 9 we get:
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Fig. 5. The constraint manifold is characterized by a centerline and
a radius
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The constraint manifold equation in the kinematic image
space is a hyperboloid with the centerline and radius given
by:
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3 Branching Analysis

Now when the shape of the constraint manifolds are
known, we can start to think about how this knowledge can
be used for branching analysis.

We consider a four-bar linkage as two 2R chains (from
now referred to as the cranks) connected together with a
common coupler link (Fig. 3). The end effector frame for
the four-bar linkage is the same as the end effector frames
for the two cranks. Each crank restrict the end effector posi-
tion to its constraint manifold, which implies that a four-bar
linkage is restricted to the intersection of the two 2R chains’
constraint manifolds. We define the intersection curve as the
constraint curve. A non branching linkage must then have
all task positions on the same curve.

Let C; and C; be two constraint manifolds. Consider a
plane in the kinematic image space for a fixed x = s coordi-
nate. We ask whether the constraint curve has any points in
this plane. From Eqn.10-11 we know that the shape of a con-
straint manifolds in the plane is a circle. Two circles intersect
if the center distance is between the sum and the difference
of the radii, which gives Eqn.12.

d(x)’ € |(n(x) —r@), (n@ +n®)? (12

From Eqn.10 it follows that the squared distance d(x)?
between two constraint manifolds is given by a quadratic
polynomial, and from Eqn.11 it follows that the square of
the sum or difference of the radiuses gives a quadratic ex-
pression well.

The regions of x which satisfies Eqn.12 is obtained by
solving the inequality equations Eqn.13-14.

13)
(14)

The right-hand sides of Eqn. 13 and Eqn. 14 are con-
tinuous functions since they are quadratic polynomial and
we can therefore solve the inequalities by solving for the x-
values where equality prevails and evaluate for any point in
between to determine if the inequality equation is satisfied or
not.

The equality cases of Eqn.13 and Eqn.14 gives two x-
values each, which may be real or complex. Since both equa-
tions have only real coefficients, either both x-values are real
or both complex. This tells us that we have either zero, 2 or
4 real solutions in total.

From that we can find five different branching cases for
the four-bar linkage, which are illustrated in Figs.6-10. A
similar analysis was done in [6] and [7] but only the cases in
Fig. 6, Fig. 9 and Fig. 10 were presented.

Fig. 6. One single branch of one closed constraint curve.

4 The Four-Bar Constraint Curve
In some cases the whole motion of the four-bar and not
only the branching is of interest. To find an explicit expres-



Fig. 7. One single branch of two half open constraint curves.

Fig. 8. Two branchse of one closed constraintcurve and two half
open constraint curves.

Fig. 9. Two branches of two closed constraint curves.

Fig. 10. Two branches of two independent infinite constraintcurves.

sion for the four-bar constraint curve, we introduce a new
coordinate system L(x) (see Fig. 11) with:

origin on the centerline of C; at position x
ey aligned with the centerline of C;

ey and e; are in a plane of constant x

e, pointing towards the centerline of C;

e, is orthogonal to ey

The four-bar constraint curve in coordinate system L(x) can
be obtained by solving for the intersection of two circles at a
distance d(x) = ||centerline; (x) — centerline; (x)|| from each
other and with radius R(x) and r(x) given by Eqn. 11. The
equations for the intersection in coordinate system L(x) is
given by Eqn. 15.

2.2 _ 2
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thus the four-bar constraint curve is given by:
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A parameterized constraint curve in a global coordinate
system can then be calculated by forming the homogeneous
transformation matrix for coordinate system L (x) and mul-
tiplying with the coordinates in the local coordinate system.
This gives a very long expression which we do not write out
here, but it can easily be used by a computer.

5 Four-Point Synthesis of Linkages

We consider linkage synthesis from five task positions.
Instead of specifying a tolerance zone and randomize the task
positions in a tolerance zone, which has been the up to day



Fig. 11. Coordinate system L(x).

strategy, we give a higher priority to task position number
one to four and we are looking for a minimal modification to
the fifth task position to get a useful linkage.

Problem 8. Given five task positions Wy,...,Ws reach-
able by the first crank M, we synthesis a four-bar linkage
(M, My) which moves exactly through the first four task po-
sitions W, ..., Wy and as close as possible to the fifth task
position Ws.

The design equations (Eqn. 1) have five unknown variables
and therefore up to five task positions may be specified. If
we constraint one variable by assigning it with a value, then
we may only specify four task positions. If we were only to
specify four task positions it would give us the freedom to
select one of the linkage variables. For a given value of a
linkage variable we can determine whether that value gives
a non-branching linkage in an efficient way using our new
branching analysis algorithm.

We now suggest a new synthesis strategy which we
choose to call four point synthesis:

1. Find the set of useful values of a linkage variable for
which the linkage synthesized from the first four task
positions is non-branching.

2. Find the reachable region for any useful values of the
linkage variable.

3. Select the value of the constrained variable which is
reaching closest to the fifth task position.

5.1 Continuous reachable region

We want to determine intervals for the constrained link-
age parameter for which the synthesized linkage is non-
branching. Such approach is only valid if the set of con-
straint curves associated with a continuous set of values of
the constrained variable is a continuous region as well.

From an infinitesimal change of one linkage variable the
constraint manifold will change infinitesimally. Let M be
a constraint manifold. Let p be the vector of the unknown

linkage parameters for the synthesis strategy to solve for and
let ¢ be a specified linkage parameter.

Lemma 9. The constraint manifold for a crank synthesized
from four task positions Wy, ..., W4 and one specified linkage
parameter t is continuous with respect to t.

Proof. Let the design equation be Eqn. 17 and (py,#o) be a
solution to Eqn 17.

F(p,1) =0 7)

For an arbitrary ¢ for which Eqn. 17 has at least one
solution, there is at least one corresponding value of p.

Let p and 7 be functions of a parameter &, such that
t(&)=1to+&and (p(€),7(§)) is a solution to Eqn. 17. We
prove the existence of such function p (§) by differentiating
the function F with respect to &.

Since Eqn. 17 is already satisfied for (p(0),7(0)) the
derivative of F with respect to & is required to be zero.
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Equation 18 can be guaranteed if the jacobian matrix of
F for the variables p span the derivative of F with respect to
t.
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Which proves that the constraint manifold is continuous
with respect to a linkage parameter ¢.

5.2 The closest curve to a point

To find the constraint curve to a point, we need to de-
fine a notation of distance on a constraint manifold which is
not trivial since the dimensions are combinations of transla-
tion and rotation. Let S5 be the image point of the fifth task
postion.

An arbitrary image point on the surface of a constraint
manifold can be parameterized by:

0

cos (y2)
sin (wy)

S(w1,¥2) = center (Y1) + radius (y1) (19)

We consider the shortest distance to be along a curve
defined by the weight w and:

{\Ifl (8) =d+ay
V2 (8)
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To find the distance to the constraint curve defined by
the constraint manifolds M and M,, we insert S5(3) into
the constraint manifold equation of M, and solve for 8. The
constraint manifold equation of ] is automatically satisfied
by the structure of Eqn. 19.

We already know that the constraint curves between two
structure points form a continuous surface. If we also as-
sume the surface to be bounded by the constraint curves at
the structure points, then we only need to evaluate the dis-
tance to the constraint curves at the separation points.

6 Conclusions

We derived kinematic relations from a four-bar linkages
in the physical dimensions to the kinematic image space and
used it to develop a strategy to analyze and determine branch-
ing of a four-bar linkage. An important concept was the con-
straint manifolds of 2R chains which we discovered took the
form of a hyperboloid with centerlines and radius which we
found simple explicit equations for. We also developed a
new branching analysis strategy which can, in an almost ex-
plicit way, tell if a four-bar linkage is branching or not. The
constraint curve of a four-bar linkage is the intersection of
two constraint manifolds of two 2R chains. We derived an
explicit expression for the constraint curve through a coordi-
nate transformation.

We considered a modified synthesis problem where the
first four task positions was given a higher priority than the
fifth one. An algorithm to calculate all useful four-bar link-
ages reaching the first four task positions was developed to-
gether with a method to determine which of all useful four-
bar linkages reaches closest to the fifth task position.

7 Discussions and Future Research

Synthesis of four-bar linkages is a central component
of synthesizing linkages of higher complexity, since those
can be considered as multiple connected four-bar linkages.
Synthesis of a six-bar linkage involves synthesis of two four-
bar linkages which both must be non-branching for the six-
bar to be non branching. An interesting problem is for the
first four-bar sub-linkage, synthesis a set of useful linkages
and then do the same for the second sub-linkage to finally
find the optimal combination.

References

[1] Griinwald,J., 1911. “Ein abbildungsprinzip, welches die
ebene geometrie und kinematik mit der rdaumlichen ge-
ometri verkiipft”. Sitzber. Ak. Wiss. Wien.

[2] McCarthy, J. M., 2001. Geometric Design of Linkages.
Springer.

[3] Hamilton, W. R., 1844. “On quaternions, or on a new
system of imaginaries in algebra”. Philosophical Maga-
zine.

[4] Kuipers, J. B., 2002. Quaternions and Rotation
Sequences: A Primer with Applications to Orbits,

Aerospace and Virtual Reality. Princeton University
Press, August.

[5] McCarthy, J. M., 1990. An Introduction to Theoretical
Kinematics. MIT Press.

[6] Schrocker, H.-P., Husty, M., and McCarthy, J. M.,
2006. “Kinematic mapping based evaluation of assem-
bly modes for planar four-bar synthesis”. In Proceedings
of EuCoMeS, the first European Conference on Mecha-
nism Science.

[7] Schrocker, H.-P., Husty, M., and J.M.McCarthy, 2005.
“Kinematic mapping based evaluation of assembly
modes for spherical four-bar synthesis”. In Proceedings
of ASME 2005 29th Mechanism and Robotics Confer-
ence.



